
HAL Id: hal-00744807
https://hal.science/hal-00744807

Submitted on 23 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From the Process Hitting to Petri Nets and Back
Loïc Paulevé, Morgan Magnin, Olivier Roux

To cite this version:
Loïc Paulevé, Morgan Magnin, Olivier Roux. From the Process Hitting to Petri Nets and Back. 2012.
�hal-00744807�

https://hal.science/hal-00744807
https://hal.archives-ouvertes.fr

From the Process Hitting to Petri Nets and Back

Loïc Paulevé1, Morgan Magnin2, Olivier Roux2

1 ETH Zürich, Switzerland.

loic.pauleve@ens-cachan.org
2 LUNAM Université, École Centrale de Nantes, IRCCyN UMR CNRS 6597

(Institut de Recherche en Communications et Cybernétique de Nantes)

1 rue de la Noë - B.P. 92101 - 44321 Nantes Cedex 3, France.

Technical Report - 17th October 2012

Abstract

We define encodings of a Process Hitting into a Petri Net and conversely. It results notably that

• the Process Hitting is a sub-class of Petri Nets;

• any safe Petri Net can be encoded into a weakly-bisimilar Process Hittings with 3 priority classes.

We finally discuss the use of the encoding of a Petri Net into a Process Hitting for providing efficient
static analysis of dynamical properties.

1 Main Definitions

Process Hitting (Paulevé, Magnin and Roux, 2012).

Definition 1 (Process Hitting). A Process Hitting is a triple (Σ, L,H):

• Σ = {a, b, . . . } is the finite countable set of sorts,

• L =
∏
a∈Σ La is the set of states, with La = {a0 . . . ala} the finite and countable set of processes of

sort a ∈ Σ and la a positive integer, a 6= b ⇒ ai 6= bj ∀(ai , bj) ∈ La × Lb,

• H = {ai→bj �bk , · · · | (a, b) ∈ Σ2, (ai , bj , bk) ∈ La×Lb ×Lb, bj 6= bk , a = b ⇒ ai = bj}, is the finite
set of actions of priority k .

Transition between two states s, s ′ ∈ L is defined as follows:

s →(Σ,L,H) s
′ ∆⇔ ∃ai→bj �bk ∈ H, s[a] = ai ∧ s[b] = bj ∧ s ′[b] = bk ∧ ∀c ∈ Σ, c 6= b, s ′[c] = s[c]

where s[a] is the process of sort a within the state s.

Given an action h = bk→ai �aj ∈ H, hitter(h)
∆
= bk , target(h)

∆
= ai , and bounce(h)

∆
= aj .

Petri Nets We consider safe Petri Nets with read arcs (Vogler, Semenov and Yakovlev, 1998), as for-
malised in Def. 2.

Definition 2 (Petri nets with read arcs). A Petri Net with read arc is a tuple (P, T,W,R), where:

• P = {p1, . . . , pn}, the finite set of places;

• T = {t1, . . . , tm}, the finite set of transitions;

• W ⊆ P × T ∪ T × P , the set of (ordinary) arcs;

1

• R ⊆ P × T , the set of read arcs.

• (p, t) ∈ W ⇒ (t, p) /∈ W .

A (safe) marking M ∈ ℘(P) is a set of places. Transition between two markings M and M ′ is defined
as follows:

M →(P,T,W,R) M
′ ∆⇔ ∃t ∈ T, pre(t) ⊂ M ∧M ′ = (M \ •t) ∪ t•

where pre(t) = {p ∈ P | (p, t) ∈ W ∪ R}, t• = {p ∈ P | (p, t) ∈ W}, et •t = {p ∈ P | (t, p) ∈ W}.

2 From Process Hitting to Petri Nets

The encoding of the Process Hitting (Σ, L,H) into a Petri Net with read arcs is given by PN(Σ, L,H)

(Def. 3). Basically, each process is represented by a place and each action in H by a transition. For each
action h = bk→ ai � aj ∈ H, we add the ordinary arcs (ai , h) and (h, aj) in W ; and if ai 6= bk , we add the
read arc (bk , h) in R. The marking corresponding to a Process Hitting state s ∈ L is simply the set of all
the processes in s.

Definition 3. Given a Process Hitting (Σ, L,H), PN(Σ, L,H)
∆
= (P, T,W,R) is the Petri Net such that:

• P =
⋃
a∈Σ La;

• T = H;

• W = {(ai , h) | h ∈ H ∧ target(h) = ai} ∪ {(h, aj) | h ∈ H ∧ bounce(h) = aj};

• R = {(bk , h) | h ∈ H ∧ hitter(h) = bk ∧ hitter(h) 6= target(h)}.

Given s ∈ L, [s]
∆
= {s[a] | a ∈ Σ}.

Starting from a marking [s], Theorem 1 states the bisimulation relation between (Σ, L,H) et PN(Σ, L,H).

Theorem 1. Given a Process Hitting (Σ, L,H) ∀s, s ′ ∈ L, s →(Σ,L,H) s
′ ⇐⇒ [s]→PN(Σ,L,H) [s ′] .

Proof. From Def. 3, a marking [s] satisfies the pre-condition of a transition h in the Petri Net PN(Σ, L,H)

if and only if hitter(h) ∈ s and target(h) ∈ s; and applying the transition h replaces target(h) by bounce(h)

in the marking. This notably implies that [s]→PN(Σ,L,H) M ⇒ ∃s ′ ∈ L : [s]′ = M.

Fig. 1 illustrates this encoding.
Graphical representation of a Process Hitting: sorts are represented by labeled boxes, and processes by
circles (ticks are the identifiers of the processes within the sort, for instance, a0 is the process ticked 0 in
the box a). An action (for instance a2→b1 �b0) is represented by a pair of directed arcs, having the hit part
(a2 to b1) in plain line and the bounce part (b1 to b0) in dotted line. A state is represented by the grayed
processes (〈a0, b0, c1〉 in this example).
Graphical representation of a Petri Net: places are represented by circles; transitions by squares; ordinary
arcs by directed edges; read arcs by non-directed edges. The set of places having a token gives the marking
of the Petri Net ({a0, b0, c1} is this example).

3 From Petri Nets to Process Hitting

Process Hitting with Priorities We first generalise Def. 1 with the Process Hitting with k Priorities
(Def. 4): actions are split in k sub-sets H1, . . . ,Hk . Actions in Hn, n ∈ [1; k] have priority k ; where 1 (resp.
k) is the highest (resp. lowest) priority. An action with priority n can be applied only if none action with
priority < n is applicable.

Definition 4. A Process Hitting with k Priorities is tuple (Σ, L,H1, . . . ,Hk) where:

2

a

0

1

2

b

0

1

c

0 1

a0

a1

a2

b0

b1

c0 c1

h1

h2

h4

h3

h5

Figure 1: Petri Net (right) of the Process Hitting (left).

• Σ = {a, b, . . . } is the finite set of sorts,

• L =
∏
a∈Σ La is the set of states, with La = {a0 . . . ala} the finite set of processes of sort a ∈ Σ, and

la a positive integer. a 6= b ⇒ ai 6= bj ∀(ai , bj) ∈ La × Lb,

• ∀n ∈ [1; k],Hn = {ai→bj �bk , · · · | (a, b) ∈ Σ2∧(ai , bj , bk) ∈ La×Lb×Lb∧bj 6= bk∧a = b ⇒ ai = bj}
is the set of actions having priority n.

Given two states s, s ′ ∈ L,

s →(Σ,L,H1,...,Hk) s
′ ⇐⇒∃n ∈ [1; k] : s →(Σ,L,Hn) s

′

∧ ∀h′ ∈ H1 ∪ · · · ∪ Hn−1, hitter(h′) /∈ s ∨ target(h′) /∈ s .

Weak-bisimulation of safe Petri Nets The main challenge with the encoding of Petri Nets in Process
Hitting is that Process Hitting actions have a very limited scope as their pre-condition is restricted to the
test of at most two processes, one of which being the only one to replace.

Hence, a Petri Net transition have to be decomposed into multiple Process Hitting “atomic” actions. In
order to warranty the coherence of the sequence of applicable actions in the resulting Process Hitting, we
take advantage of their split in priorities; 3 priorities are sufficient here:

• Priority 1: apply the result of an active transition (i.e. de-activate places in the pre-condition and
active those in the post-condition);

• Priority 2: compute the transitions that are applicable;

• Priority 3: applicable transition activation.

In particular, our proposed encoding ensures that at most one applicable transition is active at any time.
Given a safe Petri Net with read arcs (P, T,W,R), PH(P, T,W,R) is the corresponding Process Hitting

with 3 Priorities (Def. 5).
Basically, each place p ∈ P is represented as a dedicated sort having two processes p0 and p1, respectively

acting for p having none or one token. Each transition t ∈ T is also represented as a dedicated sort having
one process per possible configuration of the places present in the pre-condition; plus one process tact
indicating that the transition is active. The actions are then defined as follows:

3

• Priority 1: for each transition t, the process tact hits the inactive places in its post-condition to make
them active, and the active places in its pre-condition (except from read arcs) to make them inactive.

• Priority 2: For each transition t, for each place p in its pre-condition, the process pi , i ∈ {0, 1} hits
every tσ such that σ[p] 6= pi to make it bounce to the process tσ′ with σ′[p] = pi , and identical to σ
for each other place.

In addition, for each transition t, tact becomes tσ where σ is the configuration where all places in
pre-condition are active.

• Priority 3: For each transition t, if σ is the configuration where all places in pre-condition are active,
tσ hits itself to become tact .

Definition 5 (PH(P, T,W,R)). PH(P, T,W,R)
∆
= (Σ, L,H1,H2,H3,H4) is a Process Hitting with 3 Pri-

orities corresponding to the safe Petri Net with read arcs (P, T,W,R), where

• Σ = P ∪ T ;

• L =
∏
p∈P {p0, p1} ×

∏
t∈T ({tς | ς ∈ {0, 1}#pre(t)} ∪ {tact});

• H1 = {tact→pi �pj | t ∈ T ∧ ((p ∈ •t ∧ i = 1 ∧ j = 0) ∨ (p ∈ t• ∧ i = 0 ∧ j = 1))};

• H2 = {pi→tς �tς ′ | p ∈ pre(t) ∧ i ∈ {0, 1} ∧ ς ∈ {0, 1}#pre(t) ∧ ς[p] = p1−i ∧ ς ′[p] = pi ∧ ∀q ∈ P, q 6=
p, ς[q] = ς[q′]} ∪ {tact→tact �tς | t ∈ T ∧ ς ∈ {1}#pre(t)};

• H3 = {tς→tς �tact | t ∈ T ∧ ς ∈ {1}#pre(t)}.

Given a Process Hitting state s ∈ L, [s] ∈ ℘(P) is the corresponding marking: [s]
∆
= {s[a] | a ∈ Σ}.

Given a Petri Net marking M ∈ ℘(P), (M) = s ∈ L is the corresponding Process Hitting state, where:
∀p ∈ P, p ∈ M ⇒ s[p] = p1 ∧ p /∈ M ⇒ s[p] = p0; ∀t ∈ T, s[t] = tς with ς ∈ {0, 1}#pre(t) and
∀p ∈ pre(t), p ∈ M ⇒ ς[p] = 1 ∧ p /∈ M ⇒ ς[p] = 0.

This construction is linear with the number of places and transitions, but exponential with the cardinality
of transition pre-conditions. We notice that factorizing techniques can be used to explode the sort t with
2n+1 processes, where n = #pre(t), into n−1 sorts having 4 processes, except one having 4+1 processes;
each of these sorts originating 8 actions. Therefore an equivalent construction can be done in a linear time.
We do not detail this trick in this technical report.

Theorem 2. Given a safe Petri Net with read arcs (P, T,W,R), ∀M ∈ ℘(P),

1. ∀M ′ ∈ ℘(P), M →(P,T,W,R) M
′ ⇐⇒ (M)→∗PH(P,T,W,R) (M ′);

2. ∃s ∈ L : (M)→PH(P,T,W,R) s ⇒ ∃M ′ ∈ ℘(P) : s →∗PH(P,T,W,R) (M ′);

where →∗PH(P,T,W,R) is a finite sequence of →PH(P,T,W,R).

Proof. Starting from (M), only actions in H3 are playable, i.e. those activating a transition have its
pre-condition satisfied. Playing such an action make one (and only one) tact present, i.e. activates one
transition. By construction, all actions in H1 that are playable can be sequentially and uniquely played, and
lead to a unique state where none action in H1 are playable. These actions have activated and de-activates
the post- and pre-conditions (except from read arcs).

Eventually, actions in H2 are played. By construction, they can be played at most once; and whatever
the order of application they all lead to a unique state s, where: for each transition t, s[t] = tς where ς is
the current configuration of places in the pre-condition of t (including read arcs).

At this point, we remark that ([s]) = s, hence (M) →∗PH(P,T,W,R) (M ′) ⇔ M →(P,T,W,R) M
′, with

M ′ = [s].

Fig. 2 illustrates the encoding of one Petri Net transition into Process Hitting following Def. 5.

4

a

b

t
c

a

0

1

b

0

1
c

0

1

t

00

01

10

11

act

Figure 2: (right) Process Hitting encoding the Petri Net transition (left). Thick actions are in H1, plain
in H2, and dashed in H3.

4 Discussion

The Process Hitting as a subclass of Petri Nets The direct construction of a Petri Net from a Process
Hitting (Def. 3) indicates that the Process Hitting can be seen as a subclass of Petri Nets. This class of
Petri Nets can be informally characterized by the following conditions:

1. all transitions have different pre- and post-conditions, each of them being singletons (∀t ∈ T,#•t =

#t• = 1 ∧ •t 6= t•);

2. there exists at most one read arc per transition (∀t ∈ T,#{p ∈ P | (p, t) ∈ R} ≤ 1);

3. there exists a partition Σ = {a, b, . . . } of P such that ∀a ∈ Σ, a ⊂ P ∧ a 6= ∅; ∪a∈Σa = P ;
∀t ∈ T, ∃a ∈ Σ : •t ∪ t• ⊆ a; and, ∀p ∈ P, ∃a, b ∈ Σ, p ∈ a ∧ p ∈ b ⇒ a = b.

4. read arcs conditions are in a different partition than arcs pre- and post-conditions (∀t ∈ T , let us
denote Σ(t) the element of Σ such that •t ∪ t• ⊂ Σ(t); (q, t) ∈ R→ q /∈ Σ(t)).

The obtained partition is analogous to the PH splitting of processes (here places) within sorts. For each
transition t ∈ T of such a Petri Net, and writing •t = {pi}, t• = {pj}, and pre(t) = {pk , pi} (with possibly
pk = pi), we have the Process Hitting action bk→ai �aj where pk ∈ b and pi , pj ∈ a.

By construction, it is clear that applying the PN transformation (Def. 3) to the resulting Process Hitting
leads to an identical Petri Net. Hence, following Theorem 1, the resulting Process Hitting is bisimilar to
the Petri Net with an initial marking containing exactly one place of each partition Σ.

Abstract interpretation of Petri Nets dynamics In (Paulevé et al., 2012), very efficient over- and under-
approximations of reachability properties within Process Hittings have been established. They rely on an
abstract interpretation designed for Process Hitting dynamics, and make tractable the formal analysis of
very large systems (more precisely, Process Hittings having a very large number of sorts, but a few processes
per sort).

At the current time, such under-approximations of reachability properties are devoted to Process Hit-
tings without priorities. However, it is worth noticing that for any Process Hitting with k Priorities
(Σ, L,H1, . . . ,Hk), the Process Hitting without priorities (Σ, L,H1 ∪ · · · ∪ Hk) contains all its dynam-
ics.

Hence, Def. 5 gives a straightforward way to efficiently over-approximate reachability properties of safe
Petri Nets through the analyses previously mentioned.

5

References

Paulevé, L., Magnin, M. and Roux, O. (2012). Static analysis of biological regulatory networks dynamics
using abstract interpretation, Mathematical Structures in Computer Science 22(04): 651–685.

Vogler, W., Semenov, A. and Yakovlev, A. (1998). Unfolding and finite prefix for nets with read arcs, in
D. Sangiorgi and R. de Simone (eds), CONCUR’98 Concurrency Theory, Vol. 1466 of Lecture Notes
in Computer Science, Springer Berlin / Heidelberg, pp. 501–516.

6

	Main Definitions
	From Process Hitting to Petri Nets
	From Petri Nets to Process Hitting
	Discussion

