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Abstract—This paper establishes a connection between the
notion of observation (or monitoring) structure in game theory
and the one of communication channels in Shannon theory. One
of the objectives is to know under which conditions an arbitrary
monitoring structure can be transformed into a more pertinent
monitoring structure. To this end, a mediator is added to the
game. The objective of the mediator is to choose a signalling
scheme that allows the players to have perfect, almost perfect or
public monitoring and all of this, at a minimum cost in terms
of signalling. Graph coloring, source coding, and channel coding
are exploited to deal with these issues. A wireless power control
game is used to illustrate these notions but the applicability
of the provided results and, more importantly, the framework
of transforming monitoring structures go much beyond this
example.

I. INTRODUCTION

Observation or monitoring structures are omnipresent in

games, especially in dynamic games. Monitoring structures

specify what the players effectively observe. These observa-

tions allow a given player to construct his private history,

which is used, at a given instant, as an input of a function

defining his strategy. For instance, observations may consist of

action profiles (this is the case in repeated games with perfect

monitoring [19] and fictitious play [3]), arbitrary signals (this

is the case in repeated games with public signals [20] and with

an observation graph [15]), or realizations of the individual

utility function (this is the case in stochastic games between

learning automata [17] and repeated game with incomplete

information [8]). The problem is that when players interact in

a game with an arbitrary observation structure, the possible

outcomes might turn out to be unpredictable and, even when

they are, they might not have important properties such as

Nash equilibria. To be concrete, the characterization of equilib-

rium utilities in repeated games with an arbitrary observation

structure is still an open problem [16]. In interactive situations

where game theory is relevant like distributed power control

in wireless networks [11], it is common that terminals do not

observe the transmit power levels of the other terminals [12],

[13]. Being not able to predict all possible operating points for

such a network may cause a problem for the network designer.

In particular, ensuring the existence of efficient Nash equilibria

can be highly desirable when terminals implement learning

algorithms with partial observations [21].

The above considerations show the importance of being able

to transform a given monitoring structure into a new one. But,

how can this be done? And at what price? This paper precisely

falls in the general framework which consist in proposing

solutions to implement such transformations and evaluating

their cost in terms of signalling. As far as the provided results

are concerned, the authors do not provide complete answers

to these new questions. Indeed, the scope of this paper is as

follows. First, one way to transform a monitoring structure
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Fig. 1. Interpreting the monitoring structure of a dynamic game as a
communication problem.

into a new one is to add a mediator (see Fig. I) in the game:

this mediator does not have a strategic role here and is only

used for improving the observation capabilities of the players.

Second, even if the initial monitoring structure (without the

mediator) can be effectively arbitrary, the desired monitoring

resulting from the addition of the mediator is assumed to be

perfect, almost perfect or public, and therefore not arbitrary

(the latter case is left as a significant extension of this work).

In the example of distributed power control, the players would

be the decisionnally autonomous terminals while the mediator

would be a base station or a relay node. Whereas the ideas

presented here seem seducing, the question is how to tackle

this general problem. One of the contributions of this paper is

to re-interpret observation structures in games as channels in

communication theory. Exploiting this interpretation, several

questions arise. Based on what the mediator observes, does

there exist a source code (at the mediator) which allows the

players to re-establish a perfect, almost perfect or public obser-

vation of an information source (the action profiles typically)?

What is the minimum cost of signalling to re-establish such an

observation structure? Is the Shannon capacity [18] associated



with the initial observation structure high enough to convey the

required amount of signalling? Shannon theory [4] and graph

theory [2] brings appropriate answers to all these questions.

As it will be seen, the connection we establish between game

theory and Shannon theory opens many other interesting issues

such as: proving some equilibrium utilities are impossible to

reach in certain games because of limited channel capacities

of the considered observation structure; defining new channels

in communication theory from observation scenarios in game

theory.

We provide a characterization of compatible monitoring

structure and a coding scheme that reconstruct ε-Perfect Mon-

itoring in Sec. III. After computing the price of re-establishing

the almost perfect monitoring (PREEPM) we investigate the

reconstruction of Perfect Monitoring of the source in Sec.

IV, and the one-shot reconstruction of the almost Perfect

Monitoring in Sec. V. We illustrate our results with the well-

known “prisoner’s dilemma” in Sec. VI. The proof of the

theorem are provided in the appendices A.

II. SYSTEM MODEL

The purpose of this section is twofold: to review some

basic concepts and definitions from dynamic games, which are

essential for understanding the subsequent sections; to state the

general problem under investigation. Following the definition

of Başar and Olsder ([1] pp. 205), a dynamic game consists in

a sequence of stage games Γ = (Gt)t∈N∗ where at each stage

t ∈ N
∗, we have:

Gt = (K, {Pt
i }i∈K, {π

t
i}i∈K, ω

t, f t,

{St
i}i∈K, {g

t
i}i∈K, {h

t
i}i∈K, {τ

t
i }i∈K)

Denote K = {1, ...,K} the set of players constant along

the game, Pt
1, ...,P

t
K are the corresponding sets of actions,

πt
1, ..., π

t
K are the payoff (or cost) functions, ωt is the state

parameter and f t is the state transition function, gt1, ..., g
t
K

are the private monitoring functions at stage t and St
1, ...,S

t
K

are the corresponding sets of private signals, ht1, ..., h
t
K are

the private histories and τ t1, ..., τ
t
K are the strategy functions.

Game stages correspond to time intervals at the beginning of

which players can choose their actions.
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Fig. 2. The private monitoring channel.

The strategic information is modeled by an information

source where a(t) is produced by the source at stage t.
This strategic information may consists in action profiles or

arbitrary signals. We assume that, for a given game stage

t ≥ 1, each player i ∈ K knows and can take into account

the past realizations of his private observation si drawn from

the private monitoring gi (see Fig. II). Denote ∆(Z) the set

of probabilities over the set Z .

gi : A −→ ∆(Si) (1)

The main difference between static games and dynamic games

is that players can take into account the sequence of past

strategic signals in their long-run strategy. Increasing the

amount of strategic information, increase the strategy space of

the players. The vector hti = (si(1), ..., si(t−1)) is the private

history of player i, at stage t and lies in the set Ht
i = (Si)

t−1
.

A strategy τi for player i ∈ K is a sequence of strictly causal

functions (τi,t)t≥1,

τi,t : H
t
i → Pt

i (2)

Let Ti be the set of strategies τi of player i ∈ K and τ =
(τ1, ..., τK) be a joint strategy.

We introduce an additive signalling structure called “the

mediator assisted monitoring channel”, represented in Fig.

(3). It consist of a triple (W ,m, f) where W denote the

mediator, m the observation channel of the mediator and f
the communication channel between the mediator and the

players. The mediator also observes a noisy version q of

the information source a. It’s has to relay every relevant

information to the players in order to make them monitors the

information source. The observation channel of the mediator

is defined as follows. Denote A the set of strategic information

and Q the set of signals observed by the mediator.

m : A −→ ∆(Q) (3)

The communication channel between the mediator and the

players where X is the set of channel inputs and Yi is the

set of signals observed by player i ∈ K.

f : X −→ ∆(Y1 × Y2) (4)

Thus at each stage t ≥ 1 of the game, the players obtain a

private observation sti and a mediator’s signal yti . We investi-

gates the properties of such an additive signalling structure in

order to answer the question: Are the players able to observes

the information source or not ?

Denote âti the reconstructed version of the source by player

i ∈ K. The course of the signalling process begins with the

strategic information a, generated by the source at a given

stage. The mediator W is assumed to have an imperfect ob-

servation (namely q) of the symbols a generated by the source

and knows the information structure of every player. Taking

this knowledge into account, the mediator applies certain

mathematical operations on what it observes and broadcasts

a public signal x to all the players. Therefore, each player

i ∈ K receives a private signal si and an additional signal

from the mediator denoted by yi.



S m

g2

g1

W

D1

D2

a q x
f

y1

y2

s1

s2

â1
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Fig. 3. The mediator-assisted monitoring channel.

III. RECONSTRUCTION OF THE ε-PERFECT MONITORING

In this section, we investigate the reconstruction of the

ε-Perfect Monitoring. We introduce an additive signalling

structure (W ,m, f) which operates as a relay in order to send

an additional signal to the players. We provide conditions over

the additive signalling structure in order the players monitors

almost perfectly the source of strategic information. We first

recall the definition of ε-perfect monitoring available in the

literature [5], [9] and we present a “max-min formulation” to

compute the error parameter ε. Then we define properly the

“reconstruction” of the ε-perfect monitoring at the players.

Based on a graph-coloring approach, we provide two con-

ditions over the additive signalling structure (W ,m, f) that

are sufficient to reconstruct the ε-perfect monitoring for the

players. We call the first condition: “the (x, y)-coloring con-

dition”. It regards the observation function of the mediator m
and it guarantee that the mediator can reconstruct the ε-perfect

monitoring. The second condition concerns the communication

channel f between the mediator and the players and is called

the “essential information condition”. It guarantee that the

capacity of the channel f allows the mediator to communicate

the strategic information to the players.

In this section, we investigate the reconstruction problem

using the framework of Shannon [18]. We make the following

assumptions on the information source, the private monitoring

and the mediator assisted channel.

• The information source is discrete and i.i.d.

• The monitoring structure is stationary.

• The players may tolerate a delay in the signalling.

These assumption allow us to derive the fundamental limit

derived by Shannon on the information transmission. The

results, we present in this section, are based on the three

above assumptions. However, the strategies of the players

may not always satisfy this properties. We relax these three

hypothesis in Sec. (V) and we derive alternative limits over

the information transmission.

Definition 1: [5], [9] A monitoring Λ : A −→ ∆(
∏

i∈K Σi)
is ε-perfect (or almost perfect) if for each player i ∈ K there

exists a partition Ti = {T a
i : a ∈ A} of the signals Σi such

that for all a ∈ A,
∑

σi∈Ta
i

Λ(σi|a) ≥ 1− ε (5)

We characterize the precision of the monitoring using a “max-

min formulation”.

Proposition 1: A monitoring Λ is ε-perfect if and only if

1− ε = min
i∈K

max
Ti=(Ta

i )a
min
a∈A

∑

σi∈Ta
i

Λ(σi|a)

⇐⇒ ε = max
i∈K

min
Ti=(Ta

i )a
max
a∈A

∑

σi /∈Ta
i

Λ(σi|a)

Proof: See Appendix A

After a joint action a is played, each player i ∈ K obtains

a private signal si drawn from a private monitoring gi.

gi : A −→ ∆(Si) ∀i ∈ K (6)

The mediator observes a signal q drawn from the observation

channel m.

m : A −→ ∆(Q) (7)

Then it send through the communication channel f an additive

signal to each players.

f : X −→ ∆(
∏

i∈K

Yi) (8)

This communication procedure induces a pair of signals σi =
(si, yi) for each player where si comes from the private moni-

toring gi and yi comes from the additional signalling structure

(W ,m, f). We derive conditions over the additional signalling

structure (W ,m, f) such that the joint signal σi = (si, yi)
satisfies the ε-perfect condition.

A. Reconstruction of the ε-Perfect Monitoring

We define the notion of code in this framework. The

mediator observes a sequence of signals q and reduce it to

what we called the “essential information sequence” r using a

graph coloring argument. Then it encodes the sequences r into

a sequence x using a joint source-channel coding procedure.

The players will decode the “essential information” r using

the channel output yi and the private observation si. This “es-

sential information sequence” r combined with the sequence

of private monitoring si characterizes a unique sequence a of

joint actions.

Definition 2: A (n, h, φ, (ψi)i∈K)-code is a pair of encod-

ing functions for the mediator:

h : Q −→ R, “essential information”

φ : Rn −→ Xn, “source-channel encoding”

and a decoding function for each player:

ψi : Y n
i × Sn

i −→ An, ∀i ∈ K, “source-channel decoding”

We quantify the precision of the joint signal σi = (si, yi)
using the following definition.

Definition 3: The mediator can reconstruct the ε-Perfect

Monitoring if,

∀δ > 0, ∃(n, h, φ, (ψi)i∈K)-process such that,

P
[
∃{T a

i }a∈A, ∀a ∈ A,
∑

σi∈Ta
i
Λ(σi|a) ≥ 1− ε

]
≥ 1− δ



For a given private monitoring structure (gi)i∈K , we provide

sufficient conditions over the additive signalling structure

(W ,m, f) such that the mediator can reconstruct the ε-perfect

monitoring. Two natural questions arises : When the mediator

observation function m is sufficiently precise to guarantee the

ε-perfect monitoring at the players ? When the communication

channel f between the mediator and the players allows to

transmit all the relevant information ?

We provide an answer to the first question using the (x, y)-
coloring condition in the next subsection (III-B). The second

question will be investigate in subsection (III-C) using the

concept of “rate of essential information”.

B. The (x, y)-coloring Condition

We define the (x, y)-coloring condition in order to charac-

terize the observation functions m of the mediator that are

compatible with every private monitoring gi of the players

i ∈ K. This condition is based on a graph-coloring approach.

We represent the private monitoring gi using an auxiliary graph

(see Def. 5) whose vertices are the joint actions a. There is

an edge e between two vertices a and a′ if both joint action

induce the same signal si with large probability.

The main idea is the following. If the observation of the

mediator m is a coloring of the auxiliary graphs, then the

information m passing through the mediator is completely

orthogonal to the private information gi. Thus every joint

actions can be distinguished by the players and the ε-perfect

monitoring can be reconstructed.

Definition 4: Define the equivalence classes of actions for

each of the private monitoring gi with i ∈ K as follows.

Gi(a) = {si ∈ Si, gi(si|a) > 1/2}, (9)

a ∼gi b⇐⇒ Gi(a) = Gi(b) (10)

Denote Agi = {αi} the partition of A into equivalence classes

with respect to the relation ∼gi . In the same way with the

monitoring m.

M(b) = {q ∈ Q, m(q|b) > 1/2}, (11)

a ∼m b⇐⇒ M(a) =M(b) (12)

Denote Am = {αm} the partition of A into equivalence

classes with respect to the relation ∼m. These equivalence

classes induce a family of auxiliary monitoring defined by.

g̃i : Agi −→ ∆(Si)
|A| (13)

αi −→ (gi(s|a))a∈αi
(14)

and

m̃ : Am −→ ∆(Q)|A| (15)

αm −→ (m(q|a))a∈αm
(16)

The precision of the auxiliary monitoring g̃i and m̃ are

computed in the following way. Let {Sα}α∈Agi
a partition

of the signals s of player i indexed by the equivalence classes

α ∈ Agi . Define in the same way {Qβ}β∈Am
a partition of

the signals q of mediator indexed by the equivalence classes

β ∈ Am.

max
Sα

min
α∈Agi

min
a∈α

∑

s/∈Sα

gi(s|a) = xi (17)

max
Qβ

min
β∈Am

min
a∈β

∑

q/∈Qβ

m(q|a) = y (18)

The monitoring g̃i is xi-perfect and m̃ is y-perfect.

Definition 5: The auxiliary graph of player i ∈ K, denoted

Gi = (A,Ei) is defined as follows,

∃ei = (a, b) ∈ Ei ⇐⇒ a ∼gi b (19)

Inspired from graph coloring we define the following concept

of (x, y)-coloring.

Definition 6: The monitoring gi and m satisfy an (x, y)-
coloring condition if :

• The auxiliary monitoring g̃i is x perfect,

• The auxiliary monitoring m̃ is y perfect,

• The partition {Qβ}β∈Am
induced by the auxiliary mon-

itoring m̃ is a coloring c : A −→ Q of the graph Gi.

Remark that the last condition is equivalent to the following

one: the auxiliary monitoring g̃i is a coloring of the graph Gm

defined by em = (a, b) ∈ Em ⇐⇒ a ∼m b.

C. The Rate of Essential Information

We define the rate of essential information in order to

characterize the channels f between the mediator and the

players that are compatible with the amount of information the

players need. It could happened that the observation channel

m of the mediator satisfy the above (x, y)-coloring condition,

but not all the information q is relevant.

In this subsection, we aim at reducing the relevant in-

formation to it’s minimum. To do so, we use a second

coloring condition over a bi-auxiliary graph G̃ to eliminate

any redundant information between the signals q and si. We

call the “essential information” the sequence r corresponding

to a concatenation of the sequence of signals q.

Definition 7: The bi-auxiliary graph G̃ = (Q, Ẽ) is defined

as follows,

∃e = (q, q′) ∈ Ẽ ⇐⇒ ∃i ∈ K, ∃a, b ∈ A, s.t. (20)

q ∈ m(a), (21)

q′ ∈ m(b), (22)

a ∼gi b (23)

Definition 8: Let h̃ : Q −→ R the minimal coloring of the

bi-auxiliary graph G̃ and denote the random variable r essential

information drawn from the distribution h̃⊗m⊗ p such that

P (r) =
∑

a,q p(a)m(q|a)h̃(r|q).
Define the essential rate as follows.

H = max
i∈K

H(r|si) (24)



where the random variable si is drawn from the transition

Ti : R −→ ∆(Si) with,

Ti(s|r) =

∑
a,q P(a, q, r, s)∑
a,q P(a, q, r)

(25)

=

∑
a,q p(a)m(q|a)h̃(r|q)gi(s|a)

∑
a,q

∑
a,q p(a)m(q|a)h̃(r|q)

(26)

In the following, such a mapping h is called recoloring of

monitoring m. The following coding theorem for broadcast

channel with common messages [10] provides us an upper

bound for transmits to the players the strategic information.

Theorem 1 (Korner, Marton 1977 [10]): The capacity C0
of the broadcast channel f : X −→ ∆(

∏
i∈K Yi) with

common messages is exactly,

C0 = max
p∈∆(X)

min
i∈K

I(X ;Yi) (27)

The coding theorem we present is constructed over large

blocs of strategic signals. Its implies that the players may

tolerate a delay in the reconstruction of the ε-perfect moni-

toring. This assumption is relaxed in section (V) below and

an alternative result is presented.

D. Main Result

We provide two conditions that ensure the additive sig-

nalling structure (W ,m, f) is compatible with the recon-

struction of the ε-perfect monitoring. The first condition is

based on the (x, y)-coloring condition (see subsection (III-B))

and guarantees that the mediator is sufficiently informed

to help the players reconstruct the desired monitoring. The

second condition is based on the “essential information” (see

subsection (III-C)) and ensures that the additional information

the mediator obtains, is compatible with the communication

constraints of the channel between the mediator and the

players.

Condition (1) : There exists a pair (x, y) such that x+ y−
xy ≤ ε and for each player i ∈ K, the private monitoring

gi and the monitoring of the mediator m satisfy an (x, y)-
coloring condition.

Condition (2) : The essential rate H satisfy H ≤ C0, the

capacity C0 of the channel f with common messages.

Theorem 2 (ε-PM): Fix a strategy profile p ∈ ∆(A), a

monitoring structure M = (m, (gi)i∈K, f) and an ε > 0.

If the monitoring structure M satisfy conditions (1) and (2),
then the mediator can reconstruct the ε-Perfect Monitoring.

Proof: The proof is detailed in Appendix A.

We provide conditions over the additive signalling structure

(W ,m, f) that are sufficient to reconstruct the ε-perfect moni-

toring for the players. Note that a complete characterization is

not available due to the problem of characterizing the precision

of a two parallel monitoring functions.

We obtain a set of admissible additive signalling structure

(W ,m, f) and we need an evaluation method to choose the

best admissible additive signalling structure (W ,m, f) in term

of signalling cost. For that reasons, we introduce the price of

re-establishing ε-perfect monitoring as the ratio between the

number of bits of the additive signalling and the number of

bits of the source of strategic information.

Definition 9: Define the price of re-establishing ε-Perfect

Monitoring:

PREEPM∞(ε) =
maxi∈KH(R|Si)

H(A)
(28)

The worst case correspond to the situation where the mediator

directly send the entire sequence of joint actions a. In that case

the price is equal to 1. Obviously, the players would have all

the strategic information and they can reconstruct the moni-

toring perfectly. However, this situation is not very interesting

from our point of view since the capacity constraints between

the mediator and the players may forbid the transmission of

the strategic information.

Finding the minimal price of re-establishing ε-perfect mon-

itoring is equivalent to finding the optimal admissible additive

signalling structure (W ,m, f).

IV. RECONSTRUCTION OF THE PUBLIC MONITORING

The problem of strategic observation are well studied in the

framework of repeated game with public monitoring. In this

section, we assume that the source of strategic information is

no more a joint action but a public signal. For example, if the

public signal we consider satisfies the “individual and pairwise

full rank conditions” of [6], then the set of the equilibria is

fully characterized even if the game is stochastic. We extend

our results to the perfect reconstruction of the information

source without error (i.e. where ε = 0). We provide sufficient

and necessary conditions on the additional signalling structure

W for being compatible with the reconstruction of the perfect

monitoring.

A. The “Painting” Condition

The main difference here is the precision of the monitoring

of the information source: ε = 0. We provide here a necessary

and sufficient condition over the observation function m of

the mediator such as reconstruct the perfect monitoring of the

source of strategic information. This condition is also based

on graph coloring and we called it “the painting condition” in

reference to C. Berge.

We construct a graph where the vertices are the public

signals a. There is an edge between to publics signals a and a′

if the same private signal si is drawn with positive probability.

We prove that the observation of the mediator is orthogonal

to the private monitoring if and only if the observations q of

the mediator is a coloring of the graph.

Definition 10: Denote the sets of possible signals.

Gi(a) = {si ∈ Si, gi(si|a) > 0}, ∀i ∈ K (29)

M(b) = {q ∈ Q, m(q|b) > 0} (30)

Definition 11: The auxiliary graph of player i ∈ K, denoted

Gi = (A,Ei) is defined as follows:

∃ei = (a, b) ∈ Ei ⇐⇒ Gi(a) ∩Gi(b) 6= ∅ (31)



We define the concept of painting of a graph G as a

correspondence m : A⇉ Q if every selection m̄ : A→ Q of

m is a coloring of the graph G.

Definition 12: The monitoring of the mediator m is a

painting of the family of graphs (Gi)i∈K induced by the private

monitoring (gi)i∈K if for all i ∈ K we have

∃ei = (a, b) ∈ Ei ⇐⇒ m(a) ∩m(b) = ∅ (32)

B. Main Result

As in the previous section, we provide two conditions (over

m and f ) such that the additive signalling structure (W ,m, f)
is compatible with the reconstruction of the perfect monitoring.

This result is stronger than the previous one because we

provide necessary and sufficient conditions.

Definition 13: Define the following conditions:

Condition (1′) : The monitoring of the mediator m is a

painting of the family of graphs (Gi)i∈K.

Condition (2) : The essential rate H satisfies H ≤ C0, the

capacity C0 of the channel f with common messages.

Theorem 3 (PM): Fix a strategy profile p ∈ ∆(A) and

monitoring structure M = (m, (gi)i∈K, f).
The mediator can reconstruct the Perfect Monitoring for

Strategy p if and only if the monitoring structure M satisfy

conditions (1′) and (2).
Proof: The proof is detailed in Appendix A.

We obtain a set of admissible additive signalling structure

(W ,m, f) and we introduce the price of re-establishing per-

fect monitoring in order to evaluate the performance of the

reconstruction.

Definition 14: Define the price of re-establishing Perfect

Monitoring:

PRPM∞(ε) =
maxi∈KH(R|Si)

H(A)
(33)

Finding the minimal price of re-establishing ε-perfect mon-

itoring is equivalent to finding the optimal admissible additive

signalling structure (W ,m, f) for reconstruct the perfect mon-

itoring of the information source.

V. ONE-SHOT RECONSTRUCTION OF THE ε-PERFECT

MONITORING

In the previous sections, we have assumed that the source of

strategic information was i.i.d., the channel was stationary and

the players tolerate a delay before reconstructing the desired

monitoring. In this section, we relax these three hypothesis

and we investigate a “one-shot” reconstruction of the ε-
perfect monitoring. Note that, the techniques we develop in

this section also apply to the reconstruction of the perfect

monitoring.

Once the strategic information is drawn, the mediator pro-

vides an additional information to the players before the end of

the game stage. The definition of the one-shot reconstruction

consists in replacing the number n of stages by 1 in the

definition of the long term reconstruction in Sec.III.

A. The Condition z-Perfect

The main difference regards the communication channel f
between the mediator and the players. Assuming the “one-

shot” reconstruction prevent us to use the classical coding

scheme from Shannon theory. We introduce the condition z-

perfect in order to characterize the channels f (see Fig. 3)

between the mediator and the players compatible with the one

shot reconstruction of the ε perfect monitoring.

Definition 15: The channel between the mediator and each

player is z-Perfect if, for each players, there exists a partition

Yi = {Y r
i }r∈R of the signals indexed by the set of essential

information R such that for all r ∈ R:

∑

yi∈Y r
i

f(yi|r) ≥ 1− z (34)

B. Main Result

The result of this section is widely based on the one in

section (III). Define as above the bi-auxiliary graph G̃, and

the mapping h̃ : Q −→ R is called recoloring of monitoring

m. The condition (2) with the entropy inequality of theorem

(2) is replaced by the z-perfect condition (2’).

Definition 16: Define the following conditions:

Condition (1) : For each player i ∈ K, the private monitoring

gi and the monitoring of the mediator m satisfy an (x, y)-
coloring condition.

Condition (2′) : The channel f between the mediator and each

player is z-Perfect.

Theorem 4 (ε-PM): Fix a strategy profile p ∈ ∆(A), a

monitoring structure M = (m, (gi)i∈K, f) and an ε > 0.

If the monitoring structure M satisfy conditions (1) and (2′)
with,

x+ y + z − xy − xz − zy + xyz ≤ ε (35)

Then the mediator can reconstruct the ε-Perfect Monitoring in

one-shot.

Proof: The proof is detailed in Appendix A.

We provide conditions over the additive signalling structure

(W ,m, f) that are sufficient to reconstruct the ε-perfect mon-

itoring in one-shot. Remark that a complete characterization

is not available.

In order to evaluate the best additive signalling structure

(W ,m, f), we introduce the price of one-shot re-establishing

the ε-Perfect Monitoring. In the one-shot case, the entropy

H(A) is replaced by log |A|.

Definition 17: Define the price of one-shot re-establishing

ε-Perfect Monitoring:

PREEPM =
log |R|

log |A|
(36)

Finding the minimal price of one-shot re-establishing ε-
perfect monitoring is equivalent to finding the optimal admis-

sible additive signalling structure (W ,m, f).



VI. PRISONER’S DILEMMA

We consider a simple wireless power control game where

our result may direclty apply. Following the framework of

Goodman and Mandayan [7], we consider a decentralized

multiple access channel where the players choose their power

control policy in order to maximize their energy efficiency.

We consider a two player power control game where the

actions are the transmit power p1 and p2. The energy-efficiency

utility is defined as follows:

ui(p1, p2) =
f(SINRi)

pi
[bit/J], i ∈ K (37)

where the function f(x) is sigmoidal (here we take f(x) =
(1− e−x)M . The SINR at receiver i ∈ K writes as:

SINRi =
pi|gi|2

pj|gj |2/N + σ2
(38)

with parameters |gi|2 for the channel gain and σ2 for the noise

variance.

In our previous work over this communication model [12],

we investigate two interesting power levels. The first is the

power of the Nash equilibrium denoted p∗i and the second is

the power of the operating point p̃i which provide a Pareto

optimal utility. The power p∗i and p̃i are defined respectively

in equation (4) and (9) of the article [12].

In order to illustrate our results, we provide an complete

analysis of a simple example which can be easily generalized.

We consider a two player power control game where only

two power levels (p∗i , p̃i) are available to the players. Fix

the parameters of the power control game for the random

CDMA case. The number of players K = 2, the number of

symbols M = 2, the spreading factor N = 2, the channel

gains |g1|2 = |g2|2 = 1 and the noise variance σ2 = 1.

The set of achievable utility is described by the following

payoff matrix. The utility pair (0.10, 0.34) mean that the utility

of player 1 is 0.10 and 0.34 is the utility of player 2. The

region of achievable utility using pure and mixed strategies is

represented by the quadrilateral on figure (4).

p̃2 p∗2
p̃1 0.23,0.23 0.10,0.34

p∗1 0.34,0.10 0.15,0.15

Remark that this game is strategically equivalent to the

Prisonner’s Dilemma where the Nash equilibrium correspond

to the joint action (p∗1, p
∗
2) and the social optimal action

correspond to (p̃1, p̃2). We consider as an example a private

monitoring structure g1, g2 as defined below. We fix the

additive signalling structure (W ,m, f), an i.i.d. mixed strategy

p ∈ ∆(A) and we prove it allow the reconstruction of the ε-
perfect monitoring. We compute the price of re-establishing

equilibrium conditions.

The source of strategic information in this case, represents

the sequence of actions of the players. The actions are sup-

posed to be drawn i.i.d. from a distribution over the set of

the players’ actions. Denote the private monitoring of player

i, gi : A −→ Si with precision parameters x′ ≤ x.
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Denote Ag1 , Ag2 the equivalence classes of private moni-

toring g1 and g2 over the actions A.

A1 = {(p̃1p̃2, p̃1p
∗
2); (p

∗
1p̃2, p

∗
1p

∗
2)} = {α, α′} (39)

A2 = {(p̃1p̃2, p
∗
1p̃2); (p̃1p

∗
2, p

∗
1p

∗
2)} = {β, β′} (40)

These equivalence classes induce a pair of auxiliary monitor-

ing denoted

g̃1 : A1 −→ ∆(S1)
|A| (41)

α −→ (g1(s|a))a∈α (42)

g̃2 : A2 −→ ∆(S2)
|A| (43)

β −→ (g2(s|a))a∈β (44)

Taking the partitions Sα = s1 ; Sα′ = s′1 and Sβ = s2 ;

Sβ′ = s′2 we calculate the precision of the auxiliary monitoring

g̃1 and g̃2.

min
α∈A1

min
a∈α

∑

s∈Sα

g1(s|a) = x (45)

min
β∈A2

min
a∈β

∑

s∈Sβ

g2(s|a) = x′ (46)

The monitoring g̃1 is x-perfect and g̃2 is x′-perfect.

The monitoring graphs corresponding to the above equiva-

lence classes of the private observations are,

b

b

b

b

b

b

b

bp̃1p̃2 p̃1p
∗
2

p∗1p̃2 p∗1p
∗
2

p̃1p̃2 p̃1p
∗
2

p∗1p̃2 p∗1p
∗
2

Gg̃1 Gg̃2

Note that by construction, each of those graph is an union

of complete graphs.

The mediator observes a signal drawn from m : A −→ Q.

Denote the equivalence classes of the monitoring m of the

mediator over the actions A.

Am = {(p̃1p̃2); (p̃1p
∗
2, p

∗
1p̃2); (p

∗
1p

∗
2))} = {γ, γ′, γ′′}(47)

These equivalence classes induce an auxiliary monitoring

denoted

m̃ : Am −→ ∆(Q)|A| (48)

γ −→ (m(q|a))a∈γ (49)
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Taking the partitions Qγ = q1, Qγ′ = q2 and Qγ′′ = q3 we

calculate the precision of the auxiliary monitoring m̃.

min
γ∈Am

min
a∈γ

∑

q∈Qγ

m(q|a) = y (50)

The monitoring m̃ is y-perfect.

In order to decide whether the mediator can reconstruct the

desired monitoring, let us check if the auxiliary monitoring

m̃ of the mediator is a coloring of the graphs Gg̃1 and Gg̃2 of

the players. To illustrate this, we associate the colors blue, red

and green to respectively q1, q2 and q3. For each player i ∈

b

b

b

b

b

b

b

bp̃1p̃2 p̃1p
∗
2

p∗1p̃2 p∗1p
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2

p̃1p̃2 p̃1p
∗
2

p∗1p̃2 p∗1p
∗
2

q1 q2

q2 q3

q1 q2

q2 q3

Gg̃1 Gg̃2

K, the pair of auxiliary monitoring (m, gi) satisfy an (x, y)-
coloring condition (recall that x′ ≤ x). Thus, the mediator gets

sufficient information to reconstruct the ε-perfect monitoring

at the players with ε = x+ y − xy.

To extract the essential information from mediator’s signal

q without decreasing the precision of the monitoring, let

us introduce the following bi-auxiliary graph. The coloring

b

b

b

q2

q1

q3

r1

r2

r1
Gm

h : Q −→ R of the above bi-auxiliary graph characterizes

the essential information the mediator should give to the

player in order to re-establish the ε-perfect monitoring. Recall

that this essential information is optimal in the sense of the

cardinality of R and of the precision of the monitoring. It

cannot be reduced without introducing a larger ambiguity

between action profiles for at least one player. The process

of strategic information is described as follows:

For each player i ∈ K, the pair of auxiliary monitoring (h◦
m, gi) still satisfy an (x, y)-coloring condition and is moreover

minimal in term of cardinality |R|. To reconstruct the ε-perfect

monitoring at the player, the mediator will send the common

information r such that each player, knowing the private signal

si can reconstruct the right action profile with probability more

than 1− ε.
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Suppose now that player 1 plays a mixed strategy (2/3, 1/3)
and player 2 plays a mixed strategy (2/3, 1/3). Assume from

now that they play repeatedly following this mixed strategy. A

sequence of action profiles is generated from the distribution

p ∈ ∆(A) and it leads to the payoff vector (0.22, 0.22) (see

Fig. (4)).

p̃2 p∗2
p̃1 4/9 2/9

p∗1 2/9 1/9

The entropy of such a distribution source is H(a) = log 9 −
4/3 ≃ 1.8366. Fix the noise level of the transitions functions

at x = x′ = y = 1/10. The process of information generated

a source of essential information (r1, r2) with distribution

(49/90, 41/90) of entropy H(r) ≃ 0.9943. To transmit the

source of essential information, the mediator considers the side

information si from the transition channel of player i.

Ti(s|r1) =

∑
a,q P(a, q, r, s)∑
a,q P(a, q, r)

(51)

=

∑
a,q p(a)m(q|a)h(r|q)gi(s|a)∑
a,q

∑
a,q p(a)m(q|a)h(r|q)

(52)

The transition matrix of the channel are evaluated.

T1(s1|r1) = 353/490 (53)

T1(s
′
1|r1) = 137/490 (54)

T1(s1|r2) = 217/410 (55)

T1(s
′
1|r2) = 193/410 (56)

We represent it as a binary channel. The channel transition

b

b

b

b

r2

r1

s′1

s1
353/490

217/410

137/490193/410
T1

of player 2 is also characterized and is found to be identical.

Using the Slepian and Wolf binning scheme, the entropy of

the essential information with side information writes as :

H = max
i∈K

H(R|Si) (57)



In this case, we have p(r1|s1) = 353/570, p(r2|s
′
1) =

217/330, p(r2|s1) = 193/570 and p(r1|s′1) = 137/330 and

T1 = T2. The minimal information rate sent by the mediator

to both players is

H = H(R|S1) = H(R|S2) ≃ 0.9451 (58)

Under the condition that the rates pair (H,H) belong to the

capacity region of the channel between the mediator and the

players, the mediator can reconstruct the ε-perfect monitoring

at the players with precision ε = x+ y − xy = 19/100.

The price of re-establishing ε-Perfect Monitoring writes:

PREEPM∞ =
maxi∈KH(r|si)

H(a)
≃

0.9451

1.8366
≃ 0.5145 (59)

Taking the same monitoring structure with a noise level

x = x′ = y = 0, we investigate the noiseless version of

the reconstruction of the perfect monitoring. The price of re-

establishing Perfect Monitoring becomes:

PRPM∞ =
maxi∈KH(r|si)

H(a)
≃ 0.5 (60)

We conclude that in the noiseless problem, the private monitor-

ing structure provides almost half the information needed by

the players to reconstruct the source of strategic information.

Whereas in the noisy case, the additional monitoring structure

is in charge by almost 51.5 % of the reconstruction the

strategic source of information.

VII. CONCLUDING REMARKS

The monitoring problem of strategic information is ad-

dressed in this paper. Taking into account the private monitor-

ing structure, a mediator is introduced in order to re-establish

ε-perfect monitoring at the players. In order to evaluate the

signaling cost for the mediator, the problem of the recon-

structing a strategic information is re-interpreted as a channel

of communication theory. Graph theory and Shannon theory

are respectively exploited to provide a characterization of the

admissible monitoring structure and analyze their efficiency

in term of “price of re-establishing ε-Perfect Monitoring”

(PREEPM ). A coding theorem is provided for the channels

where the mediator observes the source imperfectly and the

strategic information is drawn from an i.i.d. source. Chal-

lenging open problems appear when considering a source of

information generated by an arbitrary stochastic process. For

example, in the case of imperfect monitoring of past actions,

the players can choose an appropriate sequence of actions

such as to manipulate the coding schemes. Another interesting

extension is to consider a mediator that sends private messages

to the players instead of common messages. It would also be

of interest to provide conditions for changing an imperfect

monitoring structure M into another imperfect monitoring

structure M′ (not necessarily perfect or almost perfect).
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APPENDIX

By definition, ε is the minimum admissible value such that:

∃ T = (Ta)a, ∀a ∈ A,
∑

σi∈Ta

Λ(σi|a) ≥ 1 − ε

⇐⇒ ∃ T = (Ta)a, min
a∈A

∑

σi∈Ta

Λ(σi|a) ≥ 1 − ε

⇐⇒ 1 − ε ≤ max
T=(Ta)a

min
a∈A

∑

σi∈Ta

Λ(σi|a)

Taking the minimum admissible value for ε, the monitoring

Λ is ε-perfect if and only if there is equality in the above

equation.
Proof: We will prove that the conditions (1) and (2) are sufficient.

The first conditions (1) states that there exists a pair (x, y) such that x +
y − xy ≤ ε and for each player i ∈ K, the private monitoring gi and the
monitoring of the mediator m satisfy an (x, y)-coloring condition. Taking

now the minimal coloring of the bi-auxiliary graph h̃ : Q −→ R, we will
show that for every player i ∈ K, the joint monitoring (gi, h◦m) is x+y−xy
perfect.



Fix a player i ∈ K. Let {Qβ}β∈Am
be the partition of signals q ∈ Q

indexed by the equivalence classes of A with respect to the monitoring m
and {Sα}α∈Agi

the partition of signals s ∈ Si indexed by the equivalence

classes of A with respect to the monitoring gi. By hypothesis, {Qβ}β∈Am

is a coloring of the graph Ggi . We first show that (h̃(Qβ))β∈Am
is still a

coloring of the graph Ggi . Take a and b two neighbor nodes of the graph Ggi .
By the coloring property, the sets of associated color Qα(a) and Qα(b) are
disjoint. Thus each pair of colors q ∈ Qα(a) and q′ ∈ Qα(b) are neighbor

in the bi-auxiliary graph. The coloring h̃ : Q −→ R of the bi-auxiliary graph

implies that (h̃(Qα))α∈Am is still a coloring of the graph Ggi . Second, the

coloring property implies that the following product Ta = Sα(a)×h̃(Qα(a))
defines a partition (Ta)a∈A of T . Let us calculate the precision of such a
joint monitoring. For all strategic information a ∈ A:

∑

s,r∈Ta

Λ(s, r|a) =
∑

s∈Sα(a)

gi(s|a)
∑

q∈Qβ (a)

∑

r∈h̃(Qβ (a))

h̃(r|q)m(q|a)

≥
∑

s∈Sα(a)

g(r|a)
∑

q∈Qβ (a)

m(q|a)

≥ (1 − y)(1 − x) = 1 − (x + y − xy)

Thus, for each player i ∈ K, the monitoring (gi, h̃◦m) satisfies an x+y−
xy-Perfect Monitoring condition. It remains to transmit that signal over the
broadcast channel with common messages f . The condition (2) states that the
essential rate H satisfies H ≤ C0, the capacity C0 of the broadcast channel f
with common messages [10]. The joint source-channel coding theorem states
that there exists appropriate mappings:

φ : Rn −→ Xn (61)

ψi : Y n
i × Sn

i −→ An, ∀i ∈ K (62)

such that transmitting the source r over the broadcast channel with common
messages f is possible with an error probability Pn

e ≤ δ. The above mappings
correctly transmit every sequence rn with probability more than P(rn =
r̂n) ≥ 1− δ. When the sequence rn is correctly decoded, at each stages the
symbol r combined with the side symbol si for each player i, are associated to
an strategic information profile a where the stage error probability is bounded
by x+ y − xy. We proved that

P









∃Ti = {T
a
i : a ∈ A}, ∀a ∈ A,

∑

σi∈Ta
i

Λ(σi|a) ≥ 1 − ε









≥ 1 − δ

Proof: First we show that conditions (1′) and (2) are sufficient. The
monitoring of the mediator m is a painting of the family of graphs (Gi)i∈K .
This implies that for each player i ∈ K, for each pair of strategic information
a, b ∈ A, if the private signal as a positive probability to be the same, then
the signal observed by the mediator will distinguish them.

gi(a) ∩ gi(b) 6= ∅ =⇒ m(a) ∩m(b) = ∅ (63)

Moreover, the recoloring h : Q −→ R keeps this property. For all player
i ∈ K,

gi(a) ∩ gi(b) 6= ∅ (64)

q ∈ m(a), q′ ∈ m(b) =⇒ h(q) 6= h(q′) =⇒ r 6= r′ (65)

Condition (1′) implies that, for each player i ∈ K, the pair of information
(si, r) is sufficient to reconstruct the Perfect Monitoring.
Condition (2) states that H ≤ C0 which implies that the rate of this
information r is lower than the capacity of the channel between the mediator
and the player i ∈ K. Thus, by the source-channel coding theorem, we have
that:

∀ε > 0, ∃(n, h, φ, (ψi)i∈K)-process such that, Pn
e ≤ ε (66)

This implies that the mediator can reconstruct the Perfect Monitoring. Second,

we show that conditions (1′) and (2) are necessary. Suppose that condition

(2) does not hold. Then, by the source-channel coding theorem of Merhav

and Shamai (2003 [14]), it is impossible to transmit the source r over the

channel f with low error probability. The mediator cannot reconstruct the

Perfect Monitoring.

Suppose that condition (1′) does not hold. Then, there exists a player i and a

pair of strategic information a, b that have the same color s and there exists

an edge e = (a, b). This implies that with positive probability player i will

observe a private signal r and a public signal s when strategic information a

or b is drawn. Then, the mediator cannot reconstruct the Perfect Monitoring.

Proof: We ever show that the condition (1) is sufficient to reconstruct
x + y − xy-Perfect Monitoring in one shot. We show that if the family of
channels (fi)i∈K between the mediator and each player satisfy an z-perfect
condition (condition (2’)), then each player monitors with a precision at least
of x+y+z−xy−xz−yz+xyz. Let us calculate the precision of such a joint
monitoring received by player i is Λi : A −→ Si×Yi. For all joint strategic
information a ∈ A and for each player i ∈ K, the (x, y)-coloring property
guarantees the existence of a partition defined by T i

a = Si
α×Qβ ×Y r

i such

that a ∈ α, a ∈ β and r ∈ h̃(Qβ). The precision of the joint monitoring is
upper bounded by,

∑

s,y∈Ta

Λi(s, y|a)

=
∑

s∈Si
α

gi(s|a)
∑

q∈Qβ

∑

r∈h̃(Qβ)

∑

y∈Y r
i

fi(y|r)h̃(r|q)m(q|a)

≥
∑

s∈Si
α

gi(s|a)
∑

q∈Qβ

m(q|a)
∑

r∈h̃(Qβ )

h̃(r|q)
∑

y∈Y r
i

fi(y|r)

=
∑

s∈Si
α

gi(s|a)
∑

q∈Qβ

m(q|a)
∑

y∈Y r
i

fi(y|r)

≥ (1 − y)(1 − x)(1 − z)

= 1 − (x + y + z − xy − xz − zy + xyz)

For each player i ∈ K, the joint monitoring Λi = (gi, fi ◦ h̃ ◦ m) is

x+ y + z − xy − xz − yz + xyz perfect.
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Fig. 4. Nash Equilibrium, Operating Point and the Deviation Utilities for
(K,M,N) = (2, 2, 2)
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