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Email: {letreust},{lasaulce}@lss.supelec.fr
†Institut Gaspard Monge, Université Paris-Est Marne La Vallée, 77454, Marne La Vallée Cedex 2, France

Email: abdellatif.zaidi@univ-mlv.fr

Abstract—The communication scenario under consideration
in this paper corresponds to a multiuser channel with side
information and consists of a broadcast channel with two
legitimate receivers and an eavesdropper. Mainly, the results
obtained are as follows. First, an achievable rate region is
provided for the (general) case of discrete-input discrete-output
channels, generalizing existing results. Second, the obtained
theorem is used to derive achievable transmission rates for two
practical cases of Gaussian channels. It is shown that known
perturbations can enlarge the rate region of broadcast wiretap
channels with side information and having side information at
the decoder as well can increase the secrecy rate of channels
with side information. Third, we establish for the first time an
explicit connection between multiuser channels and observation
structures in dynamic games. In this respect, we show how to
exploit the proved achievability theorem (discrete case) to derive
a communication-compatible upper bound on the minmax level
of a player.

I. INTRODUCTION

The notion of secrecy in communication systems has been

widely studied since 1949 and the publication of [18] by

Shannon. He introduced a measure of secrecy for communica-

tion systems called equivocation. The secrecy capacity of the

general wiretap channel which consists of one transmitter, one

legitimate receiver, and one eavesdropper has been determined

in [21]. In [6], the authors extended this result assuming that

both the legitimate receiver (to which the confidential message

is intended) and the eavesdropper have to decode a common

message. Regarding broadcast channels, there are at least

three other relevant works. The authors of [19] investigate a

broadcast channel with side information or state at the encoder.

In this model, the transition probability is controlled by a

sequence of i.i.d. parameters whose realizations are known

non-causally and perfectly by the encoder. They conclude that

in the Gaussian case, there is no loss of rate of communication.

The authors of [2] provide an achievable rate region for the

broadcast channel with two legitimate receivers (each of them

having to decode a private and a confidential message) and an

eavesdropper; the corresponding region is shown to be tight

in the case of physically degraded broadcast channels. For the

case of reversely degraded parallel broadcast channels, one

eavesdropper, and an arbitrary number of legitimate receivers,

the authors of [13] determined the secrecy capacity for trans-

mitting a common message, and the secrecy sum-capacity for

transmitting independent messages.

As far as the present work is concerned, the most relevant

contribution is provided in [3]. Therein, the authors provide an

achievable rate of the discrete or general wiretap channel when

a side information is known non-causally to the transmitter

(in the sense of [10]). Their achievable secured rate is the

minimum between the secure rate of the wiretap channel [21]

and the rate of the channel with side information provided by

Gel’fand and Pinsker in [10]. The coding scheme in [3] is

proved to achieve at least one of these two rates and also

satisfy the security constraints R ≤ H(m|Zn)
n

where m is

the source message, n is the codeword size, and Zn the

observation vector of the eavesdropper.
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Fig. 1. The broadcast wiretap channel with asymmetric side information.
The encoder C send the message m1 (resp. m2) to decoder D1 (resp. D2)
through the channel T by preventing the eavesdropper E to decode. X is the
channel input, S1 and Y1 (resp. S2 and Y2) are the side information and the
channel output available at the first (resp. second) decoder, Z is the channel
output for the eavesdropper.

We extend this result by considering the broadcast channel

with confidential messages represented in Fig. 1. With respect

to [3], two differences have to be noticed.

• A two-user broadcast channel is considered.

• Each legitimate receiver only knows a part of the side

information.

To be more precise, if (S1, S2) represents the pair of side

information, receiver or decoder Dk, with k ∈ {1, 2}, knows

only Sk. On the other hand, the eavesdropper E does not know

the side information at all.

The two main motivations for deriving an achievable rate

region for this multiuser channel are as follows. First of all,

the goal is to better understand the influence of the side



information on the performance limits of secure communica-

tions. The second strong motivation is more original since we

show that coding theorems are also useful for understanding

strategic interactions (games). Indeed, as mentioned in [14],

there has been, in recent years, a surge of interest for game

theory since it can be useful to analyze multiuser settings (the

interference channel is one of them [20], [9]). In those studies,

quite often, Shannon transmission rates are considered for

the player’s utilities and game-theoretic notions are applied.

One of the messages of the present work is that, conversely,

multiuser channels can be used to understand (dynamic) games

with arbitrary observation structures and utility functions. This

contributes to strengthen the links between Shannon theory

and game theory and gives more momentum to some works

in this direction such as [1] [16].

In the next section II, we introduce the channel model under

investigation and the main achievability result (Theorem 4).

We compare the derived result with previous works in Sec. III.

In Sec. IV, we prove theorem 4. Sec. V is devoted to exploiting

the derived theorem in the Gaussian case (achievability the-

orems follow in the Gaussian case provided long but simple

calculations are done, the latter are omitted here). We consider,

in Sec. VI, a direct application of our result to games. We

provide an upper bound on the min-max level in a four-player

long-run game with a given observation/monitoring structure

(called games with signals in the literature of game theory).

We conclude the paper by summarizing remarks and possible

extensions of this work (Sec. VII).

II. CHANNEL MODEL

In this paper, we denote X,S1, S2, Y1, Y2, Z the random

variables of the channel inputs x ∈ X , the side information

at the first s1 ∈ S1 and the second s2 ∈ S2 decoders,

the channel ouputs for the first y1 ∈ Y1 and the second

y2 ∈ Y2 decoders and the channel ouputs z ∈ Z for the

eavesdropper (see Fig 1). The corresponding sequences will be

written Zn = (Z(1), . . . , Z(n)), where superscripted letters

denote the vector. The messages m1 and m2 are uniformly

distributed among the sets M1 and M2 whose cardinalities

are denoted M1 = |M1| and M2 = |M2|. ∆(Y) denote the

set of probability distributions over the set Y , P⊗n ∈ ∆(Xn)
denote the n-times product of the probability P ∈ ∆(X ) and

co R denote the convex hull of a set R.

Consider a broadcast wiretap channel with asymmetric side

information, as a transition probability described in figure 1

T : X × S1 × S2 −→ ∆(Y1 × Y2 ×Z). (1)

The side information s1, s2 are drawn independently and iden-

tically distributed from the joint distribution Ps ∈ ∆(S1×S2).
The sequence of realizations sn1 , s

n
2 are non-causally known at

the encoder and at their respective decoders. The channel is

discrete and memoryless, i.e. the n-stage transition probability

is defined as follows:

T⊗n(yn1 , y
n
2 , z

n|xn, sn1 , s
n
2 )

=

n∏

i=1

T (y1(i), y2(i), z(i)|x(i), s1(i), s2(i)). (2)

Definition 1: Define an (n,M1,M2)-code as a triplet of

functions as follows:

f : M1 ×M2 × Sn
1 × Sn

2 −→ Xn, (3)

g1 : Yn
1 × Sn

1 −→ M1, (4)

g2 : Yn
2 × Sn

2 −→ M2. (5)

(m̂1, m̂2) denote the random variable of the messages re-

constructed by the code. Define the error probability Pn
e

associated with each (n,M1,M2)-code as follows:

Pn
e = P((m1,m2) 6= (m̂1, m̂2)). (6)

The amount of information of a code is related to the

cardinality M1 and M2 of the sets of messages M1 and M2.

As in [17], this quantity is measured by the rate R = logM

n
of

the code. In the context of secure communication, the notion

of equivocation
H(m|Zn)

n
[18] is introduced as a measure of

the secrecy level guaranteed by a code. When this level is

greater than the rate of the code, it prevents the eavesdropper

from correctly decoding the transmitted information.

Definition 2: A rate pair (R1, R2) is said to be achievable

if for all ε > 0, there exists a (n,M1,M2)-code such that:

logM1

n
≥ R1 − ε, (7)

logM2

n
≥ R2 − ε, (8)

H(m1|Zn)

n
≥ R1 − ε, (9)

H(m2|Zn)

n
≥ R2 − ε, (10)

H(m1,m2|Zn)

n
≥ R1 + R2 − ε, (11)

Pn
e ≤ ε. (12)

Denote R the set of achievable rate pairs.

A. Main result

We provide an achievable rate region for the considered

broadcast wiretap channel with asymmetric side information.

Definition 3: Denote RI the set of rate pairs (R1, R2) such

that there exists a probability distribution P(u1, u2, x|s1, s2)
satisfying:

R1 ≤ I(U1;Y1, S1)−max(I(U1;Z), I(U1;S1, S2)),

R2 ≤ I(U2;Y2, S2)−max(I(U2;Z), I(U2;S1, S2)),

R1 +R2 ≤ I(U1;Y1, S1) + I(U2;Y2, S2)− I(U1;U2)

−max(I(U1, U2;Z), I(U1, U2;S1, S2)). (13)

Remark that the probability P(u1, u2, x|s1, s2) induces a

general distribution Q that satisfies the Markov property

(U1, U2) − (X,S1, S2) − (Y1, Y2, Z). This probability Q is



defined for every (u1, u2, x, s1, s2, y1, y2, z), by the following

equation:

Q(u1, u2, x, s1, s2, y1, y2, z) =

Ps(s1, s2)× P(u1, u2, x|s1, s2)× T (y1, y2, z|x, s1, s2).

Theorem 4: Any rate pair (R1, R2) ∈ co RI is achievable

for the broadcast wiretap channel with asymmetric side infor-

mation.

Suppose that we need the channel input to be correlated with

a sequence of i.i.d. random variable Sn. The analysis leads to

consider the random variable S as a side information even if it

does not impact the transition probability. This remark applies,

more specifically, in a game theoretical framework (see Sec.

VI).

III. INTERPRETATION

The achievable rate region RI we provide is a generalization

of the one in [3]. It consists in the intersection of two rate

regions. The first one is related to the side information as in

[19] and the second one is related to the eavesdropper as in

[2]. Note that if we remove the eavesdropper (Z = C) and

we consider that the side information is non-causally known

only at the encoder, our rate region boils down to the one of

[19] when the variable W is constant. If we remove the side

information (S1 = S2 = C), the rate region equals the one

described in [2]. Suppose we remove the receivers (D2) and

the side information (S1 = C) and in that case the rate region

boils down to the one of the article [3].

IV. PROOF OF THEOREM 4

We first prove the achievability of the rate pair (R1, R2) ∈
TI satisfying the above inequalities (13). Fix a distribution

Q(u1, u2, x, s1, s2, y1, y2, z) satisfying the channel transition

T (y1, y2, z|x, s1, s2), the distribution Ps(s1, s2) and the rates

inequalities (13). We will prove that the pair (R1, R2) ∈ TI is

achievable. Denote A∗n
ε (U1 ×U2|s

n
1 , s

n
2 ) the set of sequences

un
1 , u

n
2 that are jointly typical with sn1 , s

n
2 . The properties of

the typical sequences can be founded in [5] and [7].

• Generation of the Code-book : Generate MY1 =
2nRY1 = 2n(I(U1;Y1,S1)−ε) sequences un

1 from dis-

tribution QU1(u1)
⊗n. Distribute them at random into

M1 = 2nR1 bins denoted i1 ∈ {1, . . . ,M1}, con-

taining each of them MU1 = 2nRU1 sequences

un
1 . Divide each bin i1 into MW1 = 2nRW1 sub-

bins denoted j1 ∈ {1, . . . ,MW1} containing each of

them MZ1 = 2nRZ1 sequences un
1 with the follow-

ing parameters RU1 , RY1 , R1, RZ1 . Generate MY2 =
2nRY2 = 2n(I(U2;Y2,S2)−ε) sequences un

2 from dis-

tribution QU2(u2)
⊗n. Distribute them at random into

M2 = 2nR2 bins denoted i2 ∈ {1, . . . ,M2}, con-

taining each of them MU2 = 2nRU2 sequences un
2 .

Divide each bin i2 into MW2 = 2nRW2 sub-bins de-

noted j2 ∈ {1, . . . ,MW2} containing each of them

MZ2 = 2nRZ2 sequences un
2 with the above param-

eters RU2 , RY2 , R2, RZ2 . For each tuple of sequences

(un
1 , u

n
2 , s

n
1 , s

n
2 ) draw a sequence xn from the distribution

Q(x|u1, u2, s1, s2)
⊗n.

• Encoder obtains the message (i1, i2) ∈ M1×M2 and the

sequence of side information (sn1 , s
n
2 ). It finds a pair of

sequences un
1 in the bin i1 and un

2 in the bin i2 such that

(un
1 , u

n
2 ) ∈ A∗n

ε (U1 × U2|sn1 , s
n
2 ). Send the sequence xn

corresponding to the tuple of sequences (un
1 , u

n
2 , s

n
1 , s

n
2 ).

RU1 > I(U1;S2, S1),

RU2 > I(U2;S1, S2),

RU1 + RU2 > I(U1;U2) + I(U1, U2;S1, S2),

RY1 = RU1 +R1 < I(U1;Y1, S1),

RY2 = RU2 +R1 < I(U2;Y2, S2),

RZ1 < I(U1;Z),

RZ2 < I(U2;Z),

RZ1 + RZ2 < I(U1;U2) + I(U1, U2;Z),

RU1 > RZ1 ,

RU2 > RZ2 .

• Decoder 1 receives the channel output yn1 and the se-

quence of side information sn1 . It finds a unique sequence

un
1 such that un

1 ∈ A∗n
ε (U1|yn1 , s

n
1 ) and it returns the bin

index i1 of the sequence un
1 .

• Decoder 2 receives the channel output yn2 and the se-

quence of side information sn2 . It finds a unique sequence

un
2 such that un

2 ∈ A∗n
ε (U2|yn2 , s

n
2 ) and it returns the bin

index i2 of the sequence un
2 .

The proof consists first to show that the error probability

can be upper bounded by ε > 0 as n goes to infinity.

Second, we check if the equivocation rate at the eavesdropper

is sufficiently high as n goes to infinity. We conclude that

the desired rate (R1, R2) pair belongs to the achievable rate

region that satisfies by the above inequalities (13).

Analysis of the error probability. As in the articles [10]

and [15], it is based on extensions of the following lemma:

Lemma 1: The properties of the typical sequences [7]. Let

the joint probability Q(x, y) ∈ ∆(X × Y ), then:

Q⊗n(xn ∈ An∗
ε (X |yn)|yn) ≥ 1− ε ∀yn ∈ An∗

ε (Y ).

Lemma 2: The mutual covering lemma [8]. Suppose that

the family of sequences (u(i)n)i∈2nRI ∈ Un is drawn i.i.d.

from Q⊗n
U and (v(j)n)j∈2nRJ is drawn i.i.d. from Q⊗n

V . Then

for all ε > 0, there exists an n̄ ≥ 0 such that for all n ≥ n̄:

RI +RJ < I(U ;V ) =⇒

P(∪ i∈I,
j∈J

{(u(i)n, v(j)n) ∈ A∗n
ε (U × V )}) ≤ ε,

RI +RJ > I(U ;V ) =⇒

P(∩ i∈I,
j∈J

{(u(i)n, v(j)n) /∈ A∗n
ε (U × V )}) ≤ ε.

Without loss of generality, we assume that the encoder has to

transmit the messages (i1, i2). Denote Bi1 and Bi2 the bins of



sequences un
1 and un

2 respectively. Let us define the following

error events:

• E1 = {(sn1 , s
n
2 ) /∈ A∗n

ε (S1 × S2)} the two sequences of

side information are not jointly typical.

• E2 = {∀(un
1 , u

n
2 ) ∈ Bi1 × Bi2 , (un

1 , u
n
2 ) /∈ A∗n

ε (U1 ×
U2|sn1 , s

n
2 )} there is no pair of sequence (un

1 , u
n
2 ) in the

bins Bi1 and Bi2 that are jointly typical with (sn1 , s
n
2 ).

• E3 = {(xn, yn1 , y
n
2 , z

n) /∈ A∗n
ε (X × Y1 × Y2 ×

Z|un
1 , u

n
2 , s

n
1 , s

n
2 )|(u

n
1 , u

n
2 , s

n
1 , s

n
2 ) ∈ A∗n

ε (U1×U2×S1×
S2} the family (xn, yn1 , y

n
2 , z

n) of sequences is not jointly

typical with the jointly typical sequences (un
1 , u

n
2 , s

n
1 , s

n
2 ).

• E4 = {∃u
′n
1 6= un

1 , (u
′n
1 , yn1 , s

n
1 )

n ∈ A∗n
ε (U1×Y1×S1)}

there is another vector u
′n
1 jointly typical with the channel

output yn1 and the side information sn1 .

• E5 = {∃u
′n
2 6= un

2 , (u
′n
2 , yn2 , s

n
2 ) ∈ A∗n

ε (U2 × Y2 × S2)}
there is another vector u

′n
2 jointly typical with the channel

output yn2 and the side information sn2 .

Using an extension of covering lemma [8], we bound P(E2)
by ε as soon as, the following inequalities are satisfied.

RU1 > I(U1;S2, S1), (14)

RU2 > I(U2;S1, S2), (15)

RU1 +RU2 > I(U1;U2) + I(U1, U2;S1, S2). (16)

P(E4) and P(E5) are bounded by ε if:

RY1 = RU1 + R1 < I(U1;Y1, S1), (17)

RY2 = RU2 + R1 < I(U2;Y2, S2). (18)

To bound P(E1) and P(E3), we use classical properties of the

typical sequences [7]. Thus for all ε, there exists n such that,

Pn
e ≤ 5ε. (19)

We proved that the error probability is upper bounded by 5ε.

The equivocation rate at the eavesdropper.

Denote (m1,m2) the random variable of the pair of bins and

(w1, w2) the random variable of the pair of sub-bins. Let us

prove that
H(m1,m2|Zn)

n
≥ R1 + R2 − ε. We first introduce

the random variables w1, w2 and Un
1 , U

n
2 in the expression of

H(m1,m2|Zn).

H(m1,m2|Z
n)

= H(m1,m2, Z
n)−H(Zn)

= H(m1,m2, w1, w2, Z
n)

−H(w1, w2|m1,m2, Z
n)−H(Zn)

= H(m1,m2, w1, w2, U
n
1 , U

n
2 , Z

n)

−H(Un
1 , U

n
2 |m1,m2, w1, w2, Z

n)

−H(w1, w2|m1,m2, Z
n)−H(Zn)

(20)

= H(m1,m2, w1, w2|U
n
1 , U

n
2 , Z

n)

+H(Un
1 , U

n
2 , Z

n)

−H(Un
1 , U

n
2 |m1,m2, w1, w2, Z

n)

−H(w1, w2|m1,m2, Z
n)−H(Zn)

= H(m1,m2, w1, w2|U
n
1 , U

n
2 , Z

n) (21)

+H(Un
1 , U

n
2 |Z

n) (22)

−H(Un
1 , U

n
2 |m1,m2, w1, w2, Z

n) (23)

−H(w1, w2|m1,m2, Z
n). (24)

We provide a lower bound for each of the four terms of the

above equation.

The first term (21) in the above equation is removed.

The second term (22) is lower bounded, using the chain rule

[5], by the following quantity:

H(Un
1 , U

n
2 |Z

n)

= H(Un
1 ) +H(Un

2 )− I(Un
1 ;U

n
2 )− I(Un

1 , U
n
2 ;Z)

≥ I(Un
1 ;Y

n
1 , Sn

1 ) + I(Un
2 ;Y

n
2 , Sn

2 )

−I(Un
1 ;U

n
2 )− I(Un

1 , U
n
2 ;Z)

≥ n[I(U1;Y1, S1) + I(U2;Y2, S2)

−I(U1;U2)− I(U1, U2;Z)].

The third term (23) is lower bounded by −2ε − n2ε log |Z|
using Fano’s inequality [5] and the following system of

conditions:

RZ1 < I(U1;Z), (25)

RZ2 < I(U2;Z), (26)

RZ1 +RZ2 < I(U1;U2) + I(U1, U2;Z). (27)

Denote Bm1 the bin with index m1 and Bw1 the sub-bin with

index w1. Let the following events:

E6 = {∀(u1, u2) ∈ (Bm1 ×Bm2) ∩ (Bw1 ×Bw2),

(un
1 , u

n
2 , z

n) /∈ A∗n
ε (U1 × U2 × Z)},

E7 = {∃(u1, u2)
′ 6= (u1, u2)

∈ (Bm1 ×Bm2) ∩ (Bw1 ×Bw2),

s.t.(u′
1, u

′
2, z) ∈ A∗n

ε (U1 × U2 × Z)}.

Consider a typical decoding function of the eavesdropper

knowing the pairs of bin indexes (m1,m2) and sub-bin index

(w1, w2),

g : Zn −→ Un
1 × Un

2 . (28)

To the received sequence zn, it associates the pair (un
1 , u

n
2 ) if

it belong to the bins (m1,m2), the sub-bins (w1, w2) and is

jointly typical with zn. Define the error probability of such a

decoding function

Pæ = P((Un
1 , U

n
2 ) 6= g(Zn) s.t. (Un

1 , U
n
2 ) ∈

(Bm1 ×Bm2) ∩ (Bw1 ×Bw2)) (29)

≤ P(E6) + P(E7) ≤ 2ε, (30)



where P(E6) ≤ ε comes from properties of the typical

sequences [7] and P(E7) ≤ ε comes from the above system

of equations (25)-(27). Using Fano’s inequality [5] we have:

H(Un
1 , U

n
2 |m1,m2, w1, w2, Z

n)

≤ H(Pæ) + nPæ(log |Z| − ε)

≤ 2ε+ n2ε log |Z|.

The fourth term (24) is lower bounded by the following

quantity: −n(max[I(U1, U2;S1, S2)− I(U1, U2;Z), 0] + 4ε).
From the condition (16) and the definition of the sub-bins we

have:

RU1 +RU2 ≥ max[I(U1, U2;S1, S2)

+I(U1;U2), RZ1 + RZ2 ]. (31)

Suppose that the two following conditions are satisfied:

RU1 +RU2 ≤ max[I(U1, U2;S1, S2)

+I(U1;U2), RZ1 +RZ2 ] + 2ε, (32)

RZ1 +RZ2 ≥ I(U1;U2) + I(U1, U2;Z)− 2ε. (33)

We now prove the following inequalities:

H(w1, w2|m1,m2, Z
n)

≤ log(|W1| × |W2|)

= n(RU1 +RU2 −RZ1 −RZ2)

≤ n(max[I(U1;U2) + I(U1, U2;S1, S2),

I(U1;U2)I(U1, U2;Z)] + 2ε

−I(U1;U2)− I(U1, U2;Z) + 2ε)

≤ n(max[I(U1, U2;S1, S2)− I(U1, U2;Z), 0] + 4ε).

Combining the four above terms, we obtain the lower bound

R1 +R2 − ε̄ over the equivocation rate.

H(m1,m2|Z
n)

≥ n(I(U1;Y1, S1) + I(U2;Y2, S2)

−I(U1;U2)− I(U1, U2;Z))− 2ε− n2ε log |Z|

−n(max(I(U1, U2;S1, S2)− I(U1, U2;Z), 0) + 4ε)

≥ n(I(U1;Y1, S1) + I(U2;Y2, S2)

−I(U1;U2)−max(I(U1, U2;S1, S2), I(U1, U2;Z)))

−2ε− nε(2 log |Z|+ 4)

≥ n(R1 +R2)− 2ε− nε(2 log |Z|+ 4).

⇐⇒
I(m1,m2;Z

n)

n
≤ ε̄.

With ε̄ = ε(2/n+ 2 log |Z| + 4). The same arguments apply

to prove that:

H(m1|Zn)

n
≥ R1 − ε̄, (34)

H(m2|Zn)

n
≥ R2 − ε̄. (35)

The transmission rates are determined by the binning

scheme:

R1 = RY1 −RU1 ,

R2 = RY2 −RU2 ,

R1 +R2 = (RY1 +RY2)−RU1 −RU2 .

We have proven that our coding scheme achieves every rate

pair of the following rate region RI .

R1 ≤ I(U1;Y1, S1)−max[I(U1;Z), I(U1;S1, S2)],

R2 ≤ I(U2;Y2, S2)−max[I(U2;Z), I(U2;S1, S2)],

R1 +R2 ≤ I(U1;Y1, S1) + I(U2;Y2, S2)− I(U1;U2)

− max[I(U1, U2;Z); I(U1, U2;S1, S2)].

A classical time-sharing argument in the coding scheme

implies that the convex hull co RI of the rate region is

achievable.

V. THE CASE OF GAUSSIAN CHANNELS

In this section, we want to show theorem 4 can be exploited

for Gaussian communication channels. At least two interesting

results are emphasized. For the first model under consideration

(Fig. 2), it is shown that the presence of known perturbations

(namely S1 and S2) can enhance the secrecy rates. In fact, if

those perturbations are sufficiently strong, it is even possible

to obtain the same rate region as if the eavesdropper were

not present. For the second model (Fig. 4), it is shown that

knowing the side information can lead to a larger secrecy rate,

which is usually not the case in channels with states but with

no eavesdropper.

A. Increasing the influence of known perturbations enhances

the rate region

E

D1

D2

W
(m1,m2) X

Y1

Y2

Z

S1

S2

m̂1

m̂2

W1

W3

W2

Fig. 2. The Gaussian broadcast wiretap channel with asymmetric side
information.

The Gaussian broadcast wiretap channel with asymmetric

side information we consider is described by the following

equations:

Y1 = X + S2 +W1 (36)

Y2 = X + S1 +W2 (37)

Z = X + S1 + S2 +W3 (38)



The random variables W1, W2, W3, S1, S2 are Gaussian with

mean 0 and variance N1, N2, N3, Q1, Q2. The channel states

S1 and S2 are correlated following the parameter ρ = E[S1S2]√
Q1Q2

.

The channel input X must satisfy the constraint:

E[X2] ≤ P (39)

Without loss of generality, we suppose that N1 ≥ N2. The

channel of the first receiver is physically degradable version of

the second one. Let α1 ∈ R, α2 ∈ R, β ∈ [0, 1] and β̄ = 1−β.

Decompose X = X1 + X2 into two independent Gaussian

random variables X1 and X2 with mean 0 and variance βP
and β̄P . Define the following auxiliary random variables:

U1 = X1 + α1S2 ∼ N (0, βP + α2
1Q2)

U2 = X2 + α2(S1 +X1) ∼ N (0, β̄P + α2
2(Q1 + βP ))

Numerical simulations (Fig. 3) illustrate the achievable rate

region comparing to the previous results in [19], [2] and [3].

In Fig. 3, we compare the achievable rate region for different

values Q1 and Q2 of the variance of the side information

S1, S2 and for the correlation parameter ρ = 0. When the

variance of the side information is low (Q1 = Q2 = 0.1), the

rate region (in blue) is close to the one of [2]. Whereas for

high variance of the side information (Q1 = Q2 = 20), the

rate region (in yellow) is close to the capacity region for the

broadcast channel of [19]. High variances Q1 and Q2 for the

side information are sufficient to compensate for the presence

of an eavesdropper in the network.

Fig. 3. Rate region for the correlation parameter ρ = 0 and different values
of Q1 and Q2.

B. Having the side information at the decoder as well allows

to enlarge the secrecy rate

Often, when already available at the encoder, the knowledge

of the side information at the decoder does not increase the

transmission rate [4][19]. However, this is not true when

considering channels with security constraints. We provide a

special case of our channel model for which the knowledge

of the side information at the decoder strictly increases the

achievable rate.

C

D1

E
m X

Y1

Z

S1

m̂

W1

W3

Fig. 4. The Gaussian wiretap channel with side information non-causally
known at both the encoder and the decoder.

The Gaussian broadcast wiretap channel with side informa-

tion at the decoder is described by the following equations:

Y1 = X + S1 +W1, (40)

Z = X + S1 +W3. (41)

This channel is a special case of the model we consider here

above when we remove the decoder D2 and we fix the second

side information constant S2 = ∅. The side information S1 is

non-causally known at the decoder. The random variables W1,

W3, S1, are gaussian with mean 0 and variance N1, N3, Q1.

The channel input X must satisfies the constraint:

E[X2] ≤ P (42)

Theorem 5: The capacity of the channel with state is

achievable.

C = I(U1;Y1|S1).

The proof consists in replacing the random variable U1 with

a parameter α1 ≫ 1 in the first equation of (13).

VI. MIN-MAX LEVEL FOR A LONG-RUN GAME WITH

SIGNALS

The above-referenced channel is now used to model the

transmission of strategic information in a long-run game with

signals that is, a game where a given player has a certain ob-

servation of the actions played by the others [1]. Therefore, in

dynamic games with imperfect monitoring/observation, play-

ers observe the actions taken by other players through channels

also called “signalling structure”. An important challenge is to

characterize the set of equilibrium utilities for a long-run game

with imperfect monitoring; even in the case of repeated games,

the problem of finding this set is still open [16]. This problem

is closely related to the characterization of achievable rate

regions for a class of channel models containing the one we

investigate in this paper. Coding/decoding schemes designed

for channels with security constraints can allow a group of

players to correlate their sequence of plays keeping it secret

from another group of players. Our main contribution is to

point out a general methodology which can be used in many

other scenarios and provide, for a specific example an upper



bound on min-max levels. The example chosen is a four-player

repeated game with signals, directly establishing a link with

the multiuser channel studied in Sec. II.

A. A repeated game with signals

A stage game is defined by a set of players K, each of them

having a set of actions Ak and a stage-utility function uk. In

a long run game, a strategy τk = (τ tk)1≤t of player k ∈ K is a

sequence of functions from the sequences of signals S
×(t−1)
k

into the mixed actions ∆(Ak):

τ tk : S
×(t−1)
k −→ ∆(Ak) (43)

A profile of strategies τ = (τk)i∈K induces a probability

distribution Pτ ∈ ∆(A∞) over the sequences of actions

(at)t≥1. The utility of the n-stage game is related to the above

probability Pτ .

γn
k (τ) = Eτ

1

n

n∑

t=1

uk(a
t
1, . . . , a

t
K) (44)

The reader is referred to the paper of Renault and Tomala

[16] for more details about the model of repeated games with

signals.

B. The min-max levels as “punishment levels”

The min-max level, also called “the punishment level”, of a

player measures the worst utility level this player can be forced

by the others in a long-run game. The formal problem of the

min-max levels is in the articles of Gossner and Tomala [11],

[12]. They provide a characterization of the min-max using

entropy methods. Denote τ−k the vector of strategy of all the

players ℓ 6= k ∈ K except k ∈ K.

Definition 6: The uniform min-max v∞k for player k ∈ K
is defined as follows:

• The players ℓ 6= k ∈ K guarantee v∞k ∈ R if:

∀ε > 0, ∃τ−k, ∃N ∈ N, ∀τk, ∀n ≥ N (45)

γn
k (τk, τ−k) ≤ v∞k + ε (46)

• The player k ∈ K defends v∞k ∈ R if:

∀ε > 0, ∀τ−k, ∃τk, ∃N ∈ N, ∀n ≥ N (47)

γn
k (τk, τ−k) ≥ v∞k − ε (48)

• The uniform min-max of player k ∈ K, if it exists, is

v∞k ∈ R such that players ℓ 6= k ∈ K guarantee v∞k ∈ R
and player k ∈ K defends v∞k ∈ R.

C. Upper bound on min-max levels

We denote A123 = A1 × A2 × A3 the product of actions

set and X123 =
∏

k=1,2,3 ∆(Ak) the product of independent

probabilities over the player’s actions.

Definition 7: Define Q1 ⊂ ∆(A1 × A2 × A3) the set

of achievable empirical distributions, where player P1 is the

encoder, such that for all Q1 ∈ Q1 there exists a distribution,

Q̃1 ∈ ∆(U2 × U3 ×A1 × . . .A3 × S1 × . . .S4)

satisfying the two following conditions:

• the conditions on the marginals:
∑

u,s

Q̃1(u, a, s) = Q1(a)

Q̃1(s|u, a) = T (s2, s3, s4|a1, a2, a3)

• the information theoretical conditions:

H(A2) ≤ I(U2;S2, A2)

− max(I(U2;S4), I(U2;A2, A3))

H(A3) ≤ I(U3;S3, A3)

− max(I(U3;S4), I(U3;A2, A3))

H(A2) + H(A3) ≤ I(U2;S2, A2)

+ I(U3;S3, A3)− I(U2;U3)

− max(I(U2, U3;S4), I(U2, U3;A2, A3))

Define in a similar way Q2 (resp. Q3), when player P2 (resp.

player P3) is an encoder in the above channel model. Let Q123

denote the convex hull of the union of achievable distributions

when one of the players is an encoder:

Q123 = co [Q1 ∪Q2 ∪Q3 ∪X123] ⊂ ∆(A123)

Theorem 8: Suppose that the channel transition T does not

depend on the actions of the fourth player:

T (s1, s2, s3, s4|a1, a2, a3, a4) = T (s1, s2, s3, s4|a1, a2, a3),

∀ak, sk, k ∈ K

The uniform min-max level v∞4 of player P4 for the repeated

game with signals is upper bounded by the following quantity:

v∞4 ≤ min
Q∈Q123

max
a4∈A4

EQu4(a1, a2, a3, a4) = ν

D. Sketch of the proof of Theorem 8

We have proven that the coding scheme described in the

previous section is optimal for the players in order to guarantee

the value ν ∈ R. Face to the above strategy for players P1,

P2 and P3, every strategy τ4 for player P4, leads to a long-

run expected utility below ν ∈ R. Suppose that the optimal

distribution Q∗ ∈ ∆(A123) is a convex combination:

Q∗ =

J∑

j=1

αjQ
∗
j ∈ Q123 (49)

The play of players P1, P2 and P3 is divided into J blocks

of stages of length Nj where the players implement Q∗
j . Each

block Nj of stages is divided into I + 1 sub-block N i
j where

the encoding player communicate to the others, the sequence

of actions they will play in the next sub-block. The recursive

coding process is described in Fig. VI-D.

For each sub-block i ∈ I , the coding scheme consists

of a concatenation of the Shannon’s source coding scheme

[5] and the channel coding scheme investigated here above.

The joint source coding scheme is described in Fig. VI-D

where Ai
k denotes the sequence of actions of player Pk during

the sub-block of stages N i
j . The entropy constraints (49) in



an3

an2

an1

Nj Nj+1
N0

j N1
j N2

j

Fig. 5. During the sub-block N0
j

player P1 wants players P2 and P3 to

play certain actions during the sub-block of stages N1
j . It can be noticed

that the knowledge of the sequence of future realizations of the channel state
(non-causal side information) at the encoder is therefore fully justified from
a game theoretical point of view.

the definition of Q123 insure that the sequence of actions of

players can be sent over the channel and recovered with an

arbitrary small error probability.

P1

P2

P3

P4
(m1, m2)(A

i+1
2 , A

i+1
3 ) Ai

1
T

Si
2

Si
3

Si
4

Ai
2

Ai
3

m̂1

m̂2

Â
i+1
2

Â
i+1
3

P1

P2

P3

Fig. 6. The joint source channel coding scheme for transmitting during the

sub-block of stages N i
j the actions of the sub-block of stages N i+1

j
.

Our coding scheme guarantees that the expectation of the

empirical distribution of plays E[Q̄] converges to the optimal

distribution Q∗. Second, the coding scheme guarantees that the

distribution over the signals sn4 of player P4 prevents her to

guess the future sequence of correlated actions of the players

P1, P2 and P3.

VII. CONCLUSION

This paper investigates a generalization of the wiretap

channel with two receivers and one eavesdropper where the

channel transition depends on states known non-causally and

perfectly at the encoder and partially known at both receivers.

The main theorem of the paper provides an achievable rate

region. Applying the theorem to the Gaussian case allows one

to make several interesting observations. In particular, two

scenarios have been studied. In the first scenario, we have

shown that, contrarily to [4] and related works, having side

information at the decoder in addition to having it at the

encoder is useful when security constraints come into play.

Whereas this result has been proved for the Gaussian case,

further works should be necessary to study the discrete case

(e.g., by introducing more auxiliary variables to fully exploit

the knowledge of the side information at the encoder). In

the second scenario, it is shown that the presence of known

perturbations (namely S1 and S2) can enhance the secrecy

rates. In fact, if those perturbations are sufficiently strong,

it is even possible to obtain the same rate region as if the

eavesdropper were not present. Another type of interesting

result is that we show how multiuser Shannon theory can be

exploited for general games, opening a general methodology to

derive communication-compatible game-theoretic such as min-

max levels, feasible joint distributions or correlated strategies,

etc. One the key observations made in this paper is that source-

channel theorems might play an increasing role in games

where inter-player communications is allowed.
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