
HAL Id: hal-00744775
https://hal.science/hal-00744775v1

Submitted on 23 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

WUW (What Users Want): A Service to Enhance Users’
Satisfaction in Content-Based Peer-to-Peer Networks
Marco Biazzini, Raziel Carvajal-Gomez, Adriana Perez-Espinosa, Patricia

Serrano-Alvarado, Philippe Lamarre, Elizabeth Perez Cortes

To cite this version:
Marco Biazzini, Raziel Carvajal-Gomez, Adriana Perez-Espinosa, Patricia Serrano-Alvarado, Philippe
Lamarre, et al.. WUW (What Users Want): A Service to Enhance Users’ Satisfaction in Content-
Based Peer-to-Peer Networks. Non spécifié, Oct 2012, Nantes, France. �hal-00744775�

https://hal.science/hal-00744775v1
https://hal.archives-ouvertes.fr

WUW (What Users Want):
A Service to Enhance Users’ Satisfaction in

Content-Based Peer-to-Peer Networks

Marco Biazzini1 Raziel Carvajal-Gómez1 Adriana Pérez-Espinosa3 Patricia
Serrano-Alvarado1 Philippe Lamarre2 Elizabeth Pérez Cortés3

1 {Name.LastName}@univ-nantes.fr
2 Philippe.Lamarre@liris.cnrs.fr

3 {pea, pece}@xanum.uam.mx

1 LINA/Université de Nantes 2 Liris/Université de Lyon 3 Universidad Autónoma Metropolitana
2, rue de la Houssinière 37, Rue du Repos Av San Rafael Atlixco No.186
44322 Nantes, France 69007 Lyon, France 09340 Iztapalapa, México

Peer-to-Peer (P2P) architectures are more and more used in Content Delivery Net-
works (CDN), because the traditional client-server architectures are burdened by high
distribution and maintenance cost, whereas in P2P systems those costs are almost negli-
gible. In general, such applications do not take into account user preferences, other than
QoS-related parameters. As users resources are the richness of P2P systems, we think it
is important to satisfy their preferences concerning the usage of their resources. In this
work we propose WUW (What Users Want), a service to improve users’ satisfaction
in a personal way. WUW runs on top of unstructured P2P systems, and its main goal
is to allow users to strategically impact their local neighborhoods according to their
own personal preferences. We present first results of experiments, deployed in a cluster,
obtained with the prototype implementation of our service, which runs on top of Bit-
Torrent, the most used file sharing protocol. We show that BitTorrent performances are
not affected by the users strategic choices introduced by WUW. The advantage of our
approach is that, without loosing performance, users can chose the peers they want to
collaborate with according to their personal preferences.

1 Introduction and motivation

Content Delivery Networks (CDN) [1] distribute content to end users as files (multi-
media, software, documents), live-streaming, on demand streaming, etc. Peer-to-Peer
(P2P) architectures are increasingly used in CDN because traditional client-server ar-
chitectures generate high distribution and maintenance cost, whereas in P2P systems
those costs are almost negligible. Besides, P2P architectures are more performing than
client-server ones when high demanded content has to be distributed in short period of
time.

P2P systems are highly scalable because in those systems peers share their resources
automatically (bandwidth, storage, etc.) and not only download content but also upload
content to other peers. Thus the more peers are in the system, the more resources the
system has and the more performing it is. The P2P architecture is built on top of a

2 Marco Biazzini et al.

physical network. Peers are organized in overlays (neighborhoods) composed of peers
sharing the same resources, for instance, peers downloading the same file or watching
the same tv program.

We consider that peers are under control of users that are autonomous and free
persons having rights, preferences, interests, etc. As users’ resources are the richness
of P2P systems, we think it is important to satisfy their preferences concerning the
usage of their resources. Concretely, in a P2P system, users should be able to define the
behavior of their software beyond parameters related to the Quality of Service (QoS),
like the available bandwidth or the maximum number of connections. By letting the
users express their preferences and interests, we make it possible for them to shape their
contribution in terms of a “strategy”. The concept of strategy defines the basic way for
a user to determine which neighbors she considers interesting to trade with. Obviously,
strategies may reveal sensitive information about user preferences and wills. So, it is
of our concern that the strategies effectively impact the overlays’ organization while
invading as less as possible the users’ privacy.

In general, CDN applications based on P2P architectures do not take into considera-
tion user preferences, but only QoS-related parameters. In this paper we propose WUW
(What Users Want), a service that runs on top of unstructured P2P systems, which main
goal is to allow the users to strategically impact their local neighborhoods, according to
their own personal preferences. In order to both, analyze the way the applied strategies
satisfy users expectation and limit the extent to which bad strategies may affect perfor-
mance, WUW gives a feedback to the users. Users are thus able to evaluate the ongoing
behavior of the system with respect to their preferences and modify their strategies to
meet their goals.

Our work uses and adapt the Satisfaction-based Query Load Balancing framework
(SQLB) [2], originally proposed as a mediator-based mechanism to balance the load
of service allocation among consumers and providers. All the same to our purposes,
the main goal of this framework is to increase users’ satisfaction and motivate them in
staying longer in the system. Our objective is to provide an autonomous and distributed
service that can be used to support various P2P systems, without negatively affecting
their performance.

This research repport is organized as follows. Section 2 introduces related works
and gives the necessary concepts to understand the key aspects of our service. Section
3 describes how concepts of the SQLB framework have been used and which are the
peculiarities of WUW. In Section 4, we propose the design and the algorithms of the
WUW service, while Section 5 details the global system architecture we target. Section
6 shows first experimental results. Finally, Section 7 concludes and draws our ongoing
work.

2 Related works

This section presents a brief overview of how existing P2P applications treat users pref-
erences (Section 2.1), an overview of the SQLB, the framework (Section 2.2) and a very
basic description of the BitTorrent protocol to summarize the main concepts considered
by the current implementation of our service (Section 2.3).

Title Suppressed Due to Excessive Length 3

2.1 User preferences on P2P-based applications

As we know, in P2P-based applications users are the main players of the game. Thus, it
is important to allow them to express their preferences about which part of the user/peer
information (IP address, name, location, etc.) may be revealed to other users/peers,
along with their interest in the contents they are exchanging (for instance, movies genre,
type of tv programs, etc.).

From the analysis we made of AnySee [3], GoalBit [4], PPLive [5], PPStream [6],
SopCast [7], SwarmPlayer [8], uTorrent [9] and vidTorrent [10], we conclude that they
only allow users to decide/modify (1) the bandwidth amount for download and upload
in KBs, (2) the global maximum number of connections, (3) the maximum number of
connections per content and (4) the port number used for incoming connections.

None of these applications allows a users to define a personal strategy (based on per-
sonal preferences other than QoS-related) that influences her local neighborhood. None
of them alerts the user if her local settings result in a poor QoS neither. In general, the
P2P applications choose peers based on their QoS-related performance characteristics.

2.2 SQLB overview

In the context of large-scale open distributed systems, participants generally have dif-
ferent individual interests and are autonomous, meaning that they can join or leave the
system at any time, and on their own decision. These two characteristics make inad-
equate to build a system that only focus on performance; except if each participant is
only interested in performance, which usually is not the case. In this context, building
a system based on a static strategy ((the same for every participant all the time) seems
doomed to failure. Certainly, if a participant does not find her personal interests satisfied
within the system, there is a good chance she leaves.

In systems relying on the resources provided by participants, it is challenging to
make them loyal. Participants who leave take away their resources from the system. If
these resources interest other participants they may leave as well. Clearly, it is of main
concern to avoid such a “domino effect”. In order to do this, systems need to take care
of their participants’ intentions.

The “satisfaction approach”, named SQLB (Satisfaction based Query Load Balanc-
ing), has been introduced to address this need [2] oriented to the “query allocation”
problem. In this context, each participant computes her intention to treat a query, (re-
spectively, to obtain her query be treated by some provider) if she is a provider (re-
spectively a consumer). To do so, it is up to each participant to take into account any
information she considers as relevant: general objectives, local context (capacity, actual
load, task’s load. . .), history (past jobs, satisfaction. . .)1. All these information is kept
private and only the intention is disclosed. Once the system has collected participants’
intentions, it is able to take an informed decision about whom will treat which query.
Such decision may please some users and displease others. If we assume participants

1 In some architectures, the intention computation task is delegated to an dedicated component
to avoid an excessive network load. In such cases, the intention computation is simplified.

4 Marco Biazzini et al.

to be able to understand they cannot be satisfied every time, a singular episode of dis-
satisfaction bears no bad consequences. What is important is to avoid dissatisfaction to
repeatedly occur on the long term.

A contribution of SQLB is to propose a model to define several fundamental no-
tions, in particular, concerning adequation and satisfaction.

Adequation analyses how well a system fits participant expectations, which could mo-
tivate a decision of a participant to stay in the system. This can be measured considering
how a participant respond to what the system proposes. In addition, system adequation
to the participant, is measured considering the average of intentions expressed by the
participant with respect to what the system proposes. If a participant exhibits positive
intention to all system solicitation, it means clearly that the system is adequate to the
participant. Symmetrically, it is possible to measure the participant adequation to the
system by considering the intentions of other participants to be involved in activities
proposed by this one.

Satisfaction analyzes how the system take into account the intention of the user. If the
user is (respectively is not) involved by the system in an activity for which she has ex-
pressed a positive (respectively a negative) intention, she should be satisfied. Participant
satisfaction with the system measure is obtained on the long run considering more than
one satisfaction decision. Going further, it is possible to understand which is the role of
the system strategy in participant’s satisfaction. For a strategy to achieve a participant
be involved only in activities for which she has expressed positive intention it can be
more or less difficult. If this participant always expresses positive intentions it is quite
obvious to satisfy her. Conversely, if this participant is very selective and expresses
positive intention only exceptionally, the system strategy hardly will satisfy her. From
the participant point of view, satisfaction within the system strategy measures the sys-
tem effort to satisfy her considering her satisfaction and system adequation. From the
system point of view, the strategy efficiency measures the same notion but also takes
participant adequation to the system into account 2.

The satisfaction approach subsumes many strategies. For example, if all partici-
pants’ interests focused on performance, the Satisfaction based Query Allocation acts
as a Capacity Based Query Allocation, but conversely to this strategy, it adapts to any
change on participant intentions. This allows providers to trade their preferences for
their utilization while keeping their strategic information private. It accords to con-
sumers the flexibility to trade their preferences for providers reputation. It makes possi-
ble to trade consumers’ intentions for providers’ intentions. It strives to balance queries
at runtime via the participants satisfaction, thus reducing starvation. The satisfaction
approach ensures a good level of satisfaction, as far as the system is adequate to partic-
ipants and conversely.

It is also important to note, that even if trivially adapted to centralized architectures
where a mediator regulates the system and can use the satisfaction approach to manage
the query allocation process, it can also be adapted to fit distributed architectures [11].

2 A participant may not be aware about others’ intentions which makes the computation of
strategy efficiency impossible for her.

Title Suppressed Due to Excessive Length 5

This satisfaction approach has also been studied to address the problem of query
replication in the context of open distributed systems [12]. In such a context, query
replication is a preventive way to avoid long reply delay in case of provider failure.
Getting answers to the same query from different providers is also a way to detect
byzantine failures. In this case the winning strategy is to replicate the query as much as
it is needed to overcome failure events, but as few as possible, to avoid system overload.
The satisfaction-based approach allows to adapt the replication dynamically per each
query, according to the capacity of the system and the interests of the participants.

2.3 BitTorrent overview

In BitTorrent, one of the most efficient protocols for file sharing and content distribu-
tion, all nodes are equal, thus they are called peers, and each one can communicate di-
rectly with its neighbours. In its mostly used implementation, the index of the ressources
each peer holds is centralized in a node called tracker which facilitates peers’ organi-
sation. The downloading process uses a mesh-shaped overlay, where at any time peers
can download/upload simultaneously with multiple neighbors. In BitTorrent each con-
tent being distributed determines an overlay called torrent. Peers can be either leechers
or seeders. Seeders have a complete copy of the file and leechers are still downloading
the file. Churn does not affects too badly peers’ download, as long as enough uploaders
are in the overlay.

Files in BitTorrent are split in equal-sized pieces, typically 256 KB, and each piece
is split in equal-sized blocks (sometimes called chunks), typically of 16 KB. The block
is the transmission unit of the content in the BitTorrent overlay network and one piece
can be provided to a peer by several uploading peers. Typically, when a peer wants to
download a content, it obtains from a web server a .torrent file. This file contains meta-
information about the content (name, length, size, pieces hashings, etc.) and the url of
the tracker. The peer contacts the tracker and requests a list of peers participating in the
torrent. Usually the tracker sends to the new peer a list of 50 peers, selected randomly
from the torrent. Then the new peer contacts about 20-40 peers to add them to its local
neighborhood. Finally the peer begins to exchange pieces with its neighbors.

The download/upload of pieces is defined by means of selection strategies for peers
and pieces. The peer selection strategy for uploading, better known as choking algo-
rithm, aims at improving the downloading experience of peers that contribute more to
the file exchange and at penalizing free riders. The main goal of the piece selection
strategy is instead to maximize the content diffusion among the participants, by pri-
oritizing the distribution of rarest pieces and maintaining a good average throughput
among peers.

The literature about BitTorrent is huge. The reader interested in more details can
find some useful insights in [13,14,15,16], among many other publications.

In this work we are not interested in modifying the BitTorrent protocol and we
do not pretend to improve its performances. Our goal is to provide a mechanism to
let users express their personal preferences and give them a feedback about how these
preferences are taken into account in the P2P content sharing BitTorrent (or any other
application) implementation.

6 Marco Biazzini et al.

3 WUW (What Users Want)

The objective of this work is to take into account users’ preferences during their partic-
ipation in the P2P system. Those preferences are used by strategies to compute inten-
tions towards other users according to the satisfaction-based approach (see Section 2.2).
WUW, the service we propose, provides users some control to influence their neighbor-
hoods based on their personal strategies. It is located on top of the P2P layer, so it is
generic enough to be adapted to different unstructured P2P protocols. The main objec-
tives of WUW are: (i) to evaluate the job of the P2P application in use with respect
to the preferences expressed by the local user; (ii) to rank the peer list associated to a
content and give to the P2P layer a subset of this list consisting in the peers whose users
most satisfy the expressed preferences.

3.1 Context constraints and main functionalities

The WUW service has been conceived to be independent from the P2P application that
is used to trade the content. While these applications focus on performance issues, thus
taking into account peers’ settings and QoS-related parameters, our service is instead
concerned about providing users a way to express personal preferences and impact the
way the P2P applications works. Then, by measuring to which extent the preferences
of the users are being considered, WUW is also able to give users a feedback about
the overall quality of the P2P application job, from the point of view of their personal
preferences, regardless any technical and architectural parametrization.

This first objective of WUW is achieved by borrowing notions from the SQLB
framework and adapting them to this peculiar environment. As in the original frame-
work, preferences are users’ personal choices and the way they are used to evaluate
other peers (the strategy) can be personalized by the local user at will. Using this local
information, WUW computes the intentions of the local user at each peer, and use the
values of these intentions to evaluate the neighbors of the local peer, in order to dif-
ferentiate them according to the preferences each user expresses. In the following, we
recall some definitions belonging to SQLB and used by WUW with no modification.

– A user preference p ∈ P is a couple p =< label, value >.
– A strategy s ∈ S is a function that maps a set of preferences into real numbers:
s : P → R. These numbers are called intentions, as they quantify in a compact
way the attitude of a user towards other users.

SQLB was designed to be implemented as a centralized mechanism. A mediator, a
logically single component, collects intentions from providers and consumers and find
the best match between them, trying to maximize their satisfaction. In this work, we
focus on decentralized P2P networks in which no central component is given, or, even
if it is, it cannot reasonably bear the burden of a combinatorial computation that should
be repeatedly performed considering each peer with respect to all the others for every
shared content.

It is thus essential that each user builds her own ranking locally. WUW computes
intentions related to every neighbor for every content the local user is trading via the

Title Suppressed Due to Excessive Length 7

P2P application being used. The neighbors are then scored according to the intentions
associated to each of them and this turns the usually flat lists of peers that compose the
P2P overlays for any shared content into rankings, where peers are not generically equal
to each other, but different, reflecting a personal user evaluation and a given strategy.

An important difference between SQLB and WUW is related to the very nature of
the actors. While SQLB’s main actors are producers and consumers, typical connota-
tions of a client-server system design, the WUW service operates with peers. In its very
nature, every peer is simultaneously a client and a server, with respect to the other peers
sharing a given content. Thus, when considering users intentions, it is due to take into
account both faces of the peer nature.

For this very reason, intentions, user scores and peer ranking are computed twice:

– a first time considering the local peer as a client and the remote peers as servers and
– a second time considering the local peer as a server and the remote peers as clients.

The two possibly different rankings are then merged (and for each neighbor the average
of the two scores is computed) to obtain the definitive one.

3.2 WUW features and dynamics

In this section we give further details about the decentralized computation and infor-
mation exchange performed by WUW. The kind of information shared by users and the
way this information is exchanged and used on each peer is described in the following.

Gossip-based information dissemination To make meaningful choices by computing
scores in a fully decentralized fashion, the users must be informed on what the other
users think and how they behave. WUW disseminates the intentions of the users via
an epidemic protocol. Epidemic protocols are known to be efficient and robust ways to
spread information in decentralized networks [17]. Each instance of WUW, running on
each peer, participates in the dissemination of information coming from all the other
peers, according to the epidemic paradigm. Every user is thus able to know the inten-
tions of her neighbors towards her. By combining her own intentions and the neighbors’
intentions in the ranking phase we explained above, the resulting ranks turn out to be
an informed choice. The user is free to decide to balance anyone’s intentions, or to be
more “altruistic” and prioritize others’, or to be “egoist” and consider her intentions
only. More details on how information is spread among WUW instances are given in
Section 4.3.

It is important to notice that the amount and the kind of information to be shared
among users are entirely a users’ choice. The more information is shared, the more
informed will be the choice of each user, whenever the neighbor ranking is locally
computed. Users may choose to share not only intentions, but also specific preferences.
The only constraint is that the strategy applied by each user must be able to make use
of the available information, which could not always be the case, given that users can
locally apply strategies that differ from one another. The users are able to express their
preferences via a proper interface. Details are given in Section 4.2.

8 Marco Biazzini et al.

Of course users may be concerned about the fact that revealing too much informa-
tion may be detrimental for their privacy. Regarding this, it is worth underlining that, to
make non-trivial and informed choices, sharing intentions only is enough. Intentions are
real numbers that quantify how much a remote user is happy to share a given content
with the local user at the present time. They reveal nothing about the reasons behind
the number, which are most probably the sensitive information that may arise privacy
concerns.

Feedback and self-evaluation Once the local ranking has been computed on each
peer, the P2P application in use is feeded with only a subset of best ranked peers, rather
than with the original peer list, so that the user preferences will directly impact the way
the P2P application overlay evolves during the content sharing task.

Of course, pre-selecting those peers that the P2P application will use could have an
undesired impact on performances. If this is the case, the P2P application will certainly
report that the QoS is decreasing. What is important in our service, though, is to un-
derstand if the choices of the users are actually effective in making her sharing content
with the users she like the most or not. Therefore WUW provides a feedback to the
user, quantified in the satisfaction, adequation and system evaluation measures. These
notions are inspired by the SQLB framework as well, although their formal definition
in WUW is substantially different, reflecting the diverse context and actors.

The feedback measures are periodically recomputed by each peer and are related to
the preferences of the local user and to the job the WUW service is doing for her. The
main goal of a clever service design is thus maximizing the values of these feedback
measures while minimizing any negative impact on the P2P application’s QoS.

To be able to compute the feedback measures, WUW gets some information from
the local instance of the P2P application about the status of the content sharing tasks.
Intentions are computed by evaluating remote users with respect to given contents. Thus
if a remote user shares several contents with the local user, she will be assigned distinct
intentions for each content. Anyway, waiting for a whole content to be shared to be able
to produce some feedback makes the aggregate feedback measures themselves almost
irrelevant for at least two reasons: first, because they will be available to the user after
a quite long wait, thus making it impossible to understand the dynamics occurred while
the sharing was ongoing. Second, because they will have been measured only once,
taking into account all the exchanges occurred with all the neighbors, thus giving a too
coarse-grained evaluation of each of them.

Thus we assume that any content can be logically split in a set of non overlapping
items. The items are the units of measure used to compute and update the feedback
measures. WUW lets the precise definition of item depend on the P2P application being
used. Details about the interaction between WUW and the P2P application in use are
given in Section 4.4. Considering then a content C as a set of items i1, ..., in and with
the help of the notation defined in Table 1, we give the following definitions of feedback
measures related to this content.

The Satisfaction Sc of a (local) user as a client (that means as a “downloader”) is
computed as follows. For each item i ∈ C whose download has completed, let Sc[i] be
the sum of the local user’s intentions towards the users who has provided these items,

Title Suppressed Due to Excessive Length 9

Notation Meaning
u A remote user
Pi The set of users who provided the item i *
IcuC The local user’s intention “as a client” toward the remote user u *
IsuC The local user’s intention “as a server” toward the remote user u *
Du

i Set of all download events from user u related to item i *
D Set of all download events *
LQi Set of all the request events issued by the local user related to item i *
LQ Set of the request event issued by the local user *
RDu

i Set of all the complete download events to user u related to item i *
RDi Set of all the complete download events to remote peers related to item i *
RD Set of all the complete download events to remote peers *
Hi Set of all remote users who currently have item i

RQu
i Set of all the request events issued by user u related to item i *

RQi Set of all the request events issued by remote users related to item i *
RQ Set of all the request events issued by remote users *

Table 1: Notation used to describe feedback measures computation on each peer. All the
events are intended to be to or from the local user and computed based on the locally
available information.
The symbol “*” implies the constraint: “since the last time the measure was computed”.

multiplied for the number of successful download events related to each item, divided
by the number of times each item, or part of it, has been requested. That is :

Sc[i] =

∑
u∈Pi

(((IcuC + 1)/2)· ‖ Du
i ‖)

‖ LQi ‖
(1)

Then Sc is the moving average computed by aggregating the values Sc[i] over the
latest downloaded items:

Sc = movAvg

(∑
i∈D Sc[i]

‖ D ‖

)
(2)

Intuitively, Sc measures to which extent the P2P application prefers “good users”
over the others, to get a given content. Its value can vary between 0 and 1, with 1
denoting the best possible choices are always made.

The Satisfaction Ss of a (local) user as a server (that means as an “uploader”), is
instead computed as follows. For each item i ∈ C whose upload has completed, let
Ss[i] be the sum of the local user’s intentions towards the users who have downloaded
these items, multiplied for the number of successful upload events related to each item.
That is :

Ss[i] =
∑

u∈RDi

(((IsuC + 1)/2)· ‖ RDu
i ‖) (3)

Then Ss is the moving average computed by aggregating the values Ss[i] over the
latest uploaded items:

Ss = movAvg

(∑
i∈RD Ss[i]

‖ RD ‖

)
(4)

10 Marco Biazzini et al.

Intuitively, Ss measures to which extent the P2P application prefers “good users”
over the others, to distribute content. Its value can vary between 0 and 1, with 1 denoting
the best possible choices are always made.

The Adequation Ac of a (local) user as a client (that means as a “downloader”) is
computed as follows. For each item i ∈ C for which a request has been issued, let Ac[i]
be the average of the local user’s intentions towards all the users who currently have
these items. That is :

Ac[i] =

∑
u∈Hi

((IcuC + 1)/2)

‖ Hi ‖
(5)

Then Ac is the moving average computed by aggregating the values Ac[i] over the
latest requested items:

Ac = movAvg

(∑
i∈LQ Ac[i]

‖ LQ ‖

)
(6)

Intuitively, Ac measures to which extent the preferences of the local user and her
strategy are assigning higher scores to useful peers over the others, to get a given con-
tent. Its value can vary between 0 and 1, with 1 denoting the best possible choices are
always made.

The Adequation As of a (local) user as a server (that means as an “uploader”), is
instead computed as follows. For each item i ∈ C whose upload has been requested,
let As[i] be the sum of the local user’s intentions towards the users who have requested
these items, multiplied for the number of upload events related to each item. That is :

Ss[i] =
∑

u∈RQi

(((IsuC + 1)/2)· ‖ RQu
i ‖) (7)

Then As is the moving average computed by aggregating the values As[i] over the
latest requested items:

As = movAvg

(∑
i∈RQ As[i]

‖ RQ ‖

)
(8)

Intuitively, As measures to which extent the P2P application strive to distribute
those contents that are more requested by the “good users”. Its value can vary between
0 and 1, with 1 denoting the best possible choices are always made.

At any given time, the System Evaluation of a (local) user as a client (respectively:
server) is the ratio Sc/Ac (respectively: Ss/As). Intuitively, the System Evaluation mea-
sures how much the local user can be happy about the impact of her preferences and
the applied strategy on the ongoing sharing task, both as a client and as a server. Its
value can vary in the interval [0...∞] (the highest, the better), with 1 denoting a neutral
impact.

User scores and peer ranking The scores assigned to each remote user and the ranking
of the neighbors are computed at each peer as weighted averages.

For each remote user u and for each content traded by the local user l, let us call
Ic(u) the intention of u as a client towards l as a server and Is(u) is the intention of

Title Suppressed Due to Excessive Length 11

u as a server towards l as a client. Conversely, let Ic(l) be the intention of l as a client
towards u as a server and Is(l) the intention of l as a server towards u as a client. The
score assigned to u is then defined as

s(u) = (S ∗ Ic(l) + (1− S) ∗ Is(u) + S ∗ Is(l) + (1− S) ∗ Ic(u))/2 (9)

The weight S is a real parameter in [0..1] decided at initialization time. It basically
express the “selfishness” of the local user in considering her own intention as more
important than the remote users’ in trading the given content.

Based on the scores assigned to each remote user, a general ranking is build on each
peer. The positions of the remote peers in the general ranking is computed by averaging
all the scores assigned to u for all the contents and sorting the list of users according
to these average values. Then at most K peers, picked from the general ranking in
order, starting from the best ranked, are assigned to the peerlists associated to each
content they are trading. These peerlists are finally given to the P2P application as local
neighborhoods.

4 WUW design and implementation

In this section we detail the architectural design of our service. WUW functionalities are
separated in different modules. Each module is able to get input from and give output to
the other modules through well-defined interfaces. Thus changing the implementation
of a single module does not require any change in the other modules, as long as the the
proper interfaces are correctly implemented. Being WUW a multi-thread application,
any information exchange among the modules is assumed to be asynchronous and pos-
sibly concurrent. WUW is implemented in Java and requires JVM 1.7 or higher. The
sources are under the GPL license.

This section presents an overview of the WUW architecture in Section 4.1, and
details the architectural modules in Sections 4.2 to 4.5.

4.1 WUW architecture

The WUW architecture is shown in Figure 1. Conceptually WUW acts as a man in the
middle between the local instance of the P2P application and the overlay management
system of the P2P network. This means that the P2P application communicates with
WUW to know about other peers in the overlay and WUW communicates with an over-
lay coordinator (e.g., a tracker), a DHT, or other, depending on the P2P system being
used) to get information about the state of the overlay.

Thus the typical sequence of actions of our service in an unstructured P2P content
sharing system is the following:

– retrieve information about the content to be shared and the peer list to share it with;
– get the user preferences about the given content;
– periodically exchange messages with the remote users to share intentions and in-

formation about the state of the task;

12 Marco Biazzini et al.

– periodically retrieve data from the local P2P application instance about the state of
the task;

– periodically compute/update the feedback measures by consuming, at each itera-
tion, newly available data coming from the local P2P application and the remote
WUW instances;

– update local user’s intentions towards the neighbors for each content, by applying
the given strategy to the current user’s preferences;

– score the neighbors according to the intentions associated to each of them, then
build a global ranking with all neighbors;

– for each content, build a peer list composed at most by the K best ranked peers
who are sharing the content;

– send the newly created peer lists to the P2P application, and make the freshly up-
dated feedback available to the user.

USER FRONT-END

COMMUNICATION

CORE

TCP/UDP
Protocol
Handler

giveContentUpdates()

P2P
APPLICATION

getFeedback(
feedback)

P2P
HANDLER

getPeers()

NewsCast
Protocol

handleMsg(msg)

getDescriptors()

WUW
SERVICE

USER INTERFACE
HANDLER

sendMsg(msg)

<<Send Message>>

<<Receive Message>>

<<Set Preferences>>
<<Get Preferences>>

setPreferences(
preferences)

<<Get P2P Statistics>>

<<Get Peer List>>

<<Update Feedback>>

getLocalDescriptor()

Fig. 1: WUW architecture.

4.2 The User Interface Handler module

The primary source of information for WUW is of course the local user. The User Inter-
face Handler (UI Handler) module takes care of getting input from the user and outputs

Title Suppressed Due to Excessive Length 13

useful feedback. The current implementation features a simple web-based interface that
let the user add and change contents and preferences and reports the feedback computed
along the computation. The total independence of the module from the rest of WUW
makes it possible to implement different user interfaces at will and easy to improve the
existing one.

4.3 The Communication module

The Communication module implements basic functions to facilitate communication
among WUW instances over TCP or UDP.

Moreover, the NEWSCAST [18] epidemic protocol is provided to disseminate infor-
mation in the P2P overlay. The information to be spread is periodically updated by each
peer and G-zipped in a data structure called PeerDescriptor. All the peers contribute to
the dissemination of descriptors of any other peer, but each of them uses and keeps in
its working memory only the information that concerns the local user. This is done both
to reduce the memory footprint of the service and to only disclose information to the
users whom it is meant to be addressed to. A peer can only update the descriptor that
concerns the local user. No change to remote users’ descriptors is allowed.

The epidemic dissemination of up-to-date information makes it possible to each lo-
cal user to know what are the recently computed intentions of the remote users towards
her and what is the state of the diffusion of a given content. While it is common for
P2P applications to be able to provide this latter information, WUW does not rely on a
particular P2P application and it is able to retrieve this data autonomously.

Of course the epidemic diffusion of useful data is not instantaneous. A certain delay
between the local generation of an updated descriptor and its fruition by remote peers is
unavoidable and may have consequences that must be considered and discussed while
drawing experiments with WUW.

4.4 The P2P Handler module

This module is the only part of WUW that is aware of the specific P2P application being
used by the local user. This means that all that concerns the way WUW interacts with
it and the specific way information can be retrieved and given to it is secluded in this
module.

The data WUW need to retrieve from the P2P application are essentially the basic
information we can reasonably expect to be possible to retrieve from any application.
For each content being shared and for each neighbor in the overlay, WUW needs to
know of any distinct download of upload event from/to to a given neighbor related
to a given item. If these events can be time-stamped, they can be also used to estimate
performances and build a “local” opinion about the remote users, beyond what concerns
the local user’s preferences and intentions. The basic data that WUW needs to send to
the P2P application concerns the periodically renewed peer list to be associated to a
given content.

Thus the main tasks of the P2P Handler module are:

– to retrieve from the P2P application overlay management system the list of peers
associated to a given content;

14 Marco Biazzini et al.

– to give to the P2P application the subset of peers that are optimal according to local
user’s preferences and strategy;

– to periodically retrieved from the P2P application the needed data and process them
to produce data structures that are usable by the rest of the service to perform the
proper computations.

The current implementation of WUW features a P2P Handler module that is able
to send and retrieve data from BitTorrent. Besides implementing what is needed in this
module, we produced an instrumentation of the MainLine 3.1.9 version of BitTorrent,
such that the required information can be periodically collected and retrieved via a
local socket from the working memory of the BitTorrent process, thus minimizing the
performance impact due to the interaction overhead.

4.5 The Core module

The main functionalities of WUW are placed in this module. This module is the orches-
trator of the service. The intentions and the feedback are computed in a timely way.
Every n seconds, a routine is started which performs the following steps:

– Get updates about the remote users from the Communication module.
– Get the latest information about the activity of the local P2P application from the

P2P Handler Module.
– Get the latest changes in the users preferences from the UI Handler module.
– Update the local state with the collected information.
– Compute the feedback related to the latest local activity, considering the current

intentions for all the neighbors and the contents.
– Make the newly computed feedback available to the local user via the UI Handler

module.
– Compute the new intention values to be associated to every neighbor for every

content, according to the applied strategy.
– Build a global ranking of all the neighbors, considering the associated intentions

for all the contents.
– For each content, add neighbors sharing that content to its peer list, starting from

the best ranked on, until at most K peers are added to each list.
– Send the newly created peer lists to the P2P application, to be associated with the

respective contents, via the P2P Handler module.

By repeating this routine regularly, the user is kept updated about the impact that
her choices have on the local computation. While any QoS-related performance issue
is usually reported by the P2P application in use, the feedback measures provided by
WUW allow users to evaluate the overall “quality of their neighbors” (measured ac-
cording to the local users preferences) and the average quality of the WUW service
itself.

Title Suppressed Due to Excessive Length 15

5 WUW as an added value in a CDN

In this section we discuss a proof of concept use case based on a CDN. We consider
that a CDN consists in a centralized content provider that is able to distribute simul-
taneously several contents to a large number of clients. By hybridizing a CDN with a
P2P distribution mechanism, the servers off-load part of the network traffic to the par-
ticipants, who become active actors in the distribution task. The obvious goals are to
achieve higher scalability and to reduce structural costs for the content provider.

Such a hybridized CDN could exploit the services of WUW at best. In a CDN
there is a central authority that guarantees the quality and the safety of the content. The
same central entity can also provide interesting metadata to help users making informed
choices. By requiring a secure and unique identification of the user, the authority can
provide useful characterization about the participants, with no need to disclose sensitive
data. All this information could be taken into account by users, who may have some re-
quirements whenever they are willing to download and share contents. This is precisely
the purpose for which WUW has been conceived.

The global architecture of a P2P-based CDN application is shown in Figure 2 (a).
When WUW is included, it is located between the browser and the P2P layer as seen
in Figure 2 (b). The browser provides a user interface to access the P2P-based CDN
server. The P2P application layer is BitTorrent-based and is composed of a tracker and
P2P clients. The tracker maintains the set of peers participating in each torrent. A P2P
client is a component implementing the P2P communication protocol and we consider
there is only one client by user. The web server contains all the .torrent files of the
content provided by the CDN. To simplify, we consider one web server and one tracker
but several can exist to improve performances and they can be organized, by instance,
trough a DHT (Distributed Hash Table)..

(a) Without WUW (b) With WUW

Fig. 2: Global view of the P2P-based CDN application.

Figure 3 shows, in a very general way, the content download process. Roughly
speaking, users willing to download content introduce their preferences trough a web
interface (User Front-End). Preferences can be by session, by type of content or by con-
tent. This granularity decision depends on the personal strategy of the user. Preferences
are sent to WUW and not to the web server to respect users’ privacy. Then, through the

16 Marco Biazzini et al.

web interface, users request content to the web server which sends the .torrent file to the
P2P client. This file contains the address of the tracker. The P2P client request of the
peer list is intercepted by WUW which communicates directly with the tracker. WUW
obtains the peer list from the tracker and ranks the peers. To rank peers, WUW needs
to know some information about those potentially neighbor peers, so it contacts other
WUW components who are free to send or not the required information. Then, WUW
selects the peers that fits the best its preferences and send this modified list to the P2P
client. Then the download process is made like usual depending on the P2P protocol
(this is maked in red in the figure).

Preferences may include class of content (e.g., movies, songs, tv programs), the type
of content (e.g., for movies it can be action, comedy, political, children, etc.), minimal
level of reputation of neighbor peers, location (e.g., particular city, region, continent),
upload bandwidth, number of connections, etc.

Fig. 3: Sequence diagram example to download content.

Title Suppressed Due to Excessive Length 17

Fig. 4: Performance of WUW in terms of download average per second.

6 Experimental results

We are currently running and analyzing WUW experiments using Grid5000 as testbed.
In the next, we show results only for two of those experiments. The first one measures
the content distribution performance of WUW and the second one presents the peers’
rankings made by WUW for 3 different types of preferences.

The parameters of the experiments are the following:

– A torrent of 100 nodes.
– 256 Kb of bandwidth. This bandwidth allows more or less 15 to 20 connections by

peer.
– 10% of nodes are seeders and 90% are leechers. Those nodes have the content

before launching the experiment.
– Content size of 112 MB.
– BitTorrent instances (leechers) ask for more peers every 40 seconds, the tracker

answer with a list of 10 peers.
– The NEWSCAST algorithm sends the descriptor to one randomly chosen peer every

2 seconds.
– WUW computes every 8 seconds the feedback measures and the ranking of peers.
– Concerning users’ preferences for simplification reasons we chose only the interest

of peers in other peers. Each peer has a kind of tag with the type of peer it is:
normal peer, touchy peer or exigent peer. We consider a system composed of 50%
of normal peers, 30% of touchy peers and 20% of exigent peers.

The objective of the first experiment is to measure performance of WUW in terms
of download average per second. This experiment consists of two steps, in the first step
each node runs a BitTorrent (BT) instance and in the second step, each node runs a
BitTorrent and a WUW instance (BT+WUW). For the first step, we use the BitTorrent
implementation Mainline 3.1.9 without any modification and there is one tracker. In the
second step we include in BitTorrent a class to collect some statistics needed by WUW

18 Marco Biazzini et al.

and there is no central tracker. By its design, WUW intercepts communication between
peers and the tracker. In the experiment, WUW knows all the peers in the system and
there is no churn, so the tracker is useless. Instead, we implement a tracker emulator
that meanly choses randomly the list of peers sent to each leecher. WUW intercepts
and modifies this list by including the peers more interesting and excluding the less
interesting ones from the users’ preference point of view .

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

0 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f

ra
n
ke

d
 p

e
e
rs

Percentage Download

NORMAL
TOUCHY
EXIGENT

Fig. 5: Average ranking of normal peers.

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

0 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f

ra
n
ke

d
 p

e
e
rs

Percentage Download

NORMAL
TOUCHY
EXIGENT

Fig. 6: Average ranking of touchy peers.

Figure 4 shows that in average a leecher got the hole content in 384.21 seconds when
using BitTorrent and in 364.02 seconds when using WUW with BitTorrent. Results
show an improvement of 5.1% (20 seconds) for WUW+BT, this improvement is due to
the trackerless approach used.

Figures 5, 6 and 7 present in average the ranking of the top 10 peers made by WUW
by percentage of download. Each figure presents the group of peers of same type. The

Title Suppressed Due to Excessive Length 19

strategy used to compute intentions as server and as client, roughly speaking, gives
better score to peers whose type is close in descending then in ascending order, i.e., a
normal peer prefers peers like it then touchy peers then exigent peers; conversely, an
exigent peer prefers touchy peers then normal peers, after peers of its same type.

The results are obviously influenced by the number of peers having same type in the
system. For normal peers (i.e., Figure 5) is easy to find peers like them (50% of peers
are of that type). Touchy peers (i.e., Figure 6), after ranking all possible peers of same
type, prefer exigent peers, but they are only 20% of the system so they are not always
available. Exigent peers (i.e., Figure 7), after ranking peers of same type, prefer touchy
peers.

We can notice that at the beginning of the download process, the ranking is not
meaningful. That is because the ranking is based on the information disseminated by
the epidemic protocol and, in average, after 10% of the download WUW has enough
information (i.e., knows enough remote peers’ intentions) to apply its strategy and rank
peers.

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

0 10 20 30 40 50 60 70 80 90 100

N
u
m

b
e
r

o
f

ra
n
ke

d
 p

e
e
rs

Percentage Download

NORMAL
TOUCHY
EXIGENT

Fig. 7: Average ranking of exigent peers.

7 Conclusion and future work

This paper presented WUW (What Users Want), a P2P service that allows to enhance
users’ satisfaction based on personal strategies. This work was inspired by the SQLB
approach [2] where a mediator (a centralized entity) collects preferences from providers
(servers) and consumers (clients) and finds the best match between them. In the P2P
context, every peer is simultaneously a client and a server and we do not consider a
centralized entity. The main objectives of WUW are: (i) to evaluate the job of the P2P
application in use with respect to the preferences expressed by the local user; (ii) to
rank the peer list associated to a content and give to the P2P layer a subset of this list
consisting in the peers whose users most satisfy the expressed preferences. In addition,
WUW provides feedback to the user about satisfaction, adequation and system evalua-
tion. These notions are inspired by the SQLB framework as well, although their formal

20 Marco Biazzini et al.

definition in WUW is substantially different, reflecting the diverse context and actors.
We presented first experimental results of a WUW implementation where the P2P layer
used is BitTorrent. Those experiments showed that without loosing performance WUW
improves users’ satisfaction.

References
1. Buyya, R., Pathan, M., Vakali, A.: Content Delivery Networks. Lecture Notes in Electrical

Engineering. Springer (2008)
2. Quiané-Ruiz, J.A., Lamarre, P., Valduriez, P.: A Self-Adaptable Query Allocation Frame-

work for Distributed Information Systems. Very Large Databases Journal (VLDB) 18(3)
(June 2009) 649–674

3. Liao, X., Jin, H., Liu, Y., Ni, L.M., Deng, D.: AnySee: Peer-to-Peer Live Streaming. In:
INFOCOM 2006. 25th IEEE International Conference on Computer Communications. Pro-
ceedings, Barcelona, Catalunya, Spain (April 2006) 1 –10

4. Bertinat, M.E., De Vera, D., Padula, D., Amoza, F.R., Rodrı́guez-Bocca, P., Romero, P.,
Rubino, G.: GoalBit: The First Free and Open Source Peer-to-Peer Streaming Network. In:
Latin American Networking Conference (LANC), Pelotas, Brazil, ACM (September 2009)
49–59

5. Ruixuan, L., Guoqiang, G., Weijun, X., Zhiyong, X.: Measurement Study on PPLive Based
on Channel Popularity. In: Communication Networks and Services Research Conference
(CNSR), Ottawa, Ontario, Canada (May 2011) 18–25

6. Wei, L., Jingping, B., Rong, W., Zhenyu, L., Chen, L.: On Characterizing PPStream: Mea-
surement and Analysis of P2P IPTV under Large-Scale Broadcasting. In: Global Telecom-
munications Conference (GLOBECOM), Honolulu, Hawaii, USA, IEEE (December 2009)
3552–3557

7. SopCast. http://www.sopcast.org/ (July 2012)
8. Swarmplayer. http://swarmplayer.p2p-next.org/ (July 2012)
9. uTorrent. http://www.utorrent.com (July 2012)

10. http://web.media.mit.edu/˜vyzo/vidtorrent (July 2012)
11. Quiané-Ruiz, J.A., Lamarre, P., Cazalens, S., Valduriez, P.: Scaling Up Query Allocation

in the Presence of Autonomous Participants. In: Conference on Database Systems for Ad-
vanced Applications: Part II (DASFAA). Lecture Notes in Computer Science, Hong Kong,
China, Springer (April 2011) 210–224

12. Quiané-Ruiz, J.A., Lamarre, P., Valduriez, P.: Satisfaction-Based Query Replication - An
Automatic and Self-Adaptable Approach for Replicating Queries in the Presence of Au-
tonomous Participants. Distributed and Parallel Databases (DPD) 30(1) (2012) 1–26

13. Legout, A., Urvoy-Keller, G., Michiardi, P.: Rarest First and Choke Algorithms are Enough.
In: SIGCOMM Conference on Internet Measurement (IMC), Rio de Janeriro, Brazil, ACM
(October 2006) 203–216

14. Xia, R.L., Muppala, J.K.: A Survey of BitTorrent Performance. Communications Surveys
and Tutorials (COMSUR) 12(2) (April 2010) 140–158

15. Wiki: BitTorrent Protocol Specification v1.0. TheoryOrg
http://wiki.theory.org/BitTorrentSpecification.

16. Cohen, B.: Incentives Build Robustness in BitTorrent. In: Workshop on Economics of Peer-
to-Peer Systems, Berkley, CA, USA (June 2003)

17. Pittel, B.: On Spreading a Rumor. SIAM Journal on Applied Mathematics 47(1) (February
1987) 213–223

18. Jelasity, M., Voulgaris, S., Guerraoui, R., Kermarrec, A.M., van Steen, M.: Gossip-based
Peer Sampling. ACM Transactions on Computer Systems (TOCS) 25(3) (August 2007)

