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Applications of approximate gradient schemes for nonlinear

parabolic equations

R. Eymard∗, A. Handlovičová†, R. Herbin‡, K. Mikula†and O. Stašová†

Abstract

We propose the use of gradient schemes for the approximation of possibly non-local regularizations

of the Perona-Malik equations. We then prove the convergence of this method thanks to compactness

arguments, and we apply it to a particular gradient scheme on rectangular meshes, whose advantage

is to lead to nine-point stencil matrices. Numerical examples provide indications about the accuracy

of the method.

Keywords: regularized Perona-Malik equation, gradient schemes.

1 Introduction

A large class of image processing methods is based on the use of approximate solutions to equations of
the following type

ut − div (G(u, x, t)∇u) = r(x, t), for a.e. (x, t) ∈ Ω× (0, T ) (1)

with initial condition :
u(x, 0) = uini(x), for a.e. x ∈ Ω, (2)

and homogeneous Neumann boundary condition :

G(u, x, t)∇u(x, t) · n∂Ω(x) = 0, for a.e. (x, t) ∈ ∂Ω× R+, (3)

where the following hypotheses, called Hypotheses (H) in this paper, are considered:

• Ω is an open bounded polyhedron in R
d, d ∈ N

⋆, with boundary ∂Ω,

• T > 0, uini ∈ L2(Ω), r ∈ L2(Ω× (0, T )),

• the possibly non local function G is such that:

G : L2(Ω)× Ω× (0, T ) → L(Rd,Rd),
G(·, x, t) is continuous for a.e. (x, t) ∈ Ω× (0, T ),
G(u, ·, ·) is measurable for all u ∈ L2(Ω),

G(u, x, t) is self-adjoint with eigenvalues in (λ, λ)
for all u ∈ L2(Ω) and for a.e. (x, t) ∈ Ω× (0, T ),

(4)

denoting by L(Rd,Rd) the set of linear mappings from R
d to R

d.
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In image processing applications, uini represents an original noisy image, the solution u(x, t) represents
its filtering which depends on the scale parameter t. The space dimension d is equal to 2 for 2D image
filtering, 3 for 3D image or 2D+time movie filtering and 4 for 3D+time filtering of spatio-temporal
image sequences. The image processing methods based on approximations of equation (1) differ by the
definition of the function G. In this paper, we consider cases where G arises from some regularization of
the Perona-Malik equation [17], which reads

∂tu− div (g(|∇u|)∇u) = 0, (5)

where

g(s) =
1

1 +Ks2
, ∀s ∈ R

+, (6)

for a given K > 0. Recall that the mapping s 7→ sg(s) is not monotonously increasing on R
+, and

therefore the Perona-Malik equation is an ill-posed parabolic problem on general initial data.
The convergence of a numerical scheme for the one-dimensional original Perona-Malik problem (5) is
proved in [4]. The analysis of a finite element discretization of a modified Perona-Malik equation is
performed in [3]; in this latter work, the function g depends on the x and y derivatives of u, rather than
on the norm of the full gradient, which is the case considered here.
We first consider a regularization of the example due to Catté, Lions, Morel and Coll [6]; this examples
reads

∂tu− div (G(u(·, t), ·)∇u) = 0 (7)

with

G(u, x) = max(g

(

|

∫

Ω

u(y)∇Gσ(x− y)dx|

)

, α), ∀u ∈ L1(Ω), (8)

where α > 0 is a given small value (in [6], although the parameter α is not introduced, a similar bound
by below is obtained) and Gσ ∈ C∞(Rd) is a smoothing kernel, e.g. the Gauss function or mollifier with
a compact support, for which

∫

Rd Gσ(x)dx = 1. Thanks to the convolution properties, the nonlinearity
in the diffusion term depends on the unknown function u, contrary to the original Perona-Malik equation
(without convolution) where it depends on the gradient of the solution. Note that, since the function
s → max(g(s), α) is Lipschitz continuous with some constant Lg, we get that, for all u, v ∈ L1(Ω),

|G(u, x)−G(v, x)| ≤ Lg

∣

∣

∣|

∫

Ω

u(y)∇Gσ(x− y)dy| − |

∫

Ω

v(y)∇Gσ(x− y)dx|
∣

∣

∣

≤ Lg

∣

∣

∣

∫

Ω

(u(y)− v(y))∇Gσ(x− y)dy
∣

∣

∣
≤ Lg‖∇Gσ‖∞‖u− v‖L1(Ω),

which shows that (8) enters into the framework defined by Hypotheses (H). In the case of the regularized
model, the convergence of classical finite volume schemes was proved in [16], [7].

Another interesting image processing model with the structure of equation (1) is the so-called nonlinear
tensor anisotropic diffusion introduced by Weickert [18]. In that case, the linear mapping G(u, x, t)
represents the so-called diffusion tensor depending on the eigenvalues and eigenvectors of the (regularized)
structure tensor with matrix

Jρ(∇uσ) = Gρ ∗ (∇uσ∇uσ
T ), (9)

where f ∗ g denotes the convolution between the two functions f and g, uσ is defined by

uσ(x, t) = (Gσ ∗ u(·, t))(x) (10)

and Gσ and Gρ are Gaussian kernels. In computer vision, the matrix Jρ =

(

a b
b c

)

, which is symmetric

and positive semidefinite, is also known as the interest operator or second moment matrix. We may write
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a = Gρ ∗ (∂1Gσ ∗ u)
2
, b = Gρ ∗ ((∂1Gσ ∗ u) (∂2Gσ ∗ u)) and c = Gρ ∗ (∂2Gσ ∗ u)

2
. The orthogonal

set of eigenvectors (v, w) of Jρ corresponding to its eigenvalues (µ1, µ2), µ1 ≥ µ2, is such that the
orientation of the eigenvector w, which corresponds to the smaller eigenvalue µ2, gives the so-called
coherence orientation. This orientation has the lowest fluctuations in image intensity. The diffusion tensor
G in equation (1) is then designed to steer a smoothing process such that the filtering is strong along
the coherence direction w and increasing with the coherence defined by the difference of the eigenvalues
(µ1 − µ2)

2. To that goal, G must possess the same eigenvectors v = (v1, v2) and w = (−v2, v1) as the
structure tensor Jρ(∇uσ) and the eigenvalues of G can be chosen as follows

κ1 = α, α ∈ (0, 1), α ≪ 1, (11)

κ2 =

{

α, if µ1 = µ2,

α+ (1− α) exp
(

−C
(µ1−µ2)2

)

, C > 0 otherwise.

So, the matrix MG of the linear operator G(u, x, t) is finally defined by

MG = ABA−1, where A =

(

v1 −v2
v2 v1

)

and B =

(

κ1 0
0 κ2

)

. (12)

Thanks to this construction by convolutions, the diffusion matrix (nonlinearly) depends on the solution
u and it satisfies smoothness, symmetry and uniform positive definiteness properties. It is then possible
to show that it enters into Hypotheses (H) by similar computations to those done above and in [9]. The
so-called diamond-cell finite volume schemes for the nonlinear tensor anisotropic diffusion were suggested
and analyzed in [9, 8].

Another type of regularization of the classical Perona-Malik approach is obtained by considering the
gradient information from delayed time t − t, for a given t > 0. We call this model the time-delayed
Perona-Malik equation: consider (1) with uini ∈ H1(Ω), and define u(x, t) = uini(x) for x ∈ Ω and t < 0.
Then, for any k ∈ N, we define the function G in the time interval ]kt, (k + 1)t[, by

G(x, t) = max
(

g(|∇u(x, t− t)|), α
)

, (13)

where α > 0 is again a small parameter. Then problem (1) boils down to a standard linear parabolic
problem on ]kt, (k + 1)t[ (which is included in the framework of Hypotheses (H)), and, as shown in the
numerical part of this paper, it leads to an efficient approximation of the Perona-Malik equation.
An integral average on a given shifted time interval is used in [2]for regularization purposes. Our regular-
ization can be understood as a discrete approximation of the integral average, e.g. by a mid-point rule.
Note that the Amann theory holds for the original integral regularization without numerical integration
while our theory and convergence proofs are valid for the gradient approximation shifted backward in
time.

This paper is organized as follows. After providing the sense for a weak solution in Section 2, we define
the class of gradient schemes [13, 12], to approximate the models based on equation (1). We then prove
their convergence in Section 3. Then in Section 4, we study a particular scheme among this class, which
is particularly efficient for image processing. Finally, numerical results are given in Section 5, confirming
this efficiency, and are followed by a short conclusion.

2 The weak formulation

Definition 2.1 (Weak solution to (1)-(2)-(3)) Under Hypotheses (H), a function u is a weak solution
of (1)-(2)-(3) if, for all T > 0,

1. u ∈ L2(0, T ;H1(Ω)),
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2. the following holds

∫ T

0

∫

Ω

(−u(x, t)ϕt(t)w(x) + ϕ(t)G(u, x, t)∇u(x, t) · ∇w(x)) dxdt−

∫

Ω

uini(x)w(x)ϕ(0)dx

=

∫ T

0

∫

Ω

r(x, t)w(x)ϕ(t)dxdt, ∀w ∈ H1(Ω), ∀ϕ ∈ C∞
c ([0, T [),

(14)

where we denote by C∞
c ([0, T [) the set of functions of C∞

c (]−∞, T [) restricted to [0, T [.

We have the following standard result [5].

Theorem 2.1 (Properties of a weak solution u to (1)-(2)-(3)) Under Hypotheses (H), the function
u is a weak solution to (1)-(2)-(3) in the sense of Definition 2.1 if and only if

1. u ∈ L2(0, T ;H1(Ω)), ut ∈ L2(0, T ;H1(Ω)′) (defining the standard continuous embedding of L2(Ω)
in H1(Ω)′), and therefore u ∈ C0([0, T ];L2(Ω)),

2. u(x, 0) = uini(x) for a.e. x ∈ Ω,

3. the following holds

∫ T

0

(

〈ut(t), v(t)〉H1(Ω)′,H1(Ω) +

∫

Ω

G(u, x, t)∇u(x, t) · ∇v(x, t)dx

)

dt

=

∫ T

0

∫

Ω

r(x, t)v(x, t)dxdt, ∀v ∈ L2(0, T ;H1(Ω)).

(15)

Then u satisfies the following consequence of the above properties:

1

2

∫

Ω

(u(x, t0)
2 − uini(x)

2)dx+

∫ t0

0

∫

Ω

G(u, x, t)∇u(x, t) · ∇u(x, t)dxdt

=

∫ t0

0

∫

Ω

r(x, t)u(x, t)dxdt, ∀t0 ∈ [0, T ].

(16)

3 Approximate gradient schemes for parabolic equations

3.1 Definition of the scheme

Definition 3.1 (Approximate gradient discretization and gradient scheme) Let Ω be a bounded
open domain of Rd, with d ∈ N

⋆. An approximate gradient discretization D is defined by D = (XD,ΠD,∇D),
where:

1. the set of discrete unknowns XD is a finite dimensional vector space on R,

2. the mapping ΠD : XD → L2(Ω) is the reconstruction of the approximate function,

3. the mapping ∇D : XD → L2(Ω)d is the reconstruction of the gradient of the function,

4. ‖u‖D = (‖ΠDu‖
2
L2(Ω) + ‖∇Du‖

2
L2(Ω)d)

1/2 is a norm on XD.

Then the compactness of the discretization is measured through the function TD : R
d → R

+, defined
by

TD(ξ) = max
v∈XD\{0}

‖ΠDv(·+ ξ)−ΠDv‖L2(Rd)

‖v‖D
, ∀ξ ∈ R

d, (17)
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where ΠDv is set to zero outside of Ω. Note that lim|ξ|→0 TD(ξ) = 0.
The strong consistency of the discretization is measured through the interpolation error function
SD : H1

0 (Ω) → [0,+∞), defined by

SD(ϕ) = min
v∈XD

(

‖ΠDv − ϕ‖2L2(Ω) + ‖∇Dv −∇ϕ‖2L2(Ω)d

)
1
2

, ∀ϕ ∈ H1(Ω), (18)

The limit conformity of the discretization is measured through the conformity error function WD:
Hdiv,0(Ω) → [0,+∞) (where Hdiv,0(Ω) denotes the set of all elements of Hdiv(Ω) with zero normal trace),
defined by

WD(ϕ) = max
u∈XD\{0}

1

‖u‖D

∣

∣

∣

∣

∫

Ω

(∇Du(x) ·ϕ(x) + ΠDu(x)div ϕ(x)) dx

∣

∣

∣

∣

, ∀ϕ ∈ Hdiv,0(Ω). (19)

Definition 3.2 (Space-time discretization) Let Ω be an open subset of Rd, with d ∈ N
⋆ and let T > 0

be given. We say that (D, τ) is a space-time gradient discretization of Ω× (0, T ) if

• D = (XD,ΠD,∇D) is an approximate gradient discretization of Ω in the sense of Definition 3.1,

• there exists NT ∈ N with T = NT τ , where τ > 0 is the time step.

We then define XD,τ = {(un)n=1,...,NT
, un ∈ XD}, and we define the mappings ΠD,τ : XD,τ →

L2(Ω× (0, T )) and ∇D,τ : XD,τ → L2(Ω× (0, T ))d by

ΠD,τu(x, t) = ΠDu
n(x), for a.e. x ∈ Ω, ∀t ∈](n− 1)τ, nτ ], ∀n = 1, . . . , NT , (20)

and
∇D,τu(x, t) = ∇Du

n(x), for a.e. x ∈ Ω, ∀t ∈](n− 1)τ, nτ ], ∀n = 1, . . . , NT . (21)

Let (D, τ) be a space-time discretization of Ω×(0, T ). We define the following scheme for the discretization
of Problem (1):

u ∈ XD,τ , Dτu(x, t) =
1

τ
(ΠDu

1(x)− uini(x)), for a.e. x ∈ Ω, ∀t ∈]0, τ ],

Dτu(x, t) =
1

τ
(ΠDu

n(x)−ΠDu
n−1(x)), for a.e. x ∈ Ω, ∀t ∈](n− 1)τ, nτ ], ∀n = 2, . . . , NT ,

(22)

and

∫ T

0

∫

Ω

(Dτu ΠD,τv +GD,τ (ΠD,τu, x, t)∇D,τu · ∇D,τv) dxdt =

∫ T

0

∫

Ω

rΠD,τvdxdt, ∀v ∈ XD,τ , (23)

where

GD,τ : L2(Ω)× Ω× (0, T ) → L(Rd,Rd), there exists CD,τ > 0 with
‖GD,τ (v, x, t)−G(v, x, t)‖L(Rd,Rd) ≤ CD,τ‖v‖L2(Ω), ∀v ∈ L2(Ω), for a.e. (x, t) ∈ Ω× (0, T ),
GD,τ (u, ·, ·) is measurable for all u ∈ L2(Ω× (0, T )),

GD,τ (u, x, t) is self-adjoint with eigenvalues in (λ, λ)
for all u ∈ L2(Ω) and for a.e. (x, t) ∈ Ω× (0, T ).

(24)

We then denote ΠD,τu(·, 0) = uini, hence defining ΠD,τu(·, t) for all t ∈ [0, T ].

Remark 3.1 Note that Assumption (24) holds in particular for GD,τ = G, which occurs in some of the
numerical applications.
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3.2 Properties of the scheme

Lemma 3.1 (L∞(0, T ;L2(Ω)) and L2(0, T ;H1(Ω)) estimates and existence of a dicrete solution)
Under Hypotheses (H), let (D, τ) be a space-time gradient discretization of Ω× (0, T ) in the sense of Def-
inition 3.2. Then there exists at least one solution to Scheme (22)-(23), which moreover satisfies that
there exists a constant C1 > 0 such that:

‖ΠDu
m‖2L2(Ω) ≤ C1(‖uini‖

2
L2(Ω) + T‖r‖2L2(Ω×(0,T ))), ∀m = 1, . . . , NT , (25)

and

‖∇D,τu‖
2
L2(Ω×(0,T ))d ≤

C1

λ
(‖uini‖

2
L2(Ω) + T‖r‖2L2(Ω×(0,T ))). (26)

Proof. Let m = 1, . . . , NT and let us set vn = un for n = 1, . . . ,m and vn = 0 for n = m+ 1, . . . , NT

in (23). We obtain, thanks to the equality a(a− b) = 1
2 (a

2 + (a− b)2 − b2),

∫

Ω

(

1

2
(ΠDu

m(x)2 − uini(x)
2) + λ

∫ mτ

0

|∇D,τu(x, t)|
2dt

)

dx

≤

∫ mτ

0

∫

Ω

r(x, t)ΠD,τu(x, t)dxdt.
(27)

Applying the Young inequality to the right hand side provides
∫

Ω

(

1

2
(ΠDu

m(x)2 − uini(x)
2) + λ

∫ mτ

0

|∇D,τu(x, t)|
2dt

)

dx

≤ T

∫ mτ

0

∫

Ω

r(x, t)2dxdt+
1

4T

∫ mτ

0

∫

Ω

ΠD,τu(x, t)
2dxdt.

We now give a discrete version of the Gronwall lemma. Defining am =
∫

Ω
ΠDu

m(x)2dx, b =
∫

Ω
uini(x)

2dx+

2T
∫ T

0

∫

Ω
r(x, t)2dxdt, we get

am ≤ b+
1

2T
dm with dm = τ

m
∑

n=1

an,

which can be written, setting c = τ/2T ≤ 1/2 and d0 = 0,

dm − dm−1 ≤ τb+ cdm.

This gives dm ≤ (dm−1 + τb)/(1− c), and therefore dm ≤ τ
∑m

n=1 b/(1− c)m+1−n. Using the inequality
mc ≤ 1/2, which leads to − log(1− c) ≤ log(2m/(2m− 1)), we get

log
1

(1− c)m
≤ m log(

2m

2m− 1
) ≤ m(

2m

2m− 1
− 1) =

m

2m− 1
≤ 1,

and therefore 1/(1− c)m ≤ e. We have

τ

m
∑

n=1

1

(1− c)m+1−n
≤ τ

1
(1−c)m+1 − 1

1
1−c − 1

≤
τ

τ/2T

1

(1− c)m
≤ 2Te,

which gives dm ≤ 2Teb. Hence we conclude am ≤ (1+2e)b, which concludes (25) and (26). The topological
degree argument applied to numerical schemes (see e.g. [14]) allows to conclude to the existence of at
least one solution to the scheme. �
Note that the minimal regularity of the initial data corresponding to the framework of image processing,
and the generality of the operator G prevent from obtaining more regular estimates than those of Lemma
3.1. In particular, multiplying the scheme with discrete time derivative does not seem to yield a better
estimate.

We may now state the convergence theorem.
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Theorem 3.1 Let Hypotheses (H) be fulfilled. Let (Dm, τm)m∈N be a sequence of space-time discretiza-
tions of Ω× (0, T ) in the sense of Definition 3.2 such that CDm,τm (introduced in (24)) and τm > 0 tend
to 0 as m −→ ∞. We assume that there exists a function T : R

d → R
+ with lim|ξ|→0 T (ξ) = 0 such

that TDm
≤ T for all m ∈ N, and that

∀ϕ ∈ H1(Ω), lim
m→∞

SDm
(ϕ) = 0, (28)

and
∀ϕ ∈ Hdiv,0(Ω), lim

m→∞
WDm

(ϕ) = 0. (29)

Let, for all m ∈ N, um ∈ XDm,τm be such that (22)-(23) hold.
Then there exists a weak solution u to (1)-(2)-(3) in the sense of Definition 2.1 such that, up to a
subsequence, ΠDm,τmum tends to u in L2(Ω× (0, T )), and ∇Dm

uDm,τm tends to ∇u for the weak topology
of L2(Ω× (0, T ))d. In the case that u is unique, then the whole sequence converges in the same sense.

Proof. Thanks to (25)-(26), we first have the existence of some C2 > 0, independent of m, such that

‖ΠDm,τmum(·+ ξ, ·)−ΠDm,τmum‖L2(Rd×(0,T ) ≤ C2T (ξ).

Let us now prove an estimate on the time translates. Let η ∈ (0, T ). We drop the index m for the
simplicity of notation. We consider

A(η) = ‖ΠD,τu(·, ·+ η)−ΠD,τu‖
2
L2(Ω×(0,T−η)).

Denoting by ν(t) the integer n such that t ∈ ((n − 1)τ, nτ ], we have A(η) =

∫ T−η

0

ν(t+η)
∑

n=ν(t)

τ(An
1 − An

2 )dt,

with

An
1 =

1

τ

∫

Ω

(ΠD,τu
n −ΠD,τu

n−1)ΠDu
ν(t+η)dx

and

An
2 =

1

τ

∫

Ω

(ΠD,τu
n −ΠD,τu

n−1)ΠDu
ν(t)dx.

Using (23) with vn = uν(t+η) and vp = 0 for p 6= n, we get

An
1 =

1

τ

∫ nτ

(n−1)τ

∫

Ω

(

r(x, s)ΠD,τu
ν(t+η)(x)−GD,τ (ΠD,τu, x, s)∇Du

n(x) · ∇Du
ν(t+η)(x)

)

dxds.

Hence we get, using Young’s inequality, that

An
1 ≤

1

2
(An

11 +A
ν(t+η)
12 +An

13 +A
ν(t+η)
13 ),

with

An
11 =

1

τ

∫ nτ

(n−1)τ

∫

Ω

r(x, s)2dxds, An
12 =

∫

Ω

(ΠD,τu
n)2dx, An

13 = λ

∫

Ω

(∇Du
n)2dx.

A similar inequality holds for An
2 . Hence, applying Lemma 6.1 stated in the appendix, and (25)-(26), we

get the existence of C3, which does not depend on m, such that

A(η) ≤ C3η.

Thanks to (25) which is a L∞(0, T ;L2(Ω)) bound on the approximate solution, it is easy to extend
the time translates from (0, T − η) to R, for the approximate solution set to 0 outside of Ω × (0, T ).
This proves that the time translates of ΠDm,τmum uniformly tend to 0. Then, thanks to Kolmogorov’s
theorem, we may extract a subsequence such that ΠDm,τmum converges in L2(Ω×(0, T )) to some function
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u ∈ L2(Ω×(0, T )). Since ∇Dm,τmum is bounded in L2(Ω×(0, T ))d, it weakly converges in L2(Ω×(0, T ))d,
up to a subsequence, to some function G. For given ϕ ∈ Hdiv,0(Ω) and ϕ ∈ C∞

c ((0, T )), we can write,
using (19),

∣

∣

∣

∣

∣

∫ T

0

∫

Ω

ϕ(t) (∇Dm,τmum ·ϕ+ΠDm,τmum divϕ) dxdt

∣

∣

∣

∣

∣

≤

∫ T

0

WDm
(ϕ)ϕ(t)‖um(t)‖Dm

dt.

Letting m → ∞ in the above inequality (which is possible thanks to bounds of the right hand side due
to (25)-(26)) and using (29), we get

∀ϕ ∈ C∞
c ((0, T )), ∀ϕ ∈ Hdiv,0(Ω),

∫ T

0

∫

Ω

ϕ(t) (G ·ϕ+ u divϕ) dxdt = 0.

This shows that u ∈ L2(0, T ;H1(Ω)) and that G(x, t) = ∇u(x, t) for a.e. (x, t) ∈ Ω× (0, T ).
Let us now prove that u is a weak solution to (1)-(2)-(3) in the sense of Definition 2.1.
Let ϕ ∈ C∞

c ([0, T [), and w ∈ H1(Ω) be given. We denote by

wm = argmin
v∈XDm

(

‖ΠDm
v − w‖2L2(Ω) + ‖∇Dm

v −∇w‖2L2(Ω)d

)
1
2

.

Using (28), we then have that ΠDm
wm converges to w in L2(Ω) and that ∇Dm

wm converges to ∇w in
L2(Ω)d. We then set vn = ϕ((n− 1)τ)wm in (23), and we denote by ϕm(t) the value ϕ((n− 1)τ) for all
t ∈](n− 1)τ, nτ ]. We get Tm

1 + Tm
2 = Tm

3 , with

Tm
1 =

∫ T

0

∫

Ω

Dτmu ΠDm
wmϕm(t)dxdt,

Tm
2 =

∫ T

0

ϕm(t)

∫

Ω

GDm,τm(ΠDm,τmu, x, t)∇Dm,τmu · ∇Dm
wmdxdt,

and

Tm
3 =

∫ T

0

ϕm(t)

∫

Ω

r ΠDm
wmdxdt.

We can rewrite Tm
1 as

Tm
1 = −

∫

Ω

uiniΠDm
wmϕ(0)dx−

NT
∑

n=1

∫

Ω

ΠDm
un ΠDm

wm(ϕ(nτ)− ϕ((n− 1)τ))dxdt,

which gives

Tm
1 = −

∫

Ω

uiniΠDm
wmϕ(0)dx−

∫ T

0

∫

Ω

ΠDm,τmu ΠDm
wmϕt(t)dxdt.

Hence we get that

lim
m→∞

Tm
1 = −

∫

Ω

uiniw ϕ(0)dx−

∫ T

0

∫

Ω

u wmϕt(t)dxdt.

Thanks to Assumption (24), we have, for a.e. (x, t) ∈ Ω× (0, T ):

|GDm,τm(ΠDm,τmu, x, t)−G(u, x, t)| ≤ CDm,τm‖ΠDm,τmu(·, t)‖L2(Ω) + |G(ΠDm,τmu, x, t)−G(u, x, t)|.

Thanks to the assumption that CDm,τm tends to 0 as m → ∞, and thanks to the convergence of
ΠDm,τmu(·, t) to u(·, t) in L2(Ω) for a.e. t ∈ (0, T ), we get that GDm,τm(ΠDm,τmu, x, t) converges to
G(u, x, t) for a.e. (x, t) ∈ Ω× (0, T ). Noticing that:

∫

Ω

GDm,τm(ΠDm,τmu, x, t)∇Dm,τmu · ∇Dm
wmdx =

∫

Ω

(GDm,τm(ΠDm,τmu, x, t)−G(u, x, t))∇Dm,τmu · ∇Dm
wmdx+

∫

Ω

G(u, x, t)∇Dm,τmu · ∇Dm
wmdx,

8



we get by dominated convergence for the first term and weak-strong convergence for the second term,
that:

lim
m→∞

Tm
2 =

∫ T

0

ϕ(t)

∫

Ω

G(u, x, t)∇u · ∇wdxdt.

Finally, we also have:

lim
m→∞

Tm
3 =

∫ T

0

ϕ(t)

∫

Ω

r wdxdt.

This achieves the proof that u is a weak solution to (1)-(2)-(3) in the sense of Definition 2.1. �

Theorem 3.2 Under hypotheses of Theorem 3.1, let (Dm, τm)m∈N be a subsequence satisfying the prop-
erties stated in the conclusions of Theorem 3.1. Then ΠDm,τmum(·, t) tends to u(t) in L2(Ω) for all
t ∈ [0, T ], and ∇Dm

uDm,τm tends to ∇u in L2(Ω× (0, T ))d. In the case that u is unique, then the whole
sequence converges in the same sense.

Proof. Let w ∈ H1(Ω) and let

wm = argmin
v∈XDm

(

‖ΠDm
v − w‖2L2(Ω) + ‖∇Dm

v −∇w‖2L2(Ω)d

)
1
2

.

Let us consider, for s ≤ t ∈ [0, T ],

B(s, t) =

∫

Ω

(ΠDm,τmum(x, t)−ΠDm,τmum(x, s))ΠDm
wm(x)dx.

We get

B(s, t) =

∫ ν(t+s)τ

(ν(t)−1)τ

∫

Ω

DτmumΠDm
wm(x)dx

=

∫ ν(t+s)τ

(ν(t)−1)τ

∫

Ω

(rΠDm
wm −GDm,τm(ΠDm,τmum, x, t)∇Dm,τmu · ∇Dm

wm) dxdt.

Thanks to the Cauchy-Schwarz inequality, we get the existence of C4, independent of m and w, such that

B(s, t) ≤ (ν(t+ s)τ − (ν(t)− 1)τ)1/2C4‖wm‖Dm
≤ (t− s+ 2τm)1/2C4‖wm‖Dm

.

This continuity property is sufficient to apply Theorem 6.1 (given in the Appendix), proving that, for all
t ∈ [0, T ], ΠDm,τmum(t) tends to u(t) for the weak topology of L2(Ω). In the same way as in the proof of
Lemma 3.1, we have the property, for a given t0 ∈ [0, T ] (dropping some indices m),

∫

Ω

(

1

2
(ΠD,τu(x, t0)

2 − uini(x)
2) +

∫ ν(t0)τ

0

GD,τ (ΠD,τu, x, t)∇D,τu · ∇D,τudt

)

dx

≤

∫ ν(t0)τ

0

∫

Ω

r(x, t)ΠD,τu(x, t)dxdt.

(30)

Passing to the limit in the above inequality, we get

lim sup
m→∞

(

1

2

∫

Ω

ΠD,τu(x, t0)
2 +

∫ ν(t0)τ

0

GD,τ (ΠD,τu, x, t)∇D,τu · ∇D,τudt

)

dx

≤
1

2

∫

Ω

uini(x)
2dx+

∫ t0

0

∫

Ω

r(x, t)u(x, t)dxdt.

Since u satisfies (16), we have

1

2

∫

Ω

u(x, t0)
2dx+

∫ t0

0

∫

Ω

G(u, x, t)∇u · ∇udxdt =
1

2

∫

Ω

(uini)
2dx+

∫ t0

0

∫

Ω

r udxdt.

9



The weak convergence of ΠD,τu(·, t0) to u(·, t0) and of ∇D,τu to ∇u implies that

lim inf
m→∞

1

2

∫

Ω

ΠD,τu(x, t0)
2 ≥

1

2

∫

Ω

u(x, t0)
2dx,

lim inf
m→∞

∫ ν(t0)τ

0

GD,τ (ΠD,τu, x, t)∇D,τu · ∇D,τudtdx ≥

∫ t0

0

∫

Ω

G(u, x, t)∇u · ∇udxdt.

Therefore we obtain

lim
m→∞

1

2

∫

Ω

ΠD,τu(x, t0)
2 =

1

2

∫

Ω

u(x, t0)
2dx,

lim
m→∞

∫ ν(t0)τ

0

GD,τ (ΠD,τu, x, t)∇D,τu · ∇D,τudtdx =

∫ t0

0

∫

Ω

G(u, x, t)∇u · ∇udxdt.

hence concluding the proof of the strong convergences. �

4 A particular gradient scheme

In order to describe the scheme, we now introduce some notations for the space discretization.

x
(2)

i(2)

x
(2)

i(2)+1

p

xp xσ

x
(1)

i(1)+1
x
(1)

i(1)

σ

dpσ

Kp,y

y

np,σ

Figure 1: Notations for the meshes

1. A rectangular discretization of Ω is defined by the increasing sequences ai = x
(i)
0 < x

(i)
1 < . . . <

x
(i)

n(i) = bi, i = 1, . . . , d.

2. We denote by

M =
{

]x
(1)

i(1)
, x

(1)

i(1)+1
[× . . .×]x

(d)

i(d)
, x

(d)

i(d)+1
[, 0 ≤ i(1) < n(1), . . . , 0 ≤ i(d) < n(d)

}

the set of the control volumes. The elements of M are denoted p, q, . . .. We denote by xp the center
of p. For any p ∈ M, let ∂p = p \ p be the boundary of p; let |p| > 0 denote the measure of p and
let hp denote the diameter of p and hD denote the maximum value of (hp)p∈M.

3. We denote by Ep the set of all the faces of p ∈ M, by E the union of all Ep, and for all σ ∈ E , we denote
by |σ| its (d − 1)-dimensional measure. For any σ ∈ E , we define the set Mσ = {p ∈ M, σ ∈ Ep}
(which has therefore one or two elements), we denote by Ep the set of the faces of p ∈ M (it has 2 d
elements) and by xσ the cent-re of σ. We then denote by dpσ = |xσ − xp| the orthogonal distance
between xp and σ ∈ Ep and by np,σ the normal vector to σ, outward to p.
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4. We denote by Vp the set of all the vertices of p ∈ M (it has 2d elements), by V the union of all Vp,
p ∈ M. For y ∈ Vp, we denote by Kp,y the rectangle whose faces are parallel to those of p, and
whose the set of vertices contains xp and y. We denote by Vσ the set of all vertices of σ ∈ E (it has
2d−1 elements), and by Ep,y the set of all σ ∈ Ep such that y ∈ Vσ (it has d elements).

5. We define the set XD of all u = ((up)p∈M, (uσ,y)σ∈E,y∈Vσ
).

6. We denote, for all u ∈ HD, by ΠDu ∈ L2(Ω) the function defined by the constant value up a.e. in
p ∈ M.

7. For u ∈ XD, p ∈ M and y ∈ Vp, we denote by

∇p,yu =
2

|p|

∑

σ∈Ep,y

|σ|(uσ,y − up)np,σ =
∑

σ∈Ep,y

uσ,y − up

dpσ
np,σ, (31)

and by ∇Du the function defined a.e. on Ω by ∇p,yu on Kp,y.

We then have the following result.

Lemma 4.1 Let Ω =]a1, b1[× . . .×]ad, bd[ be an open rectangle in R
d. Let D = (XD,ΠD,∇D) be a

rectangular discretization as described above. Then D is an approximate gradient discretization in the

sense of Definition 3.1, such that, under the regularity condition (x
(j)

i(j)+1
− x

(j)

i(j)
)/(x

(k)

i(k)+1
− x

(k)

i(k)) ≤ C,

we get the existence of T : R
d → R

+ with lim|ξ|→0 T (ξ) = 0 such that TD ≤ T independently of hD, and
that

∀ϕ ∈ H1(Ω), lim
hD→0

SD(ϕ) = 0, (32)

and
∀ϕ ∈ Hdiv,0(Ω), lim

hD→0
WD(ϕ) = 0. (33)

Proof. Let us recall the result, proved in [11]: for such a rectangular discretization D, the expression
‖u‖D, defined by

‖u‖2D =
∑

p∈M

|p| u2
p +

∑

p∈M

∑

σ∈Ep

∑

y∈Vσ

|σ|

dpσ
(uσ,y − up)

2, ∀u ∈ XD,

is a norm on XD such that (32) holds, where C only depends on the bound on θ. The limit conformity
property (33) is proved in the same way as in [11]. We then remark that ‖u‖2D controls the semi-norm
| · |1,T as defined in [10, Definition 10.2, p. 795]. We can therefore follow the proof of [10, Theorem 10.3, p.
810] using the discrete trace inequality [10, Lemma 10.5, p. 807] in the case of the homogeneous Neumann
boundary conditions, which proves the existence of T as given in this statement (hence proceeding in the
same way as in [9]). �

Remark 4.1 The equations obtained, for a given y ∈ V, defining v ∈ XD for a given σ ∈ Ey by vσ,y = 1
and all other degrees of freedom null, constitute a local invertible linear system, allowing for expressing
all (uσ,y)σ∈Ey

with respect to all (up,y)p∈My
. This leads to a nine-point stencil on rectangular meshes in

2D, 27-point stencil in 3D (this property is the basis of the MPFA O-scheme [1]).

5 Numerical experiments

Example 1.
This example is devoted to a 1D illustration of the time-delayed regularization of the Perona-Malik
equation, as described by (13) in the introduction of this paper. We consider the case Ω =]0, 1[, uini(x) =
2x, and α = 1/101 in (13). We then apply the scheme presented in Section 4 (it then resumes to a

11
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Figure 2: t = .2, τ = .01(left),t = .5, τ = .01(right)
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Figure 3: t = 1, τ = .01(left),t = 5, τ = .1 (right)

standard 3-point finite volume scheme), using various values of t. We then show in Figure 2 the results
computed at the final time T = 50, for h = 1/500 for t = 0.2 and t = 0.5 and τ = .01. We see that,
although the problem is regularized, the numerical solution shows discontinuities resulting from the ill-
posedness of the Perona-Malik equation. Turning to the values t = 1 and t = 5, with τ = .1, we observe
in Figure 3 that the regularity of the numerical solution is significantly increased.

Example 2. In this example we present results of numerical computations for the regularized Perona-
Malik equation in 2D, where the regularization is again of the type (13). We assume that Ω = [0, 1]×[0, 1],
and we chose the right hand side r such that u(x, y, t) = C((x2 + y2)/2− (x3 + y3)/3)t is an exact strong
solution of the problem (1)-(2)-(3). Two test cases, with different time delays t̄, final time T and coefficient
C, are presented. The errors in L2((0, T ), L2(Ω)) and L∞((0, T ), L2(Ω)) for the solution u (denoted by
E2, E∞) and for its gradient (denoted by EG2, EG∞) together with the experimental order of convergence
(EOC) are presented in Table 1 in the case t̄ = 0.0625, T = 0.625 and C = 1, and in Table 2 in the case
t̄ = 0.625, T = 6.25 and C = t̄

T = 0.1. These numerical results indicate that the method is s second
order accurate, both in solution and gradient approximation.
Example 3. Image filtering by the time-delayed Perona-Malik model. In this experiment,
we show the results obtained when filtering a noisy image, using the time-delay regularization of the
Perona-Malik equation as given by (13). The original image (Figure 4 left top) is damaged by 40 percent

12



n τ E2 EOC E∞ EOC EG2 EOC EG∞ EOC
4 0.0625 4.771e-4 - 1.022e-3 - 7.184e-3 - 1.450e-2 -
8 0.015625 1.172e-4 1.429 2.692e-4 1.925 1.707e-3 2.073 3.615e-3 2.004
16 0.00390625 2.913e-5 2.604 6.812e-5 1.982 4.213e-4 2.019 9.031e-4 2.001
32 0.0009765625 7.270e-6 2.002 1.708e-5 1.996 1.050e-4 2.004 2.257e-4 2.000
64 0.000244140625 1.815e-6 2.001 4.273e-6 1.999 2.624e-5 2.000 5.643e-5 1.999

Table 1: Example 2, t̄ = 0.0625, T = 0.625, C = 1.

n τ E2 EOC E∞ EOC EG2 EOC EG∞ EOC
4 0.0625 1.778e-3 - 1.209e-3 - 2.032e-2 - 1.400e-2 -
8 0.015625 4.594e-4 1.952 3.173e-4 1.930 5.034e-3 2.031 3.478e-3 2.001
16 0.00390625 1.158e-4 1.988 8.021e-5 1.984 1.255e-3 2.004 8.680e-4 2.002
32 0.0009765625 2.898e-5 1.998 2.011e-5 1.996 3.137e-4 2.000 2.169e-4 2.001
64 0.000244140625 7.248e-6 1.999 5.030e-6 1.999 7.842e-5 2.000 5.422e-5 2.000

Table 2: Example 2, t̄ = 0.625, T = 6.25, C = t̄
T = 0.1

additive noise (Figure 4 right top). In the bottom row of Figure 4 we present the 1st, 10th and 25th
denoising steps which show a correct reconstruction of the original figure. The following parameters are
used in the computations: n(1) = n(2) = 200, h = 0.1, τ = 0.1, t̄ = 0.1. In the nonlinear function g
defined by (6), we use the value of parameter K = 100. We observe that the denoised image does not
show any significant alteration after 25 steps, compared to the initial one.

Example 4. Image filtering by the nonlinear tensor diffusion. In this example we present the
image denoising by the so-called coherence enhancing tensor diffusion [18], that means the case, where
the diffusion coefficient is given by a matrix. The mathematical model is given in the introduction of
this paper by (9)-(10) and (11)-(12). In this experiment we use the following parameters: n(1) = n(2) =
250, h = 0.001, t̄ = 0.000001, τ = 0.000001. The chosen parameters in the convolution operators are
defined by σ = 0.0001 and ρ = 0.01, and the parameters in (11) are α = 0.0001, C = 1. The scheme uses
explicit values for G, which leads to define a semi-implicit scheme for the nonlinear tensor diffusion model
as in [9, 8]. In Figure 5, one can see the original image with three crackling lines, and the results after 2
and 5 time steps respectively, showing that the coherence of the line structures has been improved.

6 Conclusion

Gradient schemes have recently been shown to be efficient for the discretization of elliptic problems
and steady state coupled problems. The present paper shows that the mathematical framework of the
Gradient Scheme also applies for the discrete analysis of parabolic problems involved in some practical
applications. The particular gradient scheme used in this paper for image processing applications leads
to a 9-point stencil finite volume type scheme, which is unconditionally coercive and convergent. Its use
in further applications will be studied in future works.

Appendix

Lemma 6.1 Let T > 0 be given, and let τ = T/NT , for NT ∈ N
⋆. For all t ∈ [0, T ], we denote by ν(t)

the element n ∈ N such that t ∈ ((n− 1)τ, nτ ]). Let (an)n=1,...,NT
be a family of non negative real values.

Then
∫ T−η

0

ν(t+η)
∑

n=ν(t)

(τan)dt = η

NT
∑

n=1

(τan), ∀η ∈ (0, T ), (34)
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Figure 4: Example 3, the original image (left top), the noisy image (right top) and the results after 1,
10, 25 time steps (bottom, from left to right) of filtering.

and
∫ T−η

0





ν(t+η)
∑

n=ν(t)+1

τ



 aν(t+s)dt ≤ η

NT
∑

n=1

(τan), ∀η ∈ (0, T ), ∀s ∈ (0, η). (35)

The proof of the above lemma follows that of [10, Proof of Lemma 18.6 p 855].

Theorem 6.1 Let Ω be an open bounded subset of R2, a < b ∈ R and (um)m∈N be a sequence of functions
from [a, b] to L2(Ω), such that there exists C1 > 0 with

‖um(t)‖L2(Ω) ≤ C1, ∀m ∈ N, ∀t ∈ [a, b]. (36)

We also assume that there exists (τm)m∈N with τm ≥ 0 and limm→∞ τm = 0 and a dense subset R of
L2(Ω) such that, for all ϕ ∈ R, there exists Cϕ > 0 such that

∣

∣〈um(t2)− um(t1), ϕ〉L2(Ω),L2(Ω)

∣

∣ ≤ Cϕ(t2 − t1 + 2τm)1/2, ∀m ∈ N, ∀a ≤ t1 ≤ t2 ≤ b. (37)

Then there exists u ∈ L∞(a, b;L2(Ω)) with u ∈ Cw([a, b], L
2(Ω)) (where we denote by Cw([a, b], L

2(Ω))
the set of functions from [a, b] to L2(Ω), continuous for the weak topology of L2(Ω)) and a subsequence
of (um)m∈N, again denoted (um)m∈N, such that, for all t ∈ [a, b], um(t) converges to u(t) for the weak
topology of L2(Ω).
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Figure 5: Example 4, the original image (left), the results after 2 (middle) and 5 (right) time steps.

Proof. The proof follows that of Ascoli’s theorem, and we provide it only for completeness (a similar
proof is also provided in [15] in the framework of the weak star topology of Radon measures). Let
(tp)p∈N be a sequence of real numbers, dense in [a, b]. Due to (36), for each p ∈ N, we may extract
from (um(tp))m∈N a subsequence which is convergent to some element of L2(Ω) for the weak topology
of L2(Ω). Using a diagonal method, we can choose a sub-sequence, again denoted (um)m∈N, such that
(um(tp))m∈N s is weakly convergent for all p ∈ N. For any t ∈ [a, b] and v ∈ L2(Ω), we then prove
that the sequence (〈um(t), v〉L2(Ω),L2(Ω))m∈N is a Cauchy sequence. Indeed, let ε > 0 be given. We first
choose ϕ ∈ R such that ‖ϕ − v‖L2(Ω) ≤ ε. Then, we choose p ∈ N such that |t − tp| ≤ (ε/Cϕ)

2. Since
(〈um(tp), ϕ〉L2(Ω),L2(Ω))m∈N is a Cauchy sequence, we choose n0 ∈ N such that, for k, l ≥ n0,

∣

∣〈uk(tp)− ul(tp), ϕ〉L2(Ω),L2(Ω)

∣

∣ ≤ ε,

and such that τk, τl ≤ (ε/Cϕ)
2. We then get, using (37),

∣

∣〈uk(t)− ul(t), ϕ〉L2(Ω),L2(Ω)

∣

∣ ≤ Cϕ((|t− tp|+ 2τk)
1/2 + (|t− tp|+ 2τl)

1/2) + ε,

which gives
∣

∣〈uk(t)− ul(t), ϕ〉L2(Ω),L2(Ω)

∣

∣ ≤ 2 31/2ε+ ε.

We then get, using (36),

∣

∣〈uk(t)− ul(t), v〉L2(Ω),L2(Ω)

∣

∣ ≤ 2C1ε+ 2 31/2ε+ ε.

This proves that the sequence (〈um(t), v〉L2(Ω),L2(Ω))m∈N converges. Since

|〈um(t), v〉L2(Ω),L2(Ω)| ≤ C1‖v‖L2(Ω),

we get the existence of u(t) ∈ L2(Ω) such that (um(t))m∈N converges to u(t) for the weak topology of
L2(Ω). Then u ∈ Cw([a, b], L

2(Ω)) is obtained by passing to the limit m → ∞ in (37), and by using the
density of R in L2(Ω). �
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