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UJF-Grenoble 1/CNRS, Université de Grenoble, LIG UMR 5217/AMA team

UJF-Grenoble 1/CNRS, TIMC-IMAG UMR 5525.
Email: {Cedric.Frambourg, Ahlame.Douzal, Eric.Gaussier}@imag.fr

J. Demongeot
UJF-Grenoble 1/CNRS, Université de Grenoble, TIMC UMR 5525
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Abstract—For time series discrimination, this paper proposes
a new approach to align time series with respect to the com-
monly shared features within classes and the most differential
ones between classes. The main idea behind the proposed
approach is to use a variance/covariance criterion to strengthen
or weaken aligned observations according to their contribution
to the variability within and between classes. To this end,
the classical variance/covariance expression is extended to a
set of time series, as well as to a partition of time series
based on classes. A new algorithm is then proposed to learn
alignments between time series so as to minimize the within
variance and maximize the between variance. The relevance of
the learned alignments is studied through a nearest neighbor
time series classification on real and synthetic datasets. The
carried out experiments reveal that the proposed approach
is able to capture fine-grained distinctions between time series
across classes, and outperforms standard approaches on several
different datasets, all the more so that the correspondence
between time series within the same class is complex.
Keywords: time series alignment, discriminant analysis,
variance-covariance, time series classification, dynamic time
warping, Euclidean distance

I. INTRODUCTION

Time series originating from the same (or similar) sources
are often noisy as the timing of salient events can be ex-
tremely variable. For example, in the context of electric net-
works, a particular peak associated with the same underlying
event may appear at different times, depending on the use of
the plugs monitored. To allow time series comparison while
dealing with time delays, numerous alignment strategies
have been proposed, as the ones based on Dynamic Time
Warping (DTW) (e.g. [1], [2], [3], [4], [5]), which however
yields a very local view as the alignment depends only on the
couple of time series under consideration; furthermore, the
process of alignment is decoupled from the one of analysis
(as clustering or classification), weakening the use of the
alignment in real applications.

To partly overcome these problems, Gaffney et al. [6]
propose a probabilistic framework to jointly handle the clus-
tering and the alignment processes. However, the proposed
alignments are limited to time series of a same class so
that the discriminative power of the method is limited.
In Listegarten et al. [7], a hierarchical Bayesian model is

proposed to perform detection of rare differences between
classes of time series. This model allows one to align time
series simultaneously across all classes, while detecting and
characterizing class-specific differences. Ramsay et al. [8]
propose a time series clustering model where an alignment
function is learned for each time series, parameterized with
order one B-spline coefficients. The learned alignments
account for a common shared structure within clusters.

Although these approaches yield more accurate align-
ments between time series, they all assume that time series
within the same class or cluster share a single, common
global structure. It is however indisputable that in real
applications time series peculiarities may be more complex.
For instance, time series of a same class may have distinctive
global behaviors while sharing common local features; or
one may have some time series of different classes of nearly
similar global behaviors as illustrated in Figures 2 and 3,
where only small differences appear between classes.

In the context of discriminating complex time series,
one thus needs to align time series with respect to the
commonly shared features, pertaining to potentially many
underlying global structures, within classes, and to identify
the most differential features between classes. We propose
to do so here through the use of a variance/covariance
criterion to strengthen or weaken links according to their
contributions to the variances within and between clusters.
The variance/covariance measure is a classical criterion,
used in many approaches, including discriminant analy-
sis, dimensionality reduction, clustering and classification,
and variants of it have already been proposed for graph-
structured data (see for example [9], [10], [11], [12]). Its
use for learning alignments between time series has however
never been investigated before, to our knowledge.

The rest of the paper is organized as follows. In Section II,
we propose an extension of the classical variance/covariance
expression to a set of time series, then to a partition based
on classes of time series. We then present in Section III two
new algorithms for learning temporal alignments within and
between classes and provide a proof of their convergence.
Based on the learned alignments, a discriminative distance
is defined in Section IV for time series nearest neighbor



classification. In Section V we evaluate the relevance of the
learned alignments to discriminate and classify time series.
The obtained results as well as future work are discussed in
Section VI.

II. THE VARIANCE/COVARIANCE OF TIME SERIES DATA

We first recall here the definition of the conventional
variance/covariance matrix, prior to extend it to a set of time
series and then to a partitioned (according to classes) set of
time series. Let X be the (n× p) data matrix providing the
description of n observations by p numerical variables. The
conventional (p× p) variance/covariance matrix expression
is:

V = Xt(I − UP )tP (I − UP )X (1)

where, I is the diagonal identity matrix, U the unit matrix,
and P a diagonal matrix of weights, generally set to pi = 1

n
for equally weighted observations.

In the case of a set of time series, let X be the (nT × p)
matrix providing the description of n multivariate time series
S1, ..., Sn by p numerical variables at T time stamps. The
general term xlij of X gives the value of the variable Xj

(j = 1, ..., p) taken by Sl (l = 1, ..., n) at the ith time stamp
(i = 1, ..., T ). Alignments between n time series can be
encoded through a matrix M composed of n2 block matrices
M ll′ (l = 1, ..., n; l′ = 1, ..., n). A block M ll′ is a (T × T )
matrix that specifies the alignment between Sl and Sl′ , and
its general term mll′

ii′ ∈ [0, 1] indicates the intensity of the
linkage between the observation of Sl at time i and the
observation of Sl′ at time i′. For example:
• A complete linkage connecting all observations of Sl

and S′l , whatever their time stamps, is obtained by set-
ting ∀ i, i′ ∈ {1, ..., T}, mll′

ii′ = 1
T , which corresponds

to M ll′ = 1
T UT , UT being the (T × T ) unit matrix;

• The euclidean alignment connecting observations that
occur at the same time is obtained by setting ∀ i, i′ ∈
{1, ..., T}, mll′

ii′ = 1 if i = i′ and 0 otherwise, which
corresponds to M ll′ = I;

• A dynamic time warping alignment is obtained by
setting ∀ i, i′ ∈ {1, ..., T}, mll′

ii′ = 1 if i is aligned
with i′ by the standard DTW, and 0 otherwise.

Then, the (p×p) variance/covariance matrix VM induced
by a set of time series S1, ..., Sn connected to one another
according to the alignment matrix M can be defined on the
basis of Eq.1, as:

VM = Xt(I −M)tP (I −M)X (2)

where P is a (nT × nT ) diagonal matrix of weights, with
pi = 1

n T for equally weighted observations. The variance
of each variable Xj as well as the total variance can thus
be defined through the diagonal elements of VM .

Definition 1: The variance of each variable Xj (j =
1, · · · , p) corresponds to the jth diagonal term of VM and
is given by:

VMj
=

n∑
l=1

T∑
i=1

pi(x
l
i j −

n∑
l′=1

T∑
i′=1

ml l′

i i′x
l′

i′ j)
2 (3)

The total variance of the aligned time series is defined by:

TotVM =

p∑
j=1

VMj
(4)

We now proceed to define the variance within and between
classes when the time series are partitioned into classes.

A. The variance induced by a partition of time series

Let us now consider the set of time series S1, ..., Sn

partitioned into K groups, with yi ∈ {1, ...,K} the class
label of Si and nk the size of class k (i.e. the number
of time series contained in class k). In such a case, the
within variance/covariance matrix provides a measure of
the dispersion of time series within classes, and the within
variance a measure of how close time series are within
classes. Following the definition for the variance of a
set of time series, we define the within variance with an
intra-class alignment matrix M as the sum, restricted over
the time series of the same class, of the variance of each
variable.

Definition 2: The within variance with an intra-class
alignment matrix M is given by:

TotWVM =
1

nT

K∑
k=1

p∑
j=1

nk∑
l=1

T∑
i=1

(xlij −
1

nk

nk∑
l′=1

T∑
i′=1

mll′

ii′x
l′

i′j)
2

with

M ll′ =

 I if l = l′

6= 0 if yl = yl′ and l 6= l′

0 if yl 6= yl′
(5)

where I and 0 are the (T × T ) identity and zero matrices,
respectively.

The first setting for M simply states that each time series
is aligned with itself at each time stamp, which ensures
that the variance of a time series compared to itself is zero.
The second setting simply states that two time series within
the same class are connected, with values which are not
necessarily known. Lastly, the third setting states that time
series of different classes should not be aligned, as they do
not contribute to the within variance of each class.

Similarly, the between variance (i.e. the variance between
classes) can be defined as follows.



Definition 3: The between variance with an inter-class
alignment matrix M is given by:

TotBVM = 1
nT

∑K
k=1

∑p
j=1

∑nk
l=1

∑T
i=1(xlij

−Ak(xlij +
∑

k′ 6=k

∑nk′
l′=1

∑T
i′=1m

ll′

ii′x
l′

i′j)
2

with

Ak =
1

1 +
∑

k′ 6=k,1≤k,k′≤K nk′

and

Mll′ =

 I if l = l′

0 if yl = yl′ and l 6= l′

6= 0 if yl 6= yl′
(6)

where I and 0 are the (T × T ) identity and zero matrices,
respectively.
The general form of the alignment matrix M is symmetric
wrt to the preceding one, alignments between time series of
the same class being forbidden this time, whereas alignments
between time series of different classes are taken into
account.

As one can note, alignments between time series play a
crucial role (through the intra and inter class alignment ma-
trices) in the definition of the within and between variances.
To discriminate time series, the question which arises is thus
how to learn such matrices so as to be able to minimize
the within variance and maximize the between variance. We
present an answer to this question in the following section.

III. LEARNING DISCRIMINATIVE ALIGNMENTS

In the following, we mainly focus on the within variance
minimization problem, as a similar development can be
made for the between variance maximization problem.

The problem of learning the intra-class alignment ma-
trix M to minimize the within variance, i.e. the quantity
TotWVM of Definition 2, can be can be formulated as
a non-convex, quadratic optimization problem with linear
inequality and equality constraints:

arg minmll′
ii′

TotWVM = 1
nT

∑p
j=1

∑nk
l=1

∑T
i=1(xlij

− 1
nk

∑nk
l′=1

∑T
i′=1m

ll′

ii′x
l′

i′j)
2

subject to: ∀(i, i′, l, l′), mll′

ii′ ≥ 0,
∑T

i′=1m
ll′

ii′ = 1

The normalization constraints
∑T

i′=1m
ll′

ii′ = 1 ensure that
for all Sl, Sl′ each observation i in Sl is connected to at least
one observation i′ of Sl′ . Furthermore, all the connections
are positively weighted.

A standard way to solve the above problem relies on a
projected gradient descent, where one iteratively makes a
gradient descent on TotWVM and projects the solution onto
the admissible domain provided by the constraints. However,
we have no guarantee that the solution after projection has
indeed decreased the within variance TotWVM . We intro-
duce here another approach in which the gradient descent

part is replaced by an update of the alignment matrix,
which guarantees that the within variance is decreased after
projection on the admissible domain, as discussed in section
III-B.

A. Learning alignments within and between clusters

The core of the approach we propose to learn the intra-
class alignments minimizing the within variance consists
in iteratively evaluating the contribution of each linked
observations (i, i′) to the estimated variance; the weights
mll′

ii′ are then penalized for links (i, i′) increasing the within
variance, and this is repeated until the induced within
variance stabilizes. This process is illustrated in Algorithm 1,
LearnWAlign.

Algorithm 1 LearnWAlign(X,Y, α)
1: s = 0
2: M0 ← complete intra-class linkage
3: repeat
4: CTot = 0
5: for all (l, l′) : yl = y

l′ and l 6= l′ do
6: for all (i, i′) ∈ [1, T ] × [1, T ] do
7: {evaluation of the within contributions}
8: Cll

′
ii′ = TotVMs − TotVMs\(i,i′,l,l′)

9: CTot = CTot + |Cll
′

ii′ |

10: end for
11: end for
12: E={(i, i′, l, l′) / Cll

′
ii′ > 0 }

13: repeat
14: {control of the variance decrease}
15: T = True
16: randomly select (i, i′, l, l′) ∈ E
17: for all j = 1, · · · , p do
18: if (T ∧ ((δ2 ∈ [0, a]) ∨ (δ1 ∈ [0, b]) ∨ (−δ1 ∈ [0, b]))) then
19: T = False
20: E = E\(i, i′, l, l′)
21: end if
22: end for
23: until T = True
24: {penalization of the link (i, i′) of Sl , S

l′ }

25: m
ll′
ii′ = m

ll′
ii′ (1 −

Cll
′

ii′

CTot
)

26: {the ith row normalization}
27: for all t ∈ [1, T ] do

28: m
ll′
it =

mll
′

it

1 −mll′
ii′

Cll
′

ii′
CTot

29: end for
30: s = s + 1

31: until
TotV

Ms−1 − TotVMs

TotV
Ms−1

≤ α {repeat the learning until the stabilization of the within

variance}
32: return(Ms)

Starting with an initial intra-class alignment matrix, set to
a complete linkage defined by:

M ll′ =

 I if l = l′
1
T U if yl = yl′ and l 6= l′

0 if yl 6= yl′
(7)

the algorithm LearnWAlign proceeds in two steps. In the
first step (line 5 to 11), the contribution of each link (i, i′)
to the within variance is estimated. For this, we evaluate the
induced effect on the within variance when (i, i′) is removed
from the alignment between Sl and Sl′ , two time series
of the same class (yl = yl′ ). Let us denote M\(i, i′, l, l′)
the within alignment after the link (i, i′) has been deleted
(hence mll′

ii′ = 0). The contribution Cll′

ii′ of (i, i′) to the



within variance is:

Cll′

ii′ = TotWVM − TotWVM\(i,i′,l,l′) (8)

Let E be the set of all the links (i, i′) for which contributions
Cll′

ii′ are positive, that is, the links which contribute to
increase the within variance. In the second step (line 24 to
29), the weight mll′

ii′ of a randomly selected link (i, i′) ∈ E
is penalized, and the impacted row normalized. Note that
the weights mll′

ii′ are decreased proportionally to Cll′

ii′ , and
that this decrease is small as Cll′

ii′ << CTot. Based on the
updated alignments, the variance decrease rate is estimated
(line 31). While this rate is greater than α, steps 1 and 2 are
iterated. The procedure finally returns the best learned intra-
class alignments. Figure 1a illustrates the initial complete
linkage intra- (red links, within each class) and inter- (blue
links, between the classes) class alignments, and Figure
1b the learned alignments, where the thickness ofthe links
correspond to the intensity of the learned weights mll′

ii′ .
The complete linkage used to initialize the intra-class

alignment matrix can be replaced by any other choice
compatible with the general form of the intra-class alignment
matrix given in Definition 2. The complete linkage ensures
here that all possible alignments are considered and does not
impose any a priori constraints on the type of alignments
one should look for. The random selection of the elements
in E can also be replaced by other selection strategies,
as the one of the element for which Cll′

ii′ is maximum.
However, if this latter element is interesting wrt to its impact
on the variance when the associated link is removed, its
systematic choice may lead to suboptimal solutions after
renormalization. A good compromise is thus to operate a
random selection of links of slightly different contributions,
as proposed in Algorithm 1. The quantities δ1, δ2, a and b
serve to control (lines 13 to 23) the variance decrease. Their
definition and rationale are given in section III-B.

A similar algorithm, LearnBAlign , is applied to learn
the inter-class alignment matrix maximizing the between
variance. As before, the initial alignment is set to a complete
linkage:

M ll′ =

 I if l = l′

0 if yl = yl′ and l 6= l′
1
T U if yl 6= yl′

(9)

and the algorithm proceeds in two steps. In the first step,
the set E of all the links (i, i′) for which contributions Cll′

ii′

are negative, that is, the links which contribute to decrease
the between variance, is computed. In the second step, the
weight mll′

ii′ of a randomly selected link (i, i′) ∈ E is

penalized with mll′

ii′ = mll′

ii′(1 +
Cll
′

ii′
CTot ), and the impacted

row normalized. While the increase rate is greater than α,
steps 1 and 2 are repeated. The procedure finally returns the
best learned inter-class alignments.

Algorithm 2 LearnBAlign(X,Y, α)
1: s = 0
2: M0 ← complete inter-class linkage
3: repeat
4: CTot = 0
5: for all (l, l′) : yl 6= y

l′ do
6: for all (i, i′) ∈ [1, T ] × [1, T ] do
7: {the evaluation of the between contributions}
8: Cll

′
ii′ = TotVMs − TotVMs\(i,i′,l,l′)

9: CTot = CTot + |Cll
′

ii′ |

10: end for
11: end for
12: E={(i, i′, l, l′) / Cll

′
ii′ < 0 }

13: repeat
14: {control of the variance increase}
15: T = True
16: randomly select (i, i′, l, l′) ∈ E
17: for all j = 1, · · · , p do
18: if (T ∧ ((δ2 ∈ [0, a]) ∨ (δ1 ∈ [0, b]) ∨ (−δ1 ∈ [0, b]))) then
19: T = False
20: E = E\(i, i′, l, l′)
21: end if
22: end for
23: until T = True
24: {penalization of the link (i, i′) of Sl , S

l′ }

25: m
ll′
ii′ = m

ll′
ii′ (1 +

Cll
′

ii′

CTot
)

26: {the ith row normalization}
27: for all t ∈ [1, T ] do

28: m
ll′
it =

mll
′

it

1 +mll
′

ii′
Cll
′

ii′
CTot

29: end for
30: s = s + 1

31: until
TotVMs − TotVMs−1

TotV
Ms−1

≤ α {repeat the learning until the stabilization of the between

variance}
32: return(Ms)

B. Convergence of the learning alignment process

We focus here on the algorithm LearnWAlign, the devel-
opment for the algorithm LearnBAlign being similar.

As the variance is positive, the convergence of the al-
gorithm is based on the variance decrease throughout the
learning process. We study the induced effect on the variance
of the penalization of a chosen weight mll′

ii′ (hence with fixed
(i, i′, l, l′)). Let us consider the variance as a function V ,
such that V (mll′

ii′) = VM . We prove that a weak penalization
of a link with positive contribution leads to a decrease of
the variance. For that, we define a function f as follows:

f : β 7→ Vmll′
ii′
− V (β mll′

ii′)

with β ∈ [0, 1] and V (β mll′

ii′) denoting the total variance
obtained with the link (i, i′, l, l′) penalized by β and all the
links (i, i′′, l, l′)(i′′ = 1, · · · , T ) renormalized to satisfy the
constraints. f is thus such that f(1) = 0 and f(0) = Cll′

ii′ ,
this latter quantity being positive for all links in E .

Let us furthermore introduce the following functions, for
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Figure 1: Initial complete linkage (a) and learned (b) intra- and inter-class alignments

given (i, i′, j, l, l′):

δ1 = xlij −
M∑
r=1

T∑
t=1

mlr
itx

r
tj

δ2 = xl
′

i′j −
M∑
r=1

T∑
t=1

mlr
itx

r
tj

a = mll′

ii′x
l′

i′j

b =
mll′

ii′

2(1−mll′
ii′)

(1 +
2mll′

ii′x
l′

i′j

δ1(xlij , x
l′
i′j)

)

The following property provides conditions for the sign of
f ′(1) to be different from the sign of f(0), and hence, for
links in E , conditions under which the variance is decreasing
when small penalizations are considered.

Property 4: Let Λ be defined by δ1 × δ2. We have:

1) sign(−f ′(1)) 6= sign(Λ)⇔ δ2 ∈ [0, a]

2) sign(f(0)) 6= sign(Λ)⇔ δ1 ∈ [0, b] or
−δ1 ∈ [0,−b]

Proof (sketch): The proof is based on the consideration of
a function g which behaves like f but has a simpler form
and is thus easier to manipulate. Indeed, let us consider the
function g defined by:

g(β) = (1− β)(δ2 − βmll′

ii′x
l′

i′j)((2− (1− β))δ1

−(1− β)mll′

ii′(x
l
ij + xl

′

i′j + (β + 2)mll′

ii′x
l′

i′j))

Then f and g are of the same sign, and sign(f ′(1)) =
sign(g′(1)). Comparing the sign of both g(0) and
g′(1) with the sign of Λ yields the desired result.
2

For all links in E , f(0) is positive and the variance will
decrease for small penalizations (f ′(1) < 0) as soon as f(0)
and −f ′(1) have the same sign, which is the sign of Λ.
The above property gives us the conditions under which this

happens.The first case in Property 4 occurs when xl
′

i′j is too
close from the neighbors of xlij , so that the renormalization
of the weights after the penalization would induce more
effects than the penalization itself, and would increase the
variance. The second case in Property 4 appears when the
distance between xlij and its neighbors is low, so that the
variation of the weight of xl

′

i′j moves xlij and the mean
of its neighbors away. In that case, we are close to the
convergence of the algorithm. Should these two cases occur
simultaneously, we would observe a decrease of the variance.
However, we decide to exclude this case in the algorithm,
granted this seldom occurs and thus uselessly complexifies
the algorithm.

Lastly, in practice, the conditions expressed in Property 4
and used in algorithm LearnWAlign to control the variance
decrease are usually satisfied and only need be checked when
one is close to convergence.

C. Complexity of the learning process

We again focus here on the learning of intra-class align-
ments, the development for the inter-class alignments being
similar. For a given class k, the quantity Cll′

ii′ in LearnWAlign
can be rewritten as:

1

nT

p∑
j=1

(xlij −
1

nk

nk∑
l2=1

T∑
i2=1

xl2i2jm(b)ll2ii2
)2

−(xlij −
1

nk

nk∑
l2=1

T∑
i2=1

xl2i2jm(a)ll2ii2
)2

where m(b)ll2ii2
and m(a)ll2ii2

respectively denote the weight of
link (i, i2), between the two series l and l2, before and after
the link (i, i′) has been removed. Hence, the complexity for
computing Cll′

ii′ for all (i, i′, l, l′) amounts to O(pnk
3T 3),

which is the dominating term in LearnWAlign.
As we mentioned earlier, the problem solved by Learn-

WAlign can be formulated as a non-convex, quadratic opti-
mization problem with linear inequality and equality con-



straints. Computing the Lagrangian of this problem leads
to a system of linear equations which requires, in the worst
case, O(

∑K
k=1 nk

6T 6) operations to be solved. Furthermore,
the solutions of this system are extrema, and thus need
to be checked for minimality. For the projected gradient
approach, where one iteratively makes a gradient descent
on TotVM and projects the solutions onto the admissible
domain provided by the constraints, the term dominating the
complexity of the algorithm is associated to the computation
of the gradient, and has a complexity of O(p n3

k T 3).
Thus, both LearnWAlign and the projected gradient descent
approach have the same overall complexity (up to a factor
controlling the number of iterations). There are however two
main advantages in using LearnWAlign and not a projected
gradient descent here: (i) We have no guarantee that the
solution after projection has indeed decreased TotWVM (k)
in the projected gradient descent approach, whereas we have
such a guarantee for LearnWAlign; (ii) LearnWAlign does
not require the setting of an additional parameter controlling
the descent along the gradient: as soon as Cll′

ii′ > 0, one
knows that the variance can be minimized and that the
update in LearnWAlign will provide a valid solution.

IV. TIME SERIES CLASSIFICATION BASED ON THE
LEARNED ALIGNMENTS

We present here the use of the learned alignments in k-
nearest neighbors classification. To do so, we introduce a
distance which simultaneously takes into consideration the
similarities within classes and the dissimilarities between
classes specified by the intra- and inter-class alignments.
To evaluate the distance between a new time series Stest

and a sample series Sl, one needs first to align Stest to
Sl. For this, we rely on an optimistic hypothesis which
consists in assuming that Sl is a good approximation for
Stest and thus that the alignment between the two is similar
to the one between Sl and its nearest neighbor in class
yl. However, by doing so, one relies only on the intra-
class alignments learned in the previous section, and ignores
the information brought by inter-class alignments. To take
this latter information into account, we propose to weight
variables according to their dispersion within class yl and
within the class containing the nearest impostor of Sl (the
impostor of any training example is the nearest neighbor of
that example which does not belong to the same class). The
following development formalizes these ideas.

Let us define the distance between two training samples
Sl, S′l based on their intra- or inter-class alignments as:

d2M (Sl, Sl′) =
∑
i i′

(
ml l
′

i i′+ml
′ l
i′ i

2

) p∑
j=1

(xli j − xl
′

i′ j)
2

where M alternatively denotes the learned intra-class align-
ment for yl = yl′ , and inter-class for yl 6= yl′ . In addition,
we denote by cl 6= yl the class of the impostor of the time

series Sl:

cl = arg min
k 6=yl

(
∑

l′,yl′=k

d2M (Sl, Sl′))

For each series Sl, one can distinguish, on the one hand,
the set of links connecting Sl to the series of the same
class and, on the other hand, the set of links connecting
Sl to the series of its nearest class cl. Both sets of links
induce two standard deviations evaluating the dispersion of
its linked values within yl and within cl. This dispersion can
be summarized through the following function:

σ(k, i, j, yl) =
∑

l′,yl′=k

T∑
i′=1

mll′

ii′(x
l′

i′j −
∑

l′,yl′=k

T∑
i′=1

mll′

ii′x
l′

i′j)
2

The quantities of interest to us here are σ(yl, i, j, yl), for the
standard deviation within the same class, and σ(cl, i, j, yl)
for the standard deviation with the class of the impostor.
These estimated standard deviations can be used to give
more weight to variables ensuring both homogeneity within
classes and a good differentiation from the impostor class,
namely providing lower values for σ(yl, i, j, yl) and higher
for σ(cl, i, j, yl). To do so, we propose the following distance
between a new test series Stest and a training sample Sl,
relying on the closest neighbor Sr of Sl within class yl:

r = arg min
l′,yl′=yl

(d2M (Sl, Sl′))

The final distance is defined by:

D(Stest, Sl) =
∑
i i′

(
ml r
i i′+mr l

i′ i
2

) p∑
j=1

σ(cl, i, j, yl)

σ(yl, i, j, yl)

(xtesti′ j − xli j)2 (10)

V. APPLICATION AND COMPARISON STUDY

To assess the effectiveness of the learned discriminative
alignments, three public time series datasets are considered:
Cylinder-Bell-Funnel (CBF) [13], Synthetic Control Chart
(CC), and Character Trajectories (TRAJ) [14], also available
at [15] (www.cs.ucr.edu/∼eamonn/time series data/). Note
that, for all these data, time series within the same class share
a single, common global structure. To highlight the additive
value of the proposed approach on more complex temporal
peculiarities, we propose two new datasets, downloadable
at (blind review), where time series within a same class
may have distinctive global behaviors while sharing common
local features. The first dataset BME is composed of three
classes Begin, Middle, and End (Figure 2). In the Begin class,
the time series are characterized by a little bell that arises
during the Begin period. They may show the same global
behavior or not, depending on the top or bottom position
of the right-side large bell. The Middle class is composed
of time series characterized by a centered large bell. In the
End class, time series are described by a bell arising at the



(a) BEGIN (b) MIDDLE (c) END

Figure 2: The main behaviors within BME classes: BEGIN, MIDDLE, and END

(a) UP (b) MIDDLE (c) DOWN

Figure 3: The main behaviors within UMD classes: UP, MIDDLE, and DOWN

end period and similarly may show the same global behavior
or not, depending on the top or bottom position of this left-
side large bell. The second dataset UMD, composed similarly
of three classes Up, Middle, and Down, introduces more
complexity since the local shared features may occur at any
time stamps as illustrated in Figure 3. Table I provides the
main characteristics of the five considered datasets, including
the number of time series (Size), the number of classes
(Cla.Nb), the number of time series per class (TS.Cla),
the length of the time series (Leng), and whether the time
series are univariate or multivariate (Multi), real or synthetic
(Real).

Table I: Datasets description

Dataset Size Cla.NB TS.Cla Leng Mult Real

CBF 300 3 100 128 No No
CC 600 6 100 60 No No

TRAJ 1000 20 50 20 Yes Yes
BME 300 3 100 128 No No
UMD 300 3 100 150 No No

The algorithms LearnWAlign and LearnBAlign are ap-
plied on the five datasets. Figure 4 illustrates the learned
links and their weights between two Cylinder time series.
Figure 4 (left) visualizes the links between one observation
of Sl and all observations of Sl′ . The bold lines, which
connect the observation of Sl to the plateau of Sl′ , highlight
the highly weighted links (i.e., higher values of mll′

ii′ ),
whereas dotted lines correspond to unconnected observations

(i.e., mll′

ii′ ≈ 0). Figure 4 provides the learned intra-class
alignment M ll′ between Sl and Sl′ . Light cells identify the
highly connected regions (i.e., highly weighted links). For
instance, the central light square references a strong linkage
between the plateaus of the two Cylinder class time series.
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Figure 4: The learned intra-class alignment between two
Cylinder time series of CBF dataset

The aims of the following sections are, on the one hand,
to evaluate the relevance of the learned alignments to
discriminate time series classes. For this, a conventional
within/between variance criterion is considered to measure
the clusters homogeneity and separability. On the other hand,
to estimate the performances of the defined discriminative
distance to classify time series, and to compare it with the
standard euclidean and dynamic time warping distances.



The within/between variance criterion is a conventional
index in discriminant analysis; the lower the variance within
clusters, and the higher the variance between clusters, the
better is the clusters discrimination. For each dataset,
Figures 5 and 6 show the progression of the within and
between variances during the learning process. Particularly,
they indicate the decrease (resp. increase) function of
the within (resp. between) variances VMs and provide a
comparison with the within and between variances VMI ,
VMDTW and VM0 based on the standard euclidean, the
dynamic time warping and the complete linkages (denoted
M0), respectively. The red star indicates the optimal
learned within and between variances. For a stopping
threshold of α = 10−3, the intra and inter class alignments
processes converges in less than 50 and 80 iterations
respectively. Finally, Table II gives, for the five datasets,
the optimal within and between variances, and the obtained
within/between discrimination ratios.

Figure 7 gives an example of the learned intra-class
alignment between two time series of the class Down (UMD
dataset). It is interesting to note that little bells (shared event
within the class), occurring at the beginning for the first
time series and at the last period for the second one, are
highly weighted; whereas the large bells are weakly linked,
although similar for the considered time series.

50 100 150

1
5
0

1
0
0

5
0

Figure 7: The learned intra-class alignment between two
Down time series of UMD dataset

The 1-nearest neighbor classification based on the dis-
criminative distance D (Eq. 10) is performed on the five
studied time series datasets through a one hold-out protocol.
Table III compares the misclassification error rates with
those obtained by the standard euclidean dE and dynamic
time warping DTW distances.

VI. DISCUSSION AND PERSPECTIVES

Let us first discuss and analyze the behavior of the
proposed learning process by considering Figures 5 and
6. The clearly monotonically decreasing behavior of the

Table III: Nearest neighbor classification error rates

CBF CC TRAJ BME UMD
D 10.50 1.53 1.20 4.00 9.72
dE 10.47 4.70 1.20 17.70 16.96

DTW 33.20 9.63 1.90 13.40 13.29

within variances (versus the increasing behavior of the
between variances) throughout all datasets points out the
pertinence of the links weights penalization to maximize
cluster cohesion and isolation. The drastic progression of the
variances at the beginning and its slowdown until ending at a
plateau stress two characteristics; namely, the convergence of
the proposed learning process and its efficiency in speeding
up convergence at the beginning of the process, when the
objective function is far from the optimal.
We can note from Figure 5, that the optimal learned within
variances are significantly lower than VMI and slightly
equivalent to VMDTW for all datasets. The within variances
VM , VMI and VMDTW are closer for TRAJ data; this
indicates that both the dynamic time warping alignments
MDTW and the learned ones M lead to the identity linkage.
Indeed, in Figure 5, we can see that the learned alignments
within, for instance, the clusters ”c”,”o”,”l”, “e”, and “u”
strongly reveal an identity linkage. For Figure 6, we note
the continuous increase of the between variances during
the learning process, with optimal between variances VM
significantly higher than VMI and VMDTW .
Table II shows a better discrimination (i.e., higher cohesion
and isolation) for the learned alignments with the lowest
discrimination ratios ρ for all datasets. The alignments
considered by the dynamic time warping MDTW and the
learned ones M lead to better clusters cohesion than the
euclidean alignments M I , however the learned alignments
ensure better clusters isolation than the standard alignments
MDTW and M I .
Through the misclassification error rates summarized in
Table III, we can see that the discriminative distances
provide a good improvement of the performances for the
CBF and CC datasets, and lead to quite similar performances
on the TRAJ dataset, since as discussed above the learned
alignments converges to the euclidean alignments (Figure 5).
However, discriminative distances outperform significantly
the standard euclidean and dynamic time warping for the
more complex BME UMD datasets (i.e. classes are composed
of time series of distictive global behaviors).

In the framework of time series discrimination, it may
be restrictive to determine temporal alignments for each
couple of time series regardless of the dynamic of the
remaining time series. The proposed temporal alignment
strategy moves one step forward to address this issue and to
take more into consideration the time series structure within
and between clusters. Although LearnWAlign allows us to
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Figure 5: The Within-variance progression during the learning process (α = 10−3).
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Figure 6: The Between-variance progression during the learning process (α = 10−3).



Table II: The evaluation of the time series discrimination based on the within/between variance ratio

Within Between Within
Between

VM VMI VMDTW VM VMI VMDTW ρ ρI ρDTW

CBF 0.119 1.771 0.163 18.441 4.844 1.004 0.006 0.366 0.162
CC 1.732 14.597 2.587 212.339 130.001 107.818 0.008 0.112 0.024

TRAJ 0.05 0.341 0.145 10.830 1.902 0.739 0.005 0.305 0.196
BME 22.161 65.955 22.734 199.476 109.089 35.548 0.111 0.605 0.640
UMD 0.027 0.220 0.033 0.899 0.335 0.070 0.030 0.657 0.469
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Figure 8: The learned alignments M within the six clusters
(“c”,”o”,”l”,”e”,”u”,”a”) of TRAJ dataset

align time series of the same class while considering the
structure of the other time series within the class, it ignores
how time series of the remaining clusters are structured.

On the other hand, its between version aligns time series
of different classes by considering the structure of all time
series across different classes, but it still ignores which time
series are of the same class. Accordingly, our aim in a
future study consists in merging these two algorithms so
that the learning process simultaneously includes the entire
time series structure within and between clusters.

VII. CONCLUSION

We have proposed in this paper a new temporal alignment
algorithm minimizing an intra-class variance and maxi-
mizing an inter-class variance. The main idea behind this
algorithm is based on strengthening or weakening links
according to their contribution to the variability within and
between classes. To do so, we have extended the standard
definition of the variance to a set of time series, and then to
a partition of a set of time series. We have furthermore intro-
duced a new distance between time series which exploits the
learned alignments. We have then used this distance for k-
nearest neighbor classification on real and synthetic datasets.
The results of our experiments show that the approach we

have developed is able to capture fine-grained distinctions
between time series across classes, and outperforms standard
approaches on several different datasets, all the more so
that the correspondence between time series within the same
class is complex.
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