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Introduction

As an offspring of the wide interest in frame representations and sparsity promoting techniques for data recovery, there has been an emergence of proximal methods to efficiently solve convex optimization problems arising in inverse problems. Examples of applications of these methods can be found in f-MRI reconstruction [START_REF] Chaari | A wavelet-based regularized reconstruction algorithm for SENSE parallel MRI with applications to neuroimaging[END_REF][START_REF] Guerquin-Kern | A fast wavelet-based reconstruction method for magnetic resonance imaging[END_REF], satellite image restoration [START_REF] Facciolo | Irregular to regular sampling, denoising, and deconvolution[END_REF][START_REF] Hajlaoui | Satellite image restoration in the context of a spatially varying point spread function[END_REF], microscopy image deconvolution [START_REF] Dupé | A proximal iteration for deconvolving Poisson noisy images using sparse representations[END_REF][START_REF] Jezierska | A primal-dual proximal splitting approach for restoring data corrupted with Poisson-Gaussian noise[END_REF], computed tomography [START_REF] Vandeghinste | Split-Bregman-based sparse view CT reconstruction[END_REF], Positron Emission Tomography [START_REF] Pustelnik | Parallel algorithm and hybrid regularization for dynamic PET reconstruction[END_REF][START_REF] Anthoine | Some proximal methods for CBCT and PET tomography[END_REF], texture-geometry decomposition [START_REF] Aujol | Image decomposition into a bounded variation component and an oscillating component[END_REF][START_REF] Aujol | Structure-texture image decomposition -modeling, algorithms, and parameter selection[END_REF][START_REF] Briceño-Arias | Proximal algorithms for multicomponent image recovery problems[END_REF], machine learning [START_REF] Bach | Optimization with sparsity-inducing penalties[END_REF][START_REF] Theodoridis | Adaptive learning in a world of projections[END_REF], stereo vision [START_REF] Chaux | A parallel proximal splitting method for disparity estimation from multicomponent images under illumination variation[END_REF], and audio processing [START_REF] Kowalski | Beyond the narrowband approximation: Wideband convex methods for under-determined reverberant audio source separation[END_REF][START_REF] Akyildiz | An analysis prior based decomposition method for audio signals[END_REF]. Proximal algorithms have gained much popularity in solving large-size optimization problems involving non-differentiable (or even non finite) functions. One of the main advantages of these methods is that they are amenable to parallel implementations. For a survey on proximal algorithms and their applications, the reader is referred to [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF][START_REF] Bach | Optimization with sparsity-inducing penalties[END_REF]. Note also that some of these methods are closely related to augmented Lagrangian approaches [START_REF] Setzer | Deblurring Poissonian images by split Bregman techniques[END_REF][START_REF] Figueiredo | Restoration of Poissonian images using alternating direction optimization[END_REF][START_REF] Pesquet | A parallel inertial proximal optimization method[END_REF]. Even if proximal algorithms and the associated convergence properties have been deeply investigated [START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF][START_REF] Chaux | A variational formulation for frame-based inverse problems[END_REF][START_REF] Combettes | A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery[END_REF][START_REF] Combettes | A proximal decomposition method for solving convex variational inverse problems[END_REF], some questions persist in their use for solving inverse problems. A first question is: how can we set the parameters serving to enforce the regularity of the solution in an automatic way? Another question is related to the selection of the most appropriate algorithm within the class of proximal algorithms for a given application. This also raises the question of the computation of the proximity operators associated with the different functions involved in the criterion. Various strategies were proposed in order to address the first question [START_REF] Galatsanos | Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation[END_REF][START_REF] Hansen | The use of the L-curve in the regularization of discrete ill-posed problems[END_REF][START_REF] Pizurica | Estimating the probability of the presence of a signal of interest in multiresolution single-and multiband image denoising[END_REF][START_REF] Ramani | Monte-Carlo SURE: A black-box optimization of regularization parameters for general denoising algorithms[END_REF][START_REF] Chaari | A hierarchical bayesian model for frame representation[END_REF], but the computational cost of these methods is often high, especially when several regularization parameters have to be set. Alternatively, it has been recognized for a long time that incorporating constraints directly on the solutions [START_REF] Youla | Image restoration by the method of convex projections. Part I -theory[END_REF][START_REF] Trussell | The feasible solution in signal restoration[END_REF][START_REF] Combettes | Inconsistent signal feasibility problems : least-squares solutions in a product space[END_REF][START_REF] Kose | Filtered variation method for denoising and sparse signal processing[END_REF][START_REF] Teuber | Minimization and parameter estimation for seminorm regularization models with I-divergence constraints[END_REF] instead of considering regularized functions may often facilitate the choice of the involved parameters. Indeed, in a constrained formulation, the constraint bounds are usually related to some physical properties of the target solution or some knowledge of the degradation process, e.g. the noise statistical properties. Note also that there exist some conceptual Lagrangian equivalences between regularized solutions to inverse problems and constrained ones, although some caution should be taken when the regularization functions are nonsmooth (see [START_REF] Ciak | Homogeneous penalizers and constraints in convex image restoration[END_REF] where the case of a single regularization parameter is investigated).

In this context, the objective of this paper is to provide an answer to the second question, that is to propose efficient parallel algorithms for solving the following constrained convex optimization problem:

Problem 1.1. minimize x∈H R r=1 g r (T r x) s. t.        H 1 x ∈ C 1 , . . . H S x ∈ C S , (1) 
where (i) for every r ∈ {1, . . . , R}, T r is a bounded linear operator from a real Hilbert space H to R Nr ;

(ii) for every r ∈ {1, . . . , R}, g r is a proper lower-semicontinuous convex function from R Nr to ]-∞, +∞];

(iii) for every s ∈ {1, . . . , S}, H s is a bounded linear operator from H to R Ms ;

(iv) for every s ∈ {1, . . . , S}, C s is a nonempty closed convex subset of R Ms .

A large number of inverse problems can be formulated under the form of Problem 1.1. A classical application example is image recovery from blurred and noisy observations. Let z denote the vector of observed data. When the noise is assumed to be zero-mean additive white Gaussian, the restored data can be obtained by solving Problem 1.1 where R = 2, S = 0, g 1 = λ • 1 with λ ∈ ]0, +∞[, T 1 is an analysis frame operator [START_REF] Jacques | A panorama on multiscale geometric representations, intertwining spatial, directional and frequency selectivity[END_REF] allowing us to sparsify signal x, g 2 = • -z 2 , and T 2 denotes the matrix associated with the degradation blur [START_REF] Figueiredo | An EM algorithm for wavelet-based image restoration[END_REF][START_REF] Chaux | A variational formulation for frame-based inverse problems[END_REF]. On the other hand, a constrained formulation of the same restoration problem leads to Problem 1.1 with R = 1, S = 1, g 1 = • 1 , T 1 is the same frame operator as previously, and

(∀x ∈ H)

H 1 x ∈ C 1 ⇔ H 1 x -z 2 ≤ η 1 .
Here, H 1 denotes the matrix associated with the degradation blur, and η 1 is a positive constant which is typically chosen proportional to the noise variance. This specific constraint formulation has been considered in [START_REF] Afonso | An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems[END_REF].

The present work aims at designing efficient methods in order to deal with Problem 1.1 when the convex constraints are expressed as follows: for every s ∈ {1, . . . , S},

(∀x ∈ H) H s x ∈ C s ⇔ h s (H s x) ≤ η s , (2) 
where η s ∈ R and h s is a proper lower-semicontinuous function from R Ms to ]-∞, +∞].

The paper is organized as follows. In Section 2, we motivate the choice of proximal tools and recall some of their theoretical properties. In addition, closed form expressions for specific proximity operators are derived. Then, in order to deal with a constraint expressed under the general form (2), a splitting approach involving an epigraphical projection is proposed. This epigraphical projection technique is described in detail in Section 3. Experiments in the context of image reconstruction are presented in Section 4. Finally, some conclusions are drawn in Section 5.

Notation: Let H be a real Hilbert space endowed with the norm • and the scalar product

• | • . Γ 0 (H) denotes the set of proper lower-semicontinuous convex functions from H to ]-∞, +∞]. Recall that a function ϕ : H → ]-∞, +∞] is proper if its domain dom ϕ = y ∈ H ϕ(y) < +∞ is nonempty. The epigraph of ϕ ∈ Γ 0 (H) is the nonempty closed convex subset of H × R defined as epi ϕ = (y, ζ) ∈ H × R ϕ(y) ≤ ζ and the lower level set of ϕ at height ζ ∈ R is the nonempty closed convex subset of H defined as lev ≤ζ ϕ = y ∈ H ϕ(y) ≤ ζ . A subgradient of ϕ at y ∈ H is an element of its subdifferential defined as ∂ϕ(y) = t ∈ H (∀u ∈ H) ϕ(u) ≥ ϕ(y) + t | u -y . 1 The indicator function ι C ∈ Γ 0 (H) of a nonempty closed convex subset C of H is given by (∀y ∈ H) ι C (y) = 0, if y ∈ C, +∞, otherwise. (3) 
The relative interior of a subset C of H is denoted by ri C.

2 Proximal tools

From gradient descent to proximal algorithms

The first methods for finding a solution to an inverse problem were restricted to the use of a differentiable cost function [START_REF] Tikhonov | Tikhonov regularization of incorrectly posed problems[END_REF], i.e. Problem 1.1 where S = 0 and, for every r ∈ {1, . . . , R}, g r denotes a differentiable function.

In this context, gradient-based algorithms, e.g. nonlinear conjugate gradient or quasi-Newton methods, are popular (see [START_REF] Chouzenoux | A Majorize-Minimize strategy for subspace optimization applied to image restoration[END_REF] and references therein for recent developments concerning these approaches). However, in order to model additional properties, sparsity promoting penalizations or hard constraints (S ≥ 1) may be introduced and the diffentiability property is not satisfied anymore. One way to circumvent this difficulty is to resort to smart approximations in order to smooth the involved non-differentiable functions [START_REF] Aubert | Sur la minimisation d'une fonctionnelle non convexe, non différentiable en dimension 1[END_REF][START_REF] Ben-Tal | A smoothing technique for nondifferentiable optimization problems[END_REF][START_REF] Hiriart-Urruty | Convex analysis and minimization algorithms, Part I : Fundamentals[END_REF].

If one wants to address the original nonsmooth problem without introducing approximation errors, one may apply some specific algorithms e.g. Gauss-Seidel or Uzawa methods, the convergence of which is guaranteed under restrictive assumptions [START_REF] Tseng | Convergence of a block coordinate descent method for nondifferentiable minimization[END_REF]. Interior point methods [START_REF] Wright | Primal-dual interior-point methods[END_REF] can also be employed for small to medium size optimization problems.

On the other hand, in order to solve convex feasibility problems, i.e. to find a vector belonging to the intersection of convex sets (Problem 1.1 with R = 0), iterative projection methods were developed. The projection onto convex sets algorithm (POCS) is one of the most popular approach to solve data recovery problems [START_REF] Bregman | The method of successive projection for finding a common point of convex sets[END_REF][START_REF] Gurin | Projection methods for finding a common point of convex sets[END_REF][START_REF] Youla | Image restoration by the method of convex projections. Part I -theory[END_REF][START_REF] Combettes | The foundations of set theoretic estimation[END_REF]. A drawback of POCS is that it is not well-suited for parallel implementations. The Parallel Projection Method (PPM) and Method of Parallel Projections (MOPP) are variants of POCS making use of parallel projections. Moreover, these algorithms were designed to efficiently solve inconsistent feasibility problems (when the intersection of the convex set is empty). Thorough comparisons between projection methods have been performed in [START_REF] Combettes | Convex set theoretic image recovery by extrapolated iterations of parallel subgradient projections[END_REF][START_REF] Censor | On the effectiveness of projection methods for convex feasibility problems with linear inequality constraints[END_REF].

Computing the projection P C onto a nonempty closed convex subset C of a real Hilbert space H requires to solve a constrained quadratic minimization problem:

(∀y ∈ H) P C (y) = argmin u∈C u -y . (4) 
The distance to C of every point y ∈ H is then given by d C (y) = y -P C (y) . However, it turns out that a closed form expression of the solution to (4) is available in a limited number of instances. One such well-known example is the projection onto a closed half-space: 

P C (y) =    y, if y | t ≤ η, y + η -y | t t 2 t, otherwise. (5) 
When an expression of the direct projection is not available, the convex set C can be approximated by a half-space, which leads to the concept of subgradient projection. Proposition 2.2. [START_REF] Hiriart-Urruty | Convex analysis and minimization algorithms, Part I : Fundamentals[END_REF] Let η ∈ R and let ϕ ∈ Γ 0 (H). Suppose that C = lev ≤η ϕ = ∅. Let y ∈ H and let t ∈ ∂ϕ(y) be a subgradient of ϕ at y. Then, C is a subset of the half-space

C y η = u ∈ H u -y | t ≤ η -ϕ(y) . (6) 
If t = 0, the projection of y onto C y η is a subgradient projection of y ∈ H onto C.

The subgradient projection plays a key role in Polyak algorithm that alternates a subgradient projection and an exact projection [START_REF] Polyak | Minimization of unsmooth functionals[END_REF] (see also [START_REF] Shor | Minimization Methods for Non-differentiable Functions[END_REF] for alternative projected subgradient approaches). An efficient block iterative surrogate splitting method was proposed in [START_REF] Combettes | A block-iterative surrogate constraint splitting method for quadratic signal recovery[END_REF] in order to solve Problem 1.1 when, for every r ∈ {1, . . . , R}, g r = • -z r 2 where z r ∈ R Nr . A main limitation of this method is that the global objective function must be strictly convex. For recent works about subgradient projection methods, the readers may refer to [START_REF] Slavakis | The adaptive projected subgradient method over the fixed point set of strongly attracting nonexpansive mappings[END_REF][START_REF] Bouboulis | Adaptive learning in complex reproducing kernel Hilbert spaces employing Wirtinger's subgradients[END_REF].

A way to overcome this difficulty consists of considering proximal approaches. The key tool in these methods is the proximity operator [START_REF] Moreau | Proximité et dualité dans un espace hilbertien[END_REF] of a function ϕ ∈ Γ 0 (H), defined as

(∀y ∈ H) prox ϕ (y) = argmin u∈H 1 2 u -y 2 + ϕ(u). (7) 
The proximity operator generalizes the notion of projection onto a nonempty closed convex subset C of H in the sense that prox ιC = P C . For every y ∈ H, p = prox ϕ (y) is uniquely defined through the inclusion

y -p ∈ ∂ϕ(p). (8) 
Proximity operators enjoy many additional interesting properties. Some of them are recalled next.

Example 2.3. [23] Let τ ∈ ]0, +∞[, β ∈ [1, +∞[, and set ϕ : R → ]-∞, +∞] : ξ → τ |ξ| β . (9) 
Then, for every

ξ ∈ R, prox ϕ (ξ) is given by                  sign(ξ) max{|ξ| -τ, 0}, if β = 1, ξ + 4τ 3 . 2 1/3 (ǫ -ξ) 1/3 -(ǫ + ξ) 1/3 , if β = 4 3 , ξ + 9τ 2 sign(ξ) 8 1 -1 + 16|ξ| 9τ 2 , if β = 3 2 , ξ 1+2τ , if β = 2, sign(ξ) √ 1+12τ |ξ|-1 6τ , if β = 3, (10) 
where ǫ = ξ 2 + 256τ 3 /729 and sign is the signum function.

It can be noticed that the proximity operator associated with β = 1 reduces to a soft thresholding [START_REF] Donoho | De-noising by soft-thresholding[END_REF].

The class of proximal methods includes primal algorithms [START_REF] Daubechies | An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[END_REF][START_REF] Chaux | A variational formulation for frame-based inverse problems[END_REF][START_REF] Combettes | A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery[END_REF][START_REF] Figueiredo | Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems[END_REF][START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF][START_REF] Fornasier | Subspace correction methods for total variation and ℓ 1minimization[END_REF][START_REF] Steidl | Removing multiplicative noise by Douglas-Rachford splitting methods[END_REF][START_REF] Combettes | Proximal splitting methods in signal processing[END_REF][START_REF] Pesquet | A parallel inertial proximal optimization method[END_REF] and primaldual algorithms [START_REF] Chen | A proximal-based decomposition method for convex minimization problems[END_REF][START_REF] Esser | A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science[END_REF][START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF][START_REF] Briceño-Arias | A monotone + skew splitting model for composite monotone inclusions in duality[END_REF][START_REF] Combettes | Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators[END_REF][START_REF] Vũ | A splitting algorithm for dual monotone inclusions involving cocoercive operators[END_REF][START_REF] Condat | A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms[END_REF]. Primal algorithms generally require to compute inverses of some linear operators (typically, R r=1 T * r T r + S s=1 H * s H s ), while primal-dual ones only require to compute (T r ) 1≤r≤R and (H s ) 1≤s≤S , and their adjoints (T * r ) 1≤r≤R and (H * s ) 1≤s≤S . Consequently, primal-dual methods are often easier to implement than primal ones, but their convergence may be slower [START_REF] Pustelnik | Relaxing tight frame condition in parallel proximal methods for signal restoration[END_REF][START_REF] Couprie | Constrained TV-based regularization on graphs[END_REF].

Proximity operators: new closed forms

The projection onto a convex set such as defined in (2) often is non trivial. In Section 3, we will show that this problem can be solved by resorting to a set of epigraphical projections which are easier to compute. The key point is that epigraphical projections are closely related to proximity operators. In the following, we provide some results that will be useful for the calculation of the projection onto the epigraph of a convex function (all the proofs are provided in the appendix).

Proposition 2.4. Let H be a real Hilbert space and let H × R be equipped with the standard product space norm. Let ϕ be a function in Γ 0 (H) such that dom ϕ is open. The projector P epi ϕ onto the epigraph of ϕ is given by:

∀(y, ζ) ∈ H × R P epi ϕ (y, ζ) = (p, θ) (11) 
where p = prox1 2 (max{ϕ-ζ,0}) 2 (y), θ = max{ϕ(p), ζ}. (12) 
Note that alternative characterizations of the epigraphical projection can be found in [73, Propositions 9.17, 28.28].

Let ϕ be a function in Γ 0 (H) such that dom ϕ is open. From Proposition 2.4, we see that prox 1 2 (max{ϕ-ζ,0}) 2 with ζ ∈ R plays a prominent role in the calculation of the projection onto epi ϕ. We now provide examples of functions ϕ for which this proximity operator admits a simple form.

Proposition 2.5. Let β ∈ [1, +∞[, τ ∈ ]0, +∞[. Assume that (∀y ∈ R) ϕ(y) = τ |y| β . ( 13 
)
If ζ ∈] -∞, 0], then for every y ∈ R prox 1 2 (max{ϕ-ζ,0}) 2 (y) =    sign(y) 1 + τ 2 max{|y| + τ ζ, 0}, if β = 1, sign(y)χ 0 , if β > 1, ( 14 
)
where χ 0 is the unique solution on [0, +∞[ of the equation

βτ 2 χ 2β-1 -βτ ζχ β-1 + χ = |y|. ( 15 
)
If ζ ∈ ]0, +∞[, then, for every y ∈ R, prox 1 2 (max{ϕ-ζ,0}) 2 (y) = y, if |y| ≤ ζ/τ 1/β , sign(y)χ (ζ/τ ) 1/β , otherwise, (16) 
where [START_REF] Chaux | A parallel proximal splitting method for disparity estimation from multicomponent images under illumination variation[END_REF].

χ (ζ/τ ) 1/β is the unique solution on [( ζ τ ) 1/β , +∞[ of ( 
Note that, when β is a rational number, ( 15) is equivalent to a polynomial equation for which either closed form solutions are known or standard numerical solutions exist. Proposition 2.6. Let H be a real Hilbert space and let C be a nonempty convex subset of H. Let β ∈ [1, +∞[, τ ∈ ]0, +∞[, and ζ ∈ R. Then, for every y ∈ H,

prox 1 2 (max{τ d β C -ζ,0}) 2 (y) = y, if y ∈ C, αy + (1 -α)P C (y), otherwise, (17) 
where α = prox 1 2 (max{τ |•| β -ζ,0}) 2 dC(y) dC(y)
and the expression of

prox 1 2 (max{τ |•| β -ζ,0}) 2 is provided by Proposition 2.5.
The following result is a consequence of the previous one: Corollary 2.7. Let H be a real Hilbert space. Assume that

(∀y ∈ H) ϕ(y) = τ y -z (18) 
where z ∈ H, ζ ∈ R and τ ∈ ]0, +∞[. Then, for every y ∈ R,

prox 1 2 (max{ϕ-ζ,0}) 2 (y) =      z, if y -z < -τ ζ, y, if y -z < ζ τ , z + α(y -z), otherwise, (19) 
where α = 1 1+τ 2 1 + τ ζ y-z .
Another result which will be used is the following:

Proposition 2.8. Let M ∈ N * and let ϕ be defined as

(∀y ∈ R) ϕ(y) = 1 2 M m=1 max{τ (m) (ν (m) -y), 0} 2 (20) 
where (τ (1) , . . . , τ (M) ) ⊤ ∈ R M , and (ν (1) , . . . , ν

(M) ) ⊤ ∈ R M is such that ν (1) ≤ . . . ≤ ν (M) . Set ν (0) = -∞ and ν (M+1) = +∞.
Then, ϕ ∈ Γ 0 (R), and for every y ∈ R,

prox ϕ (y) = y + m-1 m=1 ν (m) (τ (m) -) 2 + M m=m ν (m) (τ (m) + ) 2 1 + m-1 m=1 (τ (m) -) 2 + M m=m (τ (m) + ) 2 , ( 21 
)
where, for every m ∈ {1, . . . , M }, τ

(m) - = min(τ (m) , 0) and τ (m) +
= max(τ (m) , 0), and m is the unique integer in {1, . . . , M + 1} such that

ν (m-1) < y + m-1 m=1 ν (m) (τ (m) -) 2 + M m=m ν (m) (τ (m) + ) 2 1 + m-1 m=1 (τ (m) -) 2 + M m=m (τ (m) + ) 2 ≤ ν (m) (22) 
(with the convention

0 m=1 • = M m=M+1 • = 0).

Projection computation

We now turn our attention to convex sets for which the associated projection does not have a closed form, and we show that under some appropriate assumptions, it is possible to circumvent this difficulty. Let C denote such a nonempty closed convex subset of R M and assume that, for every y ∈ R M ,

y ∈ C ⇔ h(y) = L ℓ=1 h (ℓ) (y (ℓ) ) ≤ η (23) 
where η ∈ R. Hereabove, the generic vector y has been decomposed into blocks of coordinates as follows y = [(y (1) ) ⊤ size M (1) , . . . , (y

(L) ) ⊤ size M (L) ] ⊤ (24) 
and, for every ℓ ∈ {1, . . . , L},

y (ℓ) ∈ R M (ℓ) and h (ℓ) is a function in Γ 0 (R M (ℓ) ) such that ri(dom h (ℓ) ) = ∅.
Actually, any closed convex subset C can be expressed in this way by setting η = 0, L = 1 and h = d C .

By introducing now the auxiliary vector

ζ = ζ (ℓ) 1≤ℓ≤L ∈ R L , Condition (23) can be equivalently rewritten as 2        L ℓ=1 ζ (ℓ) ≤ η, (∀ℓ ∈ {1, . . . , L}) h (ℓ) (y (ℓ) ) ≤ ζ (ℓ) . (25) (26) 
Let us now introduce the closed half-space of R L defined as

V = ζ ∈ R L 1 ⊤ L ζ ≤ η , (27) 
with 1 L = (1, . . . , 1) ⊤ ∈ R L , and the closed convex set

E = (y, ζ) ∈ R M × R L (∀ℓ ∈ {1, . . . , L}) (y (ℓ) , ζ (ℓ) ) ∈ epi h (ℓ) . (28) 
Then, Constraint [START_REF] Combettes | A proximal decomposition method for solving convex variational inverse problems[END_REF] means that ζ ∈ V , whereas Constraint ( 26) is equivalent to (y, ζ) ∈ E. In other words, the constraint set C can be split into the two constraint sets V and E provided that L additional scalar variables (ζ (ℓ) ) 1≤ℓ≤L are introduced in the original optimization problem. Dealing with additional constraints in the original problem is not a problem for proximal splitting algorithms as far as the projections onto the associated constraint sets can be computed. An example of use of such an algorithm will be described in detail in Section 4 .

In the present case, the projection onto V is given by Proposition 2.1, whereas the projection onto E is given by

(∀(y, ζ) ∈ R M × R L ) P E (y, ζ) = (p, θ) (29) 
where θ = (θ (ℓ) ) 1≤ℓ≤L , vector p ∈ R M is blockwise decomposed as p = [(p (1) ) ⊤ , . . . , (p (L) ) ⊤ ] ⊤ like in [START_REF] Combettes | A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery[END_REF], and

(∀ℓ ∈ {1, . . . , L}) (p (ℓ) , θ (ℓ) ) = P epi h (ℓ) (y (ℓ) , ζ (ℓ) ). ( 30 
)
So, the problem reduces to the lower-dimensional problem of the determination of the projection onto the convex subset epi h (ℓ) of R M (ℓ) × R for each ℓ ∈ {1, . . . , L}. By using the results in Section 2.2, these projections can be shown to have a closed form expression in a number of cases of particular interest. Two examples are now given:

• Euclidean norm functions of the form

∀y (ℓ) ∈ R M (ℓ) h (ℓ) (y (ℓ) ) = τ (ℓ) y (ℓ) (31) 
where ℓ ∈ {1, . . . , L} and τ (ℓ) ∈ ]0, +∞[. Proposition 3.1. Assume that h (ℓ) is given by [START_REF] Youla | Image restoration by the method of convex projections. Part I -theory[END_REF].

Then, for every (y

(ℓ) , ζ (ℓ) ) ∈ R M (ℓ) × R, P epi h (ℓ) (y (ℓ) , ζ (ℓ) ) =      (0, 0), if y (ℓ) < -τ (ℓ) ζ (ℓ) , (y (ℓ) , ζ (ℓ) ), if y (ℓ) < ζ (ℓ) τ (ℓ) , α (ℓ) y (ℓ) , τ (ℓ) y (ℓ) , otherwise, (32) 
where

α (ℓ) = 1 1 + (τ (ℓ) ) 2 1 + τ (ℓ) ζ (ℓ)
y (ℓ) .

The result of this proposition is a direct application of Proposition 2.4 and Corollary 2.7. As it will be shown in Section 4, this result is useful to deal with multivariate sparsity constraints [START_REF] Wu | Multivariate compressive sensing for image reconstruction in the wavelet domain[END_REF] or total variation bounds [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF][START_REF] Aujol | Some first-order algorithms for total variation based image restoration[END_REF], since such constraints typically involve a sum of functions like (31) composed with linear operators corresponding to analysis transforms or gradient operators.

• Infinity norms defined as: for every ℓ ∈ {1, . . . , L} and y

(ℓ) = (y (ℓ,m) ) 1≤m≤M (ℓ) ∈ R M (ℓ) , h (ℓ) (y (ℓ) ) = max |y (ℓ,m) | τ (ℓ,m) | 1 ≤ m ≤ M (ℓ) . (33) 
where (τ (ℓ,m) ) 1≤m≤M (ℓ) ∈ ]0, +∞[

M (ℓ)
. Proposition 3.2. Assume that h (ℓ) is given by [START_REF] Combettes | Inconsistent signal feasibility problems : least-squares solutions in a product space[END_REF]. Let (ν (ℓ,m) ) 1≤m≤M (ℓ) be a sequence of reals obtained by sorting (|y (ℓ,m) |/τ (ℓ,m) ) 1≤m≤M (ℓ) in ascending order, and set ν (ℓ,0) = -∞ and ν (ℓ,M (ℓ) +1) = +∞. Then, for every

ζ (ℓ) ∈ R, (p (ℓ) , θ (ℓ) ) = P epi h (ℓ) (y (ℓ) , ζ (ℓ) ) is such that p (ℓ) = (p (ℓ,m) ) 1≤m≤M (ℓ) , with p (ℓ,m) =      y (ℓ,m) , if |y (ℓ,m) | ≤ τ (ℓ,m) θ (ℓ) , τ (ℓ,m) θ (ℓ) , if y (ℓ,m) > τ (ℓ,m) θ (ℓ) , -τ (ℓ,m) θ (ℓ) , if y (ℓ,m) < -τ (ℓ,m) θ (ℓ) , (34) 
θ (ℓ) = max ζ (ℓ) + M (ℓ) m=m ν (ℓ,m) (τ (ℓ,m) ) 2 , 0 1 + M (ℓ) m=m (τ (ℓ,m) ) 2 , ( 35 
)
and m is the unique integer in {1, . . . , M (ℓ) + 1} such that

ν (ℓ,m-1) < ζ (ℓ) + M (ℓ) m=m ν (ℓ,m) (τ (ℓ,m) ) 2 1 + M (ℓ) m=m (τ (ℓ,m) ) 2 ≤ ν (ℓ,m) . ( 36 
)
The proof of this proposition is given in Appendix F.

Note that when τ (ℓ,m) ≡ 1, function h (ℓ) in (33) reduces to the standard infinity norm • ∞ . This proposition can be thus employed to efficient deal with ℓ 1,∞ regularization which has attracted much interest recently [START_REF] Turlach | Simultaneous variable selection[END_REF][START_REF] Quattoni | An efficient projection for ℓ 1,∞ regularization[END_REF][START_REF] Chen | Recursive ℓ 1,∞ lasso[END_REF].

Experimental Results

In this section, we provide numerical examples to illustrate the usefulness of the proposed epigraphical projection method. The presented experiments focus on applications involving projections onto ℓ 1,p -balls where p ∈ {2, +∞}.

As already mentioned in Section 2.1, various algorithms can be used to solve non-smooth convex optimization problems and would potentially benefit from the proposed epigraphical projection technique. In this work, we will employ a primal-dual algorithm, namely the Monotone+Lipschitz Forward Backward Forward (M+LFBF) algorithm, which was recently proposed in [START_REF] Combettes | Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators[END_REF]. This proximal algorithm is able to address a wide class of convex optimization problems without requiring any matrix inversion and it offers a good performance and robustness to numerical errors. Its convergence is guaranteed (under weak conditions) and its structure makes it suitable for implementation on highly parallel architectures.

Degradation model

Set H = R N . Denote by x = (x (n) ) 1≤n≤N ∈ R N the signal of interest, and by z ∈ R N an observation vector such that z = Ax + b. It is assumed that A ∈ R N ×N is a linear operator, and b ∈ R N is a realization of a zero-mean white Gaussian noise. The recovery of x from the degraded observations is performed by following a variational approach which aims at solving the following problem minimize

x∈[µ,µ] N Ax -z 2 s. t. L ℓ=1 Ω ℓ B ℓ F x p ≤ η, (37) 
where (µ, µ) ∈ R 2 with µ ≤ µ, η is a real positive constant, and F ∈ R K×N is the linear operator associated with an analysis transform. Furthermore, for every ℓ ∈ {1, . . . , L}, B ℓ ∈ R M (ℓ) ×K is a block-selection linear operator which selects a block of M (ℓ) data from its input vector. 3 For every ℓ ∈ {1, . . . , L}, Ω ℓ denotes an M (ℓ) × M (ℓ) diagonal matrix of real positive weights.

The term Axz 2 is the data fidelity corresponding to the minus log-likelihood of x. The bounds µ and µ allow us to take into account the value range of each component of x.

The second constraint involved in Problem (37) conveys a smoothness condition. It exploits the fact that natural signals usually exhibit a smooth spatial behaviour, except around some locations (e.g. object edges in images) where discontinuities arise. The proposed constraint is based on a weighted ℓ 1,p -norm, where p ∈ {2, +∞}. The associated block-sparsity measure extends many of the smoothness terms used in the literature. It reduces to the weighted ℓ 1 -norm criterion found in [START_REF] Candés | Enhancing sparsity by reweighted ℓ 1 minimization[END_REF] when each block reduces to a singleton (i.e. L = K, and, for every ℓ ∈ {1, . . . , L}, M (ℓ) = 1 and B ℓ y = y (ℓ) ). 4 It captures the ℓ 1,2 criteria present in [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF][START_REF] Gilboa | Nonlocal Operators with Applications to Image Processing[END_REF][START_REF] Peyré | Group sparsity with overlapping partition functions[END_REF][START_REF] Bayram | Directional total variation[END_REF] when p = 2. It matches the ℓ 1,∞ criterion proposed in [START_REF] Quattoni | An efficient projection for ℓ 1,∞ regularization[END_REF] when p = +∞.

Let us define Λ = [B

⊤ 1 Ω 1 , . . . , B ⊤ L Ω L ] ⊤ and 
C 2 = y ∈ R M L ℓ=1 y (ℓ) p ≤ η (38) 
where M = M (1) + • • •+ M (L) and the same decomposition as in ( 24) is performed. Then, it can be observed that Problem (37) is a particular case of Problem 1.1 where

S = 2, R = 1, g 1 = • -z 2 , T 1 = A, H 1 = I, C 1 = [µ, µ] N , H 2 = ΛF ,
and C 2 is the above ℓ 1,p -ball.

Algorithmic solution

The main difficulty in solving Problem (37) stems from the second constraint. The point is that most of the applicable algorithms require to compute the projection onto C 2 . Specific numerical methods [START_REF] Van Den | Probing the Pareto frontier for basis pursuit solutions[END_REF][START_REF] Weiss | Efficient schemes for total variation minimization under constraints in image processing[END_REF][START_REF] Quattoni | An efficient projection for ℓ 1,∞ regularization[END_REF][START_REF] Fadili | Total variation projection with first order schemes[END_REF] have been developed for this purpose. The aim of this section is to propose an alternative method based on the splitting principle presented in Section 3. So doing, the resulting problem can be efficiently addressed by proximal algorithms. The two possible approaches are now detailed.

• Epigraphical method -The principle of this method is to decompose C 2 into the closed half-space defined by ( 27) and the closed convex set defined by ( 28) with h (ℓ) = • p . The advantage of this decomposition is that the projections onto V and E have closed forms. Indeed, P V is given by Proposition 2.1, while P E is given by Proposition 3.1 for p = 2 and Proposition 3.2 for p = +∞. We are then able to solve Problem ( 37) by means of the M+LFBF algorithm. The associated iterations are given in Algorithm 1.

Algorithm 1 Epigraphical method: M+LFBF for solving Problem ( 37)

Initialization       (v [0] , ν [0] ) ∈ R M × R L (x [0] , ζ [0] ) ∈ R N × R L θ = 2 A 2 + max{ ΛF , 1} ǫ ∈]0, 1 θ+1 [ For i = 0, 1, . . .                   γ i ∈ [ǫ, 1-ǫ θ ] x [i] , ζ [i] = (x [i] , ζ [i] ) -γ i 2A ⊤ (Ax [i] -z) + F ⊤ Λ ⊤ v [i] , ν [i] (p [i] , ρ [i] ) = P [µ,µ] N ( x [i] ), P V ( ζ [i] ) ( v [i] , ν [i] ) = (v [i] , ν [i] ) + γ i (ΛF x [i] , ζ [i] ) (a [i] , α [i] ) = ( v [i] , ν [i] ) -γ i P E γ -1 i v [i] , γ -1 i ν [i] ( v [i] , ν [i] ) = (a [i] , α [i] ) + γ i (ΛF p [i] , ρ [i] ) (v [i+1] , ν [i+1] ) = (v [i] -v [i] + v [i] , ν [i] -ν [i] + ν [i] ) ( x [i] , ζ [i] ) = (p [i] , ρ [i] ) -γ i 2A ⊤ (Ap [i] -z) + F ⊤ Λ ⊤ a [i] , α [t] (x [i+1] , ζ [i+1] ) = (x [i] -x [i] + x [i] , ζ [i] -ζ [i] + ζ [i] )
• Direct method -For completeness, we also consider the projection onto C 2 with the algorithm in [START_REF] Van Den | Probing the Pareto frontier for basis pursuit solutions[END_REF] when p = 2, 5 or the iterative algorithm in [START_REF] Quattoni | An efficient projection for ℓ 1,∞ regularization[END_REF] when p = +∞. 6 Then, M+LFBF can still be used to solve Problem [START_REF] Jacques | A panorama on multiscale geometric representations, intertwining spatial, directional and frequency selectivity[END_REF].

Note that, according to the general result in [68, Theorem 4.2], the sequence x [i] i∈N generated by Algorithm 1 is guaranteed to converge to a (global) minimizer of Problem (37). 5 Code available at www.cs.ubc.ca/∼mpf/spgl1 6 Code available at www.lsi.upc.edu/∼aquattoni 10

Smoothness constraint

We consider two smoothness constraints based on recent Non-Local TV measures [START_REF] Gilboa | Nonlocal Operators with Applications to Image Processing[END_REF][START_REF] Zhang | Bregmanized nonlocal regularization for deconvolution and sparse reconstruction[END_REF]. They constitute particular cases of the one considered in [START_REF] Jacques | A panorama on multiscale geometric representations, intertwining spatial, directional and frequency selectivity[END_REF] when L = N . They are described for 2D data in the following.

• ℓ 2 -Non-Local TV -This constraint has the form

N ℓ=1 n∈N ℓ ⊂W ℓ ω ℓ,n (x (ℓ) -x (n) ) 2 1/2 ≤ η, ( 39 
)
where N ℓ is the neighbourhood support of ℓ, and W ℓ is the set of positions n ∈ {1, . . . , N } \ {ℓ} located into a Q × Q window centered at ℓ, where Q ∈ N is odd. This constraint is a particular case of the one considered in [START_REF] Jacques | A panorama on multiscale geometric representations, intertwining spatial, directional and frequency selectivity[END_REF] where K = (Q 2 -1)N and F is a concatenation of discrete difference operators F q1,q2 with (q 1 , q 2 ) ∈ {-(Q -1)/2, . . . , (Q -1)/2} 2 \ {(0, 0)}. More precisely, for every (q 1 , q 2 ), F q1,q2 is a 2D filter with impulse response: for every (n

1 , n 2 ) ∈ Z 2 , f (n1,n2) q1,q2 =      1, if n 1 = n 2 = 0, -1, if n 1 = q 1 and n 2 = q 2 , 0, otherwise. (40) 
In addition, for every ℓ ∈ {1, . . . , N }, M (ℓ) ≤ Q 2 -1, B ℓ selects the components of F x corresponding to differences (x (ℓ) -x (n) ) n∈N ℓ , and the positive weights (ω ℓ,n ) n∈N ℓ are gathered in the diagonal matrix Ω ℓ .

• ℓ ∞ -Non-Local TV -We consider the following constraint

N ℓ=1 max n∈N ℓ ω ℓ,n |x (ℓ) -x (n) | ≤ η. ( 41 
)
We proceed similarly to the previous constraint, except that the ℓ ∞ -norm is now substituted for the ℓ 2 -norm.

Note that the classical isotropic TV constraint (designated by ℓ 2 -TV in the following) constitutes a particular case of the ℓ 2 -NLTV one, where each neighbourhood N ℓ only contains the horizontal/vertical neighbouring pixels (M (ℓ) = 2) and the weights are ω ℓ,n ≡ 1. Similarly, the ℓ ∞ -TV constraint is a special case of the ℓ ∞ -NLTV one.

Weight estimation and neighbourhood choice

To set the weights, we got inspired from the Non-Local Means approach originally described in [START_REF] Buades | A review of image denoising algorithms, with a new one[END_REF]. Here, for every ℓ ∈ {1, . . . , N } and n ∈ N ℓ , the weight ω ℓ,n depends on the similarity between patches built around the pixels ℓ and n of the image. Since our degradation process involves some missing data, a two-step approach has been adopted. In the first step, the ℓ 2 -TV approach is used in order to obtain an estimate x of the target image. This estimate is subsequently used in the second step to compute the weights through a self-similarity measure, yielding

ω ℓ,n = ω ℓ exp -δ -2 B ℓ F ℓ x -B n F n x 2 , (42) 
where

δ ∈ R \ {0}, ω ℓ ∈ ]0, +∞[, B ℓ (resp. B n ) selects a Q × Q patch centered at position ℓ (resp. n) and F ℓ (resp. F n )
is a linear processing of the image depending on the position ℓ (resp. n). The constant ω ℓ is set so as to normalize the weights (i.e. n∈N ℓ ω ℓ,n = 1).

The measure in [START_REF] Aubert | Sur la minimisation d'une fonctionnelle non convexe, non différentiable en dimension 1[END_REF] generalizes the one proposed in [START_REF] Buades | A review of image denoising algorithms, with a new one[END_REF], which corresponds to the case when F ℓ (resp. F n ) reduces to a Gaussian function with mean ℓ (resp. n). In the present work, we consider the foveated selfsimilarity measure recently introduced in [START_REF] Foi | Foveated self-similarity in nonlocal image filtering[END_REF], due to its better performance in denoising. This approach can be derived from ( 42) by setting F ℓ (resp. F n ) to a set of low-pass Gaussian filters whose variances increase as the spatial distance from the patch center ℓ (resp. n) grows.

For every ℓ ∈ {1, . . . , N }, the neighbourhood N ℓ is built according to the procedure described in [START_REF] Gilboa | Nonlocal linear image regularization and supervised segmentation[END_REF]. In practice, we limit the size of the neighbourhood, so that M (ℓ) ≤ M .

Simulation results

The purpose of this section is twofold. First, the quality of images reconstructed with our variational approach is evaluated for different choices of regularization constraints and comparisons are made with a state-of-the-art method. Secondly, the convergence speed of the proposed epigraphical technique is evaluated w.r.t. the direct methods.

In the following experiments, if not specified otherwise, the degradation matrix A is a decimated convolution which consists of a 3 × 3 uniform blur followed by a decimation which randomly deletes 60% of the pixels (N = 0.4 × N). The standard deviation of the additive white Gaussian noise is equal to σ = 10. Since we deal with natural images, the data range bounds are µ = 0 and µ = 255. For the smoothness constraint, we set Q = 11, Q = 5, δ = 35 and M = 14.

Extensive tests have been carried out on several standard images of different sizes. The SNR and SSIM [START_REF] Wang | Mean squared error: love it or leave it?[END_REF] results obtained by using the various previously introduced TV-like constraints are collected in Table 1. In addition, a comparison is performed between our method and the Gradient Projection for Sparse Reconstruction (GPSR) method [START_REF] Figueiredo | Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems[END_REF], which also relies on a variational approach. The constraint bound for both methods was hand-tuned in order to achieve the best SNR values. The best results are highlighted in bold. A visual comparison is made in Figure 1, where two representative images are displayed. These results demonstrate the interest of considering non-local smoothness measures. Non-Local TV with ℓ 1,2norm indeed proves to be the most effective constraint with gains in SNR and SSIM (up to 1.82 dB and 0.042) with respect to ℓ 2 -TV, which in turn outperforms GPSR. The better performance of NLTV seems to be related to its ability to better preserve edges and thin structures present in images. In terms of computational time, GPSR is about twice faster than ℓ 2 -NLTV. Our codes were developed in MATLAB 7 , the operators F and F ⊤ being implemented in C using mex files.

In order to complete the analysis, we report in Figure 2 SNR/SSIM comparisons between ℓ 2 -NLTV and ℓ 2 -TV for different blur and noise configurations. These plots show that ℓ 2 -NLTV provides better results regardless of the degradation conditions.

In the second part of the section, we focus on the convergence speed of epigraph and direct methods. All the results refer to the culicoidae image cropped at 256 × 256 (N = 256 2 ), since a similar behaviour was observed for other images. The stopping criterion is set to: x [i+1]x [i] ≤ 10 -4 x [i] . For the ℓ 1,p -ball projectors needed by the direct method, we used the software publicly available on-line [START_REF] Van Den | Probing the Pareto frontier for basis pursuit solutions[END_REF][START_REF] Quattoni | An efficient projection for ℓ 1,∞ regularization[END_REF]. • Total Variation -Tables 2 and3 report a comparison between the direct and epigraphical methods for different values of η and for ℓ 2 -TV and ℓ ∞ -TV, respectively. For more readability, these are expressed as a multiplicative factor of the ℓ p -TV-semi-norm of the original image. It can be noticed that the parameter η influences both the quality of the results and the convergence speed. For the ℓ 1,2 -norm, the epigraphical method is 3.5 faster than the direct one. For the ℓ 1,∞ -norm, it is 65 times faster.

Figs. 3-a and 3-b show the relative error ∞] as a function of the computational time, where x [∞] denotes the solution computed after a large number of iterations (typically, 5000 iterations). The dashed line presents the results for the direct method while the solid line refers to the epigraphical one. These plots show that the epigraphical approach is faster despite it requires more iterations in order to converge. This can be explained by the computational cost of the subiterations required by the direct projections onto the ℓ 1,p -ball. • ℓ 2 -Non-Local Total Variation -Table 4 reports the results for ℓ 2 -NLTV. Different combinations of neighbourhood size Q and bound value η are considered. To set the weights, the first TV estimate is computed with η = 0.8. The best SNR improvement (1.82 dB over ℓ 2 -TV) is observed when a relatively small neighbourhood is used (Q = 11). This behaviour was already observed in [START_REF] Gilboa | Nonlocal linear image regularization and supervised segmentation[END_REF]. It may be related to the bias-variance trade-off commonly encountered in Non-Local filters [START_REF] Lebrun | Secrets of image denoising cuisine[END_REF][START_REF] Kervrann | Local adaptivity to variable smoothness for exemplar-based image regularization and representation[END_REF].

x [i] -x [∞] / x [
In Figure 3-c, a plot similar to those in Figs. 3-a and3-b show the convergence profile. The epigraphical method requires about the same number of iterations as the direct one in order to converge. This results in a time reduction (1.8 times), as a single iteration of the epigraphical method is faster than one iteration of the direct method.

• ℓ ∞ -Non-Local Total Variation -Table 5 and Figure 3-d show the results obtained with the ℓ ∞ -NLTV constraint. Note that ℓ ∞ -NLTV requires more iterations than ℓ 2 -NLTV in order to converge. In what concerns the convergence speed, the epigraphical method is 19 times faster. 

Conclusions

We have proposed a new epigraphical technique to solve constrained convex optimization problems with the help of proximal algorithms. In this paper (Part I), our attention has been turned to block-sparsity constraints based on weighted ℓ 1,p -norms with p ∈ {2, +∞}. The obtained results demonstrate the better performance of non-local measures in terms of image quality. Our results also show that the ℓ 1,2 -norm has to be preferred over the ℓ 1,∞ -norm for image recovery problems. However, it would be interesting to consider alternative applications of ℓ 1,∞ -norms such as regression problems [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF][START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF]. Furthermore, the experimental part indicates that the epigraphical method converges faster than the approach based on the direct computation of the projections via standard iterative solutions. Full implementations in C of the proposed algorithms and parallelization of our codes should even allow us to accelerate them [START_REF] Gaetano | Parallel implementations of a disparity estimation algorithm based on a proximal splitting method[END_REF]. Note that, although the considered application involves two constraint sets, the proposed approach can handle an arbitrary number of convex constraints. In a companion paper (Part II), we will show that the epigraphical approach can also be used to develop approximation methods for dealing with more general convex constraints. Comparison between epigraphical method (solid line) and direct method (dashed line):

x [i] -x [∞]
x [∞] in dB vs time A Proof of the Proposition 2.4 

where the Lagrange multiplier α is such that

α(ϕ(p) -θ) = 0. ( 46 
)
Since the value α = 0 is not allowable (since it would lead to p = y and θ = ζ), it can be deduced from the above equality that ϕ(p) = θ. In addition, differentiating the Lagrange functional in (45) w.r.t. ξ yields

ϕ(p) = θ = ζ + α ≥ ζ. (47) 

  (a) Culicoidae. (b) Degraded. (c) Zoom. (d) GPSR, SNR: 17.03 dB. (e) Lena. (f) Degraded. (g) Zoom. (h) GPSR, SNR: 20.26 dB. (i) ℓ 2 -TV, SNR: 20.80 dB. (j) ℓ∞-TV, SNR: 20.25 dB. (k) ℓ 2 -NLTV, SNR: 22.62 dB. (l) ℓ∞-NLTV, SNR: 22.38 dB. (m) ℓ 2 -TV, SNR: 23.18 dB. (n) ℓ∞-TV, SNR: 22.77 dB. (o) ℓ 2 -NLTV, SNR: 24.18 dB.(p) ℓ∞-NLTV, SNR: 24.14 dB.

Figure 1 :

 1 Figure 1: Image restoration examples (noise parameters: blur = 3 × 3, σ = 10, decimation = 60%)

Figure 2 :

 2 Figure 2: SNR and SSIM values for ℓ 2 -NLTV (vertical axes) and ℓ 2 -TV (horizontal axes), for the culicoidae image. The plots show the results obtained for σ ∈ {5, 10, . . . , 50}, where lower SNR or SSIM values correspond to higher σ values. No decimation is applied in this experiment.

  ℓ∞-NLTV.

Figure 3 :

 3 Figure3: Comparison between epigraphical method (solid line) and direct method (dashed line):x [i] -x [∞]

For

  every (y, ζ) ∈ H × R, let (p, θ) = P epi ϕ (y, ζ). If ϕ(y) ≤ ζ, then p = y and θ = ζ = max{ϕ(p), ζ}. shows that (12) holds. Let us now consider the case when ϕ(y) > ζ. From the definition of the projection, we get (p, θ) = argmin (u,ξ)∈epi ϕ uy 2 + (ξζ) 2 . (44) From the Karush-Kuhn-Tucker theorem [97, Theorem 5.2], 8 there exists α ∈ [0, +∞[ such that (p, θ) = argmin ζ) 2 + α(ϕ(u)ξ)

Table 1 :

 1 SNR dB and SSIM results of our method and GPSR (noise parameters: blur = 3 × 3, σ = 10, 25.47 -0.823 24.70 -0.808 26.31 -0.836 25.87 -0.823 22.14 -0.734 Man 256 2 19.24 -0.725 18.96 -0.714 19.66 -0.741 19.51 -0.736 17.11 -0.629 Peppers 512 2 23.69 -0.801 23.25 -0.786 24.80 -0.829 24.45 -0.813 21.94 -0.709 Barbara 512 2 16.74 -0.653 16.64 -0.642 17.02 -0.673 16.99 -0.652 15.97 -0.562 Hill 512 2 22.18 -0.723 21.89 -0.715 22.55 -0.735 22.43 -0.733 20.21 -0.637 Culicoidae 1024 2 20.84 -0.855 20.49 -0.812 23.25 -0.885 22.57 -0.810 17.19 -0.725

	decimation = 60%)						
	SNR (dB) -SSIM	N	ℓ 2 -TV	ℓ ∞ -TV	ℓ 2 -NLTV	ℓ ∞ -NLTV	gpsr
	Culicoidae	256 2	20.80 -0.855 20.25 -0.853 22.62 -0.897 22.38 -0.897	17.03 -0.738
	Lena	256 2	23.18 -0.783 22.77 -0.769 24.18 -0.812 24.14 -0.812	20.26 -0.678
	Cameraman	256 2	20.06 -0.774 19.68 -0.755 20.71 -0.801 20.17 -0.743	17.92 -0.673
	Boat	256 2	20.25 -0.739 19.74 -0.718 21.13 -0.770 20.77 -0.741	18.06 -0.649
	House	256 2					

Table 2 :

 2 Results for the ℓ 2 -TV constraint and different values of η

	η	SNR (dB) -SSIM	direct	epigraph.	speed up
			# iter. sec.	# iter. sec.	
	0.6	19.70 -0.839	116 5.74	146 2.23	2.58
	0.7	20.62 -0.862	132 7.14	151 2.29	3.11
	0.8	20.80 -0.855	160 9.17	171 2.59	3.54
	0.9	20.45 -0.826	195 11.95	196 2.98	4.01

Table 3 :

 3 Results for the ℓ ∞ -TV constraint and different values of η

	η	SNR (dB) -SSIM	direct	epigraph.	speed up
			# iter. sec.	# iter. sec.	
	0.6	19.58 -0.839	195 373.84	230 6.21	60.22
	0.7	20.25 -0.853	206 417.71	231 6.39	65.34
	0.8	20.24 -0.835	233 486.17	245 6.86	70.82
	0.9	19.80 -0.800	263 551.03	267 7.44	74.06

Table 4 :

 4 Results for the ℓ 2 -NLTV constraint and some values of η and Q

	η	SNR (dB) -SSIM	direct	epigraph.	speed up
			# iter. sec. # iter. sec.	
		Neighbourhood size: Q = 3	
	0.7	22.26 -0.895	70 5.82	77 3.07	1.90
	0.8	22.41 -0.893	72 6.39	75 3.00	2.13
	0.9	22.06 -0.875	88 7.97	89 3.58	2.23
		Neighbourhood size: Q = 5	
	0.7	22.44 -0.900	70 7.13	74 4.37	1.63
	0.8	22.58 -0.898	72 7.85	75 4.44	1.77
	0.9	22.25 -0.880	87 9.71	88 5.24	1.85
		Neighbourhood size: Q = 11	
	0.7	22.50 -0.901	72 7.52	76 4.51	1.67
	0.8	22.61 -0.897	75 8.21	78 4.64	1.77
	0.9	22.27 -0.879	89 9.83	91 5.41	1.82

Table 5 :

 5 Results for the ℓ ∞ -NLTV constraint and some values of η and Q

	η	SNR (dB) -SSIM	direct	epigraph.	speed up
			# iter. sec.	# iter. sec.	
		Neighbourhood size: Q = 5	
	0.6	21.78 -0.889	229 766.21	251 25.61	29.92
	0.7	22.28 -0.894	213 653.31	226 22.87	28.56
	0.8	22.10 -0.876	207 596.90	216 21.89	27.26
		Neighbourhood size: Q = 5	
	0.6	21.92 -0.894	231 914.03	252 43.32	21.10
	0.7	22.38 -0.897	219 749.32	232 39.73	18.86
	0.8	22.21 -0.880	212 673.60	224 38.05	17.70
		Neighbourhood size: Q = 11	
	0.6	21.95 -0.894	236 940.38	256 43.75	21.49
	0.7	22.38 -0.897	222 760.49	234 39.84	19.09
	0.8	22.20 -0.879	216 689.07	227 38.80	17.76

When ϕ is Gâteaux-differentiable at y, ∂ϕ(y) = {∇ϕ(y)} where ∇ϕ(y) is the gradient of ϕ at y.

Note that the inequality in[START_REF] Combettes | A proximal decomposition method for solving convex variational inverse problems[END_REF] can be also replaced by an equality although it makes little difference in our approach.

This means that there exist distinct indices m 1 , . . . , m M (ℓ) in {1, . . . , K} such that, for every y = (y (k) ) 1≤k≤K ∈ R K , B ℓ y = (y (m j ) ) 1≤j≤M (ℓ) .

In this case, the constraint in[START_REF] Jacques | A panorama on multiscale geometric representations, intertwining spatial, directional and frequency selectivity[END_REF] reduces to a sum of absolute values.

R2011b version on an Intel Xeon CPU at 2.80 GHz and

GB of RAM.

By considering u 0 ∈ dom ϕ and ξ 0 > ϕ(u 0 ), the required qualification condition is obviously satisfied.

Hence, (p, θ) given by [START_REF] Hiriart-Urruty | Convex analysis and minimization algorithms, Part I : Fundamentals[END_REF] is such that p = argmin u∈H ϕ(u)≥ζ uy 2 + (ϕ(u)ζ) 2 (48)

Furthermore, as ϕ(y) > ζ, we have inf u∈H ϕ(u)≤ζ uy 2 = P lev ≤ζ ϕ (y) -

where we have used the fact that P lev ≤ζ ϕ (y) belongs to the boundary of lev ≤ζ ϕ which is equal to u ∈ H ϕ(u) = ζ since ϕ is lower-semicontinuous and dom ϕ is open [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]Corollary 8.38]. We have then

Altogether, ( 48) and ( 51) lead to

which is equivalent to (12) since

B Proof of the Proposition 2.5

Since (max{ϕζ, 0}) 2 is an even function, prox 1 2 (max{ϕ-ζ,0}) 2 is an odd function [START_REF] Chaux | A variational formulation for frame-based inverse problems[END_REF]Remark 4.1(ii)]. In the following, we thus focus on the case when y ∈ ]0, +∞[.

where, according to [98, Corollary 2.5], p ≥ This allows us to deduce that = χ 0 .

Let us now focus on the case when

yields p = y. On the other hand if y > (ζ/τ ) 1/β , as the proximity operator of a function from R to R is continuous and increasing [START_REF] Combettes | Proximal thresholding algorithm for minimization over orthonormal bases[END_REF]Proposition 2.4]

) allows us to deduce that p is the unique value in [(ζ/τ ) 1/β , +∞[ satisfying [START_REF] Combettes | A block-iterative surrogate constraint splitting method for quadratic signal recovery[END_REF]. It can be concluded that, when ζ ∈]0, +∞[, [START_REF] Kowalski | Beyond the narrowband approximation: Wideband convex methods for under-determined reverberant audio source separation[END_REF] holds.

C Proof of the Proposition 2.6

Let us notice that 1 2 (max{τ

According to [25, Proposition 2.7], for every y ∈ H,

where α = prox ψ dC (y) dC (y)

. In addition, we have 

E Proof of the Proposition 2.8

The function ϕ belongs to Γ 0 (R) since for every m ∈ {1, . . . , M }, v → max{τ (m) (ν (m)v), 0} is finite convex and (•) 2 is finite convex and increasing on [0, +∞[. In addition, ϕ is differentiable and it is such that, for every v ∈ R and every k ∈ {1, . . . , M + 1},

For every y ∈ R, as p = prox ϕ (y) is characterized by [START_REF] Pustelnik | Parallel algorithm and hybrid regularization for dynamic PET reconstruction[END_REF], there exists m ∈ {1, . . . , M + 1} such that ν (m-1) < p ≤ ν (m) and

This yields [START_REF] Pesquet | A parallel inertial proximal optimization method[END_REF], and we have : [START_REF] Combettes | Signal recovery by proximal forward-backward splitting[END_REF] ⇔ ν (m-1) < p ≤ ν (m) . The uniqueness of m ∈ {1, . . . , M + 1} satisfying this inequality follows from the uniqueness of prox ϕ (y).

F Proof of the Proposition 3.2

For every (y (ℓ) , ζ (ℓ) ) ∈ R M (ℓ) × R, in order to determine P epi h (ℓ) (y (ℓ) , ζ (ℓ) ) we have to find min

. . .

For every θ (ℓ) ∈ [0, +∞[, the inner minimization is achieved when, for every j ∈ {1, . . . , M (ℓ) }, p (ℓ,m) is the projection of y (ℓ,m) onto [-τ (ℓ,m) θ (ℓ) , τ (ℓ,m) θ (ℓ) ], which is given by [START_REF] Kose | Filtered variation method for denoising and sparse signal processing[END_REF]. Then, the problem reduces to minimize

which is also equivalent to calculate prox ϕ+ι [0,+∞[ (ζ (ℓ) ), where ϕ is such that

By using now the fact that prox ϕ+ι [0,+∞[ = P [0,+∞[ •prox ϕ ([24, Proposition 12]) and by invoking Proposition 2.8, the expression of the optimal solution in (35) follows.