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Abstract

We propose a proximal approach to deal with convex optimization problems involving nonlinear
constraints. A large family of such constraints, proven to be effective in the solution of inverse problems,
can be expressed as the lower level set of a sum of convex functions evaluated over different, but
possibly overlapping, blocks of the signal. For this class of constraints, the associated projection operator
generally does not have a closed form. We circumvent this difficulty by splitting the lower level set into
as many epigraphs as functions involved in the sum. A closed half-space constraint is also enforced, in
order to limit the sum of the introduced epigraphical variables to the upper bound of the original lower
level set.

In this paper, we focus on a family of constraints involving linear transforms of ℓ1,p balls. Our main
theoretical contribution is to provide closed form expressions of the epigraphical projections associated
with the Euclidean norm (p = 2) and the sup norm (p = +∞). The proposed approach is validated in the
context of image restoration with missing samples, by making use of TV-like constraints. Experiments
show that our method leads to significant improvements in term of convergence speed over existing
algorithms for solving similar constrained problems.

1 Introduction

As an offspring of the wide interest in frame representations and sparsity promoting techniques for data
recovery, there has been an emergence of proximal methods to efficiently solve convex optimization problems
arising in inverse problems. Examples of applications of these methods can be found in f-MRI reconstruction
[1, 2], satellite image restoration [3, 4], microscopy image deconvolution [5, 6], computed tomography [7],
Positron Emission Tomography [8, 9], texture-geometry decomposition [10, 11, 12], machine learning [13, 14],
stereo vision [15], and audio processing [16, 17]. Proximal algorithms have gained much popularity in solving
large-size optimization problems involving non-differentiable (or even non finite) functions. One of the main
advantages of these methods is that they are amenable to parallel implementations. For a survey on proximal
algorithms and their applications, the reader is referred to [18, 13]. Note also that some of these methods
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CNRS 5141, 75014 Paris, France (e-mail: first.last@telecom-paristech.fr).

†N. Pustelnik is with ENS Lyon, Laboratoire de Physique, UMR CNRS 5672, F69007 Lyon, France (e-mail:
nelly.pustelnik@ens-lyon.fr).
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are closely related to augmented Lagrangian approaches [19, 20, 21]. Even if proximal algorithms and the
associated convergence properties have been deeply investigated [22, 23, 24, 25], some questions persist in
their use for solving inverse problems. A first question is: how can we set the parameters serving to enforce
the regularity of the solution in an automatic way? Another question is related to the selection of the most
appropriate algorithm within the class of proximal algorithms for a given application. This also raises the
question of the computation of the proximity operators associated with the different functions involved in
the criterion. Various strategies were proposed in order to address the first question [26, 27, 28, 29, 30], but
the computational cost of these methods is often high, especially when several regularization parameters
have to be set. Alternatively, it has been recognized for a long time that incorporating constraints directly
on the solutions [31, 32, 33, 34, 35] instead of considering regularized functions may often facilitate the
choice of the involved parameters. Indeed, in a constrained formulation, the constraint bounds are usually
related to some physical properties of the target solution or some knowledge of the degradation process,
e.g. the noise statistical properties. Note also that there exist some conceptual Lagrangian equivalences
between regularized solutions to inverse problems and constrained ones, although some caution should be
taken when the regularization functions are nonsmooth (see [36] where the case of a single regularization
parameter is investigated).

In this context, the objective of this paper is to provide an answer to the second question, that is to
propose efficient parallel algorithms for solving the following constrained convex optimization problem:

Problem 1.1.

minimize
x∈H

R∑

r=1

gr(Trx) s. t.






H1x ∈ C1,
...

HSx ∈ CS ,

(1)

where

(i) for every r ∈ {1, . . . , R}, Tr is a bounded linear operator from a real Hilbert space H to R
Nr ;

(ii) for every r ∈ {1, . . . , R}, gr is a proper lower-semicontinuous convex function from R
Nr to ]−∞,+∞];

(iii) for every s ∈ {1, . . . , S}, Hs is a bounded linear operator from H to R
Ms ;

(iv) for every s ∈ {1, . . . , S}, Cs is a nonempty closed convex subset of RMs .

A large number of inverse problems can be formulated under the form of Problem 1.1. A classical
application example is image recovery from blurred and noisy observations. Let z denote the vector of
observed data. When the noise is assumed to be zero-mean additive white Gaussian, the restored data can
be obtained by solving Problem 1.1 where R = 2, S = 0, g1 = λ‖ · ‖1 with λ ∈ ]0,+∞[, T1 is an analysis
frame operator [37] allowing us to sparsify signal x, g2 = ‖ · −z‖2, and T2 denotes the matrix associated
with the degradation blur [38, 23]. On the other hand, a constrained formulation of the same restoration
problem leads to Problem 1.1 with R = 1, S = 1, g1 = ‖ · ‖1, T1 is the same frame operator as previously,
and

(∀x ∈ H) H1x ∈ C1 ⇔ ‖H1x− z‖2 ≤ η1.

Here, H1 denotes the matrix associated with the degradation blur, and η1 is a positive constant which is
typically chosen proportional to the noise variance. This specific constraint formulation has been considered
in [39].

The present work aims at designing efficient methods in order to deal with Problem 1.1 when the convex
constraints are expressed as follows: for every s ∈ {1, . . . , S},

(∀x ∈ H) Hsx ∈ Cs ⇔ hs(Hsx) ≤ ηs, (2)
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where ηs ∈ R and hs is a proper lower-semicontinuous function from R
Ms to ]−∞,+∞].

The paper is organized as follows. In Section 2, we motivate the choice of proximal tools and recall
some of their theoretical properties. In addition, closed form expressions for specific proximity operators are
derived. Then, in order to deal with a constraint expressed under the general form (2), a splitting approach
involving an epigraphical projection is proposed. This epigraphical projection technique is described in
detail in Section 3. Experiments in the context of image reconstruction are presented in Section 4. Finally,
some conclusions are drawn in Section 5.

Notation: Let H be a real Hilbert space endowed with the norm ‖ · ‖ and the scalar product 〈· | ·〉. Γ0(H)
denotes the set of proper lower-semicontinuous convex functions fromH to ]−∞,+∞]. Recall that a function
ϕ : H → ]−∞,+∞] is proper if its domain domϕ =

{
y ∈ H

∣∣ ϕ(y) < +∞
}
is nonempty. The epigraph of

ϕ ∈ Γ0(H) is the nonempty closed convex subset of H× R defined as epiϕ =
{
(y, ζ) ∈ H × R

∣∣ ϕ(y) ≤ ζ
}

and the lower level set of ϕ at height ζ ∈ R is the nonempty closed convex subset of H defined as lev≤ζ ϕ ={
y ∈ H

∣∣ ϕ(y) ≤ ζ
}
. A subgradient of ϕ at y ∈ H is an element of its subdifferential defined as ∂ϕ(y) ={

t ∈ H
∣∣ (∀u ∈ H) ϕ(u) ≥ ϕ(y) + 〈t | u− y〉

}
.1 The indicator function ιC ∈ Γ0(H) of a nonempty closed

convex subset C of H is given by

(∀y ∈ H) ιC(y) =

{
0, if y ∈ C,

+∞, otherwise.
(3)

The relative interior of a subset C of H is denoted by riC.

2 Proximal tools

2.1 From gradient descent to proximal algorithms

The first methods for finding a solution to an inverse problem were restricted to the use of a differentiable cost
function [40], i.e. Problem 1.1 where S = 0 and, for every r ∈ {1, . . . , R}, gr denotes a differentiable function.
In this context, gradient-based algorithms, e.g. nonlinear conjugate gradient or quasi-Newton methods, are
popular (see [41] and references therein for recent developments concerning these approaches). However, in
order to model additional properties, sparsity promoting penalizations or hard constraints (S ≥ 1) may be
introduced and the diffentiability property is not satisfied anymore. One way to circumvent this difficulty is
to resort to smart approximations in order to smooth the involved non-differentiable functions [42, 43, 44].
If one wants to address the original nonsmooth problem without introducing approximation errors, one may
apply some specific algorithms e.g. Gauss-Seidel or Uzawa methods, the convergence of which is guaranteed
under restrictive assumptions [45]. Interior point methods [46] can also be employed for small to medium
size optimization problems.

On the other hand, in order to solve convex feasibility problems, i.e. to find a vector belonging to the
intersection of convex sets (Problem 1.1 with R = 0), iterative projection methods were developed. The
projection onto convex sets algorithm (POCS) is one of the most popular approach to solve data recovery
problems [47, 48, 31, 49]. A drawback of POCS is that it is not well-suited for parallel implementations.
The Parallel Projection Method (PPM) and Method of Parallel Projections (MOPP) are variants of POCS
making use of parallel projections. Moreover, these algorithms were designed to efficiently solve inconsistent
feasibility problems (when the intersection of the convex set is empty). Thorough comparisons between
projection methods have been performed in [50, 51].

1When ϕ is Gâteaux-differentiable at y, ∂ϕ(y) = {∇ϕ(y)} where ∇ϕ(y) is the gradient of ϕ at y.
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Computing the projection PC onto a nonempty closed convex subset C of a real Hilbert space H requires
to solve a constrained quadratic minimization problem:

(∀y ∈ H) PC(y) = argmin
u∈C

‖u− y‖. (4)

The distance to C of every point y ∈ H is then given by dC(y) = ‖y − PC(y)‖. However, it turns out
that a closed form expression of the solution to (4) is available in a limited number of instances. One such
well-known example is the projection onto a closed half-space:

Proposition 2.1. [44] Let η ∈ R, let t ∈ H\{0}, and let C = {u ∈ H | 〈u | t〉 ≤ η}. The projection of y ∈ H
onto C is expressed as

PC(y) =




y, if 〈y | t〉 ≤ η,

y +
η − 〈y | t〉

‖t‖2 t, otherwise.
(5)

When an expression of the direct projection is not available, the convex set C can be approximated by
a half-space, which leads to the concept of subgradient projection.

Proposition 2.2. [44] Let η ∈ R and let ϕ ∈ Γ0(H). Suppose that C = lev≤η ϕ 6= ∅. Let y ∈ H and let
t ∈ ∂ϕ(y) be a subgradient of ϕ at y. Then, C is a subset of the half-space

Cyη =
{
u ∈ H

∣∣ 〈u− y | t〉 ≤ η − ϕ(y)
}
. (6)

If t 6= 0, the projection of y onto Cyη is a subgradient projection of y ∈ H onto C.

The subgradient projection plays a key role in Polyak algorithm that alternates a subgradient projection
and an exact projection [52] (see also [53] for alternative projected subgradient approaches). An efficient
block iterative surrogate splitting method was proposed in [54] in order to solve Problem 1.1 when, for every
r ∈ {1, . . . , R}, gr = ‖ ·−zr‖2 where zr ∈ R

Nr . A main limitation of this method is that the global objective
function must be strictly convex. For recent works about subgradient projection methods, the readers may
refer to [55, 56].

A way to overcome this difficulty consists of considering proximal approaches. The key tool in these
methods is the proximity operator [57] of a function ϕ ∈ Γ0(H), defined as

(∀y ∈ H) proxϕ(y) = argmin
u∈H

1

2
‖u− y‖2 + ϕ(u). (7)

The proximity operator generalizes the notion of projection onto a nonempty closed convex subset C of H
in the sense that proxιC = PC . For every y ∈ H, p = proxϕ(y) is uniquely defined through the inclusion

y − p ∈ ∂ϕ(p). (8)

Proximity operators enjoy many additional interesting properties. Some of them are recalled next.

Example 2.3. [23] Let τ ∈ ]0,+∞[, β ∈ [1,+∞[, and set

ϕ : R → ]−∞,+∞] : ξ 7→ τ |ξ|β . (9)

Then, for every ξ ∈ R, proxϕ(ξ) is given by





sign(ξ)max{|ξ| − τ, 0}, if β = 1,

ξ + 4τ
3 . 21/3

(
(ǫ − ξ)1/3 − (ǫ+ ξ)1/3

)
, if β = 4

3 ,

ξ + 9τ2 sign(ξ)
8

(
1−

√
1 + 16|ξ|

9τ2

)
, if β = 3

2 ,
ξ

1+2τ , if β = 2,

sign(ξ)

√
1+12τ |ξ|−1

6τ , if β = 3,

(10)
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where ǫ =
√
ξ2 + 256τ3/729 and sign is the signum function.

It can be noticed that the proximity operator associated with β = 1 reduces to a soft thresholding [58].

The class of proximal methods includes primal algorithms [59, 23, 24, 60, 61, 62, 63, 18, 21] and primal-
dual algorithms [64, 65, 66, 67, 68, 69, 70]. Primal algorithms generally require to compute inverses of

some linear operators (typically,
∑R
r=1 T

∗
r Tr +

∑S
s=1H

∗
sHs), while primal-dual ones only require to com-

pute (Tr)1≤r≤R and (Hs)1≤s≤S , and their adjoints (T ∗
r )1≤r≤R and (H∗

s )1≤s≤S . Consequently, primal-dual
methods are often easier to implement than primal ones, but their convergence may be slower [71, 72].

2.2 Proximity operators: new closed forms

The projection onto a convex set such as defined in (2) often is non trivial. In Section 3, we will show that
this problem can be solved by resorting to a set of epigraphical projections which are easier to compute.
The key point is that epigraphical projections are closely related to proximity operators. In the following,
we provide some results that will be useful for the calculation of the projection onto the epigraph of a convex
function (all the proofs are provided in the appendix).

Proposition 2.4. Let H be a real Hilbert space and let H×R be equipped with the standard product space
norm. Let ϕ be a function in Γ0(H) such that domϕ is open. The projector Pepiϕ onto the epigraph of ϕ
is given by: (

∀(y, ζ) ∈ H× R
)

Pepiϕ(y, ζ) = (p, θ) (11)

where {
p = prox1

2 (max{ϕ−ζ,0})2(y),

θ = max{ϕ(p), ζ}.
(12)

Note that alternative characterizations of the epigraphical projection can be found in [73, Proposi-
tions 9.17, 28.28].

Let ϕ be a function in Γ0(H) such that domϕ is open. From Proposition 2.4, we see that
prox 1

2 (max{ϕ−ζ,0})2 with ζ ∈ R plays a prominent role in the calculation of the projection onto epiϕ. We
now provide examples of functions ϕ for which this proximity operator admits a simple form.

Proposition 2.5. Let β ∈ [1,+∞[, τ ∈ ]0,+∞[. Assume that

(∀y ∈ R) ϕ(y) = τ |y|β . (13)

If ζ ∈]−∞, 0], then for every y ∈ R

prox 1
2 (max{ϕ−ζ,0})2(y) =






sign(y)

1 + τ2
max{|y|+ τζ, 0}, if β = 1,

sign(y)χ0, if β > 1,
(14)

where χ0 is the unique solution on [0,+∞[ of the equation

βτ2χ2β−1 − βτζχβ−1 + χ = |y|. (15)

If ζ ∈ ]0,+∞[, then, for every y ∈ R,

prox 1
2 (max{ϕ−ζ,0})2(y) =

{
y, if |y| ≤

(
ζ/τ

)1/β
,

sign(y)χ(ζ/τ)1/β , otherwise,
(16)

where χ(ζ/τ)1/β is the unique solution on [( ζ
τ
)1/β,+∞[ of (15).
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Note that, when β is a rational number, (15) is equivalent to a polynomial equation for which either
closed form solutions are known or standard numerical solutions exist.

Proposition 2.6. Let H be a real Hilbert space and let C be a nonempty convex subset of H. Let β ∈ [1,+∞[,
τ ∈ ]0,+∞[, and ζ ∈ R. Then, for every y ∈ H,

prox 1
2 (max{τdβC−ζ,0})2(y) =

{
y, if y ∈ C,

αy + (1 − α)PC(y), otherwise,
(17)

where α =
prox 1

2
(max{τ |·|β−ζ,0})2

(

dC(y)
)

dC(y)
and the expression of prox 1

2 (max{τ |·|β−ζ,0})2 is provided by Proposition

2.5.

The following result is a consequence of the previous one:

Corollary 2.7. Let H be a real Hilbert space. Assume that

(∀y ∈ H) ϕ(y) = τ‖y − z‖ (18)

where z ∈ H, ζ ∈ R and τ ∈ ]0,+∞[. Then, for every y ∈ R,

prox 1
2 (max{ϕ−ζ,0})2(y) =






z, if ‖y − z‖ < −τζ,
y, if ‖y − z‖ < ζ

τ ,

z + α(y − z), otherwise,

(19)

where α = 1
1+τ2

(
1 + τζ

‖y−z‖

)
.

Another result which will be used is the following:

Proposition 2.8. Let M ∈ N
∗ and let ϕ be defined as

(∀y ∈ R) ϕ(y) =
1

2

M∑

m=1

(
max{τ (m)(ν(m) − y), 0}

)2
(20)

where (τ (1), . . . , τ (M))⊤ ∈ R
M , and (ν(1), . . . , ν(M))⊤ ∈ R

M is such that ν(1) ≤ . . . ≤ ν(M). Set ν(0) = −∞
and ν(M+1) = +∞. Then, ϕ ∈ Γ0(R), and for every y ∈ R,

proxϕ(y) =
y +

∑m−1
m=1 ν

(m)(τ
(m)
− )2 +

∑M
m=m ν

(m)(τ
(m)
+ )2

1 +
∑m−1

m=1(τ
(m)
− )2 +

∑M
m=m(τ

(m)
+ )2

, (21)

where, for every m ∈ {1, . . . ,M}, τ (m)
− = min(τ (m), 0) and τ

(m)
+ = max(τ (m), 0), and m is the unique integer

in {1, . . . ,M + 1} such that

ν(m−1) <
y +

∑m−1
m=1 ν

(m)(τ
(m)
− )2 +

∑M
m=m ν

(m)(τ
(m)
+ )2

1 +
∑m−1

m=1(τ
(m)
− )2 +

∑M
m=m(τ

(m)
+ )2

≤ ν(m) (22)

(with the convention
∑0
m=1 · =

∑M
m=M+1 · = 0).
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3 Projection computation

We now turn our attention to convex sets for which the associated projection does not have a closed form,
and we show that under some appropriate assumptions, it is possible to circumvent this difficulty. Let C
denote such a nonempty closed convex subset of RM and assume that, for every y ∈ R

M ,

y ∈ C ⇔ h(y) =
L∑

ℓ=1

h(ℓ)(y(ℓ)) ≤ η (23)

where η ∈ R. Hereabove, the generic vector y has been decomposed into blocks of coordinates as follows

y = [(y(1))⊤︸ ︷︷ ︸
sizeM(1)

, . . . , (y(L))⊤︸ ︷︷ ︸
sizeM(L)

]⊤ (24)

and, for every ℓ ∈ {1, . . . , L}, y(ℓ) ∈ R
M(ℓ)

and h(ℓ) is a function in Γ0(R
M(ℓ)

) such that ri(domh(ℓ)) 6= ∅.
Actually, any closed convex subset C can be expressed in this way by setting η = 0, L = 1 and h = dC .

By introducing now the auxiliary vector ζ =
(
ζ(ℓ)

)
1≤ℓ≤L

∈ R
L, Condition (23) can be equivalently

rewritten as2 




L∑

ℓ=1

ζ(ℓ) ≤ η,

(∀ℓ ∈ {1, . . . , L}) h(ℓ)(y(ℓ)) ≤ ζ(ℓ).

(25)

(26)

Let us now introduce the closed half-space of RL defined as

V =
{
ζ ∈ R

L
∣∣ 1⊤Lζ ≤ η

}
, (27)

with 1L = (1, . . . , 1)⊤ ∈ R
L, and the closed convex set

E =
{
(y, ζ) ∈ R

M × R
L
∣∣ (∀ℓ ∈ {1, . . . , L}) (y(ℓ), ζ(ℓ)) ∈ epih(ℓ)

}
. (28)

Then, Constraint (25) means that ζ ∈ V , whereas Constraint (26) is equivalent to (y, ζ) ∈ E. In other
words, the constraint set C can be split into the two constraint sets V and E provided that L additional
scalar variables (ζ(ℓ))1≤ℓ≤L are introduced in the original optimization problem. Dealing with additional
constraints in the original problem is not a problem for proximal splitting algorithms as far as the projections
onto the associated constraint sets can be computed. An example of use of such an algorithm will be
described in detail in Section 4 .

In the present case, the projection onto V is given by Proposition 2.1, whereas the projection onto E is
given by

(∀(y, ζ) ∈ R
M × R

L) PE(y, ζ) = (p, θ) (29)

where θ = (θ(ℓ))1≤ℓ≤L, vector p ∈ R
M is blockwise decomposed as p = [(p(1))⊤, . . . , (p(L))⊤]⊤ like in (24),

and
(∀ℓ ∈ {1, . . . , L}) (p(ℓ), θ(ℓ)) = Pepih(ℓ)(y(ℓ), ζ(ℓ)). (30)

So, the problem reduces to the lower-dimensional problem of the determination of the projection onto the

convex subset epih(ℓ) of R
M(ℓ) × R for each ℓ ∈ {1, . . . , L}. By using the results in Section 2.2, these

projections can be shown to have a closed form expression in a number of cases of particular interest. Two
examples are now given:

2Note that the inequality in (25) can be also replaced by an equality although it makes little difference in our approach.
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• Euclidean norm functions of the form

(
∀y(ℓ) ∈ R

M(ℓ))
h(ℓ)(y(ℓ)) = τ (ℓ)‖y(ℓ)‖ (31)

where ℓ ∈ {1, . . . , L} and τ (ℓ) ∈ ]0,+∞[.

Proposition 3.1. Assume that h(ℓ) is given by (31).

Then, for every (y(ℓ), ζ(ℓ)) ∈ R
M(ℓ) × R,

Pepih(ℓ)(y(ℓ), ζ(ℓ)) =





(0, 0), if ‖y(ℓ)‖ < −τ (ℓ)ζ(ℓ),
(y(ℓ), ζ(ℓ)), if ‖y(ℓ)‖ < ζ(ℓ)

τ (ℓ) ,

α(ℓ)
(
y(ℓ), τ (ℓ)‖y(ℓ)‖

)
, otherwise,

(32)

where α(ℓ) =
1

1 + (τ (ℓ))2

(
1 +

τ (ℓ)ζ(ℓ)

‖y(ℓ)‖
)
.

The result of this proposition is a direct application of Proposition 2.4 and Corollary 2.7. As it will
be shown in Section 4, this result is useful to deal with multivariate sparsity constraints [74] or total
variation bounds [75, 76], since such constraints typically involve a sum of functions like (31) composed
with linear operators corresponding to analysis transforms or gradient operators.

• Infinity norms defined as: for every ℓ ∈ {1, . . . , L} and y(ℓ) = (y(ℓ,m))1≤m≤M(ℓ) ∈ R
M(ℓ)

,

h(ℓ)(y(ℓ)) = max

{
|y(ℓ,m)|
τ (ℓ,m)

| 1 ≤ m ≤M (ℓ)

}
. (33)

where (τ (ℓ,m))1≤m≤M(ℓ) ∈ ]0,+∞[
M(ℓ)

.

Proposition 3.2. Assume that h(ℓ) is given by (33). Let (ν(ℓ,m))1≤m≤M(ℓ) be a sequence of reals ob-

tained by sorting (|y(ℓ,m)|/τ (ℓ,m))1≤m≤M(ℓ) in ascending order, and set ν(ℓ,0) = −∞ and ν(ℓ,M
(ℓ)+1) =

+∞. Then, for every ζ(ℓ) ∈ R, (p(ℓ), θ(ℓ)) = Pepih(ℓ)(y(ℓ), ζ(ℓ)) is such that p(ℓ) = (p(ℓ,m))1≤m≤M(ℓ) ,
with

p(ℓ,m) =





y(ℓ,m), if |y(ℓ,m)| ≤ τ (ℓ,m)θ(ℓ),

τ (ℓ,m)θ(ℓ), if y(ℓ,m) > τ (ℓ,m)θ(ℓ),

−τ (ℓ,m)θ(ℓ), if y(ℓ,m) < −τ (ℓ,m)θ(ℓ),

(34)

θ(ℓ) =
max

(
ζ(ℓ) +

∑M(ℓ)

m=m ν
(ℓ,m)(τ (ℓ,m))2, 0

)

1 +
∑M(ℓ)

m=m(τ (ℓ,m))2
, (35)

and m is the unique integer in {1, . . . ,M (ℓ) + 1} such that

ν(ℓ,m−1) <
ζ(ℓ) +

∑M(ℓ)

m=m ν
(ℓ,m)(τ (ℓ,m))2

1 +
∑M(ℓ)

m=m(τ (ℓ,m))2
≤ ν(ℓ,m). (36)

The proof of this proposition is given in Appendix F.

Note that when τ (ℓ,m) ≡ 1, function h(ℓ) in (33) reduces to the standard infinity norm ‖ · ‖∞. This
proposition can be thus employed to efficient deal with ℓ1,∞ regularization which has attracted much
interest recently [77, 78, 79].
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4 Experimental Results

In this section, we provide numerical examples to illustrate the usefulness of the proposed epigraphical
projection method. The presented experiments focus on applications involving projections onto ℓ1,p-balls
where p ∈ {2,+∞}.

As already mentioned in Section 2.1, various algorithms can be used to solve non-smooth convex opti-
mization problems and would potentially benefit from the proposed epigraphical projection technique. In
this work, we will employ a primal-dual algorithm, namely the Monotone+Lipschitz Forward Backward
Forward (M+LFBF) algorithm, which was recently proposed in [68]. This proximal algorithm is able to
address a wide class of convex optimization problems without requiring any matrix inversion and it offers a
good performance and robustness to numerical errors. Its convergence is guaranteed (under weak conditions)
and its structure makes it suitable for implementation on highly parallel architectures.

4.0.1 Degradation model

Set H = R
N . Denote by x = (x(n))1≤n≤N ∈ R

N the signal of interest, and by z ∈ R
N an observation vector

such that z = Ax + b. It is assumed that A ∈ R
N×N is a linear operator, and b ∈ R

N is a realization
of a zero-mean white Gaussian noise. The recovery of x from the degraded observations is performed by
following a variational approach which aims at solving the following problem

minimize
x∈[µ,µ]N

‖Ax− z‖2 s. t.

L∑

ℓ=1

‖ΩℓBℓ F x‖p ≤ η, (37)

where (µ, µ) ∈ R
2 with µ ≤ µ, η is a real positive constant, and F ∈ R

K×N is the linear operator associated

with an analysis transform. Furthermore, for every ℓ ∈ {1, . . . , L}, Bℓ ∈ R
M(ℓ)×K is a block-selection linear

operator which selects a block of M (ℓ) data from its input vector.3 For every ℓ ∈ {1, . . . , L}, Ωℓ denotes an
M (ℓ) ×M (ℓ) diagonal matrix of real positive weights.

The term ‖Ax − z‖2 is the data fidelity corresponding to the minus log-likelihood of x. The bounds µ
and µ allow us to take into account the value range of each component of x.

The second constraint involved in Problem (37) conveys a smoothness condition. It exploits the fact
that natural signals usually exhibit a smooth spatial behaviour, except around some locations (e.g. object
edges in images) where discontinuities arise. The proposed constraint is based on a weighted ℓ1,p-norm,
where p ∈ {2,+∞}. The associated block-sparsity measure extends many of the smoothness terms used
in the literature. It reduces to the weighted ℓ1-norm criterion found in [80] when each block reduces to a
singleton (i.e. L = K, and, for every ℓ ∈ {1, . . . , L},M (ℓ) = 1 and Bℓ y = y(ℓ)).4 It captures the ℓ1,2 criteria
present in [75, 81, 82, 83] when p = 2. It matches the ℓ1,∞ criterion proposed in [78] when p = +∞.

Let us define Λ = [B⊤
1 Ω1, . . . , B

⊤
LΩL]

⊤
and

C2 =
{
y ∈ R

M
∣∣

L∑

ℓ=1

‖y(ℓ)‖p ≤ η
}

(38)

3This means that there exist distinct indices m1, . . . ,mM(ℓ) in {1, . . . , K} such that, for every y = (y(k))1≤k≤K ∈ R
K ,

Bℓy = (y(mj ))1≤j≤M(ℓ) .
4In this case, the constraint in (37) reduces to a sum of absolute values.
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whereM =M (1)+ · · ·+M (L) and the same decomposition as in (24) is performed. Then, it can be observed

that Problem (37) is a particular case of Problem 1.1 where S = 2, R = 1, g1 = ‖· − z‖2, T1 = A, H1 = I,

C1 = [µ, µ]N , H2 = ΛF , and C2 is the above ℓ1,p-ball.

4.0.2 Algorithmic solution

The main difficulty in solving Problem (37) stems from the second constraint. The point is that most of the
applicable algorithms require to compute the projection onto C2. Specific numerical methods [84, 85, 78, 86]
have been developed for this purpose. The aim of this section is to propose an alternative method based on
the splitting principle presented in Section 3. So doing, the resulting problem can be efficiently addressed
by proximal algorithms. The two possible approaches are now detailed.

• Epigraphical method – The principle of this method is to decompose C2 into the closed half-space
defined by (27) and the closed convex set defined by (28) with h(ℓ) = ‖·‖p. The advantage of this
decomposition is that the projections onto V and E have closed forms. Indeed, PV is given by
Proposition 2.1, while PE is given by Proposition 3.1 for p = 2 and Proposition 3.2 for p = +∞. We
are then able to solve Problem (37) by means of the M+LFBF algorithm. The associated iterations
are given in Algorithm 1.

Algorithm 1 Epigraphical method: M+LFBF for solving Problem (37)

Initialization

(v[0], ν[0]) ∈ RM × RL

(x[0], ζ[0]) ∈ R
N × R

L

θ = 2‖A‖2 +max{‖ΛF‖, 1}
ǫ ∈]0, 1

θ+1
[

For i = 0, 1, . . .

γi ∈ [ǫ, 1−ǫ
θ

](
x̂[i], ζ̂[i]

)
= (x[i], ζ[i])− γi

(
2A⊤(Ax[i] − z) + F⊤Λ⊤ v[i] , ν[i]

)

(p[i], ρ[i]) =
(
P
[µ,µ]N

(x̂[i]), PV (ζ̂[i])
)

(v̂[i], ν̂[i]) = (v[i], ν[i]) + γi(ΛF x[i], ζ[i])

(a[i], α[i]) = (v̂[i], ν̂[i])− γi PE

(
γ−1
i v̂[i], γ−1

i ν̂[i]
)

(ṽ[i], ν̃[i]) = (a[i], α[i]) + γi(ΛF p[i], ρ[i])

(v[i+1], ν[i+1]) = (v[i] − v̂[i] + ṽ[i], ν[i] − ν̂[i] + ν̃[i])

(x̃[i], ζ̃[i]) = (p[i], ρ[i])− γi
(
2A⊤(Ap[i] − z) + F⊤Λ⊤a[i], α[t]

)

(x[i+1], ζ[i+1]) = (x[i] − x̂[i] + x̃[i], ζ[i] − ζ̂[i] + ζ̃[i])

• Direct method – For completeness, we also consider the projection onto C2 with the algorithm in [84]
when p = 2,5 or the iterative algorithm in [78] when p = +∞.6 Then, M+LFBF can still be used to
solve Problem (37).

Note that, according to the general result in [68, Theorem 4.2], the sequence
(
x[i]

)
i∈N

generated by Algo-

rithm 1 is guaranteed to converge to a (global) minimizer of Problem (37).

5Code available at www.cs.ubc.ca/∼mpf/spgl1
6Code available at www.lsi.upc.edu/∼aquattoni
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4.0.3 Smoothness constraint

We consider two smoothness constraints based on recent Non-Local TV measures [81, 87]. They constitute
particular cases of the one considered in (37) when L = N . They are described for 2D data in the following.

• ℓ2-Non-Local TV – This constraint has the form

N∑

ℓ=1

( ∑

n∈Nℓ⊂Wℓ

ωℓ,n(x
(ℓ) − x(n))2

)1/2

≤ η, (39)

where Nℓ is the neighbourhood support of ℓ, and Wℓ is the set of positions n ∈ {1, . . . , N} \ {ℓ} located
into a Q × Q window centered at ℓ, where Q ∈ N is odd. This constraint is a particular case of the
one considered in (37) where K = (Q2− 1)N and F is a concatenation of discrete difference operators
Fq1,q2 with (q1, q2) ∈ {−(Q− 1)/2, . . . , (Q− 1)/2}2 \ {(0, 0)}. More precisely, for every (q1, q2), Fq1,q2
is a 2D filter with impulse response: for every (n1, n2) ∈ Z

2,

f (n1,n2)
q1,q2 =






1, if n1 = n2 = 0,

−1, if n1 = q1 and n2 = q2,

0, otherwise.

(40)

In addition, for every ℓ ∈ {1, . . . , N}, M (ℓ) ≤ Q2 − 1, Bℓ selects the components of Fx corresponding
to differences (x(ℓ)−x(n))n∈Nℓ , and the positive weights (ωℓ,n)n∈Nℓ are gathered in the diagonal matrix
Ωℓ.

• ℓ∞-Non-Local TV– We consider the following constraint

N∑

ℓ=1

max
n∈Nℓ

{
ωℓ,n |x(ℓ) − x(n)|

}
≤ η. (41)

We proceed similarly to the previous constraint, except that the ℓ∞-norm is now substituted for the
ℓ2-norm.

Note that the classical isotropic TV constraint (designated by ℓ2-TV in the following) constitutes a particular
case of the ℓ2-NLTV one, where each neighbourhood Nℓ only contains the horizontal/vertical neighbouring
pixels (M (ℓ) = 2) and the weights are ωℓ,n ≡ 1. Similarly, the ℓ∞-TV constraint is a special case of the
ℓ∞-NLTV one.

4.0.4 Weight estimation and neighbourhood choice

To set the weights, we got inspired from the Non-Local Means approach originally described in [88]. Here, for
every ℓ ∈ {1, . . . , N} and n ∈ Nℓ, the weight ωℓ,n depends on the similarity between patches built around
the pixels ℓ and n of the image. Since our degradation process involves some missing data, a two-step
approach has been adopted. In the first step, the ℓ2-TV approach is used in order to obtain an estimate x̃
of the target image. This estimate is subsequently used in the second step to compute the weights through
a self-similarity measure, yielding

ωℓ,n = ω̃ℓ exp
(
−δ−2 ‖B̃ℓF̃ℓx̃− B̃nF̃nx̃‖2

)
, (42)
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where δ ∈ R \ {0}, ω̃ℓ ∈ ]0,+∞[, B̃ℓ (resp. B̃n) selects a Q̃× Q̃ patch centered at position ℓ (resp. n) and

F̃ℓ (resp. F̃n) is a linear processing of the image depending on the position ℓ (resp. n). The constant ω̃ℓ is
set so as to normalize the weights (i.e.

∑
n∈Nℓ

ωℓ,n = 1).

The measure in (42) generalizes the one proposed in [88], which corresponds to the case when F̃ℓ (resp.

F̃n) reduces to a Gaussian function with mean ℓ (resp. n). In the present work, we consider the foveated self-
similarity measure recently introduced in [89], due to its better performance in denoising. This approach

can be derived from (42) by setting F̃ℓ (resp. F̃n) to a set of low-pass Gaussian filters whose variances
increase as the spatial distance from the patch center ℓ (resp. n) grows.

For every ℓ ∈ {1, . . . , N}, the neighbourhood Nℓ is built according to the procedure described in [90].
In practice, we limit the size of the neighbourhood, so that M (ℓ) ≤M .

4.0.5 Simulation results

The purpose of this section is twofold. First, the quality of images reconstructed with our variational
approach is evaluated for different choices of regularization constraints and comparisons are made with a
state-of-the-art method. Secondly, the convergence speed of the proposed epigraphical technique is evaluated
w.r.t. the direct methods.

In the following experiments, if not specified otherwise, the degradation matrix A is a decimated convo-
lution which consists of a 3 × 3 uniform blur followed by a decimation which randomly deletes 60% of the
pixels (N = 0.4×N). The standard deviation of the additive white Gaussian noise is equal to σ = 10. Since
we deal with natural images, the data range bounds are µ = 0 and µ = 255. For the smoothness constraint,

we set Q = 11, Q̃ = 5, δ = 35 and M = 14.

Extensive tests have been carried out on several standard images of different sizes. The SNR and
SSIM [91] results obtained by using the various previously introduced TV-like constraints are collected in
Table 1. In addition, a comparison is performed between our method and the Gradient Projection for Sparse
Reconstruction (GPSR) method [60], which also relies on a variational approach. The constraint bound for
both methods was hand-tuned in order to achieve the best SNR values. The best results are highlighted
in bold. A visual comparison is made in Figure 1, where two representative images are displayed. These
results demonstrate the interest of considering non-local smoothness measures. Non-Local TV with ℓ1,2-
norm indeed proves to be the most effective constraint with gains in SNR and SSIM (up to 1.82 dB and
0.042) with respect to ℓ2-TV, which in turn outperforms GPSR. The better performance of NLTV seems
to be related to its ability to better preserve edges and thin structures present in images. In terms of
computational time, GPSR is about twice faster than ℓ2-NLTV. Our codes were developed in MATLAB7,
the operators F and F⊤ being implemented in C using mex files.

In order to complete the analysis, we report in Figure 2 SNR/SSIM comparisons between ℓ2-NLTV and
ℓ2-TV for different blur and noise configurations. These plots show that ℓ2-NLTV provides better results
regardless of the degradation conditions.

In the second part of the section, we focus on the convergence speed of epigraph and direct methods.
All the results refer to the culicoidae image cropped at 256× 256 (N = 2562), since a similar behaviour was
observed for other images. The stopping criterion is set to: ‖x[i+1] − x[i]‖ ≤ 10−4‖x[i]‖. For the ℓ1,p-ball
projectors needed by the direct method, we used the software publicly available on-line [84, 78].

7R2011b version on an Intel Xeon CPU at 2.80 GHz and 8 GB of RAM.
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Table 1: SNRdB and SSIM results of our method and GPSR (noise parameters: blur = 3 × 3, σ = 10,
decimation = 60%)

SNR (dB) – SSIM N ℓ2-TV ℓ∞-TV ℓ2-NLTV ℓ∞-NLTV gpsr

Culicoidae 2562 20.80 – 0.855 20.25 – 0.853 22.62 – 0.897 22.38 – 0.897 17.03 – 0.738
Lena 2562 23.18 – 0.783 22.77 – 0.769 24.18 – 0.812 24.14 – 0.812 20.26 – 0.678
Cameraman 2562 20.06 – 0.774 19.68 – 0.755 20.71 – 0.801 20.17 – 0.743 17.92 – 0.673
Boat 2562 20.25 – 0.739 19.74 – 0.718 21.13 – 0.770 20.77 – 0.741 18.06 – 0.649
House 2562 25.47 – 0.823 24.70 – 0.808 26.31 – 0.836 25.87 – 0.823 22.14 – 0.734
Man 2562 19.24 – 0.725 18.96 – 0.714 19.66 – 0.741 19.51 – 0.736 17.11 – 0.629
Peppers 5122 23.69 – 0.801 23.25 – 0.786 24.80 – 0.829 24.45 – 0.813 21.94 – 0.709
Barbara 5122 16.74 – 0.653 16.64 – 0.642 17.02 – 0.673 16.99 – 0.652 15.97 – 0.562
Hill 5122 22.18 – 0.723 21.89 – 0.715 22.55 – 0.735 22.43 – 0.733 20.21 – 0.637
Culicoidae 10242 20.84 – 0.855 20.49 – 0.812 23.25 – 0.885 22.57 – 0.810 17.19 – 0.725

(a) Culicoidae. (b) Degraded. (c) Zoom. (d) GPSR,
SNR: 17.03 dB.

(e) Lena. (f) Degraded. (g) Zoom. (h) GPSR,
SNR: 20.26 dB.

(i) ℓ2-TV,
SNR: 20.80 dB.

(j) ℓ∞-TV,
SNR: 20.25 dB.

(k) ℓ2-NLTV,
SNR: 22.62 dB.

(l) ℓ∞-NLTV,
SNR: 22.38 dB.

(m) ℓ2-TV,
SNR: 23.18 dB.

(n) ℓ∞-TV,
SNR: 22.77 dB.

(o) ℓ2-NLTV,
SNR: 24.18 dB.

(p) ℓ∞-NLTV,
SNR: 24.14 dB.

Figure 1: Image restoration examples (noise parameters: blur = 3× 3, σ = 10, decimation = 60%)
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(a) SNR comparison (3 × 3
blur).
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(b) SNR comparison (5 × 5
blur).
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(c) SSIM comparison (3 × 3
blur).
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(d) SSIM comparison (5 × 5
blur).

Figure 2: SNR and SSIM values for ℓ2-NLTV (vertical axes) and ℓ2-TV (horizontal axes), for the culicoidae
image. The plots show the results obtained for σ ∈ {5, 10, . . . , 50}, where lower SNR or SSIM values
correspond to higher σ values. No decimation is applied in this experiment.
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• Total Variation – Tables 2 and 3 report a comparison between the direct and epigraphical methods for
different values of η and for ℓ2-TV and ℓ∞-TV, respectively. For more readability, these are expressed
as a multiplicative factor of the ℓp-TV-semi-norm of the original image. It can be noticed that the
parameter η influences both the quality of the results and the convergence speed. For the ℓ1,2-norm,
the epigraphical method is 3.5 faster than the direct one. For the ℓ1,∞-norm, it is 65 times faster.

Figs. 3-a and 3-b show the relative error ‖x[i] − x[∞]‖/‖x[∞]‖ as a function of the computational time,
where x[∞] denotes the solution computed after a large number of iterations (typically, 5000 iterations).
The dashed line presents the results for the direct method while the solid line refers to the epigraphical
one. These plots show that the epigraphical approach is faster despite it requires more iterations in
order to converge. This can be explained by the computational cost of the subiterations required by
the direct projections onto the ℓ1,p-ball.

Table 2: Results for the ℓ2-TV constraint and different values of η

η SNR (dB) – SSIM
direct epigraph.

speed up

# iter. sec. # iter. sec.

0.6 19.70 – 0.839 116 5.74 146 2.23 2.58
0.7 20.62 – 0.862 132 7.14 151 2.29 3.11
0.8 20.80 – 0.855 160 9.17 171 2.59 3.54

0.9 20.45 – 0.826 195 11.95 196 2.98 4.01

Table 3: Results for the ℓ∞-TV constraint and different values of η

η SNR (dB) – SSIM
direct epigraph.

speed up

# iter. sec. # iter. sec.

0.6 19.58 – 0.839 195 373.84 230 6.21 60.22
0.7 20.25 – 0.853 206 417.71 231 6.39 65.34

0.8 20.24 – 0.835 233 486.17 245 6.86 70.82
0.9 19.80 – 0.800 263 551.03 267 7.44 74.06

• ℓ2-Non-Local Total Variation – Table 4 reports the results for ℓ2-NLTV. Different combinations of
neighbourhood size Q and bound value η are considered. To set the weights, the first TV estimate
is computed with η = 0.8. The best SNR improvement (1.82 dB over ℓ2-TV) is observed when a
relatively small neighbourhood is used (Q = 11). This behaviour was already observed in [90]. It may
be related to the bias-variance trade-off commonly encountered in Non-Local filters [92, 93].

In Figure 3-c, a plot similar to those in Figs. 3-a and 3-b show the convergence profile. The epigraphical
method requires about the same number of iterations as the direct one in order to converge. This
results in a time reduction (1.8 times), as a single iteration of the epigraphical method is faster than
one iteration of the direct method.

• ℓ∞-Non-Local Total Variation – Table 5 and Figure 3-d show the results obtained with the ℓ∞-NLTV
constraint. Note that ℓ∞-NLTV requires more iterations than ℓ2-NLTV in order to converge. In what
concerns the convergence speed, the epigraphical method is 19 times faster.
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Table 4: Results for the ℓ2-NLTV constraint and some values of η and Q

η SNR (dB) – SSIM
direct epigraph.

speed up

# iter. sec. # iter. sec.

Neighbourhood size: Q = 3
0.7 22.26 – 0.895 70 5.82 77 3.07 1.90
0.8 22.41 – 0.893 72 6.39 75 3.00 2.13
0.9 22.06 – 0.875 88 7.97 89 3.58 2.23

Neighbourhood size: Q = 5
0.7 22.44 – 0.900 70 7.13 74 4.37 1.63
0.8 22.58 – 0.898 72 7.85 75 4.44 1.77
0.9 22.25 – 0.880 87 9.71 88 5.24 1.85

Neighbourhood size: Q = 11
0.7 22.50 – 0.901 72 7.52 76 4.51 1.67
0.8 22.61 – 0.897 75 8.21 78 4.64 1.77

0.9 22.27 – 0.879 89 9.83 91 5.41 1.82

Table 5: Results for the ℓ∞-NLTV constraint and some values of η and Q

η SNR (dB) – SSIM
direct epigraph.

speed up

# iter. sec. # iter. sec.

Neighbourhood size: Q = 5
0.6 21.78 – 0.889 229 766.21 251 25.61 29.92
0.7 22.28 – 0.894 213 653.31 226 22.87 28.56
0.8 22.10 – 0.876 207 596.90 216 21.89 27.26

Neighbourhood size: Q = 5
0.6 21.92 – 0.894 231 914.03 252 43.32 21.10
0.7 22.38 – 0.897 219 749.32 232 39.73 18.86

0.8 22.21 – 0.880 212 673.60 224 38.05 17.70
Neighbourhood size: Q = 11

0.6 21.95 – 0.894 236 940.38 256 43.75 21.49
0.7 22.38 – 0.897 222 760.49 234 39.84 19.09
0.8 22.20 – 0.879 216 689.07 227 38.80 17.76

5 Conclusions

We have proposed a new epigraphical technique to solve constrained convex optimization problems with
the help of proximal algorithms. In this paper (Part I), our attention has been turned to block-sparsity
constraints based on weighted ℓ1,p-norms with p ∈ {2,+∞}. The obtained results demonstrate the better
performance of non-local measures in terms of image quality. Our results also show that the ℓ1,2-norm
has to be preferred over the ℓ1,∞-norm for image recovery problems. However, it would be interesting
to consider alternative applications of ℓ1,∞-norms such as regression problems [94, 95]. Furthermore, the
experimental part indicates that the epigraphical method converges faster than the approach based on
the direct computation of the projections via standard iterative solutions. Full implementations in C of
the proposed algorithms and parallelization of our codes should even allow us to accelerate them [96].
Note that, although the considered application involves two constraint sets, the proposed approach can
handle an arbitrary number of convex constraints. In a companion paper (Part II), we will show that the
epigraphical approach can also be used to develop approximation methods for dealing with more general
convex constraints.
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(c) ℓ2-NLTV.
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(d) ℓ∞-NLTV.

Figure 3: Comparison between epigraphical method (solid line) and direct method (dashed line): ‖x[i]−x[∞]‖
‖x[∞]‖

in dB vs time

A Proof of the Proposition 2.4

For every (y, ζ) ∈ H × R, let (p, θ) = Pepiϕ(y, ζ). If ϕ(y) ≤ ζ, then p = y and θ = ζ = max{ϕ(p), ζ}. In
addition,

(∀u ∈ H) 0 =
1

2
‖p− y‖2 + 1

2

(
max{ϕ(p)− ζ, 0}

)2

≤ 1

2
‖u− y‖2 + 1

2

(
max{ϕ(u)− ζ, 0}

)2
, (43)

which shows that (12) holds. Let us now consider the case when ϕ(y) > ζ. From the definition of the
projection, we get

(p, θ) = argmin
(u,ξ)∈epiϕ

‖u− y‖2 + (ξ − ζ)2. (44)

From the Karush-Kuhn-Tucker theorem [97, Theorem 5.2],8 there exists α ∈ [0,+∞[ such that

(p, θ) = argmin
(u,ξ)∈H×R

1

2
‖u− y‖2 + 1

2
(ξ − ζ)2 + α(ϕ(u) − ξ) (45)

where the Lagrange multiplier α is such that

α(ϕ(p) − θ) = 0. (46)

Since the value α = 0 is not allowable (since it would lead to p = y and θ = ζ), it can be deduced from the
above equality that ϕ(p) = θ. In addition, differentiating the Lagrange functional in (45) w.r.t. ξ yields

ϕ(p) = θ = ζ + α ≥ ζ. (47)

8By considering u0 ∈ domϕ and ξ0 > ϕ(u0), the required qualification condition is obviously satisfied.
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Hence, (p, θ) given by (44) is such that

p = argmin
u∈H
ϕ(u)≥ζ

‖u− y‖2 + (ϕ(u)− ζ)2 (48)

θ = ϕ(p) = max{ϕ(p), ζ}. (49)

Furthermore, as ϕ(y) > ζ, we have

inf
u∈H
ϕ(u)≤ζ

‖u− y‖2 = ‖Plev≤ζ ϕ(y)− y‖2 = inf
u∈H
ϕ(u)=ζ

‖u− y‖2 (50)

where we have used the fact that Plev≤ζ ϕ(y) belongs to the boundary of lev≤ζ ϕ which is equal to{
u ∈ H

∣∣ ϕ(u) = ζ
}

since ϕ is lower-semicontinuous and domϕ is open [73, Corollary 8.38]. We have
then

inf
u∈H
ϕ(u)≤ζ

‖u− y‖2 = inf
u∈H
ϕ(u)=ζ

‖u− y‖2

≥ inf
u∈H
ϕ(u)≥ζ

‖u− y‖2 + (ϕ(u) − ζ)2. (51)

Altogether, (48) and (51) lead to

p = argmin
u∈H

1

2
‖u− y‖2 + 1

2

(
max{ϕ(u)− ζ, 0}

)2
(52)

which is equivalent to (12) since 1
2

(
max{ϕ− ζ, 0}

)2 ∈ Γ0(H).

B Proof of the Proposition 2.5

Since (max{ϕ− ζ, 0})2 is an even function, prox 1
2 (max{ϕ−ζ,0})2 is an odd function [23, Remark 4.1(ii)]. In

the following, we thus focus on the case when y ∈ ]0,+∞[.
If ζ ∈] −∞, 0], then (max{ϕ − ζ, 0})2 = (ϕ − ζ)2. When β = 1, (max{ϕ − ζ, 0})2 = τ2(·)2 − 2τζ| · | + ζ2

and, from Example 2.3, it can be deduced that

prox 1
2 (max{ϕ−ζ,0})2(y) = prox− τζ

1+τ2
|·|

( y

1 + τ2

)
=

1

1 + τ2
max{y + τζ, 0}. (53)

When β > 1, (ϕ − ζ)2 is differentiable and, according to (8), p = prox 1
2 (max{ϕ−ζ,0})2(y) is uniquely defined

as
p− y + βτpβ−1(τpβ − ζ) = 0 (54)

where, according to [98, Corollary 2.5], p ≥ 0. This allows us to deduce that p = χ0.
Let us now focus on the case when ζ ∈]0,+∞[. If y ∈]0, (ζ/τ)1/β [, it can be deduced from [98, Corollary 2.5],
that p = prox 1

2 (max{ϕ−ζ,0})2(y) ∈ [0, (ζ/τ)1/β [. Since (∀v ∈ [0, (ζ/τ)1/β [) max{ϕ(v) − ζ, 0} = 0, (8) yields

p = y. On the other hand if y > (ζ/τ)1/β , as the proximity operator of a function from R to R is continuous
and increasing [98, Proposition 2.4], p = prox 1

2 (max{ϕ−ζ,0})2(y) ≥ prox1
2 (max{ϕ−ζ,0})2

(
(ζ/τ)1/β

)
= (ζ/τ)1/β .

Since (max{ϕ− ζ, 0})2 is differentiable in this case, and (∀v ≥ (ζ/τ)1/β) (max{ϕ(v)− ζ, 0})2 = (τvβ − ζ)2,
(8) allows us to deduce that p is the unique value in [(ζ/τ)1/β ,+∞[ satisfying (54). It can be concluded
that, when ζ ∈]0,+∞[, (16) holds.
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C Proof of the Proposition 2.6

Let us notice that 1
2 (max{τdβC − ζ, 0})2 = ψ ◦ dC where ψ = 1

2 (max{τ | · |β − ζ, 0})2. According to [25,
Proposition 2.7], for every y ∈ H,

proxψ◦dC (y) =






y, if y ∈ C,

PC(y), if y 6∈ C and dC(y) ≤ max ∂ψ(0),

αy + (1− α)PC(y), if dC(y) > max ∂ψ(0)

(55)

where α =
proxψ

(
dC(y)

)

dC(y) . In addition, we have

∂ψ(0) =

{
[τζ,−τζ], if ζ < 0 and β = 1,

{0}, otherwise,
(56)

and, according to Proposition 2.5, when ζ < 0, β = 1 and dC(y) ≤ −τζ, proxψ
(
dC(y)

)
= 0. These show

that (55) reduces to (17).

D Proof of the Corollary 2.7

As we have ϕ = τdC where C = {z}, the result follows from Proposition 2.6 and the expression of
prox 1

2 (max{τ |·|−ζ,0})2 in Proposition 2.5.

E Proof of the Proposition 2.8

The function ϕ belongs to Γ0(R) since for every m ∈ {1, . . . ,M}, v 7→ max{τ (m)(ν(m) − v), 0} is finite
convex and (·)2 is finite convex and increasing on [0,+∞[. In addition, ϕ is differentiable and it is such
that, for every v ∈ R and every k ∈ {1, . . . ,M + 1},

ν(k−1) < v ≤ ν(k) ⇒ ϕ(v) =
1

2

k−1∑

m=1

(τ
(m)
− )2

(
v − ν(m)

)2

+
1

2

M∑

m=k

(τ
(m)
+ )2

(
v − ν(m)

)2

. (57)

For every y ∈ R, as p = proxϕ(y) is characterized by (8), there exists m ∈ {1, . . . ,M + 1} such that

ν(m−1) < p ≤ ν(m) and

y − p =

m−1∑

m=1

(τ
(m)
− )2(p− ν(m)) +

M∑

m=m

(τ
(m)
+ )2(p− ν(m)). (58)

This yields (21), and we have : (22) ⇔ ν(m−1) < p ≤ ν(m). The uniqueness of m ∈ {1, . . . ,M +1} satisfying
this inequality follows from the uniqueness of proxϕ(y).

18



F Proof of the Proposition 3.2

For every (y(ℓ), ζ(ℓ)) ∈ R
M(ℓ) × R, in order to determine Pepih(ℓ)(y(ℓ), ζ(ℓ)) we have to find

min
θ(ℓ)∈[0,+∞[

(
(θ(ℓ) − ζ(ℓ))2 + min

|p(ℓ,1)|≤τ (ℓ,1) θ(ℓ)

...
|p(ℓ,M

(ℓ))|≤τ (ℓ,M(ℓ)) θ(ℓ)

‖p(ℓ) − y(ℓ)‖2
)
. (59)

For every θ(ℓ) ∈ [0,+∞[, the inner minimization is achieved when, for every j ∈ {1, . . . ,M (ℓ)}, p(ℓ,m) is the
projection of y(ℓ,m) onto [−τ (ℓ,m) θ(ℓ), τ (ℓ,m) θ(ℓ)], which is given by (34). Then, the problem reduces to

minimize
θ(ℓ)∈R

(
(θ(ℓ) − ζ(ℓ))2 +

M(ℓ)∑

m=1

(max{|y(ℓ,m)| − τ (ℓ,m)θ(ℓ), 0})2 + ι[0,+∞[(θ
(ℓ))

)
(60)

which is also equivalent to calculate proxϕ+ι[0,+∞[
(ζ(ℓ)), where ϕ is such that

(∀v ∈ R) ϕ(v) =
1

2

M(ℓ)∑

m=1

(max{τ (ℓ,m)(ν(ℓ,m) − v), 0})2. (61)

By using now the fact that proxϕ+ι[0,+∞[
= P[0,+∞[◦proxϕ ([24, Proposition 12]) and by invoking Proposition

2.8, the expression of the optimal solution in (35) follows.
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[5] F.-X. Dupé, M. J. Fadili, and J.-L. Starck, “A proximal iteration for deconvolving Poisson noisy images
using sparse representations,” IEEE Trans. Image Process., vol. 18, no. 2, pp. 310–321, Feb. 2009.

[6] A. Jezierska, E. Chouzenoux, J.-C. Pesquet, and H. Talbot, “A primal-dual proximal splitting approach
for restoring data corrupted with Poisson-Gaussian noise,” in Proc. Int. Conf. Acoust., Speech Signal
Process., Kyoto, Japan, Mar., 25-30 2012, 4p.

[7] B. Vandeghinste, B. Goossens, J. De Beenhouwer, A. Pizurica, W. Philips, S. Vandenberghe, and
S. Staelens, “Split-Bregman-based sparse view CT reconstruction,” in International Meeting on Fully
Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, Potsdam, Germany, Jul.
11-15 2011.

19



[8] N. Pustelnik, C. Chaux, J.-C. Pesquet, and C. Comtat, “Parallel algorithm and hybrid regularization
for dynamic PET reconstruction,” in IEEE Med. Imag. Conf., Knoxville, Tennessee, Oct. 30 - Nov. 6
2010.

[9] S. Anthoine, J.-F. Aujol, Y. Boursier, and C. Mélot, “Some proximal methods for CBCT and PET
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[10] J.-F. Aujol, G. Aubert, L. Blanc-Féraud, and A. Chambolle, “Image decomposition into a bounded
variation component and an oscillating component,” J. Math. Imag. Vis., vol. 22, pp. 71–88, Jan. 2005.

[11] J.-F. Aujol, G. Gilboa, T. Chan, and S. Osher, “Structure-texture image decomposition - modeling,
algorithms, and parameter selection,” Int. J. Comp. Vis., vol. 67, no. 1, pp. 111–136, Apr. 2006.

[12] L. M. Briceño-Arias, P. L. Combettes, J.-C. Pesquet, and N. Pustelnik, “Proximal algorithms for
multicomponent image recovery problems,” J. Math. Imag. Vis., vol. 41, no. 1, pp. 3–22, Sep. 2011.

[13] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski, “Optimization with sparsity-inducing penalties,”
Foundations and Trends in Machine Learning, vol. 4, no. 1, pp. 1–106, 2012.

[14] S. Theodoridis, K. Slavakis, and I. Yamada, “Adaptive learning in a world of projections,” IEEE Signal
Process. Mag., vol. 28, no. 1, pp. 97–123, Jan. 2011.

[15] C. Chaux, M. El Gheche, J. Farah, J.-C. Pesquet, and B. Pesquet-Popescu, “A parallel proximal
splitting method for disparity estimation from multicomponent images under illumination variation,”
J. Math. Imag. Vis., 2012, To appear.

[16] M. Kowalski, E. Vincent, and R. Gribonval, “Beyond the narrowband approximation: Wideband
convex methods for under-determined reverberant audio source separation,” IEEE Trans. Audio, Speech
Language Process., vol. 18, no. 7, pp. 1818–1829, Sept. 2010.

[17] O. D. Akyildiz and I. Bayram, “An analysis prior based decomposition method for audio signals,” in
Proc. Eur. Sig. and Image Proc. Conference, Bucharest, Romania, Aug. 27-31 2012.

[18] P. L. Combettes and J.-C. Pesquet, “Proximal splitting methods in signal processing,” in Fixed-Point
Algorithms for Inverse Problems in Science and Engineering, H. H. Bauschke, R. S. Burachik, P. L.
Combettes, V. Elser, D. R. Luke, and H. Wolkowicz, Eds., pp. 185–212. Springer-Verlag, New York,
2011.

[19] S. Setzer, G. Steidl, and T. Teuber, “Deblurring Poissonian images by split Bregman techniques,” J.
Visual Communication and Image Representation, vol. 21, no. 3, pp. 193–199, Apr. 2010.

[20] M. A. T. Figueiredo and J. M. Bioucas-Dias, “Restoration of Poissonian images using alternating
direction optimization,” IEEE Trans. Image Process., vol. 19, no. 12, pp. 3133–3145, Dec. 2010.

[21] J.-C. Pesquet and N. Pustelnik, “A parallel inertial proximal optimization method,” Pac. J. Optim.,
vol. 8, no. 2, pp. 273–305, Apr. 2012.

[22] P. L. Combettes and V. R. Wajs, “Signal recovery by proximal forward-backward splitting,” Multiscale
Model. and Simul., vol. 4, no. 4, pp. 1168–1200, Nov. 2005.

[23] C. Chaux, P. L. Combettes, J.-C. Pesquet, and V. R. Wajs, “A variational formulation for frame-based
inverse problems,” Inverse Problems, vol. 23, no. 4, pp. 1495–1518, Jun. 2007.

[24] P. L. Combettes and J.-C. Pesquet, “A Douglas-Rachford splitting approach to nonsmooth convex
variational signal recovery,” IEEE J. Selected Topics Signal Process., vol. 1, no. 4, pp. 564–574, Dec.
2007.

20



[25] P. L. Combettes and J.-C. Pesquet, “A proximal decomposition method for solving convex variational
inverse problems,” Inverse Problems, vol. 24, no. 6, Dec. 2008.

[26] N. P. Galatsanos and A. K. Katsaggelos, “Methods for choosing the regularization parameter and
estimating the noise variance in image restoration and their relation,” IEEE Trans. Image Process.,
vol. 1, no. 3, pp. 322–336, Jul. 1992.

[27] P. C. Hansen and D. P. O’Leary, “The use of the L-curve in the regularization of discrete ill-posed
problems,” SIAM J. Sci. Comput., vol. 14, no. 6, pp. 1487–1503, 1993.

[28] A. Pizurica and W. Philips, “Estimating the probability of the presence of a signal of interest in
multiresolution single- and multiband image denoising,” IEEE Trans. Image Process., vol. 15, no. 3,
pp. 654–665, Mar. 2006.

[29] S. Ramani, T. Blu, and M. Unser, “Monte-Carlo SURE: A black-box optimization of regularization
parameters for general denoising algorithms,” IEEE Trans. Image Process., vol. 17, no. 9, pp. 1540–
1554, Sep. 2008.

[30] L. Chaari, J.-C. Pesquet, J.-Y. Tourneret, P. Ciuciu, and A. Benazza-Benyahia, “A hierarchical bayesian
model for frame representation,” IEEE Trans. Signal Process., vol. 58, no. 11, pp. 5560–5571, Nov.
2010.

[31] D. C. Youla and H. Webb, “Image restoration by the method of convex projections. Part I - theory,”
IEEE Trans. Med. Imag., vol. 1, no. 2, pp. 81–94, Oct. 1982.

[32] H. J. Trussell and M. R. Civanlar, “The feasible solution in signal restoration,” IEEE Trans. Acous.,
Speech Signal Process., vol. 32, no. 2, pp. 201–212, Apr. 1984.

[33] P. L. Combettes, “Inconsistent signal feasibility problems : least-squares solutions in a product space,”
IEEE Trans. Signal Process., vol. 42, no. 11, pp. 2955–2966, Nov. 1994.

[34] K. Kose, V. Cevher, and A. E. Cetin, “Filtered variation method for denoising and sparse signal
processing,” in Proc. Int. Conf. Acoust., Speech Signal Process., Kyoto, Japan, March, 27-30 2012.

[35] T. Teuber, G. Steidl, and R. H. Chan, “Minimization and parameter estimation for seminorm regu-
larization models with I-divergence constraints,” Tech. Rep., Technische Universität Kaiserslautern,
2012.

[36] R. Ciak, B. Shafei, and G. Steidl, “Homogeneous penalizers and constraints in convex image restoration,”
J. Math. Imag. Vis., 2012.
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