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ABSTRACT

This paper presents a new multivariate elliptical distribu-
tion, namely the multivariate generalized Gamma times an
Uniform (MGΓU) distribution. Because it generalizes the
multivariate generalized Gaussian distribution (MGGD), the
MGΓU distribution is able to fit a wider range of signals. For
the bivariate case, we provide a closed-form of the Kullback-
Leibler divergence (KLD). We propose the MGΓU distri-
bution for modeling chrominance wavelet coefficients and
exercise it in a texture retrieval experiment.

A comparative study between some multivariate models
on the VisTex and Outex image database is conducted and
reveals that the use of the MGΓU distribution of chromi-
ance wavelet coefficient allows an indexing gain compared to
other classical approaches such as MGGD and Copula based
model).

Index Terms— Texture, image retrieval, Kullback-
Leibler divergence, Multivariate elliptical distribution.

1. INTRODUCTION

In the context of texture image recognition, the wavelet repre-
sentation has been widely considered to characterize the tex-
ture. The multiscale recognition algorithm operates in two
main steps. One is the feature extraction which consists in
modeling each wavelet subband by a given probability den-
sity function (pdf). Its estimated parameters compose the sig-
nature of the texture. Then, a similarity measure based on
a probabilistic metric is computed between the query image
and all the other images of the database.

Many univariate models such as the generalized Gaus-
sian [1] and the Weibull [2] distributions have been proposed
for modeling the magnitudes of wavelet detail coefficients.
Those works have further been extended by the use of the
generalized Gamma (GΓ) distribution which generalizes
these two models [3]. However, these approaches do not
fully exploit the texture information in the image. Multi-
variate distributions have hence recently been introduced to
model the spatial and/or color dependencies of the wavelet

coefficients such as the Gaussian [4] and Student-t [5] cop-
ulas. Other approaches based on the multivariate elliptical
distributions have been proposed such as the multivariate
generalized Gaussian distribution (MGGD) [6]. For this later
one, the multivariate Laplace is a special case, and the mul-
tivariate G0 distribution. For both models, a closed form of
the geodesic distance (GD) [7] has been established for fixed
shape parameters and an approximation of the GD has been
given for the general case by assuming the geodesic coordi-
nate functions as straight lines [8] [9]. Unfortunately, most of
the time, only approximations of the GD can be derived for
non trivial multivariate distributions (MGGD, G0, . . . ).

The main paper contribution is to propose a new mul-
tivariate model which generalizes the MGGD, namely the
multivariate generalized Gamma times an Uniform (MGΓU)
distribution. For the special case of a bivariate generalized
Gamma times an Uniform (BGΓU) distribution, an analytical
expression of the Kullback-Leibler divergence (KLD) [10]
is derived. The paper is structured as follows. In section 2,
we introduce the MGΓU distribution and its parameters es-
timation. Section 3 provides the derivation of the analytical
expression of the KLD for the BGΓU distribution. The BGΓU
distribution is then proposed for modeling the chrominance
wavelet coefficients. Some indexing results on the VisTex and
Outex databases are also presented. Conclusions are finally
reported in Section 4.

2. THE MGΓU DISTRIBUTION

2.1. Definition

In this paper, we introduce a novel distribution, namely the
MGΓU distribution, which belongs to the family of ellipti-
cally contoured distributions. This model admits the follow-
ing stochastic representation [11]:

k = τΣ
1
2x, (1)

where x is an uniformly distributed random vector on the
unit sphere Rp, p being the dimension of vector k. Σ is the
normalized scatter matrix (i.e. tr(Σ) = p). τ is a positive



scalar random variable distributed according to a Generalized
Gamma distribution, whose pdf pτ (τ) is given by [12]:

pτ (τ |α, β, γ) = GΓ(τ |α, β, γ) =
αταγ−1e−( τβ )

α

βαγΓ(γ)
, (2)

where α > 0, β > 0, γ > 0 and τ ∈
[
0,+∞

[
. α, β and γ

are respectively the power, scale an shape parameters of the
distribution.

To derive the expression of the pdf of k = τΣ
1
2x, let first

consider the scalar random variable u = kTΣ−1k. As x is
uniformly distributed on the unit sphere Rp, it can be easily
proved that u follows the same distribution as τ2. After the
variable change u = τ2 in (2), we obtain:

pu(u|α, β, γ) = GΓ
(
u
∣∣∣α
2
, β2, γ

)
=
αu

αγ
2 −1e−

uα/2

βα

2βαγΓ (γ)
. (3)

By definition, k follows a multivariate elliptical distribution,
then:

pk(k|α, β, γ,Σ) =
1

|Σ| 12
hp(k

TΣ−1k), (4)

where hp(·) is the density generator function. The change
variable u = kTΣ−1k in (4) leads to:

pu(u|α, β, γ) =
π
p
2

Γ(p/2)
u
p
2−1hp(u). (5)

By identification between (3) and (5), we obtain the analytical
expression of hp(·) for the MGΓU distribution, it yields :

hp(u) =
Γ(p/2)

π
p
2

α

2βαγΓ (γ)
u
αγ−p

2 e−
uα/2

βα . (6)

Finally, the expression of the pdf for an MGΓU distribution is
obtained:

pk(k|α, β, γ,Σ) =
1

π
p
2 |Σ| 12

αΓ(p/2)

2βαγΓ(γ)

(
kTΣ−1k

)αγ−p
2

× e−
(kTΣ−1k)

α
2

βα . (7)

A particular case of the MGΓU distribution is the MGGD
which is obtained when α = 2b, β = 2

1
2b and γ = p

2b [13].
Note that the multivariate Gaussian distribution is obtained
when α = 2, β =

√
2 and γ = p

2 , and the multivariate
Laplace distribution is obtained when α = 1, β = 2 and
γ = p.

2.2. Parameter estimation

Let (k1, . . . ,kN ) be N vectors distributed according to an
independent and identically distributed random MGΓU dis-
tribution. The expression of the maximum likelihood estima-
tors (MLE) for the parameters of an MGΓU distribution can

be easily derived by differentiating the joint distribution of
(k1, . . . ,kN ) with respect to α, β, γ and Σ. An iterative al-
gorithm can be easily derived to solve the ML equations as
in [14]. Unfortunately, this algorithm is very complex since
the MLEs of the MGΓU distribution parameters are all depen-
dent of each other. To circumvent this difficulty, we propose
a simpler estimation algorithm based on a mixed moment and
ML estimation procedure. Given theN vectors (k1, . . . ,kN ),
the normalized scatter matrix is estimated by using a moment-
based approach, it yields:

Σ̂ =
1

N

N∑
i=1

kik
T
i with tr(Σ̂) = p. (8)

Then, the N scalar variables ui = kTi Σ̂−1ki are computed.
According to (3), the scalar random variable u follows a GΓ
distribution of parameters α/2, β2 and γ. Those parameters
can hence be estimated by using the ML method.

3. TEXTURE INDEXING

In the following, only the bivariate case will be considered
(i.e. p = 2). In this context, we can prove that the Kullback-
Leibler divergence (KLD) can be analytically derived for a
BGΓU distribution. We then propose this distribution as a
suitable model for the chrominance wavelet coefficients in a
texture retrieval experiment.

3.1. Kullback-Leibler divergence

After some cumbersome computations, for the bivariate
case, one can derive the KLD between two populations dis-
tributed according to a BGΓU distributions of parameters
(α1, β1, γ1,Σ1) and (α2, β2, γ2,Σ2), it yields:

KLD
(
α1, β1, γ1,Σ1||α2, β2, γ2,Σ2

)
= ln

(
α1

α2

)
+ α2γ2 lnβ2

− α1γ1 lnβ1 + ln

(
γ2
γ1

)
+

1

2
ln

(
|Σ2|
|Σ1|

)
− γ1

+
(α1γ1 − α2γ2

2

)[
2 lnβ1 +

2

α1
Ψ(γ1)

]
−

(α2γ2
2
− 1

)[
1

2
ln(g1g2) +

1

3

(g2 − g1)

g2
2F1

(
1,

3

2
;

5

2
;
g2 − g1
g2

)
+

1

3

(g1 − g2)

g1
2F1

(
1,

3

2
;

5

2
;
g1 − g2
g1

)]

+

(
β1
β2

)α2 Γ
(
γ1 + α2

α1

)
2Γ(γ1)

[
g
α2/2
2 2F1

(
−α2

2
,

1

2
;

3

2
;
g2 − g1
g2

)
+ g

α2/2
1 2F1

(
−α2

2
,

1

2
;

3

2
;
g1 − g2
g1

)]
, (9)

where 2F1 is the Gauss hypergeometric function and Ψ the
digamma function. gi = 1

λi
where λi are the eigenvalues

of Σ−1
1 Σ2, and λ1 ≥ λ2. This expression of the KLD for

the BGΓU distribution generalizes the KLD found for the



 

Fig. 1. Modeling of the scalar random variable u for the first
scale and orientation of the grayscale Bark6 image.

BGGD [6], bivariate Laplace and bivariate Gaussian distri-
butions when we replace the value of α, β and γ by their
corresponding expressions given in Section 2.

3.2. Indexing results on the VisTex and Outex databases

As an analytical expression of the KLD exists for the BGΓU
distribution, this new model is of potential interest for model-
ing the chrominance wavelet coefficients. An indexing exper-
iment is hence conducted on the VisTex and Outex databases.
For the VisTex database, 40 texture classes from the MIT
Vision Texture database have been selected. From each of
these texture images of size 512 × 512 pixels, 16 subimages
(128 × 128) are created. Hence, the VisTex dataset contains
640 texture images [1]. For the Outex database, the 319 color
images in BMP format with 600dpi under inca lightning con-
ditions from the Outex website have been used [15]. Those
images were then cropped to 128 × 128 pixels starting from
the top-left hand corner, hence creating a dataset of 5109 im-
ages. In this experiment, the orthogonal wavelet decomposi-
tion (with 1 scale) with Daubechies’ filter db4 is used for the
wavelet decomposition.

To evaluate the potential of the BGΓU distribution for
modeling the chrominance dependency of the wavelet coef-
ficients, the empirical histogram of the scalar random vari-
able u = kT Σ̂−1k has been computed from the first scale
and orientation of the grayscale Bark6 image of the VisTex
database. This histogram is then modeled by the correspond-
ing distributions of u (see (3)) for the BGΓU, the BGGD, the
Laplace and the Gaussian distributions as shown in Fig. 1. As
observed in Fig. 1, the BGΓU distribution allows a better fit
of the scalar random variable u. As the BGΓU contains one
more parameter compared to the BGGD, this new model is
more flexible and seems promising for the modeling of the

Gaussian Laplace BGGD BGΓU Gaussian copula GG
Weibull

L - - - - - 69.54
Ch 63.86 63.96 69.35 70.77 66.28 -

Ch + L 77.73 79.46 80.48 81.46 78.48 -
RGB 79.49 - - - 79.88 -

L - - - - - 21.79
Ch 22.06 21.82 22.19 25.21 23.39 -

Ch + L 30.70 30.76 29.80 32.39 31.33 -
RGB 29.84 - - - 33.15 -

Table 1. Average retrieval rate (in %) on the VisTex (top) and
Outex (bottom) databases.

chrominance wavelet coefficients.
A texture retrieval experiment is now conducted on the

VisTex database. The symmetric Kullback-Leibler diver-
gence (SKLD) has been considered as similarity measure, i.e.
half of the double-sided KLD. Moreover, as the subbands are
assumed to be independent, the SKLD between two images I1
and I2 is obtained by computing the sum of the SKLDs eval-
uated for each subbands. Table 1 shows the average retrieval
rate on the VisTex (top) and Outex (bottom) databases. The
rows L and Ch means that an univariate generalized Gaussian
(GG) distribution and a bivariate model have respectively
been considered for the luminance and chrominance wavelets
coefficients. The five proposed bivariate models are the Gaus-
sian, Laplace, BGGD, BGΓU distributions and the Gaussian
Copula with Weibull distributed margins. The row Ch + L
shows the indexing results when combining the chrominance
and luminance models. As the chrominance and luminance
images can be considered as independent, the SKLD com-
puted between two images I1 and I2 can be decomposed as
follows:

SKLD(I1||I2) = SKLD(Ch1||Ch2) + SKLD(L1||L2), (10)

where Chi and Li are the chrominance and luminance images
of Ii (i = 1, 2). The line RGB corresponds to indexing results
with a trivariate model for modeling the RGB wavelet coeffi-
cients dependencies. Note that for the trivariate case, only the
Gaussian distribution and the Gaussian copula with Weibull
distributed margins have been considered since their SKLD
admits an analytical expression [16].

Note that here, indexing results on the Outex database
seems to be very low, but this dataset is composed of very
close texture classes (e.g. 11 classes of barleyrice). As shown
in Table 1, the proposed BGΓU distribution seems promis-
ing for modeling the chrominance wavelet coefficients. A
gain of 1% and 3% are respectively observed on the VisTex
and Outex databases compared to the BGGD. Moreover, for
both databases, combining the chrominance and luminance
models (Ch+L) yields to a raise of the retrieval rate of about
10% compared to a separate indexing (Ch or L). For the Vis-
Tex database, the combination of the BGΓU model for the
chrominance and the univariate generalized Gaussian model
for the luminance channel yields to the best indexing results.



 

Fig. 2. Average retrieval rate as a function of the number of
retrieved images for the VisTex database.

A gain of 2% is observed compared to a trivariate model
applied directly on the RGB channels. Concerning the Ou-
tex, this gain is confirmed with respect to the trivariate Gaus-
sian. If compared with the trivariate Gaussian copula, the in-
dexing performance are approximately equivalent (32.39 vs.
33.15). Note also that the combination of chrominance and
luminance models (Ch+L) allows parallelization of the code
since the chrominance and luminance channels are treated in-
dependently.

Fig. 2 draws the recall/precision computed on the Vis-
Tex database for the four best models in each category (L,
Ch, Ch+L and RGB). In a retrieval context, the best model
is the one which has the highest recall and precision val-
ues. This graph confirms that the best indexing results are
obtained with a combination of the proposed BGΓU distribu-
tion (solid green line) for modeling chrominance wavelet co-
efficients and the univariate generalized Gamma distribution
for luminance wavelet coefficients.

4. CONCLUSION
In this paper, a new stochastic model has been introduced
i.e. the multivariate generalized Gamma times an Uniform
(MGΓU) distribution. The multivariate Gaussian, Laplace
and generalized Gaussian distribution (MGGD) can be con-
sidered as a special case. For bivariate data, a closed-form of
the Kullback-Leibler divergence (KLD) has been established.
The MGΓU distribution has hence be proposed for modeling
chrominance wavelet coefficients, and implemented in a tex-
ture retrieval context. Some experiments on the VisTex and
Outex databases have been conducted and revealed that the
proposed MGΓU model allows a better retrieval rate com-
pared to other classical approaches (MGGD, Copula based
models).
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