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Abstract— This document provides the analytical solution of
the friction model for different changes in the sign of the vehicle
speed.

I. A NALYTIC SOLUTION OF THE

DAHL’ S FRICTION MODEL

The load torqueτa is described by the Dahl’s model and
is given by the following differential equation:

dF
dθ

= σ0

(

1−
F
Fc

sgn
(

θ̇
)

)

(1)

Let make the hypothesis to have a positive speed signal
during the time intervalt ∈ [0, t1]. At the time t = 0, we
have the corresponding value for the angleθ(0) = θ0. This
hypothesis implies that we have sgn

(

θ̇
)

= +1 in Eq. (1)
for θ ∈ [θ0,θ]. We make also the hypothesis to start from
null initial conditions, this implies that we need to solve the
following differential equation:

dF
dθ

= σ0

(

1−
F
Fc

)

(2)

with the following initial condition:

F(θ0) = 0 (3)

We divide both terms of Eq. (2) by
(

1− F
Fc

)

andFc, in order
to obtain a suited primitive:

−
1
Fc

(

dF
dθ
)

(

1− F
Fc

) =−
σ0

Fc
(4)

To obtain the analytic solution of Eq. (4) for positive speeds,
we integrate both terms during the interval(θ0,θ(t)):

∫ θ(t)

θ0

−
1
Fc

dF
dθ

(

1− F
Fc

)dθ =−
σ0

Fc

∫ θ(t)

θ0

dθ (5)

The result of this integral is:
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=−
σ0

Fc
(θ(t)−θ0) (6)

By substituting the initial condition (3), it is easily to obtain
the solution for positive speeds:

F(θ(t)) = Fc

[

1− e−
σ0
Fc

(θ(t)−θ0)
]

(7)
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At the time instantt = t1, the speed changes in sign and
becomes negative (sgn

(

θ̇
)

=−1 in Eq. (1)) during the time
intervalt ∈ [t1, t2]. To guarantee the continuity of the function,
we require that the initial condition corresponds to the last
values assumed fromF(θ(t)) during the intervalt ∈ [0, t1],
i.e. F(θ(t−1 )) = F(θ(t+1 )). Under these hypothesis, the new
Cauchy problem to solve is:

dF
dθ

= σ0

(

1+
F
Fc

)

(8)

F(θ(t−1 )) = F(θ(t+1 )) (9)

To solve this problem, we proceed as for Eqs. (4) and (5),
then we integrate betweenθ(t1) andθ(t), as follows:

∫ θ(t)

θ(t1)

1
Fc

dF
dθ

(

1+ F
Fc

)dθ =

∫ θ(t)

θ(t1)

σ0

Fc
dθ (10)

The solution of this integral is:
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− k1 =
σ0

Fc
(θ(t)−θ(t1)) (11)

Wherek1 is a constant, depending from the initial conditions.
By inverting this equation, we obtain:

F(θ(t)) = Fc

[

−1+ e
σ0
Fc

(θ(t)−θ(t1))
· ek1

]

(12)

To determine the constantk1, we introduce the initial condi-
tion F(θ(t−1 )) = F(θ(t+1 )):

F(θ(t−1 )) = Fc

[

1− e−
σ0
Fc

θ(t1)
]

(13)

F(θ(t+1 )) = Fc

[

−1+ e
σ0
Fc

(θ(t1)−θ(t1))
· ek1

]

(14)

It follows:

Fc

[

1− e−
σ0
Fc

θ(t1)
]

= Fc

[

−1+ ek1

]

(15)

By solving for k1, we obtain:

k1 = ln
[

2− e−
σ0
Fc

θ(t1)
]

(16)

So the solution for negative speeds is:

F(θ(t)) = Fc



−1+ e
σ0
Fc

(θ(t)−θ(t1))
· e

ln

[

2−e
−

σ0
Fc

θ(t1)
]



 (17)

By rearranging all terms, this expression can be simplified
as follows:

F(θ(t)) = Fc

[

−1+2e
σ0
Fc

(θ(t)−θ(t1))
− e

σ0
Fc

(θ(t)−2θ(t1))
]

(18)

If we make the hypothesis that the speed changes in sign
and becomes positive during the time intervalt ∈ [t2, t f ], we



can find the analytic solutionF(θ) for this last interval, by
repeating the same steps as for the previous cases. In this
case, the boundary condition isF(θ(t−2 )) = F(θ(t+2 )), so
we need to solve:

dF
dθ

= σ0

(

1−
F
Fc

)

(19)

F(θ(t−2 )) = F(θ(t+2 )) (20)

We proceed as in the previous cases and we integrate the
primitive between [θ2,θ(t)]:

∫ θ(t)

θ2

−
1
Fc

dF
dθ

(

1− F
Fc

)dθ =−
σ0

Fc

∫ θ(t)

θ2

dθ (21)

We obtain the following analytic solution:

F(θ(t)) = Fc

[

1− e−
σ0
Fc

(θ(t)−θ(t2))
· ek2

]

(22)

We can determine the constantk2 by introducing the bound-
ary conditionF(θ(t−2 )) = F(θ(t+2 )):

F(θ(t−2 )) = Fc

[

−1+2e
σ0
Fc

(θ(t2)−θ(t1))
− e

σ0
Fc

(θ(t2)−2θ(t1))
]

(23)
F(θ(t+2 )) = Fc

[

1− e−
σ0
Fc

(θ(t2)−θ(t2))
· ek2

]

(24)

It follows:

Fc

[

1− ek2

]

= Fc

[

−1+2e
σ0
Fc

(θ(t2)−θ(t1))
− e

σ0
Fc

(θ(t2)−2θ(t1))
]

(25)
From Eq. (25) we get the following expression for the
constantk2:

k2 = ln
[

2−2e−
σ0
Fc

(θ(t2)−θ(t1))+ e
σ0
Fc

(θ(t2)−2θ(t1))
]

(26)

If we substitute Eq. (26) in Eq. (22) and we simplify, we get
the solution for the friction torque when the speed is positive
and the initial condition is different from zero:

F(θ(t)) = Fc

[

1−2e−
σ0
Fc

(θ(t)−θ(t2))+

2e−
σ0
Fc

(θ(t)+θ(t1)−2θ(t2))
− e−

σ0
Fc

(θ(t)+2θ(t1)−2θ(t2))
]

(27)
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