Notes on the analytic solution for the Dahl’s friction model
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Abstract— This document provides the analytical solution of At the time instantt = t;, the speed changes in sign and
the friction model for different changes in the sign of the véiicle  pecomes negative (Sgﬁﬁ) =—1in Eqg. (1)) during the time

speed. intervalt € [t1,t,]. To guarantee the continuity of the function,
. ANALYTIC SOLUTION OF THE we require that the initial condition corresponds to the las
DAHL’S FRICTION MODEL values assumed froA(6(t)) during the intervak € [0,t1],

i.e. F(B(t;)) = F(6(t])). Under these hypothesis, the new

The load torquer, is described by the Dahl’'s model andCauchy problem to solve is:

is given by the following differential equation:
dF F
dF F ; i
45 = 0 (1— F—sgn(e)) (1) de (1+ Fc) (8)
C —

Let make the hypothesis to have a positive speed signal F(o@t,)) = F(o(y)) )
during the time interval € [0,t;]. At the timet =0, we To solve this problem, we proceed as for Egs. (4) and (5),
have the corresponding value for the angi@®) = 6. This then we integrate betweef(t;) and 6(t), as follows:
hypothesis implies that we have s(gh) =+1in Eq. (1) or) LGOF
for 8 € [6o,0]. We make also the hypothesis to start from / _Fdg d9 do = / (10)
null initial conditions, this implies that we need to solvet ot ) 6(t1) Fc

following differential equation: ,
The solution of th|s mtegral is:
dF F
d6 = O0p 1_F_c (2) I F(Iez(t))

with the following initial condition: ¢

%j(em— ot))  (11)

Wherek; is a constant, depending from the initial conditions.

nil+

k=

F(6)=0 (3) By inverting this equation, we obtain:
We divide both terms of Eq. (2) le— —) andF, in order F(O(t) =Fc [ 1+ or (6 ekl] (12)
to obtain a suited primitive:

To determine the constakt, we introduce the initial condi-

£ (f) _ oo @ fonF(O(L)=F(O(L)):
F F e/
(1— E) F F(O(t)) = Fe[1—e O] (13)
To obtain the analytic solution of Eq. (4) for positive spged Dot ot
we integrate both terms during the intervah, 6(t)): F(o(t ) =Fe [—14— ere (0()—8(1). ekl} (14)
o) —2 % 6(t) It follows:
/ _ Fedd 49 _ _@/ do (5) o
Ja (1-E) Fe Jo Fe[1-e =] —F|-1+¢9) (15)
The result of this integral is: By solving for ki, we obtain:
_ %
inf1— FOW) ‘1_ F) | _ % g1y _gy (5) ka=In[2-e =00 (16)
Fe Fe Fe _ _ _
By substituting the initial condition (3), it is easily to t@in So the solution for negative speeds is:
the solution for positive speeds: o inlo_ -226(y)
- 2(6()-60) F(o(t) = Fe —1+e1%°<9(‘>’9“1”-en[ o] (17)
F(O(1) = Fe[1-e =0 %] ()
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can find the analytic solutiof (6) for this last interval, by
repeating the same steps as for the previous cases. In this
case, the boundary condition B(6(t;)) = F(6(t;)), so

we need to solve:

3—'; = 00(1—;C> (19)
F(O(t,)) = F(6(t)) (20)

We proceed as in the previous cases and we integrate the
primitive between @, 6(t)]:

oy —25& o)
/ _Fedd 49 _ _@/ do (21)
6, (1_F£C) FC 6,
We obtain the following analytic solution:
F(B() = Fo[1—e R (@00 o] (22)

We can determine the constdatby introducing the bound-
ary conditionF (6(t,)) = F(6(t;)):

F(O(t;) = Fe[-1+ D2 (6(t2)-6(11)) e%(@(tzue(tng
3)
F(O(t})) = Fe [1_ e e (0()-6(t2)) -ekz] (24)
It follows:
= {1 _ ekz} -F [_ 14 2er (0(2)-6(t)) e%gw(tz)ze(tmz]
(25)

From Eq. (25) we get the following expression for the
constantks:

ko = In [2_26*%(9@2)*9(&)) +e%<e<tz>—ze<t1>>} (26)

If we substitute Eq. (26) in Eqg. (22) and we simplify, we get
the solution for the friction torque when the speed is pesiti
and the initial condition is different from zero:

F(O(1) =Fc [1— o F2(0)-6(2)
26 R(O)+6(1)-26(t2)) _ g~ 72 (6 +26(t1)-26(t2)
(27)
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