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Notes on the analytic solution for the Dahl’s friction model

V. Ciarla, V. Cahouet, C. Canudas de Wit and F. Quaine

Abstract— This document provides the analytical solution of By substituting the initial condition (3), it is easily to t@tin
the friction model for different changes in the sign of the the solution for positive speeds:
vehicle speed, as shown in the paper "Genesis of booster cess
in Electric Power Assistance Steering Systems” by the same F(B(t)) = F [1_87%(6(0*90)} (7)
authors. It is not intended to be self contained; it is only an

additional note. At the time instantt = t;, the speed changes in sign and

|. APPENDIX becomes negative (s§8) = —1 in Eq. (1)) during the time
. ] ' intervalt € [t1,t]. To guarantee the continuity of the function,
The load torquer, is described by the Dahl's model and\ye require that the initial condition corresponds to the las

is given by the following differential equation: values assumed froi(8(t)) during the intervat € [0,t],
dF = . i.e. F(8(t;)) = F(O(t))). Under these hypothesis, the new
a6~ % (1_ Esgn(@)) (1) cauchy problem to solve is:
Let make the hypothesis to have a positive speed signal d_F = 0o (1+ E) (8)
during the time intervat € [0,t;]. At the timet = 0, we do Fe
have the corresponding value for the angl®) = 6y. This F(e(t;)) = F(e)) 9)

hypothesis implies that we have sgh = +1 in Eq. (1) _
for 6 ¢ [6o, 6. We make also the hypothesis to start from'© SCIve this problem, we proceed as for Egs. (4) and (5),

null initial conditions, this implies that we need to solvet then we integrate betwee(t;) and 6(t), as follows:

following differential equation: o) LOF o0 o
dF F / e de = / 2o (10)
——= =00 (1— —) (2) 6(t1) (1+ F_C) 0(y) Fc

do Fe

The solution of this integral is:

with the following initial condition:
F(6) =0 ®) In|1+ F(ic(t)) ‘ ~la=200-6) @D
We divide both terms of Eq. (2) bél— FEC) andFg, in order  Wherek; is a constant, depending from the initial conditions.
to obtain a suited primitive: By inverting this equation, we obtain:
—£(%) _ o @ F(8(t) = Fe[-1+eR(@00W da]|  (12)
(1_ Fic) & To determine the constakt, we introduce the initial condi-

To obtain the analytic solution of Eq. (4) for positive speed tion F(8(ty)) = F((ty)):

we integrate both terms during the intervéb, 6(t)): FO(t)) = Fe [1_ e*%e(tl)} (13)
/9(t> -t % dez_@/emde ) % o0t
v (1-E) Fe Jay FO(t) =Fo [-14er 000 da]  (14)
The result of this integral is: It follows:
—Ro6t)] _
Fell—e R | —F |—146e 15
|n‘1_L9(t))‘_m‘l_—F(e") — D) -6 (6) | =%l ) (15)
Fe Fe Fe

By solving fork;, we obtain:
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276—%e<t1>]
(17)



By rearranging all terms, this expression can be simplified
as follows:

F(O(t)) = Fo [~ 1+ 2eR(60-6() _ gR2(60-201)] (1g)

If we make the hypothesis that the speed changes in sign
and becomes positive during the time interval [t,t¢], we
can find the analytic solutioR (6) for this last interval, by
repeating the same steps as for the previous cases. In this
case, the boundary condition B(8(t,)) = F(6(t))), so

we need to solve:
dF F

F(B(t;)) = F(6(t)) (20)

We proceed as in the previous cases and we integrate the
primitive between @, 6(t)]:

/em R gy O /'em de (21)
/6, (1_F£C) Fe Je,

We obtain the following analytic solution:
F(O() =Fo [1-e REU0E) de]  (22)

We can determine the constdatby introducing the bound-
ary conditionF (6(t, ) = F(6(ty)):

F(8(t; )) = Fo [~1+ 26ROt -0(w) e%(@(u)ze(tmé

3)
FOG) =Fo[1-e 7 )] (2a)
It follows:
F. [1_ ekz} —F [—1+ 2er (8(t2)6(t2)) _ e%(@(tzme(tmz]
(25)

From Eq. (25) we get the following expression for the
constantky:

ko = In {2_26*158(902)*901)) +e€2<e<tz>726<tm} (26)

If we substitute Eq. (26) in Eqg. (22) and we simplify, we get
the solution for the friction torque when the speed is pesiti
and the initial condition is different from zero:

F(B(1)) = Fo[1— 26 R (000
2e 72(6(t)+6(t1)—26(t2)) e D (6(t)+26(t1)-26(t))
(27)
O
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