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The vibro-acoustic behaviour of elastic structwrespled with cavities filled with
a heavy fluid can be modelled by using the Finitentent Method. In order to
reduce computing time, the Patch Transfer Funci®hF) approach is used to
partition the global problem into different sub-plems. Different types of
problem partitioning are studied in this papertiBaning outside the near field of
structures to reduce the number of patches ofdhpling surface for frequencies
below the critical frequency is of particular irgst. This implies introducing a
non standard modal expansion to compute the PTRraety enough to
guarantee the convergence of the PTF method ancteecbmputation time in
comparison to a direct Finite Element resolution. application on a submarine

structure illustrates the interest of this approach

1 Introduction

The response of elastic structures coupled to walent cavities is investigated in this paper.
The interaction between a mechanical structure agavy fluid is of particular interest,
especially in nuclear and naval engineering. Irs thituation, the structure is strongly
influenced by the presence of the surrounding figeherally water) [1].
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Different numerical methods have been develope@dent decades to model fluid-structure
interaction problems. The Finite Element Method NfjEand the Boundary Element Method
(BEM) are the methods most commonly used in indalstontexts. The advantage of these
approaches is that they can be applied to any gepraad a wide range of mechanical
properties. However, they are generally limitedthie low frequency range, although the
inexorable increase in computing capacities termdextend their applicability to higher
frequencies. This limitation of frequency has twaimcauses : (a) the increase in the number
of degrees of freedom of the FE model as a funatibimcreasing frequency; (b) the non-
symmetric (u,p) formulation of the fluid-structure interaction pfem prevents the use of
classical methods to extract the normal modes. Jlaedard modal method cannot be
employed. Moreover, the direct resolution of sugistems of equations is very time-
consuming. In order to overcome this drawbacked#ifit approaches have been proposed in
recent decades. Some of them [2-4] have used theahomodes of each uncoupled-
subsystem (i.e. in-vacuo modes of the structureamoaistic modes of the cavity with rigid
wall). In the case of a heavy fluid, the use of augled modal bases can lead to poor
convergence if the coupling between the high ondedes of a given subsystem with the low
order modes of another system is not consideredercomputation. In order to improve the
convergence of these modal expansions, the moda ban be enriched by a set of residual
modes defined as the static response of a subsystemtructure or cavity) to the excitation
by a mode shape of the other subsystem [2]. Thebruwf residual modes is therefore equal
to the number of normal modes which can limit tppraach. Similarly, Tournour et al. [5-6]
showed that the effect of modal truncation usirgribrmal modes of a plate and a cavity is
critical for the convergence of the method and tmatvergence can be greatly improved by
using pseudostatic corrections for both the strecand the cavity. They also show that using
only a pseudostatic correction for the structureaos sufficient to accurately calculate the
pressure inside the cavity. Another approach isueeof symmetric variational principles, as
done in [7], that can lead to a single field “limmdse” formulation. The modes of these “limit
cases” can provide basic functions for the striecand the fluid variables, thus leading to a
large number of possible modal methods. Howevesdhmethods are time-consuming [6].
Other theoretical reduced models [8-10] have beepqgsed for the linear vibration analysis
of bounded fluid-structure systems in low modal signsituations. They lead to symmetric
reduced matrix systems expressed in terms of gerextacoordinates for the fluid and, if

necessary, for the structure.
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Other authors [11-17] have proposed non standaitk felement formulations for acoustic
fluids in the analysis of fluid-structure interaxtiproblems. These consist in introducing new
variables for the fluid, thereby leading to symnmetmatrix systems that include the
displacement formulation [11-12], the velocity pdtel formulation [12-13], the mixed
displacement potential and pressure formulatior], [&#d the displacement and vorticity
moment formulation [15]. By using these formulagpithe normal modes of the structure-
cavity system can be computed by solving a symmedigenvalue problem. The modal
expansion method can then be used to estimatetbedf response of the dynamic system in
a straightforward manner. The most commonly usechditation is the symmetric pressure-
displacement potentialufpyp) formulation [16-17]. However, these formulatioase not

implemented in all commercial FE software applmasi.

In this paper, the fluid-structure problem is sdiMey using the Patch Transfer Function
approach [18]. This approach is based on substingtsurfaces divided into elementary
areas called patches and it consists in studyin sabsystem independently, in order to
build a set of transfer functions defined by usingan values on the patches, hence the term
Patch Transfer Functions. Then, the PTFs are adsdrhlp using the superposition principle
for the linear passive system along with the caitynrelations, leading to the fast resolution
of the coupled problem. This approach has beenesstully applied to solve acoustic
problems in the medium frequency range for automeotpplications [18] and acoustic
transmission problems with double wall panels [1Bhis approach is not based on an
assumption of weak coupling between subsystems, ithtan be used to solve problems of
fluid-structure interaction in heavy fluid. Initimlevelopments [20] based on partitioning at
the fluid-structure interface have shown that usangtandard mode expansion to build the
cavity-PTF leads to poor convergence of the PTFhatetin heavy fluid (as opposed to light
fluid). To overcome this problem, the residual shapncept was introduced in the cavity-
PTF calculation. A residual shape corresponds &résponse of the cavity excited by a
constant normal displacement imposed on a patah sgiecific frequency. The number of
residual shapes enriching the modal basis is @qulle number of patches. This ensures the
convergence of the modal expansion to estimat®ii#e Unfortunately, a major drawback of
substructuring at the fluid-structure interface wscwhen the frequency range of interest is
well below the critical frequency of the structuvehich is generally the case in heavy fluid
applications. Indeed, Ouisse et al. demonstrat¢ti@jhthat ai/2 patch mesh criterion for the
coupling surface was sufficient to obtain good lssiHowever, for frequencies well below
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the critical frequency, the flexural wavelength time structure is much smaller than the
acoustic wavelength in the fluid. Consequently, tember of patches that must be
considered for substructuring at the structuretgamwierface is much greater than that used
when substructuring is performed in the fluid meditHowever, the position of the coupling
surface that partitions the global system into f@wo more) subsystems can be defined in
different ways. Thus it appears possible to idgrai optimal position of the coupling surface
to minimize the number of patches. This positioouti not be defined too far from the
structure, in order to limit the size of the copesding subsystem, while it should not be too
close, in order to use a patch mesh criterion baseithe acoustic wavelength and not on the
flexural wavelength. This paper addresses thisikp@oint.

After having recalled the theoretical backgroundhaf PTF method proposed, the definition
of an optimal position of the coupling surface iscdssed in section 3. This discussion is
based on well-known phenomena related to the acorediation of structures below their
critical frequencies. A basic analytical model ged to define a criterion for estimating the
optimal position of the coupling surface. This eribn ensures that the pressure distribution
varies spatially according to the acoustical wawvglle on the coupling surface. Beyond this
distance, the patch size criterion is assumed asdban the acoustic wavelength. This
methodology is validated on an academic test casgosed of a rectangular plate coupled
with a parallelepiped cavity. Comparisons betweeefarence result and the PTF results for
different substructures show that the distancermoih is well adapted and that a patch mesh
criterion based on the half acoustic wavelengthlmmanised to obtain good results. However,
this methodology implies the definition of a sulieps composed of the structure and the
surrounding fluid. Computing the PTFs of such asgstem is not an easy task, since the FE
model associated with this subsystem is non-symaenetnereby hindering the use of a
standard eigenvalue solver; moreover, direct réigolus time consuming. To offset this
difficulty, a non standard modal expansion basedhensymmetric formulation proposed in
the literature [21] is presented in section 4 wlifate calculating the PTFs of this subsystem.
For the damped problem, symmetrization leads toraptex mass matrix and requires the
definition of new modal damping parameters. Thigniglation also allows computing the
residual shapes used to enrich the modal basistlgxas in [20]. This approach is
implemented in the FE commercial software MSC/NABNRby using DMAP instructions.
Comparisons of a direct FE resolution with PTF itsshy using this modal method on the
academic test case highlight its accuracy andieffoy. Finally, the present approach is

applied to an industrial case. It consists in dakg the acoustic transmission through the
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bulkheads of the ballast compartments of a submaifia do this, the problem is divided into
5 subsystems. The results obtained show the eftgieof the PTF method in terms of

computation time compared to direct FE resolution.

2 Principle of PTF approach

FIGURE 1

Let us consider the internal vibro-acoustic probjaesented in Fig 1. The vibrating structure
of volumeQs is coupled with a rigid-wall acoustic cavity oflume Q. S, is the fluid-structure
coupling interface an&: is the rigid wall surfaceThe structure is assumed to be elastic and
excited by a harmonic point fordee'® whereF is the amplitude of the force, the angular
frequency, and time. Here, we are interested in the stationargaese of the system. In the
following, time dependence will be omitted in thetation although it is always considered.
The goal of this section is to calculate the respsmt pointM in the cavity and at poin*

of the structure by using the PTF approach.

Basically, the PTF method [18] consists in paniiny the global system into two
subsystems, by partitioning volung2 with a coupling surfac&, as shown in Fig. 1. The
elastic structure coupled with a subcavity of votu@ is the first subsystem while the other
subcavity of volumeR, is the second subsysten® € , 1 2,). The coupling surfac& is

then divided intd\ elementary surfacedS , i D[l n], called patches.

For the sake of clarity, it can be considered tinare are only two subsystems in this
presentation, but the PTF approach can be easitgnéad to an arbitrary number of
subsystems.

To define the Patch Transfer Functions (PTF), eadisystem is considered independently.

For subsystena (a=[1,2]), a constant normal volume veloci@yy is prescribed on patdhof
surface®S , whereas a null normal velocity is prescribed lo@ dther patches. Thus the PTF

of subsystenzris defined by:
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- the Patch Transfer Functions between excitechpatad receiving patch Z;':

ze =2, ®
G
where p{ is the space-averaged pressure on the paich p; :% '[pf(M )dS), when

i 0S;
patchi vibrates with the normal volume velociy .

In the present definition, one considers the nowa#ime velocityg® instead of the normal

a

velocity G considered in [17]. The use of normal volume viéyag” =4“0S allows us

considering the reciprocity relatiorz;’ = Z{. It reduces the number of calculations of the

PTFs and it leads to symmetric matrices in theofuithg;

- the Patch Transfer Functions between excitechpatnd pointM inside subcavityy, :

zj, =, @

where p,, is the resulting pressure at poMtwhen patch vibrates with the normal volume
velocityq” .

In the following, subsystem 1 containing the stuoetis excited with a mechanical forEe
acting on the structure. In agreement with the Bfjproach, the blocked pressure of patish

defined for this subsystemp' as the space-averaged pressure on patdoe to the

mechanical forc& when a null normal velocity is imposed on all gegches (i.e. null normal

velocity on the coupling surfac®).

It should be noted that the PTF corresponds to saimoimpedance, since it is defined as the
ratio of the mean pressure over the mean volummitgl These quantities can also be called
Patch Acoustic Impedance (PAIl). This permits makaglistinction between the global
approach (i.e. PTF approach) and the quantitiemetfin this approach for each subsystem
(i.e. the PAI).

Coupling the subsystems is performed by:
- using the linearity properties of the systemxpress the patch pressure by the sum
of the pressure corresponding to the source witigid boundary surface and the pressure

radiated by the patch velocities ([18]):
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p,ﬁizjliqw*pl, and,p2=242‘qz,ﬂ O 1...N, (3)

- writing the continuity conditions on each patohmely the equality of pressures and

the equality of normal velocities at connectingcpat:

p'=p’, and,g'+ ¢ = 00i0[ 1,..N]. (4)
The velocity condition takes into account that timmal velocity of the patches of the
different subsystems are in opposing directions.

By introducing (3) in (4), a linear system is ob&d with the patch volume velocitiefs as

unknowns:

i[(z; +27) qz] =P, 0i0[L...N]. ()

This linear system must be solved is a full systbat,its size is small since the number of

unknowns is equal to the number of patches. Itergion leads to the patch volume velocities

values qf when the two subsystems are coupled together.sByuhe linear property of the

system in a post-processing phase, it is possitaltulate:
- the pressure at poiM in the subcavity of subsystem 1:

N
Pv =Py~ % ¢, and, (6)
i=1
- the pressure at poiM’ in the subcavity of subsystem 2:
N
P =2 Zu- 4 (7)
i=1

whereZ}, andzZ? are defined by Eq. (2).

These two relations permit estimating the acoystssure at any point of the cavity as long
as the patch transfer functions between the coresidgoint and the patches (i.e. Eq. (2)) have
been calculated previously.

To estimate the normal displacement at a giventpointhe structure, it is necessary to

introduce two new quantities for subsystem 1 bdfanel. Firstly, as with Eq. (2), the Patch

Transfer Functions are defined between patufd pointM’ on the structurey,,.:

1
vi, =M ®)
o}

where W;. is the resulting normal displacement at pdiitwhen patch vibrates with a

constant normal volume velocitj'. Secondly, as subsystem 1 containing the structure
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excited by the mechanical force, the blocked disgisent at poinM’,VT/“j. is defined as the

displacement at poir¥I’ due to external forcé when a null normal velocity is imposed on
all the patches

With these quantities and the patch volume velesitf , it is possible to calculate the normal

displacement at poiMl’ of the structure by using the linear property & flystem:

w“a.:vw.—im.@f: ©)

The PTF approach then allows calculating the respari a global system from the PAI of
uncoupled subsystems by inverting a square symenaiairix whose dimension corresponds
to the number of patches. The PAI can be calculayedifferent methods depending on the
subsystem considered (analytical for academic siésys, FEM, BEM for complex
geometries, Rayleigh integral for semi-infinite mad, etc.). These calculations are
performed for each subsystem separately. Consdygugairallel computation is possible.
When FEM is used, the size of the numerical modélgach subsystem is considerably
smaller than that of the global model. Moreoveg tise of incompatible meshes at the
subsystem interface is possible, since the probbéntompatibility is solved by patch

averaging.

3  Postion of the coupling surface

3.1 Discussion and definition of criterion

In this section, the position of coupling surf&és studied. This surface defines the interface
between two subsystems. Since a weak coupling gggamis not necessary in the PTF
formulation, it is therefore possible to use anyfae to partition the global system. This
statement has been verified in Ref. [18], in whicl acoustic behaviour of a parallelepiped
cavity was modelled with the PTF method, by usirgteary coupling surfaces. It was shown
that the PTF approach gives accurate results évwbe modes of the uncoupled subsystems
are dissimilar to the modes of the global systeantifermore, a parametric study showed that
the size of the patches should be less than helfattoustic wavelength at the highest

frequency of interest (i.e. patch size criterdd@) [18]. This criterion was confirmed in Ref.
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[19] for PTF modelling of the transmission lossaadouble panel. In this case, the wavelength
that had to be considered in the criterion wadlthairal wavelength of the panel.

In this paper, the structure is loaded by a heawg find the frequencies of interest are well
below the critical frequency, which is generallgihi The flexural wavelength is thus much
smaller than the acoustic wavelength. The rolequdyy these two wavelengths in the fluid
medium depends on the distance from the structndeed, when the structure is excited in
its near-field, the acoustic pressure varies maawigording to flexural wavelength of the
structure. Thus the patch mesh criterion must sedan the structural wavelength, leading
to a large number of patches. On the contrary,ideithe near field of the structure, the
acoustic pressure varies according to acoustic keagth A,. In this situation, a patch mesh
criterion based on half the acoustic wavelength lmarapplied, thus limiting the number of

patches.

FIGURE 2 - TABLE 1

To illustrate this statement, examples are predeitethe case of a rectangular simply-
supported plate excited by a point fofe@and coupled to a parallelepiped water filled ggvit
as shown in Fig2. The parameters used in the simulations are givéirable 1. Direct FE
calculations are performed with MSC/NASTRAN softear

Fig. 3 presents the pressure distribution insigéectvity for two frequencies: 100 Hz and 700
Hz, well below the critical frequency (around 13489). In this figure, the plate excited is
located at the top of the cavity. It should be dateat the spatial variations of the pressure
have a smaller wavelength in the near-field of glege than in the rest of the fluid domain.
The bending wavelength is much smaller than theustt® wavelength for the two
frequencies considered in Fig. 3. The acoustic es@nt waves generated by the plate
decrease quickly, perpendicularly to the latter.wiweer, the size of the fluid domain
influenced by the bending motions of the plate a$ imdependent of frequency. It is thus
necessary to evaluate the optimal position of tbepling surface by ensuring that the
acoustic pressure varies according to the acoustigcelength at the interface of the

subsystem, and by limiting the size of the “struettattached cavity” subsystem
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FIGURE 3

To define the cavity attached to the structure cosesider a simpler problem, i.e. the acoustic
wave propagation generated by the flexural motadrem infinite plate with a natural bending
wavelength. The basic phenomenon demonstrateceiaghendix is the evanescent nature of
wave propagation in the direction perpendiculatht® plate. A criterion is then defined by

distanceZ, . from the plate when the radiated pressure hasdsed by 10 dB compared to

lim
the wall pressure. The developments given in apgdedd to the following expression:
In(10
Zim = %’ (10)
2,/k;" =k,

wherek; is the bending wavenumber of the structure knd the acoustic wavenumber.

This criterion ensures that the acoustic evanessames generated by the structure will be
negligible compared to the acoustic travelling wavlken, from a distance to the structure

greater tha@,  for a given frequencw, it can be assumed that the pressure distribution

lim
varies according to the acoustic wavelength. If ¢hepling surface is located at a distance

greater thanzZ, , it is then possible to discretize the couplingfate with a patch criterion

lim ?

based on half the acoustic wavelength. Howevgr,depends on the frequency. For a plate
and for frequencies well below the critical freqczlyze(he.kf2 >> koz), the previous expression

can be approximated by:
Ly =—— (11)

where A is a constant.

This indicates that the lower the frequency, thghaiZ, is. Since it is useful for practical

lim
reasons to perform PTF calculations in a wide feagy range without changing the patch
mesh definition, it is necessary to evaluate thetadice criterion at the lower frequency of
interest. However, a compromise can be found tat lihe size of the “structure- attached
cavity” subsystem and thus keep the advantageshsitsicturing in the fluid domain. As the
patch size is defined from the smallest half adoustvelength in the frequency range of

interest, the patch size is lower than the halfdioepn wavelength in the low part of the
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frequency band. There is therefore no need to éefia coupling surface at a distance greater

that the limit distance&,  calculated in the low frequency of the band. Iheotwords, the

lim
coupling surface can be located in the near fiélthe structure as long as the patch size is
lower than the half bending wavelength. The testecdescribed in Fig. 2 and Tab. 1
illustrates the process used to determine the @ptiistance. Patch size crited@2, 1./2 and
limit distance Z,, relating to frequency are presented in Fig. 4. $ize of the patches is

defined by considering the smaller half acoustigel@ngths in the frequency band of interest
[1 Hz-1000 Hz] (i.e. the half acoustic wavelengtli@00 Hz). A patch size of about 0.7 m is
obtained for the test case. Patch size is thugegré@an the half acoustic wavelengths in the
entire frequency band. Moreover, as can be seé&igind, , patch size is lower than the half
bending wavelengths for frequencies below 90 Hz.thes size of the patch conforms to a
criterion based on the half bending wavelengthsfriegquencies below 90 Hz, the coupling
surface can be located in the near-field of théepiar these frequencies. This means that the

coupling surface can be positioned at a distaneerdhan limit distanceg,  calculated for

lim
frequencies below 90 Hz. For frequencies above 20pdtch size is greater than half the
flexural wavelength. Therefore the coupling surfabeuld be located at a distance greater

than Z,  calculated for frequencies above 90 Hz. From ¢heel part of Fig. 4, it is possible

lim
to deduce that the “optimal” distance from the @latabout 0.3 m (i.e. for frequencies below

90 Hz, Z,,, > 0.3m, whereasZ,,, < 0.3m for frequencies above 90 Hz).

FIGURE 4

To verify this reasoning, two different substruatgs of the test case are considered. In the
first case, the coupling surface is defined at @r0%.e. at a distance less thZp, for all the

frequencies in the band, while in the second ohe, doupling surface is defined at the
“optimal” distance from the plate, as discussedvaljae. 0.3 m).

FIGURES 5-6
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The subsystem meshes corresponding to these tvetrgcioirings are shown in Figs. 5 and 6.
The coupling surface is discretized into 9 patdieedoth cases (patch size: 0.67m x 0.5m).
The computations of the PAI are performed by aadliresolution of the FE problem related to
each subsystem (SOL108 in MSC/NASTRAN SoftwaresehPAl are then used in the PTF
approach, as described in section 2, to obtaifditved response of the coupled subsystems.
A reference result for this test case is obtained Hirect resolution of the FE problem for the
global system. Comparisons of the two PTF resultk the reference one are proposed in
Figs. 7 and 8 in terms of point responses on the@nd in the cavity, respectively. It can be
seen the first substructuring gives poor resultsgpt in the low part of the frequency band.
This is due to the fact that the patch size has loedined from a criterion based on the half
acoustic wavelength, whereas the coupling surfadecated in the near field of the plate. On
the contrary, the second substructuring gives atewesults for the entire frequency band,
although the patch definition is the same as fer first substucturing. This result clearly
shows that a patch mesh criterion based on haki¢bastic wavelength can be considered as
long as the coupling surface is located at theifiogit distance defined previously. The
definition of this “optimal” distance is the corséwne of the substructuring method proposed,
since it must be defined carefully to obtain actair@sults without dramatically increasing
the size of the structure-cavity subsystem.

FIGURES 7-8

4  Estimation of the PAl of the cavity-structure subsystem by using

modal expansion

4.1 Introduction

In the previous section, the PAIls of each subsysteme obtained by directly resolving the
linear equation system of the corresponding FE inotleese calculations can be time
consuming which is why using a modal approach ap@sed in this section to accelerate the
PAI calculations. Using modal expansion to calaliie PAI of subsystem 2 of the test case
Is straightforward. For example, the extractiontled cavity modes of the acoustic cavity
subsystem can be easily achieved by using the banoethod. On the contrary, the matrices
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of the standard FE model are not symmetric fordinecture-cavity subsystem including a
fluid-structure interaction. Consequently, claskio®ethods such as the Lanczos method,
which allow extracting eigenvalues and eigenvectidra generalized eigenvalue problem,
cannot be applied directly. Some authors [11-1Alehproposed different non standard
formulations of the fluid-structure interaction ptem by introducing new variables in the
fluid domain. In this section, we propose a moghgdraach to calculate PAIs starting from the
non-symmetric matrices of a standard FE model effthid-structure interaction problem.
The process can be easily implemented in commeF&M software applications, such as
MSC/NASTRAN.

4.2 For mulation

Let us consider a structure-cavity subsystem exdiean external point forde. applied on

the structure. It can be assumed that the surfagpled with another subsystem is divided
into N patches. In order to compute the PAI of this sulesgsit is necessary to take into
account theN external loads corresponding to the excitationamhepatch with a unit normal
velocity, independently of the other patches, dreldxternal force, to calculate the blocked
pressure of this subsystem. All in all, the foresponses of the subsystem must be calculated
for an N+1 loaded case and for different frequencies containethe frequency band of

interest4w. In the following, a modal approach is developeddhieve these calculations.

In the approach proposed, the PAI of the structangty subsystem are derived from its FE
model. At a given angular frequeney the classica(U,P) formulation of this subsystem is

written as follows: (see [20,21]) :

A ISRV P
0 K.||P AT M_||P] |Q
where: -U andP represent the nodal displacements of the struetodethe nodal pressure in
the cavity, respectively;

- F are the nodal forces applied on the structure,@rlde nodal volume velocities

imposed in the cavity;

- M4 and Kgare respectively the mass and stiffness matricéseoftructure;

- M. and K. are respectively the mass and stiffness matritdseaavity;

- Ais the fluid-structure interaction matrix, and;

- subscript T refers to the transposed matrix.

MAXIT - VIB-11-1135 13



The damping effect is introduced by consideringpaglex Young modulus for the structure

and a complex celerity in the fluidKs and K. are therefore complex matrices.

As the matrices of Eq. (12) are not symmetric, itz methods cannot be used directly for
extracting the normal modes. To bypass this diffjc@and symmetrise the problem, we
premultiply Eq. (12) by the following matrix ([21])

Tag -1
S= {f}'\l\’/'ls ) ﬂ . (13)
S

Therefore a symmetric matrix system is obtained:
K -w?M|X =F, (14)

where:

=Vl = KS MKy —KJMJ'A
P -ATMKg Ko +ATMA

M_{KST o}ﬁz{ Ks' Mg 'F }
1 _l .
0 M, -ATMJ'F+Q

The inversion of the mass matrix of the structwestraightforward for an FE model with

(15)

lumped masses:
Mgt =|  — | (16)

Unfortunately, the rotational inertia terms of tihass matrix are often omitted. The matrix is
thus singular. It is then necessary to condenserdltaion dofs of the structure before
inverting the resulting mass matrix. The calculai@re time consuming, but they only have

to be performed once.

AsM and K matrices are symmetric, the generalised eigenyaiot@lem can be written as:
[ReK}-ARMI|X =0. (17)

The Ofirst eigenvaluesA, and the associated mass-normalized eigenvecgprsare

computed numerically, by implementing a modal eticm method (e.g. the Lanczos

method):

o' RM}g, =1, ¢ RK}g, = A, . nO[12...0]. (18)
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Residual shapes are introduced [20] to improve ahevergence of the modal expansion
based on these coupled modes. This technique t®msienriching the modal basis with the
quasi-static responses due to the different exaitatand by re-orthogonalizing the resulting
modal basis to keep the advantages of modal exganki our caséN+1 load cases are

considered, corresponding to the excitations ohgetch and the external load. At a specific

angular frequencya, the residual shapesdue toN+1 excitationd=; are calculated:

[RK}-w? RM g, = F . (19)
A new reduction basiB is defined from these residual shapes:
P={g.ap. Sy} (20)

In order to re-orthogonalize these vectors, thenghaof baseX = PX . is introduced in Eq
(17). The projection in th® basis of the resulting equations gives the redumsteralized

eigenvalue problem:
[K-am]X =0, (21)
with
M =P" RdM]P, K = P" RK]P. (22)
All eigenvaluesA'y, and associated eigenvectey®f the eigenvalue problem (21) can be

calculated easily (for example, by using Givenshodt[22]). Assuming the eigenvectors are

mass-normalized and considering the change of ouaies,

Xa =PV, (23)

the following orthogonality relations are verified:
Xo' My, =1, x,"Kx, =2',, (24)
X; My, =0,x, Ky, =0 if az8 (25)

Now, to estimate the forced respodserom Eq. (14) due to excitatioR,, an approximate
solution can be found in the new bais= {x,.. Yo,y .}

X =P'T (26)
whereT is the vector of the modal amplitudes.

To this end, this expression is introduced in Elgt) (and the projection of the resulting

equation in th€' basis is achieved.
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As is done classically in the case of weak damBagile assumption, [23]), the off-diagonal
terms of the imaginary part of modal matrices arglected:

X, Im(M )y, =0, x,"Im(K)x, =0, if a=B (27)
Moreover, the modal damping factoi§, and 77, and the generalized forcé&,, are defined

as follows:

T

2o =X, m(M)x,, 7, =x,"1m(K)yx,, and, (28)

Fia = Fi)(a' (29)

By doing the above, the result of the projectioth@P' basis gives the modal amplitudgs

under the general form:
F

M, = : o ,Oa0[1,0+N +1], (30)
SRR TR TR

where w, is the natural angular frequency givenday = /1",

Using (26) and (30), the response of the struotasety subsystem is computed from the
coupled mod a,)(a). It can be seen that the symmetrization procedfirthe standard
formulation of the fluid-structure problem leadsctamplex mass and stiffness matrices. As a
result, two damping factorg§, and 77, must be introduced in the modal method. Theireslu
depend on the damping factors associated withtthhetsre and the cavity, and on the mode
shapes.

To estimate the PAI between patcland patchj, a unit normal volume velocity must be
imposed on the surface of paicldS . In the finite element formulation, it is writtday:

W
—-j— , for then, nodedlo
F = 0,for allnodes and,Q = : n 3 (31)

0 , otherwise.

The PAIZ; is then estimated by the expression:

Z _G+N+l Fia)(ja
Sl Vi oy 8 VEY (o ek

where y,, is the mean value of, on patchj.

(32)
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A DMAP procedure [24] was run on MSC/NASTRAN to foem the calculations of the
coupled modes and the residual shapes descrilthsisection. The modal information was
then used in a MATLAB program to calculate the P#dsn Eq. (32).

4.2 Numerical validation

In this section a numerical validation of the PAdlaulations from the modal approach
described previously is proposed. To do this, #st tase presented in Fig 2 and the second
PTF substructuring (see Fig. 6) are considered.

The coupled modes of the “structure-attached cawtypsystem were estimated from the
process described previously. The original modalseontains the normal modes with their
natural frequencies below 1500 Hz (i.e. 100 normabes). Moreover, this modal basis is
enriched by 10 residual shapes corresponding t® fetch excitations and the external load
acting on the plate. The specific angular frequesacikias been set to 314 rad/s (100 Hz). The
results are not sensitive to this parameter as &mnthis specific frequency is not equal to a
natural frequency of a coupled mode and its vaémains below the frequency of the last
coupled normal mode retained in the modal expansea discussion in [20]). The values of

the modal damping factoi§, and 7, are presented in Fig. 9.

FIGURE 9

These values depend on the cavity damping valueelya0.001, and the plate damping

value, namely 0.01. For the low modal order, thies of , are close to the value of the

plate damping factor. This can be explained byf#w that the cavity has a non-resonant
behaviour for the low frequencies considered amad tihe coupled modes are dominated by

the plate modes. For a higher modal order, the ledumodes correspond to strong coupling

between plate modes and cavity modes. Thus, theesalf{, and 77, vary between the plate
and the cavity damping values. For the residugba$iathe values gf, are generally close to
the plate damping value and are greater than thaf o However, since the natural

frequencies of the residual shape modes are lodaedeen 2259 Hz and 5225 Hz, their
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responses for frequencies below 750 Hz are nomagg@nd do not depend on their damping

values.

FIGURES 10-12

In Fig. 10 the results obtained for the blockedspuee by three methods are presented. The
first method is the reference one and consists direct resolution of the FE problem; the
second is the present modal method without resishabes, and the last is the present modal
method including the residual shapes. Similar campas are proposed in Fig. 11 and Fig.
12 for the input PAI of patch 1 and for the tramsRAl between patch 1 and patch 3,
respectively.

In Figs. 10 and 12, it can be seen that the mogafcach without residual shape modes
allows converging in the resonant domains of treegspm, whereas several discrepancies can
be observed in the non-resonant domains. The ndtatpencies of the coupled modes are
therefore correctly estimated by the present amprobut these coupled modes do not allow
representing the non-resonant behaviour of thetyeatucture system. Moreover, for the
input PAI (see Fig. 11), the discrepancies betwtbenmodal results and the reference result
appear at all frequencies above 100 Hz. This is tdu¢he poor convergence of modal
expansion for an acoustic cavity, as illustratedRaf. [20]. Consequently, a large number of
non-resonant modes are required to ensure the genee of the PAI calculatiorlowever,
using residual shape modes considerably improvesdahvergence of the modal expansion.
This can be observed in Figs. 10-12 where the supi¢he reference results and those of the

modal expansion with residual shapes match verl wel

FIGURES 13-14

These PAls calculated from the modal method ane tised in the PTF approach to calculate
the global response of the test case. The struciocelerations and the acoustic pressures
obtained from the PTF approach are compared weéhreference results in Figs. 13 and 14,
respectively. It can be seen that the poor convexef the PAIls calculated without the

residual shape modes leads to significant errotisarPTF calculation of the acoustic pressure
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inside the cavity. On the contrary, using residslepe modes provides good results. Tab. 2
shows the MSC/NASTRAN computing times required fibre different calculations
performed on the test case. They indicate thagaifgiant decrease in computing-time is

obtained with the modal method proposed in comparis a direct FE calculation.

In conclusion, the modal approach described in s$kigtion permits calculating the PAI of

each subsystem accurately and efficiently compereddirect FE calculation.

TABLE 2

5 Submarine application: sound transmission through ballast

compartments

A numerical application on a naval industrial caseroposed to illustrate the advantages of
the approach presented. It concerns the assessihém self-noise on the bow sonar of a
submarine. Self-noise is the noise generated bgubenarine on its acoustic arrays. In some
situations, this noise can disturb the receptiora@ajustic sensors and limit their detection
performance. One of the sources of this self nomdd be the radiation of the end of the
pressure hull excited by internal mechanical saurcEhe acoustic energy could then
propagate from the end of the pressure hull toldbe Sonar cavity through the ballast
compartments. The application proposed in thisi@eds a simplified problem consisting in

modelling sound transmission through two ballaghpartments located at the front of a

submarine.

5.1  Description of the problem

FIGURE 15

Let us consider the ballast compartments desciibédg. 15. The structure is composed of

three simply supported elastic bulkheads coupletiayrigid-wall water-filled cavities. The
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thick bulkhead on the right-side of Fig. 15, whigpresents the end of the pressure hull, is
excited by a point mechanical force in the freqydvend [1Hz-1000Hz]. The aim is to assess
the acceleration levels on non excited bulkheadstduhe energy transmission through the
cavities.

The geometry of the system corresponds to a quaateiof a truncated cone 17.3m long with
a diameter varying from 4m to 5m. The bulkheadspamions of spheres with radii ranging
from 20m to 29.3m, as shown in Fig. 15. They arelenaf steel 4=7800 kg/mi, E=2.1x10*
Pa,v=0.3,#=0.01), with a constant thickness of 50mm for tkeited bulkhead, and 22mm
for the others. The two cavities are filled withtera(p=1000 kg/ni, c=1500m/s,;=0.001).
The excitation is a unit point force acting on theck bulkhead along the x-axis at point
(17.76 m, 2.77 m, 2.77 m). An FE model of the whsylstem has been built on the basis of 6
elements per wavelength at 1000 Hz. It is compased06522 nodes, 5953 CQUAD4
elements and 520422 CTETRA elements.

5.2  Application of the PTF approach

The substructuring introduced in section 3 is aggplio the present application to define the
PTF subsystems. As the whole system is made upred bulkheads coupled by two cavities,
each bulkhead can be integrated in a differentyaies with its surrounding fluid. Two
bulkheads are then loaded by the fluid on onewitereas the last one is loaded on both sides
(see Fig. 15).

FIGURE 16

Furthermore, the coupling surfaces are locatetleabptimal distance from the bulkheads, as
discussed in section 3.1. To define this optimatatice, the patch size criterion angh
criteria for the equivalent plates are plotted ig. A6. A patch dimension of 0.7m is lower
than the half acoustic wavelength at 1000 Hz. #Aedon of the half bending wavelength of
the 50mm-thick plate (resp. 22mm-thick plate) isrtihespected for frequencies below 250 Hz
(resp. 100 Hz), which allows setting the optimataince to 0.3 m. For practical reasons, a
plane geometry for the coupling surfaces is chogeminimum of 0.3 m is then imposed

between the 4 coupling surfaces and the bulkheaslsshown in Fig. 17. The coupling
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surfaces are divided into 151 patches accordirgyppatch mesh criterion based on 2 patches
per acoustic wavelength. The FE models of the Sygibms are presented in Fig. 18. Finally,
it is important to note the practical interest o€ls substructuring, since the number of dofs of

these models is well below the number of dofs efitimole system.

FIGURES 17,18

The modal method, developed in section 4 is usethloculate the PAIs of structure-cavity
subsystems 1, 3 and 5. For cavity subsystems 2 aifé classical modal approach including
residual shapes [20] is used to solve the acoystiblem. Normal modes with natural
frequencies below 1500 Hz are taken into accountthese modal expansions. The
calculations are performed with MSC/NASTRAN softeaiThe computing times and the

number of normal modes for each subsystem are givéab. 3.

TABLE 3

An identification number from 1 to 151 is attribdtéo each patch. This number is used to
create a PAI matrix for each subsystem. The PAlrimaf subsysterw, Z° (aD[],S]) is
defined such that the coefficient of rovand columrj is the PAI of subsystem between the
patch of identification numberand the patch of identification numigetf one or two of the
patches considered do not belong to the surfacplioguof subsysterr, the coefficient is
zero. The dimensions of matrix® are therefor&51x151. Likewise, the blocked pressure
vectorp is defined in which the coefficient of rocorresponds to the blocked pressure of a
patch with identification number

Then, the PTF methodology described in section &jdied for the 5 subsystems. Initially,
the pressure on each patch of the 5 subsystemstisnby using the superposition principle
for linear passive systems; secondly, the contnainditions of pressure and velocity are
written for each patch linked to two subsystemse Patch velocities of subsystem 2 and

subsystem 3 are kept unknown. The patch velodaitigbe other subsystems can be deduced
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directly from the previous patch velocities by @sthe velocity continuity conditions. Then,

the coupling volume velocity vectog is defined in which the coefficient of row

corresponds to the patch volume velocity of sulesys® or subsystem 4 for the patch with
identification number.

This methodology is used to obtain the followingtrxasystem:
|2 +22+2°+2*+Z°]q=D, (33)
where Z? is the PAI matrix of subsystem pis the blocked pressure vector, agds the

coupling velocity vector.

By solving Eq. (33), the coupling velocity vectqris obtained. The response of the global

system at the receiving points is then easily dated in a post-processing step, by using the
PAls between the patches and the receiving points.

Even for this case composed of 5 subsystems, #eeddithe resulting equation system (see
Eq. (33)) remains small thanks to a partition penfed outside the acoustic near-field of the
structures. As a result, this system is solved wguckly. In the present approach, the

computation efforts are related to the extractibrthe normal modes of each subsystem,

which is significantly less time-consuming than floe whole system.

5.3 Comparison with areference calculation

In this section, the results obtained with the Ripproach are compared to that obtained from
a direct FE calculation of the whole vibro-acoustystem considered as a reference. Despite
the fact that direct FE calculation gives reliabésults, it is very time-consuming when
compared to a PTF calculation, since a direct HEutation lasts 73976 seconds (~ 20.5
hours) versus 13072 seconds (~ 3.6 hours) for ad@ldulation. Comparisons between the
reference results and the PTF results are propodeds. 18-21 for the three receiving points
defined in Tab. 4.

TABLE 4 - FIGURE 19

In Fig. 19, a comparison of the acceleration lemelthe excited bulkhead given by three
calculations is proposed. The first calculatiothis FE calculation that considers subsystem 1

alone with homogeneous Neumann boundary conditribe interface with subsystem 2.

This result corresponds to the blocked accelergtjor(i.e. /2. = -wW_..) used in the PTF
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approach (see section 2). The second calculatimesmmonds to the PTF approach including
the coupling with the other subsystems, while #st is the direct FE resolution. For the sake
of clarity, the results are presented in the fregyeband [1Hz -150Hz]. Large differences

between the FE results obtained on uncoupled stdmy$ and that obtained for the whole

system can be observed. This indicates that thiewsuting fluid considered in subsystem 1 is

insufficient to represent the fluid loading of tbecited bulkhead. If these calculations were
performed on a case with light fluid (e.g., wateplaced by air), the differences between the
2 calculations would be negligible. Finally, theogoagreement between the PTF and the
reference results illustrated in Fig. 19 shows thatPTF approach gives a good description
of the fluid loading on the excited bulkhead anel tbupling with the other subsystems.

FIGURES 20-22

The comparisons of the whole frequency band predeint Figs. 20-22 give full satisfaction
wherever the point of reception is placed. Smaftslf the resonant and anti-resonant peaks
can be observed in the upper part of the frequéacyl. These shifts are not crucial for the
analysis of vibro-acoustic behaviour due to thénlmgpdal density of the system.

The vibratory levels of the non-excited subsystanescorrectly predicted despite the fact that
the transmission through the intermediary bulkheadlominated by the response of non
resonant plate modes (i.e. transmission loss isirdded by the mass-law). It should be
recalled that these results were obtained by intnd) residual shape modes in the modal
expansion, as shown previously in section 4.2.

This submarine application clearly shows that th& Bpproach is efficient and well adapted
to complex systems, since each subsystem is defayeds own FE model and solved
independently of the others. Modification of onetlé subsystems only leads to a simple
update of its PTF as long as the geometry of thmactstre—cavity interface remains
unchanged. Therefore the method is well adaptedefanalysing and optimising the system
considered.

Furthermore, the number of patches remains lintdtezito the substructuring proposed in this
paper, and the PTF computing time is reduced dmed”Als have been calculated, which is
one of the advantages of the PTF method. Morequllel computation of the PAls is
possible, since these basic quantities are edtebli$or uncoupled subsystems. It is also

possible to deal with incompatible subsystem meshedhe application presented here,
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compatible meshes have been used to generate eofthehwhole system and thus formulate
the reference calculation. However, the PTF metpoavides a tool for dealing with
incompatible meshes. For subsystems 2 and 4, coaesshes could be defined on the basis
of an element size criterion deduced from the atouavelength divided by 6.

In conclusion, the application of this method tosabmarine prow bulkhead structure
demonstrates that it is capable of solving compitgroblems relating to industrial vibro-

acoustic systems and that it is numerically effitie

6 Conclusion

Improvements of the PTF procedure were proposetisnpaper to solve a structure-cavity
problem in heavy fluid. It was shown that substuciy outside the near-field of the structure
allows reducing the number of patches. An optimsiatice between the structures and the
coupling surfaces was defined from the analysishefinfinite plate radiation problem. Its
validity was then demonstrated on an academicctest. However, such substructuring leads
to the definition of a structure-cavity subsystesnwhich the FE model has non-symmetric
matrices. Consequently, standard eigenvalue sobasreot be used to extract the modes of
this subsystem and compute its PAIs. To bypasdiiffisulty, we used a non-standard modal
method based on the direct symmetrization of thedstrd (U,P) formulation. In the case of
the damped problem, symmetrization leads to compiess and stiffness matrixes. Two
modal damping factors were then defined for eacheras a function of the mode shape and
the damping factors of the structure and the cawygreover, the residual mode shapes
introduced in Ref. [20] were used to improve thevargence of modal series. Comparison
with a reference calculation for a complex caseénlighted the accuracy and interest of the
present approach, which allows reducing computatiagosts in contrast to the direct

resolution of the FE problem.

As the PAls are calculated for the uncoupled subsys, independently of the others, the
PTF approach can be easily extended to the unbduihgid domain [25]. In this case, the

unbounded fluid domain is considered as a subsystednthe corresponding PAI can be
estimated from an integral formulation. An applicatof this extension to the prediction of
Turbulent Boundary layer induced noise inside arsine SONAR cavity is developed in a
doctoral thesis [25].
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Appendix. Criterion for acoustic evanescent wave attenuation

To define the cavity attached to the structure feriterion, it is necessary to consider the
acoustic wave generated by the flexural motiongrofinfinite plate. The criterion is then
defined by the distance from the plate when theque has decreased by 10 dB compared to
the parietal pressure. This criterion will ensurattthe acoustic evanescent waves generated
by the structure will be negligible compared to #reustic travelling wave.

FIGURE 23

Consequently, the simple two-dimensional problerawshon Fig. 23 is considered. It is

composed of an acoustic half-spaRe with a prescribed normal displaceméltimposed on
the plane boundaBg . The displacement prescribed is defined by theufid motion of an
infinite plate at angular frequeney The spatial dependence of this displacementgsried

by: W(r)=We ™" whereW is the displacement amplitude akd the bending wavenumber.

The formulation of this problem is given by [21]:

Ap(r,2) +k,>p(r,2) = 0,0(r,2)0Q,,,

~ Dy PW(r) = —%(r 0),0r 00Q.,., (A1)

op .
R[a—g+ jkopj -~ OasR - o,

wherek, is the acoustic wavenumber and the last relat®orthe Sommerfeld radiation

condition corresponding to the acoustic free field.

Ther-wise variation of the acoustic pressure must Wltbat of the displacement prescribed

[21]. With p(r,z) = H{2e ™", thus the problem can be rewritten as:
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9°F
0z°

9 (o) = v (A.2)
az(0) Lo W,

p
R(a—g+ jkopj ~ 0asR - o.

The resolution of the second order differentialagun gives:

(2)+(k,’ —k,*)Bz) = 0,0z> 0,

. 2 -~
Hz) = JPW e (A.3)
K,
wherek, is the solution of the characteristic equation:
ko’ =k, 2 +k,>. (A.4)

Supposing that the bending wavenumber is greatgrtbie acoustic wavenumbek,(>k,)

and considering the Sommerfeld conditions, thelsiaglution fork, is:

K, = ja/k, 2 =k, . (A.5)

The acoustic pressure in the fluid due to the pilesdrdisplacements is inferred by:

ot
p(r, 2) :,ooafez—zw(r)_ (A.6)
k" —ko

This equation expresses the spatial decrease atthestic wave radiated by the infinite plate.
Therefore the acoustic pressure attenuation fromwiille(z=0) is defined by:

AL, = 20Iog( p(r’z)] . (A7)

p(r 0)

By introducing Eq. (A.6) in this expression, we obta

__ 20 2_, 2
AL, = —In(lo)wlkf K z. (A.8)

Therefore a limit distance,,, with a criterion of 10 dB attenuatiolA(, =- J@an be

lim

defined. Lastly, from Eq. (A.8), we deduce:
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In(10)

lim = ﬁ : (A.9)

Z
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TABLE CAPTIONS

Table 1. Simulation parameters of the test case.

Table 2. Computing time for the different NASTRANadations — PC AMD 64 X2 Dual
3.20 GHz, 2 Go RAM (dof: degree of freedom; rsidaal shapes).

Table 3. Mode number, dofs number and NASTRAN compguime for each subsystem.

Table 4. Position of the excitation poMp and the receiving pointd;, M,, Ms.
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FIGURE CAPTIONS

Figure 1. Structure-Cavity problem and PTF sulestming.

Figure 2. Mesh of the plate-cavity test case (98&es, 567 CQUAD4 elements, 7938
CHEXA elements)

Figure 3. Pressure field in the cavity at 100 Hzpr) and 700 Hz (lower) for the reference
test case. Results of direct FEM calculation (MSCAYRAN).

Figure 4. Upper part, Patch size critexia for the fluid medium (full line) and for the péa
structure (dotted line). Lower pa#;, parameter defined by Eq. (10). (dash-dotted line
symbolisedd/2=0.7m andZ;»=0.3m for the upper part and the lower part respelg).

Figure 5. Substructuring 1: Subsystem 1: 567 CQUARSY CHEXA,; Subsystem 2: 7371
CHEXA)

Figure 6. Substructuring 2: Subsystem 1: 567 CQUAT248 CHEXA; Subsystem 2: 5670
CHEXA

Figure 7. Comparison of the acceleration levehefplate at point (1.85, 0.93) for three
calculations: dash-dotted line, PTF results withsswizturing 1; dash line, PTF results with

substructuring 2; solid line, direct FEM resultdérence);

Figure 8. Comparison of the pressure level in thatg at point (1.03,0.93,-0.86) for three
calculations: dashed-dotted line, PTF results witbsgructuring 1; dashed line, PTF results

with substructuring 2; solid line, direct FEM resulteference).

Figure 9. Values of damping parametgrand ¢ for each modal order: crosses, values for
n; circle, values for{ . Vertical dotted line, splitting between the 1@fmal modes and the

10 residual shapes.
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Figure 10. Comparison of three methods to estitetgpatch blocked pressure of patch 1:
dashed-dotted line, modal superposition withoutted shapes; dashed line, modal

superposition with residual shapes; solid linegcliFEM results (reference);

Figure 11. Comparison of three methods to estirtteténput patch acoustic impedance of
patch 1: dashed-dotted line, modal superpositidghout residual shapes; dashed line, modal

superposition with residual shapes; solid linegchiFEM results (reference);

Figure 12. Comparison of three methods to estirtietgatch acoustic impedance between
patch 1 and patch 3: dashed-dotted line, modalrpapiion without residual shapes; dashed

line, modal superposition with residual shapesgddoie, direct FEM results.

Figure 13. Comparison of the acceleration levehefplate at point (1.85, 0.93) for three
calculations: dashed-dotted line, PTF results wahdxtimated by modal superposition
without residual shapes; dashed line, PTF resutts MAl estimated by modal superposition

taking the residual shapes into account; solid kivect FEM results (reference).

Figure 14. Comparison of the pressure level incenaty at point (1.03,0.93,-0.86) for three
calculations: dashed-dotted line, PTF results wahdxtimated by modal superposition
without residual shapes; dashed line, PTF resutts R\l estimated by modal superposition
taking the residual shapes into account; solid kivect FEM results (reference).

Figure 15. Iso view and top view of the designhaf ballast compartments.

Figure 16. Upper part, Patch size critevid for the fluid medium (full line), for the 22 mm
thick plate (dash line) and for the 50 mm thickipl@otted line). Lower part, values of the
Zim parameter for the 22mm thick plate (dash line) fandhe 50 mm thick plate (dotted line)
(dashed-dotted line symbolisdt?=0.7m andz;=0.3m for the upper part and the lower part

respectively).
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Figure 17. Patch definition.

Figure 18. FE model definitions of PTF subsystems.

Figure 19. Comparison of the acceleration levelaat M1 for three calculations: dashed-
dotted line, FEM results without considering theog with the other subsystems (i.e.
FEM results of the blocked subsystem); dashed Bii&; results considering the coupling

with the other subsystems; solid line, direct FEBUits of the whole problem (reference).

Figure 20. Comparison of the acceleration levelaat M1 for two calculations: dashed line,

PTF results; solid line, direct FEM results (refeenc

Figure 21. Comparison of the pressure level attgdihfor two calculations: dashed line,

PTF results; solid line, direct FEM results (refeenc

Figure 22. Comparison of the acceleration levelaat M3 for two calculations: dashed line,

PTF results; solid line, direct FEM results (refeenc

Figure 23. Semi-infinite 2D fluid medium with impex$ displacements at the boundary.
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TABLES

Parameters Values
Plate length 2m

Plate width 15m
Plate thickness 17 mm
Cavity depth 1m

Plate density 7800 kgfn
Young modulus 2.1x10' Pa
Poisson’s ratio 0.3

Plate damping factor 0.01
Water density 1000 kgfn
Sound speed in water 1500 m/s
Water damping factor 0.001

Excitation point coordinates (1.03, 0.93)

Table 1. Simulation parameters of the test case.
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Method Subsystem Substructuring Nb of dof / Nb of modes Computing time

Direct 1land2
Direct
Direct
Direct
Direct
Modal
Modal

NFENEFEPDNPRE

NNNNEFE R

12936 dof

4828 dof

9200 dof

6776 dof

7352 dof

100 modes + 10rs
18 modes + 9rs

1397 s
200 s
1688 s
542 s
755 s

17 s
7s

Table 2. Computing time for the different NASTRABIculations — PC AMD 64 X2 Dual
3.20 GHz, 2 Go RAM (dof: degree of freedom; rsidaal shapes).
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Subsystem Nb of dof Nb of modes Computingtime

a b ownN R

26718
39481
26475
31026
16003

309
786
545
637
364

5026 s
617 s
4814 s
439 s
2176 s

Table 3. Mode number, dofs number and NASTRAN compguime for each subsystem.

MAXIT - VIB-11-1135

36



Point Subsys. x(m) y(m)

z(m)

Mo 1 17.76 2.77
M1 1 17.61 2.85
M; 4 734 1.39
Ms 5 0.17 1.98

2.77
1.20
2.52
1.73

Table 4. Position of the excitation poMp and the receiving pointd;, M,, Ms.
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FIGURES

Excitation
Elastic structure l A
Coupling
surface
Y =
Sub-system 2
Rigid wall

Figure 1. Structure-Cavity problem and PTF sulostming.
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Figure 2. Mesh of the plate-cavity test case (98&des, 567 CQUAD4 elements, 7938
CHEXA elements)
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9 3E+00
8.3E+00
—7.3E+00
—B.2E+0
—52E+00

!—d 1E+I0

JAEHD
2.1E+00
1.0E+00
0.0E+00

1.897E+M
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—1.475E+M
— 1. 265E+11
1.054E+11
EB 431E+00

6.323E+00
4. 215E+00
2 108E-+HI0

0.000E-+I0

Figure 3. Pressure field in the cavity at 100 Hzp@r) and 700 Hz (lower) for the reference
test case. Results of direct FEM calculation (MSCBYRAN).
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PTF Patch size criterion: #./2

10" o L =
10 10 10 10
Frequency (Hz)
Zlim (near field criterion)
10' .
gl T :
[
L e O
10-1 L T 4
| |
10° 10 107 10’

Frequency (Hz)

Figure 4. Upper part, Patch size critexi2 for the fluid medium (full line) and for the péa
structure (dotted line). Lower parZ;, parameter defined by Eg. (10). (dash-dotted line
symbolisedd/2=0.7m andZ;»=0.3m for the upper part and the lower part respelg).
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Mesh of subsystem 1

Fatches

Mesh of subsystern 2

Figure 5. Substructuring 1: Subsystem 1: 567 CQUABBY CHEXA,; Subsystem 2: 7371
CHEXA)
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hesh of subsystem 1

Fatches

hMesh of subsystem 2

Figure 6. Substructuring 2: Subsystem 1: 567 CQUAT2468 CHEXA; Subsystem 2: 5670
CHEXA
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Acceleration level at point (1.85,0.93)

20+

4ok

50+

Level (dB, ref. 1 mAs%.N))

1 1 1 1 1 1 1
100 200 300 400 500 600 700
Frequency (Hz)

Figure 7. Comparison of the acceleration levehefplate at point (1.85, 0.93) for three
calculations: dash-dotted line, PTF results withsswizturing 1; dash line, PTF results with

substructuring 2; solid line, direct FEM resultdérence);
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Pressure level in the cavity at point (1.03,0.93,-0.86)

40

30

Level (dB, ref. 1 Pa/N)
o
T

20+

30+

-40

1 1 1 1 1 1 1
100 200 300 400 500 600 700
Frequency (Hz)

Figure 8. Comparison of the pressure level in #natg at point (1.03,0.93,-0.86) for three
calculations: dashed-dotted line, PTF results witbsgructuring 1; dashed line, PTF results
with substructuring 2; solid line, direct FEM resuteference).
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Modal damping parameters n and &
0012 T T T T T T
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Modal order

Figure 9. Values of damping parametgrand ¢ for each modal order: crosses, values for
n; circle, values for{ . Vertical dotted line, splitting between the 1@mal modes and

the 10 residual shapes.
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Blocked pressure - Patch 1
40 T T T T

30 &l

20F

101 1 {4

Level (dB, ref. 1 Pa/N)

-10+

201 _

-30

1 | | | 1 | |
100 200 300 400 500 600 700
Frequency (Hz)

Figure 10. Comparison of three methods to estirttegtgpatch blocked pressure of patch 1:
dashed-dotted line, modal superposition withoutred shapes; dashed line, modal
superposition with residual shapes; solid linegchiFEM results (reference);

MAXIT - VIB-11-1135 a7



PTF Patch 1 - Patch 1

140
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%
[\
<

-
)
(=

—
[=]
<

Level (dB, ref. 1 Pa.s/m)
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80 =

e 1(I)0 2(I)0 3(I)0 4(I)0 5(;0 6(;0 7(;0
Frequency (Hz)
Figure 11. Comparison of three methods to estieténput patch acoustic impedance of
patch 1: dashed-dotted line, modal superpositidhouit residual shapes; dashed line, modal

superposition with residual shapes; solid linegcliFEM results (reference);
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PTF Patch 1 - Patch 3
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Frequency (Hz)
Figure 12. Comparison of three methods to estirttegatch acoustic impedance between
patch 1 and patch 3: dashed-dotted line, modalrpapiion without residual shapes;

dashed line, modal superposition with residual sbagolid line, direct FEM results.
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Acceleration level on the plate at point (1.85,0.93)

10+

20+

[
<
T

o
[=]
T

Level (dB, ref. 1 mis2.N))
: N .
(=]
T

70 BY

L

1 (I)O 2(I)0 3(I)0 4(I)0 560 660 760
Frequency (Hz)
Figure 13. Comparison of the acceleration levehefplate at point (1.85, 0.93) for three
calculations: dashed-dotted line, PTF results walh éstimated by modal superposition
without residual shapes; dashed line, PTF resutts A\l estimated by modal superposition

taking the residual shapes into account; solid kiect FEM results (reference).
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Pressure level in the cavity at point (1.03,0.93,-0.86)

40

Level (dB, ref. 1 Pa/N)

40 I | | | | | I
100 200 300 400 500 600 700

Frequency (Hz)

Figure 14. Comparison of the pressure level incenaty at point (1.03,0.93,-0.86) for three
calculations: dashed-dotted line, PTF results wah éstimated by modal superposition
without residual shapes; dashed line, PTF resutts Al estimated by modal superposition

taking the residual shapes into account; solid kifiect FEM results (reference).
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Water filled cavities

Bulkhead h = 50 mm
Bulkhead h =22 mm

Bulkhead h = 22mm
> 8.6 m L 8.7m

Figure 15. Iso view and top view of the designhaf ballast compartments.
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PTF Patch size criterion: A/2
T

10‘1 - L \1 L \2 L 5
10 10 10 10
Frequency (Hz)
ZIim (near field criterion)
10’
g Tl
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0
| Ll n
10° 10' 10° 10°
Frequency (Hz)

Figure 16. Upper part, Patch size critevia for the fluid medium (full line), for the 22 mm

thick plate (dash line) and for the 50 mm thickiplédotted line). Lower part, values of the

Zim parameter for the 22mm thick plate (dash line) fandhe 50 mm thick plate (dotted line)
(dashed-dotted line symbolisdt?=0.7m andZ;,=0.3m for the upper part and the lower part

respectively).
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Figure 17. Patch definition.
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- Subsystem 1

Subsystem 2

Subsystem 3
Subsystem 4
Subsystem 5

Figure 18. FE model definitions of PTF subsystems.
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Acceleration - M1
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Figure 19. Comparison of the acceleration levglaait M1 for three calculations: dashed-
dotted line, FEM results without considering themowg with the other subsystems (i.e.
FEM results of the blocked subsystem); dashed Rii&, results considering the coupling

with the other subsystems; solid line, direct FEBuUIts of the whole problem (reference).
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Acceleration - M1
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Figure 20. Comparison of the acceleration levelaait M1 for two calculations: dashed line,

PTF results; solid line, direct FEM results (refeenc
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Pressure - M2
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Figure 21. Comparison of the pressure level attgdixfor two calculations: dashed line,

PTF results; solid line, direct FEM results (refeenc
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Figure 22. Comparison of the acceleration levelaait M3 for two calculations: dashed line,

PTF results; solid line, direct FEM results (refeenc
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=" Semi-infinite fiuid medium 0.
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Figure 23. Semi-infinite 2D fluid medium with impex$ displacements at the boundary.
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