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Abstract 

The micro-perforated panel (MPP) with a backing cavity is a well known efficient device for 

noise absorption. This device has been thoroughly studied in the experimental conditions of 

an acoustic tube (Kundt tube), in which the MPP is excited by a normal incident plane wave 

in one dimension. In an industrial situation, the efficiency of MPP may be influenced by the 

vibro-acoustic behaviour of the surrounding systems as well as excitation. To deal with this 

problem, a vibroacoustic formulation based on the Patch Transfer Functions (PTF) approach 

is proposed to model the behaviour of micro-perforated structure in a complex vibro-acoustic 

environment. PTF is a substructuring approach which allows assembling different vibro-

acoustic subsystems through coupled surfaces. Upon casting micro-perforations and the 

flexibility of the MPP under transfer function framework, the proposed PTF formulation 

provides explicit representation of the coupling between subsystems and facilitates 

explanation of physical phenomenon. As an illustration example, application to a MPP with a 

backing cavity located in an infinite baffle is demonstrated. The proposed PTF formulation is 

finally validated through comparison with experimental measurements available in the 

literature. 

 

PACS numbers: 43.50.Gf;  43.55.Ev 



 

1 Introduction 

Since the pioneer work by Maa [1], micro-perforated panels (MPP) have been 

extensively used to design various sound absorption devices. The basic configuration is the 

one in which an air gap/cavity is placed at the back of the MPP, which creates a Helmholtz 

sound absorption effect, resulting in effective sound absorption.  This basic configuration has 

been thoroughly studied both theoretically and experimentally using an acoustic tube (Kundt 

tube) in order to quantify its absorption coefficient. In such situation, the system has one 

single dimension and the MPP is excited by a normal incident plane wave. The prevailing 

motivation behind these efforts is the assumption that, the acoustic property of the MPP is 

assumed to locally reactive. Upon obtaining the surface acoustic impedance or the sound 

absorption coefficient of the MPP, it will be treated as conventional sound absorption 

materials.  

 

Meanwhile, in the pursuit of a more efficient sound absorption, effort has also been made 

to use MPP in forming more complex system which deviates more or less from the basic 

configuration mentioned above. Such devices, taking various forms, can loosely be refereed 

as Micro-Perforated Structure (MPS). Double layer [2] or multiple layer absorbers [3] using 

MPPs are typical examples. The insertion of additional micro-perforated panel increases the 

acoustic resistance of the absorber and extends the effective absorption band toward lower 

frequency. The performance of the device, however, is limited by the coupling between the 

MPP and the backing cavity. By transforming the conventional rectangular cavity to an 

irregular shaped cavity [4], the coupling can be modified and manipulated due to the 

distortion of the acoustic mode by tilting cavity walls. The change of the cavity geometry 

promotes more acoustic modes into the coupling and thereby improves the sound absorption 

performance at selected frequency bands.  

 

The trend of using MPP in more complex system or in the real industrial setting brings 

about one critical issue to be addressed.  In fact, most of the existing works focused on 

investigating the property of the MPP device itself, usually validated in a Kundt tube.  When 

placed in a practical environment, however, experimental methods usually become the only 

option [5] & [6]. More importantly, the efficiency of the MPP is shown to be influenced by 

the vibro-acoustic behaviour of the surrounding systems as well as excitations, which may be 



significantly different from the Kundt tube setting.  Therefore, the increasing complexity of 

the system calls for efficient tools to predict the performance of the MPP in a complex vibro-

acoustic environment. Versatility, efficiency and flexibilities are among the top of the list of 

major attributes required for such simulation tools, which unfortunately are still lacking in the 

literature. 

 

This paper attempts to propose a method based on the Patch Transfer Function (PTF) 

approach for modeling the MPP behaviour in a practical acoustic environment. To illustrate 

the idea, a general complex vibro-acoustic environment of the MPP is schematically 

represented in Fig.1(a). Subject to acoustic or mechanical excitations, the whole system is 

composed of acoustic cavities, semi-infinite acoustic domain, absorbing materials, and 

flexible panels which are coupled through surfaces. PTF [7] is a substructuring approach 

which allows assembling different vibro-acoustic subsystems through coupled surfaces. In the 

present case, the global system is divided into different sub-systems as shown on figure 1 (b). 

Each coupling surface connecting a pair of subsystem is further divided into elementary areas 

called patches. The transfer functions, called Patch Transfer Functions (PTFs), of each 

uncoupled subsystem patch are calculated to form a database. For a mechanical structure, the 

PTFs are defined as the ratio of the mean velocity over the mean force on a patch, equivalent 

to patch structural mobilities. For an acoustic domain, the PTFs are defined as the ratio of the 

mean pressure over the mean velocity on a patch, which are the patch acoustic impedances. 

Using the superposition principle for linear systems and the continuity relation among 

different subsystems, the PTF approach allows calculating the response of a global system 

from the PTFs of uncoupled subsystems by inverting a square symmetric matrix whose 

dimension corresponds to the number of patches.  

 

The PTFs can be calculated using different methods depending on the subsystem 

considered. For cavities or flexible structures, these PTFs can be obtained from modal 

expansions for academic cases or from Finite Element simulation for complex cases. For 

semi-infinite acoustic domains, Rayleigh integral may be used for a plane boundary or 

Boundary Element Method (BEM) for a more complex geometry. The sound absorption 

material may be directly taken into account by its surface impedance. These calculations have 

been developed and validated for different applications [7-9]. It should be noted that, 

calculations of PTFs are performed beforehand for each subsystem separately. As a result, 

parallel computation is possible. Moreover, when FEM is used, the size of the numerical 



models of each subsystem is considerably smaller than that of the global model. In a typical 

design problem, re-calculations of PTFs are required only for those subsystems or 

components with modifications, endowing the method the flexibility and efficiency in dealing 

with complex system, conducive to conducting system optimization.  

 

In this paper, a new formulation for calculating the PTFs of MPP is first proposed. In a 

first step, the equations of motion of the MPP are expressed on each patch of the coupling 

surface. The patch flexural velocity of the MPP and the patch acoustic velocity of the 

surrounding acoustic medium are then linked to the difference of the patch pressures on both 

sides of the MPP. Two approaches are then proposed: The first one consists in resolving 

directly the global problem using the MPP relation as a coupling condition with other 

subsystems. In this formulation, acoustic and mechanical PTFs of each individual subsystem 

intervene directly in the global equations. Upon casting micro-perforations and the flexibility 

of the MPP under PTF framework, the proposed PTF formulation provides explicit 

representation of the coupling between subsystems and facilitates explanation of physical 

phenomenon. The second approach consists in first calculating the equivalent Patch Transfer 

Functions of a MPP with a backing cavity, which can be further coupled with the PTFs of 

other fluid domains in a second step. This second formulation is then explored to illustrate the 

application of the proposed model to a cavity-backed MPP absorber with an infinite baffle. 

This allows a deep analysis on the coupling between the MPP and the backing cavity and a 

quantification of their effects on the sound absorption. It is shown that a MPP with the 

backing cavity does not behave like a locally reactive material, especially at resonances of the 

backing cavity. Finally, the proposed model is validated through comparisons with 

experimental results given in the literature [10]. 

 

2 Principle of PTF approach 

 

Let us consider the basic vibro-acoustic problem presented in Fig. 2 corresponding to a thin 

elastic structure coupled on both side with an acoustic domain. The acoustic domain may 

either be closed or semi-infinite. The PTF approach is briefly recalled here based on this basic 

system for the sake of clarity, bearing in mind that the methodology can be extended to more 

complex linear systems. 

 



Assuming harmonic excitations at an angular frequency ω, we are interested in the steady 

response of the system, such omitting the time dependence in the notation. Along the surface 

Sc occupied by the thin structure, the whole system is partitioned into three subsystems: an 

elastic structure and the two acoustic domains at each side. The coupling surface Sc is then 

divided into N elementary surfaces 
 NiSi ,1 , 

, called patches. The size of the patches 

should be less than the half wavelength (i.e. /2) corresponding to the highest frequency of 

interest, either acoustic or structural, whichever is less [7, 9].  

 

The Patch Transfer Functions (PTFs) are defined for each subsystem, with all quantities being 

defined with respect to the unit normal vector n


 to the coupling surface Sc . For the structure, a 

constant normal force 
s

if  is prescribed on patch i, whereas no force is prescribed on the other 

patches. The PTFs between the two patches, 
s

ijY
, is defined as the ratio between the mean 

normal velocity on patch j and the normal force 
s

if  :  
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The afore-defined PTFs are equivalent to structural motilities of the structure.  

 

For each acoustic domain  ( = [1, 2]), a constant normal velocity 


iu
 is imposed on patch i 

with a null normal velocity on the other patches. The PTFs between excited patch i and 

receiving patch j, 


ijZ
, is defined as: 







i

j

ij
u

f
Z 

, 

 

(3) 

where 


jf
 is the resulted force from the acoustic pressure 

p

on the patch j when patch i 

vibrates with 


iu
:  
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,

 

 

(4) 

 



The PTFs such defined correspond to the conventional acoustic impedance.  

 

For the above definitions, the bar in the notation indicates the mean velocities or the sum of 

the pressure on the patches (i.e. Eqs. (2,4)). To alleviate the notations, these bars are 

suppressed in the following.    

 

The coupling between the structure and the acoustic domains is performed in two steps: 

- The first step consists in using the linearity properties of the system to express the 

relationship between the patch velocities and the patch forces for each subsystem. Indeed, the 

patch velocity of the structure can be expressed as a sum of the velocity due to the mechanical 

force acting on the structure before coupling 
s

iu~
and the velocities resulted from the forces 

exerted on each patch: 
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(5) 

 

Similarly, the force on a patch is equal to the sum of the force corresponding to the acoustic 

source with a rigid surface,


if
~

, and the forces generated by the patch vibrations: 
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(6) 

 

- the second step consists in writing the continuity conditions at each connecting patch, 

namely the force equilibrium and the equality of normal velocities: 

 Niuuu s

iii ,...,1  ,21 
 

1 2s

i i if f f   Ni ,...,1  ,   

 

(7) 

where it was assumed that the normal vector is from the acoustic domain 1 toward 2.  

Introducing (5), (6) into (7) yields 
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(8) 

 

This system of linear equations with 
1

iu
 as unknowns may be written in the matrix form: 



   1 1 2 1 2 1u u Y f f Y Z Z us s s    
 

 

(9) 

 

Equation (9) is a full system, with its size being equal to the number of patches. Upon 

resolving this system, 

   
1

1 1 2 1 2u I Y Z Z u Y f fs s s

      

     

 

(10) 

where I  is the N N  identity matrix . 

 

All other physical quantities, such as acoustic pressure in each domain can be calculated in a 

post-processing phase. 

 

The PTF approach allows calculating the response of a global system from the PTFs of 

uncoupled subsystems by inverting a square symmetrical matrix whose dimension 

corresponds to the number of patches. The PTFs can be calculated by different methods 

depending on the subsystem considered. These calculations are performed beforehand for 

each subsystem separately. When FEM is used, the size of the numerical models of each 

subsystem is considerably smaller than that of the global model. Moreover, the use of 

incompatible meshes at the subsystem interface is possible, since the problem of compatibility 

is solved by patch averaging. 

 

3 PTF equations for the micro-perforated structure 

subsystem 

 

Assuming the structure separating the two acoustic domains in Fig.2 takes the form of a 

micro-perforated structure, corresponding PTF equations will be developed in the following 

sections.  

3.1 Modeling of micro-perforated structure 

 

Considering a MPP element shown in Fig.3, the sound pressure difference between the two 

sides of MPP, 
21 pp   generates the vibration of air mass u0 at each single hole. As the orifice 

diameter of the hole is much smaller than the acoustic wavelength of interests, it is 



appropriate to assume that the air particle velocity is distributed uniformly within the area of 

each hole. Let 0Z
 denote the complex acoustic impedance of the hole normalized by the 

characteristic impedance 00c
, where ρ0  is the air density and 0c

 the speed of sound. 0Z
 is 

given by [11, 12]: 
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(11) 

where   is the angular frequency; t the thickness of the structure; d the orifice diameter;   

the coefficient of viscosity and,




4

0dK 

. The real part is the resistive term which 

corresponds to the viscous force whereas the imaginary part is the reactance term 

corresponding to the inertial force. 

 

Assume that the MPP is flexible and let 
su
be its normal velocity.  The viscous force depends 

on the relative velocity of the air in the hole and the structure, 
suu 0

 and the inertial force 

depends only on the air velocity. Thus, one can write [12, 13]: 
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As the orifice diameter of the hole is much smaller than the acoustic and flexural wavelengths 

of interests, the mean velocity of the surrounding air particle in the vicinity of the MPP, 
1u
, 

can be approximated from the relation: 

  01  1 uuu s    
 

(13) 

1u  allows expressing the velocity continuity conditions of the MPP with the adjacent acoustic 

domains. On the contrary, 
0u  will not be directly used and can be substituted from Eq. (12): 
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Using the above expression in Eq. (13) gives 
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(15) 

 

This relation can be rewritten in a compact form as 



 211  ppuu s  , (16) 

where: 

-

 
 

0

0Re
1

Z

Z
 

 is a non-dimensional parameter which may be called the MPP 

transmissibility, which represents the contribution of the structure vibrations to the 

surrounding acoustic particle vibrations. 

 - 000 Zc




 is a parameter having [m.s-1.Pa-1] as dimension and may be called the 

equivalent mobility of the perforation. 

 

Equation (16) clearly demonstrates the underlying relationship among the acoustic velocity of 

the surrounding medium, the pressure difference across the MPP and the vibration of the 

structure. The resultant velocity in the vicinity of the MPP is a combination of partial 

transmission of the structural vibration and the air motion of the micro-perforation. The 

development of the PTF equation for a MPP subsystem in the next section is based on this 

relation. 

 

3.2 PTF developments 

3.2.1 Direct formulation 

For a MPP patch, whilst Eqs (5-6) relating the patch pressures and the patch velocities remain 

valid, the continuity conditions at connecting patches need to be modified. Indeed, by a space 

averaging on the patch i of Eq. (16), one has: 
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(17) 

Meanwhile, the pressure difference 
21

ii pp 
 acting on the 

  iS1
 surface of the MPP 

generates a force, 
s

if , at the patch i: 

   iii

s

i Sppf  121  Ni ,...,1  ,   
 

(18) 

As iii Spf  

, these two relations can be rewritten as: 
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(20) 

 

The above expressions describe the continuity conditions in the presence of a micro-

perforated structure.  

 

Introducing the linear decompositions Eqs.(5-6) in Eqs.(19-20), the patch velocity of the fluid 

domain 1 can be written as: 
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(21) 

where ij
is the Kronecker symbol. The above system may be condensed into a matrix form: 

       1 1 2 1 2 1u u Ψ 1 Y f f Ψ 1 Y Z Z us s s          
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(22) 

which admits solution in the following form: 
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(23) 

 

Note Ψ  is a diagonal matrix. In a post-processing phase, the pressure inside the acoustic 

domains and the velocity on the MPP can be calculated..   

 

Equation (23) seems to differ significantly from Eq. (10). However, if we introduce an 

equivalent PTFs, 
Yeq

 and equivalent free patch velocities, 
ueq

 such that: 

 
 Y Ψ 1 Yeq s  

, and, 
u ueq s 

, 
 

(24) 

one can rewrite Eq. (23) as: 

   
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
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(25) 

This expression takes the same form as Eq. (10) except that the PTFs and patch free velocities 

are replaced by their equivalent expressions for the MPP case. 

 

In the case of a rigid MPP (i.e. 
Y 0s 

 and 
u 0s 

), Eq. (23) becomes: 
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1

1 1 2 1 2u I Ψ Z Z Ψ f f

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   

 

(26) 



and the equivalent PTFs and patch free velocity of the MPP are: 

Y Ψeq 
, and, 

u 0eq 
. 

 

(27) 

Then, the equivalent PTFs are equal to the MPP mobility for the input terms (i.e. 

 Y ,  1,...,eq

ii i i N  
) and are null for the cross terms (i.e

Y 0,  eq

ij i j 
). In this case, the 

MPP can be considered as a locally reactive structure characterised by the mobilitiesΨ . On 

the contrary, as can be shown later, a MPP with a backing cavity cannot be considered as a 

locally reactive device, as opposed to the common assumption made for porous absorbing 

materials. 

 

3.2.2 Equivalent PTFs for a cavity-backed MPP  

 

A typical micro-perforated panel absorber takes the form of a MPP fitted in front of a backing 

wall or a cavity. The air gap/volume behind the MPP provides an acoustic-stiffness [4] which 

leads to resonance-type absorption with the perforation. This cavity-backed MPP finds its use 

in various system configurations and therefore deserves a particular treatment. In order to 

facilitate the modeling of the overall system, a cavity-backed MPP can be regarded as a 

standalone subsystem. Once the acoustic property is known in terms of PTFs over its surface, 

it can be integrated into the conventional PTF framework [7], such providing an alternative to 

the direct formulation presented in Section 3.2.1. Meanwhile, this will allow a significant 

simplification and the down-sizing of the number of the sub-system to be handled in a 

complex system. 

 

To this end, the equivalent PTF of a cavity-backed MPP is defined, to be obtained according 

to the calculation scheme established hereafter. Consider a typical MPP backed by an acoustic 

cavity. The outer surface Sc of the cavity-backed MPP is divided into N patches. By imposing 

a unit normal velocity on patch i, the resulted force on patch j needs to be calculated using the 

PTFs of the cavity and the MPP. 

 

The same matrix notation as in the previous section is used and a Ξ  vector is defined as: 
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(28) 



The resulted forces on the patches are contained in the f1 vector and the imposed velocity 

condition writes: 
1u Ξ

  
 

(29) 

 

The continuity relations Eq (19) and Eq. (20) become:  
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, and, 
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As the MPP and the cavity are not directly excited, Eqs.(5-6) become 
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Combining Eqs.(30-33) yields 
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(34) 

The resulting forces 
1f
 on the patches due to a unit velocity imposed on patch i write 
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This gives the equivalent PTF between patch i and patch j, 
 1,j N 

. One finally deduces 

the equivalent PTF matrix:  

 
1

eq 2Z Ψ I 1 Y Zs


       

 

(36) 

 

These equivalent PTFs may be used in the classical PTF approach to represent the behaviour 

of the MPP with a backing cavity. In such case, the standard continuity relations Eqs (7) 

should be used to assemble the equivalent PTFs with the PTFs of the connected subsystem. 

Eq. (36) also gives indications on the behaviour of the system and in particular, on whether 

the system has a localised reaction. With a rigid MPP, the equivalent PTFs become: 
eq 1 2Z Ψ Z 

 
 

(37) 

where 
1Ψ
 is a diagonal matrix. The system is locally reactive if the first term dominates (i.e. 

eq 1Z Ψ
). Otherwise, the system is not locally reactive when 

eqZ
is full due to the cavity 



effect characterized by Z2. Examples will be given in the next section for further elaborate this 

point. 

 

4 An illustration of application  

 

The general framework of a MPP coupled to a complex environment is now established by 

using the PTF approach. In this section, the proposed method is applied to a basic case which 

differs from the conventional case of a micro-perforated panel in an acoustic tube. The 

purpose is to show the potential of the present approach, instead of detailed treatment of the 

configuration itself.  

 

4.1 A cavity-backed micro-perforated panel inserted in a rigid baffle 

 

Let us consider a MPP backed by rectangular cavity. The surface of the MPP is flush with a 

rigid baffle of infinite size.  Excited by an incident plane wave
    zkxkj

ep
 cossin

0
00 

impinging 

on the MPP at an angle of incidence , the MPP radiates sound towards both the cavity and 

the semi-infinite acoustic domain. For an easier interpretation of the results, the MPP is 

supposed to be rigid, bearing in mind that this assumption is not a limitation of the approach 

as the structure vibration has already been incorporated into the PTF model. Previous 

investigations demonstrated that the panel vibration mainly affects the absorption 

performance at the structural resonances [13].  The size of the panel is 0.5m x 0.5m whereas 

the depth of the cavity is 0.3m. The panel thickness, t and the orifice diameter, d are both 

0.2mm. The perforation ratio  is 1%. The acoustic medium involved is air (
29.10 

 kg/m3, 

3400 c
m/s). The first 24 modes of the rigid-walled cavity are tabulated in Table 1.  

 

4.2 PTF calculation procedure  

The PTF approach presented in this paper is used for estimating the acoustic pressure in the 

semi-infinite medium and the absorption coefficient of the MPP with the backing cavity. We 

are interested in the response of this system in a frequency range up to 2000 Hz. The system is 

decomposed into three PTF subsystems: the MPP, the backing cavity and the infinite acoustic 



medium. We are typically in the situation described in section 3 with an excitation in the 

domain 1 which is semi-infinite. The coupling surface between the three PTF subsystems is 

divided in 81 patches ( 819x9 N ) ensuring a patch size less than half the acoustic 

wavelength at 2000 Hz (in accordance with the patch size criterion 2/  defined in [7]). The 

PTFs of the cavity are calculated using a modal expansion method as detailed in Appendix A 

(A.1). Acoustic modes of the rigid-walled cavity having a natural frequency below 4000 Hz 

are used to ensure the convergence of the calculation. For the semi-infinite domain, the PTFs 

are estimated by using the Rayleigh integral as described in appendix A.2. It is relevant to 

note that they are independent of the incident wave and of the characteristics of the MPP.  

 

As the MPP is impinged by an incident plane wave propagating in the semi-infinite medium, 

the patch blocked forces of the acoustic domain 1, 
1~

if  are: 
 





iS

inci dSMpf 2
~1

 Ni ,...,1  ,   
 

(38) 

where
      zkxkj

inc epMp
 cossin

0
00 


, and the patch blocked forces of the fluid domain 2 (i.e. 

cavity), 
2~

if  are:  

0
~2 if  Ni ,...,1  ,   

 

(39) 

For a normal incident wave, 0 , one has: 

ii Spf  0

1 2
~

 and 
0

~ 2 if  Ni ,...,1  ,   
 

(40) 

 

Using these patch blocked forces and the PTFs of the cavity and the semi-infinite medium, 

one can calculate the patch velocities, 
1

iu
 ,  Ni ,...,1  from Eq. (23) when the MPP is 

coupled with the backing cavity on one side and the semi-infinite medium on the other side.  

The acoustic power absorbed by the cavity-backed MPP, abs
 can then be derived from: 

  i

N

i

iiabs Sup  
1

*11

2

1

 

 

(41) 

where the asterisk denotes the complex conjugate. The patch pressures, 
1

ip
 can be calculated 

from:  

















 



N

j

jiji

i

i uZp
S

p
1

1111 ~1

 

 

(42) 

 



The absorption coefficient abs
 is defined as the ratio of the absorption power over the 

incident power through the MPP surface: 

 inc

abs
abs






, 

 

(43) 

 

where inc
is the acoustic power injected on the MPP surface by the incident plane wave 

propagating freely in the acoustic medium:  





N

i

iinc S
c

p

100

2

0

2

1


. 

 

(44) 

 

A patch absorption coefficient can be defined for each patch (i.e. local absorption coefficient) 

as the ratio of the absorption power by the incident power through the patch surface: 

 *11

2

0

00
, iiiabs vp

p

c
 

 Ni ,...,1  ,  . 

 

(45) 

These coefficients indicate the distribution of the absorption through the MPP surface. In the 

case where all patches are identical,  





N

i

iabsabs
N 1

,

1


 Ni ,...,1  ,  . 

 

(46) 

 

 

4.3 Analysis of results 

4.3.1 Normal incident wave 

The results show in this section concern an incident plane wave, normal to the MPP surface 

and having unit amplitude (
10 p

 Pa). As can be seen from section 2, although the oblique 

incident wave excitation is not a limitation of the current model, we stick to the normal 

incident case so that results can be compared with literature. 

4.3.1.1 Absorption coefficient 

The sound absorption coefficient is calculated using the PTF formulation described in section 

4.2. Numerical results are compared with the results of the equivalent electric circuit method 

in Fig.4. Note the electric circuit method considers an infinite MPP with an air gap of the 

same depth in one dimensional case. With a limited panel size, the three dimensional system 



considered in the present PTF scheme differs significantly from the classical one dimensional 

case. Figure 4 shows that the two methods give similar results in the high frequency range 

whereas significant differences occur at low frequencies. At some frequencies, PTF results 

give a sound absorption coefficient greater than one for our system. This behaviour can be 

explained by the fact that the present system is three dimensional one, in which the “edge 

effect” [14-18] occurs.  In the low frequency range, the diffraction phenomenon in the vicinity 

of the edge of the MPP results in an increase of the energy absorption coming from the 

neighbourhood of the edges. This can be better seen by investigating the acoustic intensity in 

the neighbourhood of the MPP. The calculation of the acoustic intensity in the framework of 

the PTF is described in Appendix B. The acoustic intensity maps are then plotted for three 

selected frequencies corresponding to the local maxima (of Fig.4) in figure 5. One can clearly 

observe that at 150 Hz, corresponding to the maximum absorption, the energy entry into the 

MPP comes not only from the front of the MPP due to the acoustic incidence, but also from 

the side way of the MPP (due to the diffraction effect). As the definition of the absorption 

coefficient only considers the acoustic power of the incident wave over a surface 

corresponding to the MPP surface (see Eq. 43), the acoustic power diffracted from the side of 

the MPP is not taken into account. This results in an underestimation of the actual power 

impinging on the panel and an absorption coefficient greater than one in the low frequency 

range. For higher frequencies, Fig. 5 shows the absorbed power predominately comes from 

the front and the effect of the diffraction becomes more and more negligible when frequency 

increases. This can also be reflected in Fig.4 in which the corresponding sound absorption 

coefficient is lower than one.  

 

Based on this understanding, one can surmise that the size of the MPP with respect to the 

acoustic wave length should play an important role in this phenomenon. This was indeed 

shown in the past by different authors considering classical absorbing material of finite sizes 

[15-18]. They showed that the absorption coefficient of a patch of absorbent material depends 

on the size of the patch relative to the wavelength. In general, the absorption coefficient 

increases when the size of the patch material decreases. Same phenomenon has been observed 

in the present MPP case, in agreement with the previous studies [15-18]. It should be noted 

however that these studies considered porous or fibrous absorbing materials which present 

rather poor absorption at low frequencies. On the contrary, depending on its design, cavity-

backed MPP provides efficient sound absorption even at relatively low frequencies, where the 



acoustic wavelength is large. By the same token, the size effect is also reinforced in the case 

of a MPP.  

 

By increasing the MPP size to 2m x 2m, we approach more closely to the infinite panel 

scenario which the equivalent circuit method can model. Results obtained form the current 

PTF approach is superposed to the two existing curves in Fig.4. It can be seen that using a 

larger panel, the present PTF approach gives similar result as the equivalent circuit method 

does, such demonstrating the validity of the approach.  

 

The spatial distribution of the energy absorption by the MPP at the same frequencies can be 

revealed using the patch absorption coefficients defined by Eq. (45), shown in Fig.6. At 150 

Hz, the absorption is rather uniformly distributed which may be explained by the large 

wavelength (2.26m) at this frequency. At 707 Hz, corresponding to the second peak in the 

absorption coefficient curve, the patch absorption coefficients are significantly greater on the 

boundaries of the MPP than the centre, reaching maximum around the corners. This result can 

be expected given that the diffraction phenomenon occurs at the boundary and the acoustic 

wavelength is of the same order of magnitude as the panel size. For an even higher frequency 

at 1267, one observes variations of the patch absorption coefficients with some values greater 

than one whereas the (global) absorption coefficients remain lower than one. The diffraction 

phenomenon in this 3D system and the size of the acoustic wavelength (i.e. 0.27m) may 

explain this distribution.  

4.3.1.2 Equivalent Patch Transfer Functions 

The proposed PTF formulation provides explicit representation of the coupling between 

subsystems and facilitates explanation of physical phenomenon. This feature is explored using 

the current system of cavity-backed MPP in terms of the equivalent PTFs defined in Section 

3.3.2.  

 

The equivalent PTFs are calculated and depicted in Fig.7 for three different frequencies.  

Figure 7(a) shows that at 150 Hz, the equivalent PTF matrix, 
eq

Z
(Eq. (37)) is a diagonal-

dominant matrix and Z2 in Eq. (37) is negligible comparing with Ψ-1. This shows that the 

system is rather local reactive at this frequency. This gives, 



IZ
eq






S

, 

 

(47) 

where S  is the surface of the patches. At this frequency, the equivalent PTFs depend only on 

the equivalent mobility of the perforation  and the surface of the patches, indicating the 

strong dominance of the MPP. On the contrary, for the two other frequencies corresponding to 

the first two modes of the hard-walled cavity, the equivalent PTF matrices are full matrices as 

shown in Fig.7(b-c), which  indicates the system has not a localised reaction. In this case, the 

behaviour of the cavity-backed MMP is dominated by the cavity. The equivalent PTFs vary in 

function of the modal variation on the coupling surface. As an extreme example, from the 

third modes (0,0,1) at 567 Hz, the PTFs are quasi-constant as shown in Fig.7(c) due to the 

uniform spatial shape of this mode on the coupling surface. Slight variations at the diagonal 

terms are due to the term 

S

 in Eq. (37). 

It is pertinent to mention that 

S

 is the impedance of the perforation and becomes the 

impedance of the MPP when the vibration of the latter is neglected. The comparison between 

this impedance term and the impedance of the cavity provides very useful physical insight in 

the way the MMP is coupled to the cavity. This is done in Fig.8, in which the impedance of 

the MPP, 

S

, is compared to that of the cavity iiZ
 
for one particular patch  (3,4). It can be 

seen that, 

S

 are generally larger than iiZ
, except for frequencies close to the natural 

frequencies of the cavity. Provided these modes are excited, the equivalent PTFs correspond 

to the cavity impedance at their resonance frequencies. In that case, the effect of the MPP 

becomes negligible compared to the cavity resonance. One such example is the mode (0,0,1) 

at 567 Hz.  As the acoustic damping inside the cavity is small ( )0001.0 , the absorption 

coefficient is quasi null at this frequency, as shown in Fig.4. Similar observations can be 

made at 1133 Hz and 1700 Hz which correspond to the natural frequencies of modes (0,0,2) 

and (0,0,3), respectively. It should be mentioned that quite a few acoustic modes cannot be 

excited due to the nature of the normal incident wave, which are reflected in the sound 

absorption curve.  

 



In conclusion, the equivalent PTFs of the cavity-backed MPP allows representing the MPP 

coupled with the backing cavity as a single PTF subsystem. This subsystem cannot be 

considered as a locally reactive material in general. 

 

5 EXPERIMENTAL VALIDATIONS 
 

The proposed PTF approach is used to investigate the acoustic field inside a rectangular 

cavity used in Fenech et al. [10]. Results obtained from the present approach are 

compared with the experimental data reported in that paper. This comparison allows 

further validation of the proposed approach in a vibro-acoustic environment. The 

rectangular air cavity of dimension 2m x 1.2m x 0.2m was made of 22-mm fiberboard 

panels screwed and glued together. As shown in Fig. 9. a loudspeaker with a diameter of 

9 cm was mounted on one of the vertical side panels to provide a white noise excitation 

to the cavity. The sound pressure was measured at various locations for three 

configurations: (a) the empty cavity; (b), a MPP installed at the middle of the cavity at 

x=1m; (c), a MPP installed near the cavity wall at d =0.25m (Fig.9). In Fenech et al. 

[10], the reverberation time of the empty cavity was found to be roughly 0.5 s in most of 

the frequency range of interest. This allows to estimate an overall damping loss factor 

from
2.2 rfT 

 where f  is the frequency and rT
 the reverberation time. The aluminium MPP 

was 1-mm-thick and supplied by the Swedish manufacturer Sontech under the trade name 

Acustimet. Due to the manufacturing process, the punched perforations were found to 

produce holes with sharp edges that protrude out of the surface of the plate. Therefore, instead 

of using Maa’s theory [11], the flow impedance 0Z
 was experimentally measured using an 

impedance tube and used in their model [10]. The vibration of the MPP was supposed to be 

negligible, i.e. 
   

2
0,  , 1,s

ijY i j N  
 in the present formulation. 

 

When the MPP is placed inside the cavity, the system is divided into three subsystems: the 

MPP, and the two rectangular sub-cavities as shown on Fig. 10. The rectangular coupling 

surface is divided in 5 patches to ensure the convergence of the solution up to 500 Hz, 

according to the /2 criterion. The PTFs of the sub-cavities are calculated from the modal 

method using rigid-walled modes of the sub-cavities below 1000 Hz (Appendix A.1). This 

calculation is the most time consuming part, even though it requires only few seconds in the 

case. These PTFs are also used for calculating the response of the empty cavity in the PTF 



approach. In this case, the system has only two subsystems, namely the two sub-cavities, 

connected by a virtual surface between them at the middle of the cavity. Of course, it is 

straightforward to use modes of the entire cavity in a modal expansion scheme for estimating 

the response of the empty cavity. The goal of treating the system by PTF approach is to 

highlight the efficiency of the method through comparisons with experimental measurement.    

 

Comparisons between the present PTF and experimental results obtained by Fenech et al. are 

made in Fig. 11 in terms of sound pressure level at the measurement point. For the 

empty cavity, Fig.11 (a) shows a satisfactory agreement between these two sets of 

results, despite some noticeable differences in the resonance frequencies  as well as the 

peak values. The discrepancy in frequencies may be due to the cavity boundary used in 

experiment, which does not totally comply with theoretical model. Indeed, the first non-

zero natural frequency of the cavity was predicted at 88 Hz by the present PTF approach, 

as opposed to 93 Hz measured experimentally and 86 Hz calculated from analytical 

solutions under the assumption of rigid walls. It is remarkable that, although this 

frequency does not correspond to any of the natural frequencies of the sub-cavities, it 

was correctly predicted using PTF approach.   

 

With the MPP placed at the middle of the cavity, similar comparisons are plotted in Fig.11 

(b). Again, the agreement between the PTF results and the experimental results is globally 

good. Compared with Fig.11(a), the effect of the MPP can be observed: some resonance 

frequencies of the empty cavity are altered by the presence of the MPP on one hand, and 

reduction of some resonance peaks due to the sound absorption of the MPP on the other hand.  

An attenuation of as much as 25 dB for some modes (i.e. (1,0), (3,0), (3,1)) noticed in the 

experiment of Fenech et. al.) are well reproduced by our simulations. It is noteworthy that due 

to the location of the MPP, some modes are practically not affected by the presence of the 

MPP.  

 

As the last example, Fig.12 compares the PTF result with that obtained by Fenech’ calculation 

based on the complex mode evaluation of the modified cavity, along with the experimentally 

measured sound pressure level when the MPP was placed toward a wall of the cavity d 

=0.25m. Despite some differences, the agreement between the experiment and the simulation 

is generally satisfactory, bearing in mind that the sound pressure level is sensitive to the 

location of the measurement point. Similar agreement was also observed for other figures 



presented in [10] (not shown here). The two calculation models give very similar results albeit 

more apparent discrepancies occur at higher frequencies. Differences and uncertainties in the 

modeling (i.e. damping model, modal convergence) and the data (i.e. damping value, flow 

impedance value) may explain these differences. 

 

In conclusion, these comparisons demonstrate the validity of the present PTF 

formulation in dealing with systems of various configurations.  

  

6 Conclusions 

A vibroacoustic formulation based on the Patch Transfer Functions (PTF) approach is 

proposed to model micro-perforated structures in a complex vibro-acoustic environment. The 

PTFs of the micro-perforated structure is first formulated. Its coupling with surrounding 

acoustic domains is then cast into transfer function paradigm through velocity continuity and 

force equilibrium over connecting patches. This leads to two different formulations, namely 

direct formulation and equivalent PTFs for cavity-backed micro-perforated structure, both 

providing explicit representation of the coupling between subsystems and facilitating physical 

explanations.  

 

By virtue of its substructuring nature, the PTF approach proposed in this paper is an 

efficient tool to deal with micro-perforated structure in a complex vibro-acoustic 

environment. Calculations of PTFs are performed beforehand for each subsystem separately. 

As a result, parallel computation is possible. In a typical design problem, re-calculations of 

PTFs are required only for those subsystems or components with modifications, endowing the 

method the flexibility and efficiency in dealing with complex system, conducive to 

conducting system optimization.  

 

As an illustration example, application to a MPP with a backing cavity located in an 

infinite baffle is demonstrated. The proposed PTF formulation is finally validated through 

comparison with experimental measurements available in the literature. 

 

As a final note, it is relevant to mention that the PTF approach has been applied to several 

basic systems in this paper. It can be extended to more practical cases with complex 

geometries. In this case, the patch transfer functions of each subsystem may be calculated by 



numerical methods like Finite Element Method or Boundary Element Method. The size of the 

numerical models of each subsystem is considerably smaller than that of the global model. 
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Appendix A. calculations of PTFs 

 

A.1. PTFs for a parallelepiped cavity. 

 

Calculation of the PTFs of a parallelepiped backing cavity, shown is figure A.1, is illustrated. 

Consideringtime dependence 
tje 

, the variational formulation of the problem can be 

expressed, for all test regular functions p  on c
, as follows:   
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(A.1) 



 

Eigenfunctions qrs
and eigenfrequencies qrs

are available for a rigid-walled parallelepiped 

cavity of dimension Lx×Ly×Lz:  222
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(A.3) 

The modal generalised mass qrs
 is defined by: 
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(A.4) 

Using (A.3), one obtains: 
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where
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and (q, r, s) denotes the mode number  

The pressure may be expended on this modal basis as: 
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where qrs
 are the modal amplitudes to be determined.  

Introducing this modal expansion in the variational formulation and using qrsp  
as test 

function, one obtains: 
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(A.7) 

 

Dissipation in the fluid medium can be taken into account by introducing a modal damping 

factor, c .  This is done by adding an imaginary term in the denominator. Then, the PTF 

between excited patch i and receiving patch j, ijZ
is: 
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and the PTF between the excited patch i and the receiving point M inside the cavity is:  
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A.2. PTFs for a semi-infinite acoustic domain. 

 

One considers a semi-infinite acoustic domain where a unit normal velocity is prescribed on 

the patch i and where the other patches are supposed to be rigid. The pressure at point M 

inside or at the boundary of the acoustic domain is given by the Rayleigh integral equation: 
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where 0

0
c

k




 is the acoustic wavenumber. Note that the integrand is singular (tends to 

infinity) as 
QM

 tends to zero. This problem which intervenes in the calculation of the PTF 

of patch i, iiZ
  must be overcome by the use of cylindrical coordinates by considering a 

circular patch having the same surface as the original one. In this case, the calculation of 

Cauchy’s principal value of the integral gives: 
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, (A.11) 

where ia
is the radius of the equivalent circular patch: 
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The PTF of patch i is then: 
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ajk

ii SecZ i 
 0100 . 

 

(A.13) 

 

For the PTF between patch i and patch j ( ji  ), the patch surfaces iS
 and jS

are 

discretized in K  and K   elementary surfaces, respectively. As the distance 
QM

 is quasi-



constant for Q belonging to an element surface, the integral of Eq. (A.10) can be 

approximated by: 
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where kQ
is the center point of the kth elementary surface. 

 

Thus, the PTF between patch i and patch j can be evaluated by: 
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and the patch PTF between the patch i and the receiving point M  inside the semi-infinite 

acoustic medium by: 
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Appendix B. Acoustic intensity calculation in a semi-infinite space 

 

The acoustic intensity at point M   in the direction  (  zyx ,, ) is defined by: 
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(B.1) 

where 
1

,Mu   is the acoustic velocity in the  direction at point M   and the asterisk denotes the 

complex conjugate. 

The pressure at point M  can be calculated from the patch velocities,
1

iu
: 
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where the blocked pressure at point M  due to the incident wave is: 
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In order to calculate the acoustic velocities at point M   with the same process, one should 

introduce a supplementary patch transfer function between patch i and point M  , 
1

MT   defined 

as the acoustic velocity in the  direction at point M   when a normal velocity, 
1

iu
 is 

prescribed on patch i (when other patches are supposed rigid): 
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where Mu ,  is the acoustic velocity in the  direction at point M  . 

 

The particle velocity can be related to the pressure gradient using Euler's equation:  
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The pressure gradient can be calculated from Eq. (A.14) when a unit normal velocity is 

prescribed on patch i: 
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This leads to: 
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Using these PTFs and the patch velocities,
1

iu
(obtained from Eq. (27)), the velocity at point 

M   in the  direction can be calculated from: 
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where the blocked velocity 
1

,
~

Mu   is determined by 
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Finally, the acoustic intensity at point M   in the direction  can be obtained by introducing 

Eq. (B.2) and (B.8) in the relation (B.1). 

 

 

 



 

TABLE 

 

 

 

Table 1. Natural frequencies of the rectangular cavity with rigid boundaries. 

 

 

 

 

 

 

 

 

 

 

 

 

fq,r,s (Hz) 0 340 481 567 660 680 743 760 885 948 961 1020 

(q,r,s) 0,0,0 0,1,0 

1,0,0 

1,1,0 0,0,1 0,1,1 

1,0,1 

0,2,0 

2,0,0 

1,1,1 1,2,0 

2,1,0 

0,2,1 

2,0,1 

1,2,1 

2,1,1 

2,2,0 0,3,0 

3,0,0 

Fq,r,s (Hz) 1075 1116 1133 1167 1183 1215 1226 1231 1321 1350 1360 1364 

(q,r,s) 1,3,0 

3,1,0 

2,2,1 0,0,2 0,3,1 

3,0,1 

0,1,2 

1,0,2 
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1,1,2 0,2,2 
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(a) 

 

(b) 

Figure 1. (a), MPP in a practical vibro-acoustic environment. (b), PTF substructuring. 
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Figure 2. (a), Example of a vibro-acoustic problem; (b), Coupling surface divided into N 

patches. 

 

 

 

 

 

Figure 3. Description of pressure and velocity variables for the MPP. 

u0
 

us
 

u1
 

p1
 

p2
 

Acoustic domain 1 

Structure 

Acoustic domain 2 

Mechanical 

force 

Acoustic 

source iS

 

Coupling surface 

Patches 



 
 

Figure 4. Absorption coefficient versus frequency. Solid line: PTF result for a 0.5m x0.5m 

MPP; Dash-dotted: PTF result for a 2m x2m MPP; Dash: equivalent circuit result. 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

(a) 
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(c) 

 
 

 

Figure 5. Acoustic intensity (arrow) and acoustic pressure (contour line) in a plane at 

Y=0.25m in the front of the MPP. Normal incidence of the plane wave.  MPP position 

symbolised by a dash line. (a), 150 Hz; (b), 707 Hz; (c), 1267 Hz. 
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Figure 6. Local patch absorbing coefficients.  (a), 150 Hz; (b), 707 Hz; (c), 1267 Hz. 
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Figure 7. Magnitude of the Equivalent Patch Transfer Functions (N/(m/s)) 

 

 

 

 

 

 



 

 

Figure 8. Comparison of the term 

S

of MPP with the PTF of the cavity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Figure 9. Rectangular cavity used in the experiments by Fenech et al. [10]. 

 

 

 

 

 

Figure 10. PTF substructuring and patch definition. 
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(a) 

 
(b) 

Figure 11. Comparison of sound pressure calculated by PTF (Solid line) with the 

measurement by Fenech et al. (Grey line) for two cases: (a) empty cavity; (b) with MPP at 

d=1.0m.  

 

 



 
Figure 12. Comparison of PTF results with the pressures measured and calculated by Fenech 

et al.  for a MPP at d=0.25m. Solid line: PTF results; Dash line, Fenech’ measurement; Grey 

line: Fenech’ prediction;  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.1. A rigid-walled parallelepiped cavity with a unit normal velocity prescribed on the 

patch surface iS
. 
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