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d’Acoustique, CNRS, 69134 Ecully, France

(Received 15 September 2010; revised 14 November 2011; accepted 23 January 2012;

first published online 12 March 2012)

A new regime of droplet ejection following the slow deposition of drops onto a
near-complete wetting solid substrate is identified in experiments and direct numerical
simulations; a coalescence cascade subsequent to pinch-off is also observed for the
first time. Results of numerical simulations indicate that the propagation of capillary
waves that lead to pinch-off is closely related to the self-similar behaviour observed
in the inviscid recoil of droplets, and that motions of the crests and troughs of
capillary waves along the interface do not depend on the wettability and surface
tension (or Ohnesorge number). The simulations also show that a self-similar theory
for universal pinch-off can be used for the time evolution of the pinching neck.
However, although good agreement is also found with the double-cone shape of the
pinching neck for droplet ejection in drop deposition on a pool of the same liquid,
substantial deviations are observed in such a comparison for droplet ejection in rapid
drop spreading (including the newly identified regime). This deviation is shown to
result from interference by the solid substrate, a rapid downwards acceleration of the
top of the drop surface and the rapid spreading process. The experiments also confirm
non-monotonic spreading behaviour observed previously only in numerical simulations,
and suggest substantial inertial effects on the relation between an apparent contact
angle and the dimensionless contact-line speed.
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1. Introduction

Drop impact on a dry surface can result in a range of fascinating physical
phenomena such as rebound, splashing and crown formation (cf. Yarin 2006).
Although slow deposition of drops onto a substrate normally may be expected to lead
to the mere gradual spreading of drops, several studies on complete or near-complete
wetting cases have reported inertial effects (Biance, Clanet & Queré 2004; Ding &
Spelt 2007a) and, for sufficiently rapid spreading, part of the drop was found to be
ejected (Roux & Cooper-White 2004; Rioboo et al. 2006). A typical time sequence
for the ejection of a small droplet, referred to as a daughter droplet herein, is shown
in figure 1. A similar series of events has been reported by Thoroddsen & Takehara
(2000), Blanchette & Bigioni (2006) and Gilet et al. (2007) in the partial coalescence
of drops with a pool of the same liquid; wave focusing leads eventually to pinch-off
and not to a large diverging pressure wave as, for instance, in the collapse of a bubble
or cavity (Shaw & Spelt 2010) or whip cracking (Goriely & McMillen 2002), although
a small sound wave has been measured in, for instance, the snap-off of a bubble
(Manasseh, Riboux & Risso 2008). The degree to which self-similar capillary-wave
propagation (e.g. Keller & Miksis 1983) and a pinching regime (e.g. Eggers 1997;
Day, Hinch & Lister 1998) are approached in these systems has not yet been analysed,
however. Furthermore, reducing empiricism in direct numerical simulations of flows
with moving contact lines remains a challenge and the flows studied herein provide an
opportunity to see to what extent the numerical results compare well with experimental
values. The objective of this study is therefore threefold: to report a new mechanism
of droplet ejection in drop spreading, to analyse capillary-wave propagation and pinch-
off using self-similar theory and finally to compare the numerical and experimental
results. We make use of the following dimensionless groups: Ohnesorge number
Oh = µ/

√
ρσR0 and Weber number We = ρV2R0/σ , where R0, ρ and µ are the

radius, density and viscosity of the drop, respectively; σ is the surface tension and V

is the impact speed. The surface hydrophilicity is characterized by the static contact
angle. Experiments show that the ejection of daughter droplets generally occurs in the
slow deposition of drops of low viscosity, therefore, all of the cases considered herein
have relatively small values of Oh and We.

We refer to the regime shown in figure 1 as first-stage pinch-off. In this regime,
the rapid spreading on the substrate stretches the drop horizontally, which generates a
capillary-type wave that travels up from the contact line region towards and focuses
on the top of the drop, leading initially to a column-like shape and eventually
to a pinching neck at the bottom of the column. In this process the contact-line
motion effectively acts as a wave maker. Apart from aiming to classify when such
flow regime (as well as another, previously unidentified regime) occurs, we also
analyse the propagation of the capillary wave up along the droplet. Capillary waves
have of course been studied in detail previously, including standing waves on freely
oscillating spherical droplets (Rayleigh 1879). Renardy et al. (2003) demonstrated the
existence of pyramidal structures that arise from the speed of a travelling capillary
wave being annulled by the impact velocity if the latter is sufficiently large, and a
scaling argument was used to model this shape. Thoroddsen et al. (2007b) studied
capillary-Marangoni waves using a self-similar description, for a drop coalescing with
a flat pool of a different liquid. The pioneering work of Keller & Miksis (1983)
has identified self-similar far-field solution of propagating waves on a slender wedge.
Subsequent work in this area has been on slender wedges involving a moving contact
line (King 1991), and the recoil of fat cones (Billingham 1999). In § 3.2, we analyse
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FIGURE 1. First-stage pinch-off for a water drop of 0.486 mm in diameter (Oh = 0.0069)
deposited on a hydrophilic glass substrate (θs = 12◦), at times 0, 0.28, 0.56, 0.86 and 1.82 ms.
The scale bar is 0.5 mm.

the capillary wave on an undisturbed surface that is approximately spherical and driven
by the moving contact line at low-impact velocities.

Furthermore, we determine whether a universal neck pinching regime is approached
at late times. Specifically, the double-cone structure of Day et al. (1998) in a potential-
flow regime is expected to be relevant here. A transition to an inertial-viscous thread is
only expected (as can be inferred from e.g. Lister & Stone 1999) when the radius of
the pinching neck (made dimensionless with R0), which is at most 10−4 in this study,
is of Oh2. This is very late and only just before breakup, so the potential-flow regime
is expected to dominate most of the pinch-off process. In the systems studied here,
mainly water drops in air are studied, so a further transition to a Stokes flow regime
is not expected to be observed before molecular scales are approached (Lister & Stone
1999). As yet, it is unclear to what extent the potential-flow regime can be recovered
in the present system, or whether the presence of the solid substrate delays such an
approach. These issues are investigated in §§ 3.1 and 3.3.

Previous work has also identified inertial regimes in droplet spreading, which appear
to deviate from those in classical analyses of e.g. Cox (1986), although ejection of
small droplets was not reported. Ding & Spelt (2007a) showed that in rapid spreading
without pinch-off, after a capillary-type wave travels from the contact line towards the
top of the droplet, the droplet rapidly collapses, leading to a large, radially outward
motion inside the drop. A boundary layer created by this flow may interfere with the
structure of the contact-line region, and the results of Ding & Spelt (2007a) revealed
that an apparent contact angle ceases to be a single-valued function of the contact-line
speed. We therefore investigate in the experiments in § 3.4 whether this behaviour is
also observed.

We close with an investigation in the effect of the size of the inner contact-line
region and a discussion of the criteria for pinch-off in § 3.5, and observations of a
coalescence cascade (wherein a sequence of droplets of decreasing size are produced)
subsequent to the first-stage pinch-off in § 3.6.

2. Methodology

2.1. Experimental set-up

Our experiments indicate that even minute impact velocities have an adverse effect on
the occurrence of droplet ejection. Therefore, we attempt herein to deposit droplets
onto a solid surface with as small an impact velocity as possible (We < 0.05). We use
gravity-driven pinch-off from minuscule needles, made in a glass puller, of diameter in
the range 5–100 µm. The tip of one needle is visible in figure 1. Direct pinch-off can
generate 650 µm diameter droplets and by softly tapping the nozzle we can produce
droplets as small as 450 µm. We also use distilled water, and in some cases acetone,
methanol, ethanol and glycerin mixtures to adjust the wettability of the liquid on
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the solid surface and the Oh number through changing the viscosity. The substrate
was microscopic glass slides, which were washed with acetone, dried and subjected
to oxygen plasma treatment (0.4 Torr, 150 W) for 2 min in a Triple P Plasma
Processor (Duratek). The root-mean-square surface roughness of the untreated surface
was ∼2 nm, while after the oxygen plasma treatment, this reduced to around 1 nm,
see Jang et al. (2010). This treatment generated surfaces with various hydrophilicities.
Since the hydrophilicity was not perfectly uniform over the entire surface of the same
plate and reduced over time, the apparent contact angles were measured within about
70 ms following the overall dynamic phase (which lasted for few milliseconds), with
an error of about ∼4◦. This criterion of the measure of the angles ensured that no
significant variation of these by either the overall dynamic phase or the phase changes
near the contact line (which became significant in time of seconds).

For each droplet deposition, a part of the substrate was used that had not been used
previously, hence there was no liquid film present prior to droplet deposition. The
dynamics are observed with either a Photron SA-1 or SA-5 CMOS video cameras with
frame rates up to 100 000 frames s−1.

2.2. Numerical method

In order to gain further insight into the flow behaviour we also use a diffuse interface
method (Ding, Spelt & Shu 2007) for simulations of pinch-off processes, which
is capable of simulating two-phase flows with large density and viscosity ratios
and accounts for moving contact lines (Ding & Spelt 2008; Ding, Gilani & Spelt
2010). The wettability is prescribed by an advancing contact angle θA and a hysteresis
window 1θ . Note that when the drop finally rests on the solid substrate after impact,
its static contact angle could be an arbitrary value within (θA −1θ , θA). The fluid–fluid
interface is presented by the volume fraction of one fluid C, and tracked by solving the
convective Cahn–Hilliard equation:

∂C

∂t
+∇ · (uC)= (1/Pe)∇2ψ, (2.1)

where ψ (=Cn−1φ′(C)− Cn∇2C) is the chemical potential, φ (=C2 (1− C)2 /4) is the
bulk energy density, Cn (=ǫ/R0) is the Cahn number and ǫ represents a measure of
the thickness of the diffuse interface; Pe = Mcφc/V is the Péclet number, Mc and ψc

are the characteristic values of the mobility and the chemical potential, respectively.
In this study, we choose Pe = Cn−2, which ensures that the diffusive fluxes on the
right-hand side of (2.1) go to zero when Cn approaches zero (Jacqmin 1999). Similar
to other interface capturing methods (such as level-set and volume-of-fluid methods),
changes in topology, such as pinch-off or coalescence, occur automatically in the
diffuse interface method when the distance between interfaces becomes of the order of
the grid spacing (here related to the thickness of the interfacial region). At the solid
substrate, the diffuse interface model uses a no-slip boundary condition for velocity,
and a geometric formulation of wetting conditions provides a hydrodynamic boundary
condition for volume fraction C (Ding & Spelt 2007b). The stress singularity at
moving contact line is alleviated by the diffusive fluxes in the contact line region, of
which the magnitude is controlled by a constant mobility and Cn (Jacqmin 2000). The
governing equations are solved on a uniform MAC grid; further details can be found
in Ding et al. (2007). Unless stated otherwise, a structured mesh of 800 × 800 has
been used for a domain of 3.6× 3.6.

In Ding & Spelt (2007a), test results were found to compare favourably with
those obtained with a level-set method wherein a slip condition was used, if the slip
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length λ was chosen to be proportional to Cn (when using a constant mobility). The
value of Cn cannot be arbitrarily small and is restricted by the grid size. We choose
Cn = 0.0025 and the resultant effective thickness of the diffuse interface (i.e. the
distance between C = 0.1 and 0.9) is ∼0.01. For a millimetre-size drop, this suggests
the corresponding slip length is ∼2.5 µm, which falls short of realistic conditions,
e.g. λ∼ O(0.1 µm) at most (Marsh, Garoff & Dussan 1993). As a larger effective slip
length tends to give rise to faster droplet spreading, this would lead to a quantitative
difference between numerical results and experiments despite the use of otherwise
identical flow parameters such as surface tension, contact angles, viscosities and drop
size, etc. Therefore, in our simulations we slightly adjust the experimental values,
such as θA and/or Oh, to reproduce the flow phenomena observed in experiments, and
on this basis analyse the related flow mechanisms that are not readily amenable to
experimental analysis. A hybrid method incorporating PARAMESH (MacNeice et al.

2000), an open-source adaptive mesh refinement (AMR) tool for parallel computing,
has been developed by us recently, which has enabled us to also perform high-
resolution simulations with a dimensionless effective slip length down to O(10−4)

(which is computationally very expensive, even with AMR). Extensive tests and
detailed comparisons with theoretical results of this method will be reported elsewhere;
here, it is used to supplement the results obtained without AMR to study in § 3.5 the
role of effective slip length, facilitating a quantitative comparison with experiment, and
in § 3.6 the coalescence cascade.

3. Results

Unless stated otherwise, the results have been made dimensionless with the inertial-

capillary time T = (ρR3
0/σ)

1/2
, and the initial drop radius R0; t = 0 represents the time

when the drop comes into contact with the solid substrate.

3.1. Second-stage pinch-off: overall flow behaviour

Our experiments and simulations have revealed a previously unidentified regime of
droplet ejection by rapidly spreading drops, which we shall refer to as second-stage

pinch-off. Figure 2(a,b) shows the series of events that result in second-stage pinch-off.
The simulations also predict this behaviour (figure 2c), albeit for somewhat different
settings, for reasons explained in § 2.2 above (this is discussed further in § 3.5). The
second-stage pinch-off process results in the ejection of a small droplet, of which
the size ranges from 0.1 to 0.2 in experiments and 0.20–0.23 in simulations. The
subsequent behaviour in figure 2(b) suggests impact of the daughter droplet on the
main drop on the substrate, and then a subsequent bounce-off. This event has not been
identified previously in spreading processes, although an at first sight a similar pinch-
off process has been reported in the studies of pinch-off resulting from coalescence
of non-equal-sized droplets (Blanchette & Bigioni 2009; Zhang, Li & Thoroddsen
2009). Figure 3 shows the parameter space of pinch-offs obtained by experiments.
Second-stage pinch-off regime is observed between first-stage pinch-off and no-pinch-
off, and occurs at Oh in the range of 0.004–0.01. The regime transition shows a strong
dependency on the contact angle: in general, first no-pinch-off, followed by second-
stage pinch-off and then first-stage pinch-off is expected when gradually decreasing
the contact angle. Deposition of a droplet that is very small does not lead to a small
daughter droplet pinching off, because the value of Oh would be too large. Droplets
that are sufficiently large are expected to show second-stage pinch-off of a daughter



Ejection of small droplets in rapid droplet spreading 97

(a)

(b)

(c)

FIGURE 2. Typical shape evolution of a second-stage pinch-off. (a) Overall pinch-off process
for a drop of water with frames spaced by 100 µs. The droplet diameter is 1.016 mm, the
impact speed is 0.037 m s−1 (Oh = 0.0047 and We = 0.019) and θs = 22.2◦; video recorded
by setting the camera obliquely at 14◦, and the scale bar is 1 mm. (b) Close-up of the
second stage, with frames spaced by 40 µs, the scale bar is 1 mm, see the accompanying
supplementary movie 1 (available at http://dx.doi.org/10.1017/jfm.2012.49). (c) Numerical
results for Oh = 0.0066, We = 0.011, θA = 35◦ and 1θ = 10◦ with time running from top to
bottom, and then from left to right.
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FIGURE 3. Parameter space of pinch-offs obtained by experiments. Triangles show second-
stage pinch-off in the region between no pinch-off (�) and first-stage pinch-off (∗). The
dotted line is drawn to guide reader’s eye.

droplet or, for even larger droplets, first-stage pinch-off. The results shown in figure 3
are discussed further in § 3.5 below.

As is evident from the experimental observations using an oblique view
(figure 2a,b), first-stage pinch-off almost occurs in second-stage pinch-off (the last
frame in the first row of figure 2b), but the pinching neck re-expands at a late stage.
Second-stage pinch-off eventually occurs between the second and third frame in the
third row of figure 2(b). Even if the side view of the neck in the experiments of
second-stage pinch-off is obscured by a ridge on the drop surface (as is the case
in the measurement of contact-line speed and apparent contact angle), one can still
distinguish between second-stage pinch-off and first-stage pinch-off with subsequent
coalescence and ejection (see, for example, the accompanying supplementary movie
2) through careful observation of capillary waves in the neck region, which would be
expected as a result of any pinch-off. We have not observed such waves after the first
time a droplet tries to pinch off in the accompanying supplementary movie 1.

3.2. Capillary waves

Capillary waves result from the difference between the initial apparent and the static
contact angle. When a drop is gently deposited onto the wall, the interface, locally
making an angle with the wall that corresponds to the contact angle, must bend over
itself further upwards to an angle of nearly 180◦, due to the (near-spherical) shape of
the original drop. As a result, high curvature is generated near the contact line, i.e. an
initial disturbance to interface that subsequently propagates up the droplet. Therefore,
the smaller the contact angle, the larger the local curvature and the stronger the wave.

Travelling capillary waves have been studied extensively following the work of
Keller & Miksis (1983) on surface-tension-driven flows in a wedge, including the
extension to cones for the inviscid recoil of droplets (e.g. Lawrie 1990; Billingham
1999; Sierou & Lister 2004), to slender cones with a contact line (King 1991)
and to a drop coalescing with a flat pool of a different liquid (Thoroddsen et al.

2007b). The spatial propagation of the capillary wave appears to render a comparison
with the theory of Rayleigh (1879) for the amplification of standing waves on a
sphere or cylinder not useful. Although the geometry studied in these analyses differs,
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–1 0 1.0–0.5 0.5

FIGURE 4. (Colour online available at journals.cambridge.org/flm) Measurement of capillary
waves in a polar coordinate (θ , r), where a sphere of original drop size (dashed curve) is
anchored at the drop peak. Such measurement is made until the waves reach the drop peak, i.e.
θ = 0◦. The colour contours represent the pressure field. Propagation of the primary capillary
wave, marked by points A, B and C, will be investigated later in this section.

especially the near field, we investigate briefly whether at least the (self-similar)
far-field determined in these studies is relevant here.

The far-field determined first in Keller & Miksis (1983) for slender wedges, by
Lawrie (1990) for slender cones and by Billingham (1999) for fat cones, is in self-
similar coordinates (R, ξ) of the form

R= αξ−qsin( 4

27
ξ 3 − β). (3.1)

In order to define R and ξ , we first introduce a polar system (θ, r) that is anchored
at the top of the drop (figure 4), which moves downwards with increasing time. In
Billingham (1999), ξ is the radial coordinate and in effect the radial axis virtually
coincides with the undisturbed interface; R is an effective height of the interfacial
disturbance. Therefore, in the present context, R is taken as the value of r at the
interface in dimensionless form, R = (r − 1)t−2/3; ξ is the corresponding coordinate
along the undisturbed interface, which is here the arclength (θ0 − θ)t−2/3 and θ0 is the
value of θ when the drop comes into contact with the solid substrate (note that the
radius of the undisturbed sphere is unity); α and β are constants. For slender wedges
and cones, q = 7/2 (Keller & Miksis 1983; Lawrie 1990; King 1991); for fat cones,
q= 5 (Billingham 1999).

A typical result of wave propagation is shown in figure 5(a) for a drop at relatively
low Oh, where at least three periods of the wave are seen to travel from the initial
contact line (θ ≈ π) towards the peak of the drop (θ = 0); also, see accompanying
supplementary movie 3 for more details. Note that although the drop is initially
spherical in all simulations, it is slightly deformed by the time it approaches the solid
wall. This results in a non-uniform r distribution seen at early times in figure 5(a).

In figure 5(b), the interface shape as obtained from the numerical simulations is
shown in the self-similarity coordinates (R, ξ). We conclude from this result that a
self-similar shape is not exactly attained, although the differences between the curves
is not large. An exact self-similar solution should not be expected here, due to the
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FIGURE 5. (Colour online) Capillary wave propagation. (a) A typical wave, propagating
from right to left at Oh = 0.008, We = 0.016, θA = 30◦; time intervals of 0.073. (b)
Comparison with asymptotic self-similar theory. Solid line is the far field of Billingham
(1999), broken lines are numerical results: dash-dotted line, t = 0.11, dashed line, 0.29, dotted
line, 0.47.

significant differences between the simulations and the ideal conditions in the analysis.
For example, compared with the analysis by Billingham (1999), here the angle that
the undisturbed cone makes with the substrate varies much more strongly, the origin
of the polar system moves towards the solid wall (due to the impact velocity), the
wavelength is not very short with respect to the drop radius and the path of the wave
is rather finite. Nevertheless, the comparison of this shape with (3.1) with fitted values
of the amplitude α (=8) and phase β (=1.8) seems not bad; although we have used
the result of Billingham (1999), the result for thin wedges gives little difference on the
scale of the uncertainty observed. Note that (3.1) is most relevant to the far field, and a
near-field correction is required for it to approach the contact line. Finally, we observe
that the wave at early times (e.g. t = 0.29) in figure 5(b) appears to have been damped
somewhat, whereas the wave at relatively late times (e.g. t = 0.47) seems stronger than
the others. A possible reason for this is that in the former, most of the wave is below
the equator, whereas most of the wave is above the equator in the latter (see figure 5a).
Convergence amplification leads to pinch-off, as shown clearly for bubble coalescence
in Zhang & Thoroddsen (2008).

More detailed analysis substantially strengthens the quantitative comparison between
the numerical results and theoretical analysis (3.1). In figure 6, the amplitude
and angular location of the points B and C in figure 4 are compared with the
corresponding predictions from (3.1). The theoretical predictions shown here are
determined as follows: in figure 5(b) points B and C are seen to be located on the
self-similar solution at ξ = 2.65 and 3.5, respectively, therefore, their R values follow
by using these values in (3.1); then the prediction of time-dependent amplitude and
angular location of B and C can be made by recalling r = 1+ Rt2/3 and θ0 − θ = ξ t2/3.
Given that the initial drop shape was not exactly spherical at impact, and that the
capillary wave reaches the top of the drop at t = 0.5, the comparison of the amplitude
is reasonable, and the location of the points B and C is well represented by (3.1).

The wave propagation for cases of first-stage and second-stage pinch-off (obtained
by varying wettability or Oh) are also shown in figures 6 and 7. The angular locations
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and θA = 30◦ (first-stage pinch-off). Note, the capillary wave reaches the top of the drop
around t = 0.5.
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FIGURE 7. (Colour online) The dimensionless wave amplitude and angular location of point
A as a function of time for different pinch-off regimes.

of the waves (in terms of A, B and C) can be seen to be very similar in time
for all cases, whereas the amplitudes are not, especially at point A. A retrospective
study of figure 2 shows that points B and C propagate towards the drop peak and
eventually damp out there, while point A, the trough closest to the moving contact
line, persists and evolves into a neck at a later time. Therefore, it is expected that
a useful way to characterize the flow regimes is through the propagation of point A.
It is confirmed in figure 7, in which the amplitude at point A as a function of time
appears to be different for the various pinch-off regimes. This is true for most of



102 H. Ding, E. Q. Li, F. H. Zhang, Y. Sui, P. D. M. Spelt and S. T. Thoroddsen

z

r

0

2.0

0.5

1.0

1.5

2.5

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.4 0.8 1.0 0.2 0.40

(a) (b)

FIGURE 8. (Colour online) Simulation results for dynamic pinching neck at We = 0.011
and Oh = 0.0066: (a) the drop height (solid lines without symbols) and z-location of the
pinching neck (lines with symbols) as a function of time from the time tH when the top of
the drop reaches it highest position; (b) the location of the pinching neck in the (r, z) plane,
for first-stage pinch-off (red dash-dotted lines, θA = 15◦), second-stage pinch-off (blue dashed
lines, θA = 40◦) and no pinch-off (black solid lines, θA = 45◦).

the studied cases, except for Oh = 0.006 and θA = 45◦, which finally evolves into no
pinch-off although the amplitude growth of A suggests a second-stage pinch-off. The
evolution of droplet shape of this case, however, shows that it is in fact very close to
a second-stage pinch-off case. Figure 7 also shows that second-stage pinch-off lies in
between first-stage pinch-off and no pinch-off with respect to θA or Oh, in agreement
with experiments (see figure 3). The propagation of point A at later times, when it
leads to a pinching neck, is studied in more detail in the next subsection.

3.3. Pinch-off

The simulations provide further insight into the approach to pinch-off. Figure 8(a)
shows that in the case which eventually leads to second-stage pinch-off, the drop
height initially decreases faster than the z-location of the pinching neck. As may be
anticipated, and as confirmed by figure 2 and the accompanying supplementary movie
1, this increases the cone angle and therefore interferes with the pinching process: such
bulging-out of the upper cone intensifies the competition between principle curvatures
at the neck, making the axial curvature sharper than the azimuthal curvature and
resulting in expansion of the neck. Figure 9 displays two typical second-stage pinch-
off patterns that occur in our simulations. For the first type, as shown in figure 9(a),
the bulge of the top cone is beginning to show at a late time of the pinching process
and proceeds until pinch-off. The second type is more dramatic as seen in figures 2(b)
and 9(b): the top cone does not bulge but gradually evolves into an ice-cream-cone-
like shape, with two pinching necks. On a regime map of θA versus Oh, the first type
would be close to no-pinch-off while the second type would be close to first-stage
pinch-off.

The minimum radius of the pinching neck, Rmin (measured from the symmetry axis)
is shown in figure 10, as a function of time to rupture tR − t, where tR is the rupture
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FIGURE 9. (Colour online) Comparison of scaled interface shapes for two second-stage
pinch-off patterns at We = 0.011 and Oh = 0.0066: (a) θA = 40◦ and 1θ = 10◦; and (b)

θA = 35◦ and 1θ = 10◦. The shapes highlighted in red show the (tR − t)2/3 regime for
0.08 < tR − t < 0.2. The thick blue lines represent the self-similar solution of Day et al.
(1998) and arrows indicate evolution due to an increase in time.

time. Both the first-stage pinch-off and the second-stage pinch-off show that Rmin

follows (tR − t)2/3 before the occurrence of rupture, in agreement with a potential-flow
scaling argument (e.g. Day et al. 1998; Lister & Stone 1999). In the first-stage
pinch-off the regime of (tR − t)2/3 starts around Rmin ∼ 0.4, which is earlier than might
be expected from an asymptotic analysis. In the second-stage pinch-off, several such
regimes are observed, even very early on, when a minimum neck radius can first
be identified. It is also interesting to see that the results for the first-stage pinch-
off and the second-stage pinch-off are very close when the rupture is approached,
e.g. tR − t < 0.2; in particular, both appear to transit to another regime almost at the
same time just before pinch-off (as shown in the inset in figure 10). The effective
interfacial thickness of the diffuse interface used in these simulations is 0.01, which
means that the pinching neck is well resolved at the times shown.

An approach to a self-similar shape of the pinching neck determined in Day et al.

(1998), corresponding to the second (tR − t)2/3 regime in figure 10, has been observed
for second-stage pinch-off (see figure 9); however, it is at an early time for the
first type of second-stage pinch-off that drop shapes (highlighted in red) approach
the solution of Day et al. (1998) (see figure 9a), while the self-similar shapes
appear to be approached only at a very late time for the second type, just before
pinch-off. Unlike second-stage pinch-off, first-stage pinch-off was found not to exhibit
self-similar surface shapes: the lower cone angle is found to be too low, as can be
seen in figure 11(a). To investigate the origin of this, we show in figure 8(b) the
location of the pinching (or almost pinching) neck in the (r, z) plane for first-stage
(along with second-stage and no) pinch-off. The pinching neck is seen to be very close
to the solid substrate in first-stage pinch-off. This proximity of the solid substrate is
expected to have a significant effect on the pinching neck, as the large downwards
axial velocity in the neck (also associated with the self-similar solution Lister & Stone
1999) is deflected by the substrate (this is also clearly seen in figure 12a, as discussed
below). Further simulations have confirmed that this is a main cause of the difference
(a separate difference is also discussed below): slow impact of a droplet into a pool of
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FIGURE 10. Comparison of numerical results with self-similar solutions at We = 0.011 and
Oh = 0.0066. Pinching neck radius Rmin versus time to rupture tR − t for first-stage pinch-
off (�), with θA = 15◦ and 1θ = 3◦, and second-stage pinch-off (1), with θA = 40◦ and
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FIGURE 11. (Colour online) Comparison of scaled interface shapes for a spreading drop and
a drop coalescing with a pool, at We = 0.011 and Oh = 0.0066: (a) scaled interfaces shape
near the pinching neck for the same first-stage pinch-off case as in figure 10, corresponding to
the last 10 data points in particular; (b) the same drop as in (a) but deposited onto a pool of
the same liquid. The thick blue lines represent the self-similar solution of Day et al. (1998),
arrows indicate evolution due to an increase in time.

the same liquid does show good agreement for the shape of the pinching neck region
with Day et al. (1998) and clearly exhibits self-similar behaviour in an early (tR − t)2/3

regime, see figure 11(b).
For the second-stage pinch-off case in figure 9(a), figure 8(b) shows however that

proximity of the substrate may not be the main cause of the deviation from the
self-similar behaviour, as the pinching neck is much further removed from the wall.
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FIGURE 12. (Colour online) Evidence of interference of flow just below the pinching neck
by the proximity of the solid substrate and by contact-line motion during the approach to
first-stage pinch-off (a) θA = 15◦ and 1θ = 3◦ and second-stage pinch-off (b) θA = 35◦ and
1θ = 10◦. Both cases are at Oh = 0.0066, We = 0.011. The colour contours represent the
pressure field, of which the value increases from blue to red. The vectors shown are the local
velocity and their length is proportional to the magnitude of the velocity. A reference vector
of 2 in magnitude is shown. The thick black line represents the interface and consists of the
contours of volume fraction ranging from 0.1 to 0.9.

The increasing proximity between the drop top and the pinching neck, which leads
to the bulging-out of the upper cone and an increasing cone angle, is more likely to
be relevant here. Evidently, it happens more or less at the same time as the deviation
from self-similarity in figure 9(a). This is also supported by the notion that closer
agreement with self-similar theory is reached in the second-stage pinch-off shown
in figure 9(b), in which the length of the upper cone slightly increases with time.
Inspection of our results shows that the rapid lowering of the drop height (figure 8a)
is accompanied by a pressure built up underneath the very top of the droplet (which
reaches a local maximum just above the pinching neck). A region of relatively low
pressure between the neck and the top of the drop results in motion of liquid radially
outwards and a local ‘fattening’ of the cone. This outwards motion can be seen to
occur in both pinch-off regimes in figure 12, taken before pinch-off. The resulting
fattening of the upper cone is especially apparent in figure 9(a).

A further complication can be identified in figure 12(b). In second-stage pinch-off
it is seen that liquid is transported downwards only in a region around the symmetry
axis and drawn radially inwards, to sustain the mass flux necessary for spreading. Part
of the liquid is supplied by the large axial velocity inside the pinching neck, which
is also present in the self-similar regime (cf. Day et al. 1998). However, the velocity
vector plot in figure 12(b) shows that this is insufficient for the rapid spreading motion,
as the surrounding region beneath the pinching neck is also drained towards the
symmetry axis, which is not seen in first-stage pinch-off.

3.4. Contact-line dynamics

In all of the cases studied here, the spreading process is in an inertial-capillary
regime (Biance et al. 2004): the contact-line radius Rcl is seen in figure 13(a) to
satisfy Rcl ∼ t1/2 for almost the entire duration of the spreading process, for both
experiments and simulations. The time variation of apparent contact angle θapp for the
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FIGURE 13. (Colour online) Fast spreading with different hydrophilicity, at Oh= 0.0066 and
We = 0.011. (a) Radius of the wetted area and (b) θapp as a function of time. Symbols and
lines represent the experimental and numerical results, respectively.

three pinch-off regimes is shown in figure 13(b). In our simulations θapp is defined as
the maximum angle between the interface and the horizontal within a distance of 0.1
from the contact line (for a comparison against asymptotic theory for slow spreading
using this definition, see Spelt (2005) and Ding & Spelt (2007a)). The experimental
and numerical results look similar, particularly the time of appearance and the pattern
of oscillations in θapp (also see figure 16 for experimental results with much better
time resolution). A typical example of θapp versus the dimensionless contact-line speed
Cacl is shown in figure 14 for a no pinch-off case. Interestingly, θapp appears not to
be a single-valued function of Cacl, consistent with previous observations of inertial
effects in droplet spreading (Ding & Spelt 2007a). In fact, the curve here is even more
involved than the results in Ding & Spelt (2007a) due to the stronger capillary waves
encountered, with now several loops, which are seen to coincide with the collapse of
the central part of the droplet (Ding & Spelt 2007a), and the approach to a first-stage
and second-stage pinch-offs.

Qualitatively similar behaviour is also observed in experiments, although the loops
are more flattened there, as can be seen in figure 15. The loops in figure 15(b,c) are
highly complex, but their extent is well beyond experimental uncertainty. The initial
loop, figure 15(b), is seen to be mainly an oscillation in the capillary number along the
same curve. However, the final loop exhibits a multivalued relation between contact
angle and contact-line speed as in the simulations. The contact-line velocity is even
seen to change sign there. Also shown is the prediction from Cox–Voinov-type theory,
according to which (Hocking 1983)

θ 3
app = θ

3
A + 9Caclln

(

RclθA

6eλ

)

, (3.2)

where λ is the dimensional slip length; the contact angle θA is in radians (note, the
dash-dotted curve in figure 15 has been obtained by estimating the total argument of
the log term as 105 for simplicity; for further refinement of the theory wherein the
argument of the logarithm depends on the contact-line speed, see Eggers & Stone
(2004)). The value of λ has been chosen here to correspond to a slip length of
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FIGURE 15. Experimental θapp versus Cacl. Second-stage pinch-off for a water drop of

0.77 mm in diameter with an impact speed of 0.079 m s−1 (Oh = 0.006 and We = 0.033)
and θs = 23◦. The dashed line in (a) and (c) represents the main loop in the spreading from
dimensionless t = 1.75–2.2; more details are shown in figure 16(c). In (a), the dash-dotted

line represents the Cox–Voinov result for a slip length of approximately 1 Å, and the dotted
line represents AMR results at Cn = 0.001, Oh = 0.005 and θA = 18◦. In (c) first-stage
pinch-off nearly occurs at point 8; second-stage pinch-off takes place at the same point in this
graph. The uncertainty in the experimental measurement is ∼1◦ for θapp and 0.0005 for Cacl.

molecular size, λ = 1 Å, which has been found to work in, e.g., the experiments of
Rio et al. (2005). It is seen that the theory under-predicts these results (and would
have underestimated these even further if a slip length corresponding to the root-mean-
square roughness height had been used, which is of O(1 nm)); tests show that an
unrealistically small slip-length value of 10−17 m would be needed for a reasonable
agreement over the entire range of Cacl values shown. We revisit this issue in § 3.5
below, where high-resolution simulations are discussed.
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time, from the experiment of figure 15. The images in (c) are (from left to right) at the instants
of the onset of second-stage pinch-off, the daughter droplet landing on the remainder of the
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The results are more clear when plotted as time signals (figure 16). Two distinct
oscillations are seen to occur (see also figure 13b). The first, shown in figure 16(b),
occurs just after the top of the drop has started to come down, and vanishes at the
point when first-stage pinch-off nearly takes place (at t = 1.5; second-stage pinch-off
occurs at t = 1.81). This period coincides with the return of capillary waves spurred
by the initial contact-line motion, after a ‘reflection’ at the symmetry axis. Coming
with it, liquid is rapidly moved towards the contact-line region which induces inertial
effects on the contact-line motion akin to those observed in Ding & Spelt (2007a).
Indeed, the oscillations in velocity are clearly seen to be very similar to those observed
in those earlier simulations. The second oscillation, shown in figure 16(c), results from
the waves generated by the expansion of the pinching neck at t = 1.5 and appears to
be much stronger in amplitude than the first, even leading to the recoil of the contact
line. We further note here that the apparent contact angle and contact-line speed are
seen to be in phase, suggesting the significant interaction of capillary waves with the
contact-line motion. Close inspection of results shows the loops in figures 14(a) and
15(a) coincide with major capillary-type waves reaching the contact-line region. For
example, the main loop indicated by the dashed line in figure 15 follows the neck
expansion after the nearly first-stage pinch-off (see figure 16c).

3.5. Pinch-off criteria and the role of the effective slip length

The results presented in § 3.2 show that, as in coalescence of non-equal-size drops
(Zhang et al. 2009) and, for that matter, in prior studies for droplet impact into a
pool, inertial effects must be sufficiently large for waves not to be damped, which
suggests a critical value of Oh below which pinch-off could be expected. Also, the
source of the wave is required to be strong. The wave source is determined largely by
hydrophilicity in the present system, and by the ratio of drop sizes in coalescence of
non-equal-size drops; we have found also that the contact line moves faster at lower
values of Oh (Ding & Spelt 2007a). Therefore, the flow regime map in figure 3 is
in terms of Oh and the contact angle. Zhang et al. (2009) provided the pinch-off
criteria of coalescence of non-equal-size drops (e.g. their figure 3b) by experiments.
These criteria cannot apply directly to the first-stage pinch-off in the present system
because the pinch-off process is significantly affected by the presence of the substrate



Ejection of small droplets in rapid droplet spreading 109

and the contact-line motion. However, they may be, with some justification, applicable
to the second-stage pinch-off, in which the influence of the substrate and the contact-
line motion become rather weak, if the expansion of the nearly pinched neck after
the failed first-stage pinch-off is taken as the starting point of coalescence. This
hypothesis is examined by checking the cases shown in the present figure 2(a,c),
for which the Oh values of the upper ‘droplet’ (in terms of the system studied by
Zhang et al. (2009)) are 0.007 and 0.01, respectively, and the ratios of the lower
to the upper ‘droplet’ are similar, ∼4–5. Therefore, from Zhang et al. (2009), we
would expect ‘first-stage pinch-off’ in their terminology (i.e. second-stage pinch-off
in the present system), rather than ‘second-stage pinch-off’ (i.e. third-stage pinch-off
in the present system) or no pinch-off. This expectation is therefore in agreement
with the experimental and the numerical results in this paper. Incidentally, we have
not observed a third-stage pinch-off regime, neither in experiment nor in computation.
Should such a regime exist, it would be expected at the boundary between the no
pinch-off and second-stage pinch-off regimes in figure 3, which leaves very little room,
which is the likely explanation why this has eluded observation.

A series of high-resolution (AMR) simulations has been performed at Oh = 0.005,
θs = 18◦ for different values of Cahn number. We found no pinch-off to occur at
Cn = 0.55/640 = 0.00086, first-stage pinch-off at Cn = 1/640 = 0.0016 and second-
stage pinch-off at Cn = 0.65/640 = 0.001. From comparisons with a level-set method
based on a slip formulation we estimate that this would correspond to changing an
effective slip length from 80 to 150 nm for a millimetre-size drop. Successive drop
shapes for the case wherein second-stage pinch-off is observed are shown at key stages
in figure 17. These are found to agree with experimental images for approximately the
same values of Oh and static angle (figure 2a,b) quite well. We therefore conclude that
the length scale associated with the inner region near the contact line is of the order of
100 nm in the experiment. Although this is well above the size of roughness elements
on the surfaces used in the present experiments, which is estimated to be around 1 nm
(see § 2.1), it is within the range of values inferred from experiments using theory in
the case of slow spreading (Marsh et al. 1993). Either chemical inhomogeneities or
a further interaction between the drop and surrounding air that is not modelled here
(e.g. phase change or small dust particles near the contact line) may have led to this
size of the contact-line region. The low value of the effective slip length in these
simulations also make the correlation between θapp and Cacl closer to the experimental
results, regarding the range of Cacl for the loops to occur (compare, e.g. figures 14
and 15a). In future work, the effect of the definition of apparent contact angle used in
simulations will be assessed.

3.6. Coalescence cascade

In most experiments the daughter droplet bounces off the surface of the mother
drop. However, comprehensive experimental observations have revealed the occasional
occurrence of a coalescence cascade, akin to that identified in Thoroddsen & Takehara
(2000) for a drop coalescing with a flat liquid surface. Figure 18 shows a realization
with a sequence of six first-stage pinch-offs (see supplementary movie 2). This case
corresponds to very similar dimensionless groups as the second-stage pinch-off in
figure 15, but with a more hydrophilic substrate. The diameter ratios of daughter to
mother droplets are 0.45, 0.63, 0.56, 0.60, 0.58 and 0.59, which are somewhat larger
than the value 0.48 observed in droplet ejection in coalescence of non-equal-size drops
(see Zhang et al. 2009), although the present cascade is affected by the rapid vertical
motions of the lower free surface in the latter case. The smallest daughter droplet



110 H. Ding, E. Q. Li, F. H. Zhang, Y. Sui, P. D. M. Spelt and S. T. Thoroddsen
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FIGURE 17. Selected snapshots of the numerical simulation results with AMR showing
various stages of the process: (a) approach to first-stage pinch-off, (b) re-expansion of the
neck, (c) impact of secondary capillary wave on top of droplet thereby entraining a small
bubble and (d) second-stage pinch-off.

in the last panel of figure 18 is 26 µm in diameter, which is in excellent agreement
with the prediction by Blanchette & Bigioni (2006), who predict for water a smallest
possible daughter diameter of 22 µm. It is interesting to note that the coalescence of
two bubbles produces a much smaller satellite bubble where this daughter/mother ratio
is around 0.1, see Zhang & Thoroddsen (2008).

The second stage in this cascade differs from second-stage pinch-off. Evidently,
the impact of the first-generation ejected droplet and subsequent coalescence with
the main droplet creates a disturbance on the top of the latter, which reaches the
contact-line region, returns to the top of the centre of the drop and finally leads to
what is again similar to a first-stage pinch-off, after which this process repeats itself.
In second-stage pinch-off, as can be seen most clearly in figure 2(c), after first-stage
pinch-off has failed, the re-expanding neck creates a new wave that propagates further
upwards; the remainder of the droplet is only to a limited extent involved in this wave
propagation, unlike in the cascade.

A pinch-off event after first-stage pinch-off and coalescence of the daughter and
mother drops has also been observed in numerical simulations when using AMR. This
was for Oh = 0.005, θs = 18◦ and ǫ =1x. In this simulation, a relatively large bubble
was entrapped upon the coalescence of the first daughter droplet with the mother
drop and that the second pinch-off occurred just above this bubble. We would expect
this bubble to have an effect on the pinch-off process, although it is of course of
interest to note here that such a second pinch-off has been observed in a simulation
(given the presence of this bubble, this expensive simulation has not been continued to
establish whether subsequent pinch-off events occurred). Bubble entrapment has been
observed experimentally during coalescence of a pinched droplet and a larger drop
(e.g. Thoroddsen, Etoh & Takehara 2003, 2007a). The underlying mechanism can be
understood from the pressure build-up in the narrow gap between the two drops as
the gas tries to escape but is slowed down by shear stress at the surfaces of the drop,
since the pressure build-up causes deformation of the droplets (e.g. Yiantsios & Davis
1990). We note here that in numerical methods such as that utilized here, coalescence
is expected to occur when the distance between two approaching interfaces becomes
of the order of the thickness of the interface (i.e. the grid spacing), which normally is



Ejection of small droplets in rapid droplet spreading 111

FIGURE 18. Six-stage coalescence cascade after first-stage pinch-off for a water drop of
0.77 mm in diameter, with an impact speed of 0.079 m s−1 (Oh = 0.006, We = 0.033) and
θs = 12± 2◦. Snapshots are shown at dimensionless t = 0.027, 1.72, 3.35, 6.53, 7.0, 7.28 and
7.39 from the start of spreading. The arrow points at the location of the glass plate and the
scale bar is 200 µm long. A full video accompanies this paper (supplementary movie 2).

before the point when long-range intermolecular forces are expected to play a role in
experiments. Hence, coalescence occurs earlier than in experiment, i.e. when the gap
between the two drops is still somewhat larger than in experiment, and a relatively
large bubble is entrapped.

4. Conclusions

We have demonstrated a new regime of droplet ejection during the slow deposition
of drops on a wall, in cases of complete or near-complete wetting. The regime
produces daughter droplets that are at most half in radius compared with those
resulting from first-stage pinch-off. Such a regime has only been found in experiments
on the coalescence of unequal-sized drops (Zhang et al. 2009). The present work
confirms the relevance of such mechanism of breakup to a broader range of
systems. Also, numerical results wherein this regime has been successfully simulated
are reported here for the first time; high-resolution numerical simulations show
quantitative agreement with experiments when allowing for an effective slip length
in the formulation of the numerical method as a fitting parameter.

The ejection phenomena originate from the focusing of a wave that starts at the
contact line. The numerical results have shown that this wave propagation is closely
related to the self-similar behaviour away from the contact line, similar to inviscid
recoil of droplets (Keller & Miksis 1983; Billingham 1999), and that the phase
velocities of capillary waves do not depend on θA and Oh. This is all despite the
different geometry involved in recoil and in the present problem. The simulations
also reveal that good agreement with the self-similar solution of Day et al. (1998) is
obtained when the droplet merges with a liquid layer for almost the entire pinch-off
process. The case of a droplet impacting a dry wall differs crucially in this respect:
although the pinching neck radius decreases as a function of time as predicted by a
scaling argument, the double-cone shape of the pinching region does differ from the
self-similar solution of Day et al. (1998), in both ejection mechanisms. The results
indicate that the deviation from the geometric self-similarity is due to the interference
in the neck region by the proximity of the wall, a downwards acceleration of the
top of the drop and the rapid drop spreading. The radially inwards motion of the
pinching neck appears to be insufficient in either case to enforce an eventual approach
to the self-similar potential flow solution in these flows. The present work therefore
adds evidence of the limitations of self-similar theory that is of a different nature to
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that reported in Doshi et al. (2003). The experiments have also revealed that beyond
droplet pinch-off, a coalescence cascade (Thoroddsen & Takehara 2000) can occur.

Detailed experimental results for an apparent contact angle and contact-line speed
have also been presented, confirming for the first time the qualitative behaviour
identified previously in numerical simulations (Ding & Spelt 2007a), which has also
been seen recently in numerical simulations of reactive wetting (Wheeler, Warren
& Boettinger 2010). A remaining difference between the experimentally measured
apparent contact angle and an apparent angle inferred from simulations (in spite of the
good agreement of the overall flow behaviour), along with detailed comparisons with
theoretical analyses, is investigated further in future work.

Acknowledgements

H.D. was supported by 100 Talents Program of The Chinese Academy of Sciences
and the National Natural Science Foundation of China (Grant No. 11172294). E.Q.L.
and S.T.T. were partly supported by KAUST-BERKELEY AEA grant 7000000024.
Y.S. and P.D.M.S. were supported from EPSRC under grant numbers EP/E046029/1.

Supplementary movies are available at http://dx.doi.org/10.1017/jfm.2012.49.

R E F E R E N C E S
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