
HAL Id: hal-00744432
https://hal.science/hal-00744432v2

Preprint submitted on 29 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Kriging-based sequential design strategies using fast
cross-validation techniques with extensions to

multi-fidelity computer codes
Loic Le Gratiet, Claire Cannamela

To cite this version:
Loic Le Gratiet, Claire Cannamela. Kriging-based sequential design strategies using fast cross-
validation techniques with extensions to multi-fidelity computer codes. 2012. �hal-00744432v2�

https://hal.science/hal-00744432v2
https://hal.archives-ouvertes.fr


Kriging-based sequential design strategies using fast

cross-validation techniques with extensions to multi-fidelity

computer codes

Loic Le Gratiet † ‡ and Claire Cannamela ‡

† Université Paris Diderot 75205 Paris Cedex 13

‡ CEA, DAM, DIF, F-91297 Arpajon, France

October 29, 2012

1 Abstract

Kriging-based surrogate models have become very popular during the last decades to ap-
proximate a computer code output from few simulations. In practical applications, it is very
common to sequentially add new simulations to obtain more accurate approximations. We
propose in this paper a method of kriging-based sequential design which combines both the
error evaluation providing by the kriging model and the observed errors of a Leave-One-Out
cross-validation procedure. This method is proposed in two versions, the first one selects
points one at-a-time. The second one allows us to parallelize the simulations and to add
several design points at-a-time. Then, we extend these strategies to multi-fidelity co-kriging
models which allow us to surrogate a complex code using fast approximations of it. The main
advantage of these extensions is that it not only provides the new locations where to perform
simulations but also which versions of code have to be simulated (between the complex one
or one of its fast approximations).

A real multi-fidelity application is used to illustrate the efficiency of the proposed ap-
proaches. In this example, the accurate code is a two-dimensional finite element model and
the less accurate one is a one-dimensional approximation of the system.

Keywords : kriging, co-kriging, sequential design, cross-validation, resource allocations,
multi-fidelity codes.

2 Introduction

Kriging-based surrogate models have become very popular during the last decades to design
and analyze computer experiments [Sacks et al., 1989]. The reader is referred to the books of
[Stein, 1999], [Santner et al., 2003] and [Rasmussen and Williams, 2006] for more detail about
kriging models. Usually, in real applications, two stages are performed to surrogate a computer
code with a kriging model. The first one consists in building a kriging model from simulations
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coming from an initial experimental design set. Many methods exist to build the initial
design set, in order to ensure appropriate space filling properties, the reader is referred to
[Fang et al., 2006] for a non-exhaustive review of them. The second stage consists in adding
simulations sequentially at new design points which complete the initial one. The selection of
the new points are usually based on criteria to improve the global accuracy of the kriging model
and this will be our goal in this paper. To be complete, we mention that sequential kriging
has also been widely used in optimization (see [Jones et al., 1998], [Picheny et al., 2012]) and
to estimate probabilities of failure [Bect et al., 2012]

Kriging models are a powerful tool to enrich an experimental design set since it provides
through the kriging variance - also called predictor’s Mean Squared Error (MSE) or variance
of prediction - an estimation of the model MSE. Kriging literature provides lot of criteria usu-
ally based on the kriging variance for sequentially design the experiments [Sacks et al., 1989].
Furthermore, [Bates et al., 1996] and [Picheny et al., 2010] propose more efficient criteria by
considering the Integrated MSE (IMSE). It consists in integrating the mean value of the MSE
integrated over the input parameter space. We note though that the IMSE can be com-
putationally expensive to assess, especially when the dimension increases. Although these
criteria are efficient for many cases, they can suffer from an important flaw when the ac-
curacy of the kriging model is not homogeneous over the input parameter space. Indeed,
the kriging variance is determined by the distances between prediction and design points but
not by the real model errors. To fix this important flaw, we can use the Empirical IMSE
suggested in [Sacks et al., 1989] which evaluates the model errors through a test set. Never-
theless, in a complex computer code framework, it could be too expensive to consider an ex-
ternal test set and cross-validation (CV) based criteria are more significant. As an illustration
[Kleijnen and van Beers, 2004] and [van Beers and Kleijnen, 2008] combine a bootstrapping
and a CV procedure to evaluate the predictor’s MSE. Although this method improves the
classical approach, it still does not take into account the real model errors. We note that a
strength of the method proposed by [Kleijnen and van Beers, 2004] is that it can be applied
to others type of surrogate models than the kriging one.

The first focus of this paper is on sequential design to improve the accuracy of a krig-
ing model. In particular, we propose new criteria combining the kriging variance and the
Leave-One-Out CV (LOO-CV) errors. The CV errors allow for focusing the new observations
on regions where the real model errors are large. Furthermore, thanks to the equations pre-
sented in [Dubrule, 1983], the LOO-CV equations are fast to compute and thus the suggested
approach is not expensive.

Kriging has recently been extended to allow for the use of coarse versions of a com-
plex computer code to improve the accuracy of its approximation. These so-called multi-
fidelity surrogate models have become of growing interest. A first one was proposed in
[Craig et al., 1998] which is based on a linear regression formulation and was improved by
[Cumming and Goldstein, 2009] through a Bayes linear formulation. The first multi-fidelity
model using co-kriging was suggested by [Kennedy and O’Hagan, 2000]. Then, several works
dealing with this model have been developed [Kennedy and O’Hagan, 2001], [Higdon et al., 2004],
[Reese et al., 2004], [Qian and Wu, 2008]. Defining sequential design strategies in a multi-
fidelity framework is also of interest and is still an open problem. A method based on nested
Latin hypercube designs is suggested in [Xiong and Qian, 2012]. However, it does not allow
for adding few simulations (e.g. it cannot perform an one step at-a-time sequential design)
and it does not take into account the accuracy of the coarse code versions and the time ratios
between two code levels.
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The second focus of this paper is on sequential design for co-kriging model. We adapt
the new strategies suggested for the kriging model to the multi-fidelity co-kriging one. The
strength of the proposed extensions is that they not only provide the new points where to
perform new simulations but they also determine which version of code is worth being sim-
ulated. These new criteria take into account the computational time ratios between code
versions. They are based on a proxy of the IMSE reduction and on an original result giv-
ing the contribution of each code on the total variance of the model. We note that se-
quential design in a multi-fidelity framework has also been applied for optimization purposes
[Forrester et al., 2007] and [Huang et al., 2006].

The paper is organized as follows. First, we introduce the kriging model and present our
CV-based sequential design strategies. We illustrate these strategies in tabulated functions.
Secondly, we present the proposed co-kriging multi-fidelity model and the extensions of the
previous strategies. Finally, we apply the sequential co-kriging approach to a mechanical
example.

3 Kriging models and sequential designs

In this Section, we briefly introduce the kriging model and some of its classical sequential
design criteria. Then, we will present our sequential strategies to enhance kriging models
considering the region with large LOO-CV errors.

3.1 The Kriging model

The kriging model is a widely used method to surrogate the output of a computer code from
few simulations [Sacks et al., 1989]. Let us denote by y(x) the output of the code at point
x ∈ Q. Here, y(x) is a scalar and Q ⊂ R

d. Furthermore, we denote by D = {x1, . . . , xn} the
experimental design set and yn = y(D) the value of y(x) at points in D.

In a kriging framework, we set that the prior knowledges about the code can be modeled
by a Gaussian process Y0(x). Usually, we consider a Gaussian process with mean of the
form m0(x) = f ′(x)β, with f ′(x) = (f1(x), . . . , fp(x)) and with covariance function k0(x, x̃) =
σ2r (x, x̃; θ). Then, the kriging equations are given by the Gaussian process Y0(x) conditioned
by its known values yn at points in D:

Yn(x) = [Y0(x)|Y0(D) = yn] ∼ GP (mn(x), kn(x, x̃)) (1)

where:
mn(x) = f ′(x)β̂ + r′(x)R−1(yn − Fβ̂) (2)

and:

kn(x, x̃) = σ2

(

r(x, x̃)−
(

f ′(x) r′(x)
)

(

0 F′

F R

)−1(
f(x)
r(x)

)

)

(3)

where ′ stands for the transpose, F are the values of f ′(x) at points in D, r(x) is the
correlation vector between D and x with respect to the correlation function r(x, x̃), R is
the correlation matrix of D with respect to r(x, x̃) and β̂ = (F′R−1F)−1F′R−1yn is the
usual least-squares estimates of β. The model parameters σ2 and θ could be estimated
by maximizing their Likelihood [Santner et al., 2003] or with a cross-validation procedure
[Rasmussen and Williams, 2006]. Furthermore, the Maximum Likelihood Estimate (MLE) of
σ2 is given by σ̂2 = (yn − Fβ̂)′R−1(yn − Fβ̂)/(n − p).
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1 point at-a-time Sequential design

Now, let us suppose that we want to add a new point xn+1 in D in order to enhance the ac-
curacy of the kriging model. From the kriging variance kn(x, x) - representing the model MSE
- some sequential design methods have been derived [Sacks et al., 1989], [Bates et al., 1996]
and [Picheny et al., 2010]. A first one consists in adding xn+1 where the kriging variance is
the largest (see [Sacks et al., 1989]):

xn+1 = argmax
x

kn(x, x) (4)

However, as presented in [Kleijnen and van Beers, 2004], its performance is poor. Then, it
has been improved with a criterion which consists in adding the new point which leads the
most important IMSE reduction (see [Bates et al., 1996] and [Picheny et al., 2010]):

xn+1 = argmax
x

∫

u∈Q
kn(u, u)− kn+1(u, u) du (5)

Here, the covariance kernels kn+1(u, ũ) corresponds to the one of the Gaussian process Yn(u)
(1) conditioned by a new observation at x. Furthermore, the equation (3) shows that the
kriging variance does not depend on the observations if we consider known the parameters
σ2 and θ. Therefore, in that case, kn+1(u, u) can be computed without new simulations.
We denote by MinIMSE this criterion. Finally, we also consider the criterion presented by
[Kleijnen and van Beers, 2004] using a Jackknife estimator for the predictor’s variance. Its
principle is the following one. Let us consider mn,−i(x) the kriging mean built without the ith

observation, the jackknife variance is given by:

s2jack(x) =
1

n(n− 1)

n
∑

i=1

(ỹi − ¯̃y)2 (6)

where ỹi = nmn(x)− (n−1)mn,−i(x) and ¯̃y =
∑

n
i=1ỹi/n. Then, we consider candidate points

coming from a maximin LHS Design [Fang et al., 2006] and we add those which maximize the
jackknife variance. We denote by KleiCrit this criterion.

q points at-a-time Sequential design

There is a natural way to extend these algorithms when the simulations can be performed
simultaneously. Indeed, the covariance kernel kn+1(x, x̃) of the Gaussian process Yn(x) condi-
tioned by the new observation at point xn+1 can be computed without knowing y(xn+1) when
we consider the model parameters σ2 and θ as known. Then, from kn+1(x, x̃), we can find a
new point xn+2 where to perform a new simulation using the same criterion as in equation
(5) and the kernel kn+2(x, x̃). Thus, considering the parameters σ2 and θ as known (they
are fixed to their estimated values), we can determine with this procedure q good locations
where to perform simulations. We call this method the liar sequential kriging. This idea is
also presented in a framework of kriging-based optimization in [Ginsbourger et al., ].

3.2 LOO-CV based strategies for kriging sequential design

We present in this subsection new sequential-kriging strategies. The main difference between
these new strategies and the previous ones is that they take into account the real model errors
through the LOO-CV equations.
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The proposed sequential methods are based on the following original proposition. It gives
the closed form expressions of the LOO-CV equations where the model parameters β and
σ2 are re-estimated after each removed point. This result is already known when σ2 is fixed
[Dubrule, 1983] and [Rasmussen and Williams, 2006].

Notations: Ai,i is the ith element of the main diagonal of A, Ai is the ith row of the matrix
A, A−i is the matrix A without its ith row, A−i,i is the ith column of A without its ith element,
Ai,−i = A′

−i,i and A−i,−i is the matrix A without the ith row and column.

Proposition 1 Let us denote by Yn,−i(x) the Gaussian process Y0(x) conditioned by the values
yn,−i = y(D) \ y(xi). Then, the predictive mean of Yn,−i(x) at point xi is given by:

mn,−i(xi) = y(xi)−
[

R−1(yn,−i − F−iβ̂−i)
]

i
/
[

R−1
]

i,i
(7)

where β̂−i = (F′
−iKiF−i)

−1F′
−iKiyn,−i and Ki =

[

R−1
]

−i,−i
−
[

R−1
]

−i,i

[

R−1
]

i,−i
/
[

R−1
]

i,i
.

Furthermore, the predictive variance of Yn,−i(x) at point xi is given by:

kn,−i(xi) = σ2
−i/
[

R−1
]

i,i
+ ς−i(xi) (8)

where ς−i(xi) =
(

[

R−1F
]

i
/
[

R−1
]

i,i

)′
(F′

−iKiF−i)
−1
(

[

R−1F
]

i
/
[

R−1
]

i,i

)

and

σ2
−i =

(

yn,−i − F−iβ̂−i

)′
Ki

(

yn,−i − F−iβ̂−i

)

/(n − p− 1)

The previous proposition provides a powerful tool to compute the LOO-CV predictive
means and variances. Indeed, several elements of the equations have been already computed
during the models construction (e.g. the inverse of the matrix R). Consequently, the LOO-CV
equations are fast to compute and can be easily recomputed at each step of the sequential
strategy. We note that the originality of this result is the estimation of σ2

−i. As we use the
value of kn,−i(xi) strongly depending on σ2

−i in our forthcoming developments, it is important
to well estimate it.

Now, let us denote by e2LOO−CV =
[

((y(xi)−mn,−i(xi))
2
]

i=1,...,n
the vector of the LOO-

CV squared errors and s2LOO−CV = [kn,−i(xi)]i=1,...,n the vector of the LOO-CV variances.
Furthermore, let us consider the Voronoi cells (Vi)i=1,...,n associated with the points (xi)i=1,...,n:

Vi = {x ∈ Q, ||x− xi|| ≤ ||x− xj||, ∀j 6= i}, i, j = 1, . . . , n (9)

In the remainder of this section, we present two strategies to sequentially add simulations which
use e2LOO−CV, s2LOO−CV and Vi. The intuitive idea of the suggested criteria is to enhance the
predictive variance in the locations where the LOO-CV errors are important.

LOO-CV-based 1 point at-a-time Sequential design

Let us denote by xn+1 the new point that we want to add to D. We consider the point
solving the following problem:

xn+1 = argmax
x

kn(x, x)

(

1 +

n
∑

i=1

[e2LOO−CV]i

[s2LOO−CV]i
Ix∈Vi

)

(10)
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This criterion considers the predictor’s MSE kn(x, x) adjusted with the LOO-CV errors and
variances. For equivalent kn(x, x), the criterion favors the points close to an experimental
design point with large LOO-CV errors. Furthermore, if two points are in the same Voronoi
cell, the one with the largest predictor’s MSE is considered. Therefore, a sequential strategy
with this criterion focus on the regions of Q where the LOO-CV errors are the largest. We
note that the standardization with s2LOO−CV is important since it is not necessary to enlarge
the predictor’s MSE in the regions where it is well or over estimated.

LOO-CV-based q points at-a-time Sequential design

We extend here the previous criterion for a q points at-a-time sequential design. First,
we emphasize that the liar sequential kriging is not relevant for this new criterion. Indeed,
conditioning on model parameters, with a liar method we can compute the kriging variances
(kn+i(x, x))i=1,...,q but not the LOO-CV equations. Therefore, we use another strategy to
propose q new locations where to perform the simulations. This approach is proposed in
[Dubourg et al., 2011] in a different framework. The idea of the suggested method is to select
the q best points with respect to the criterion (10) from N candidate points. These N
candidate points are chosen with the following algorithm.

1. Generate NMCMC samples with respect to the probability density function proportional
to kn(x, x) with a suitable Markov Chain Monte Carlo (MCMC) technique [Robert and Casella, 2004].

2. Extract from these samples N representative points with a N -means clustering technique
[MacQueen, 1967].

As presented in [Dubourg et al., 2011] the use of this algorithm to select N candidate
points in a kriging framework is efficient. Indeed, it allows us to concentrate the points
at the modes of the kriging variance. In the proposed strategy, we always take N ≥ q
and we choose from the N cluster centers (Ci)i=1...,N the q points where kn,adj(x, x) =

kn(x, x)
(

1 +
∑n

i=1

[e2
LOO−CV

]i

[s2
LOO−CV

]i
Ix∈Vi

)

is the largest. For the MCMC procedure, we use a Metropolis-

Hastings (M-H) algorithm with a Gaussian jumping distribution. It is centered on the last
sample point and has a standard deviation such that the acceptance rate is around 30% (see
[Robert and Casella, 2004]). Furthermore, we set NMCMC such that NMCMC ≫ N . For the
N -means procedure, we choose the value of N with respect to the following criterion:

max
N≥q

min
x∈(Ci)i

kn(x, x) (11)

where (Ci)i=1...,N are the cluster centers. This criterion prevents from having a cluster cen-
ter in a region where the kriging variance is close to zero. Furthermore, if the number of
clusters is too high, the cluster centers get away from the modes and consequently the value
of minx∈(Ci)i=1...,N

kn(x, x) decreases. Therefore, this criterion also prevents from having a
number of clusters too large.

4 Sequential design in a multi-fidelity framework

A computer code can often be run at different levels of accuracy. In this case, it can be worth
using low-accuracy versions of a code to improve its approximation. Co-kriging models are
well suited to build such multi-fidelity surrogate models (see [Kennedy and O’Hagan, 2000]
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and [Qian and Wu, 2008]). In this section, we present the considered multi-fidelity co-kriging
models and we extend the previous sequential design strategies in this framework. We note
that, in a multi-fidelity framework, the search for the best locations where to run the code is
not the only point of interest. Indeed, once the best locations are determined, we also have
to decide which code level is worth being run. This will not only depend on the time-ratios
between the code levels but also on the contribution of each code level to the total predictor’s
MSE.

4.1 Multi-fidelity co-kriging models

Let us suppose that we want to surrogate a computer code output ys(x) and that coarse
versions of this code (yl(x))l=1,...,s−1 are available. These codes are sorted by order of fidelity
from the less accurate y1(x) to the most accurate ys−1(x). All code levels are modeled by
Gaussian processes (Y l(x))l=1,...,s with respect to the following relationship with l = 2, . . . , s:







Y l(x) = ρl−1Ỹ
l−1(x) + δl(x)

Ỹ l−1(x) ⊥ δl(x)

Ỹ l−1(x) ∼ [Y l−1(x)|Y(l−1) = y(l−1)]

(12)

where Y(l) = (Y1, . . . ,Yl) with Yl = Y l(Dl), y(l) = (y1, . . . ,yl) with yl = yl(Dl) and
(Dl)l=1,...,s are the experimental design sets at level l with nl points and such that Ds ⊆
Ds−1 ⊆ · · · ⊆ D1. We note that the nested property is not necessary to build the model
but allows for efficient parameter estimations. Furthermore, conditioning on parameters βl,
σ2
l and θl, δl(x) is a Gaussian process of mean f ′l (x)βl with f ′l (x) = (f l

1(x), . . . , f
l
pl
(x)) and

covariance kernel σ2
l rl(x, x̃, θl). By convention Y 1(x) has the same distribution as δ1(x).

The multi-fidelity co-kriging model at level l = 2, . . . , s is given by the following distribu-
tion:

Y l
nl
(x) = [Y l(x)|Y(l) = y(l)] ∼ GP(µl

nl
(x), klnl

(x, x̃)) (13)

with:
µl
nl
(x) = ρ̂l−1µ

l−1
nl−1

(x) + fl(x)β̂l + r′l(x)R
−1
l (yl −Flβ̂l − ρ̂l−1y

l−1(Dl)) (14)

and:

klnl
(x, x̃) = ρ̂2l−1k

l−1
nl−1

(x, x̃) + σ2
l

(

rl(x, x̃)−
(

h′
l(x) r′l(x)

)

(

0 H′
l

Hl Rl

)−1(
hl(x̃)
rl(x̃)

)

)

(15)
where Fl are the values of f ′l (x) at points in Dl, rl(x) is the correlation vector between Dl and
x with respect to the correlation function rl(x, x̃), Rl is the correlation matrix of Dl with re-

spect to rl(x, x̃), h
′
l(x) =

[

µl−1
nl−1

(x) f ′l (x)
]

and

(

ρ̂l−1

β̂l

)

= (H′
lR

−1
l Hl)

−1H′
lR

−1
l yl with Hl =

[yl−1(Dl)Fl] is the usual least-squares estimates of

(

ρl−1

βl

)

. Furthermore, the restricted

maximum likelihood estimate of σ2
l is given by σ̂2

l =

(

yl −Hl

(

ρ̂l−1

β̂l

))′

R−1
l

(

yl −Hl

(

ρ̂l−1

β̂l

))

/(nl−

pl − 1) [Santner et al., 2003].
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Remark. The important property of this co-kriging model is that its MSE (15) provides
through the term ρ2l−1k

l−1
nl−1

the contribution of the code level l − 1 to the total predictor’s
MSE. Therefore, it can allow us to determine which code level is worth being simulated at a
new location x.

4.2 Sequential design for multi-fidelity co-kriging models

The aim of this subsection is to extend the sequential kriging strategies proposed in Subsection
3.2 to the suggested multi-fidelity co-kriging model. These extensions are based on the variance
decomposition property presented in Subsection 4.1 in equation (15) and on the following
extension of Proposition 1:

Proposition 2 For l = 1, . . . , s, let us consider the multi-fidelity model (12) with Dl ⊆
Dl−1 ⊆ · · · ⊆ D1. We denote by ξj the index of Dj corresponding to the ith point xli of Dl

with 1 ≤ j ≤ l. Then, if we note εLOO−CV,l(x
l
i) the LOO-CV error (i.e. real value minus

predicted value) at level l and point xli, we have:

εLOO−CV,l(x
l
i) = ρ̂l−1εLOO−CV,l−1(x

l
i) +

[

R−1
l

(

yl −Hl

(

ρ̂l−1

β̂l

))]

ξl

/
[

R−1
l

]

ξl,ξl
(16)

where εLOO−CV,1(x
l
i) is given by Proposition 1,

(

ρ̂l−1

β̂l

)

= (H′
l,−ξl

KlHl,−ξl)
−1H′

l,−ξl
Kly

l
−ξl

and Kl =
[

R−1
l

]

−ξl,−ξl
−
[

R−1
l

]

−ξl,ξl

[

R−1
l

]

ξl,−ξl
/
[

R−1
l

]

ξl,ξl
.

Furthermore, if we note σ2
LOO−CV,l(x

l
i) the variance of the LOO-CV, we have:

σ2
LOO−CV,l(x

l
i) = ρ̂2l−1σ

2
LOO−CV,l−1(x

l
i) + σ2

l,−ξl
/
[

R−1
l

]

ξl,ξl
+ ςl (17)

with ςl = u2l

(

H′
l,−ξl

KlHl,−ξl

)−1
, ul =

[

R−1
l Hl

]

ξs
/[R−1

l ]ξl,ξl and:

σ2
l,−ξl

=

(

yl
−ξl

−Hl,−ξl

(

ρ̂l−1

β̂l

))′

Ks

(

yl
−ξl

−Hl,−ξl

(

ρ̂l−1

β̂l

))

nl − pl − 2
(18)

where Hl,−ξl = [yl
−ξl

Fl,−ξl ].

Proposition 2 provides closed form expressions for the LOO-CV errors and variances. From
them, the LOO-CV equations are fast to compute and consequently they can be used in a
sequential procedure with a low computational cost. Furthermore, since the experimental
design sets are nested, we state that during the LOO-CV procedure at level l, the points
are removed from all code levels. Finally, from these equations, we can adjust the co-kriging
variances

(

klnl
(x, x̃)

)

l=1,...,s
at each level using the same method as presented in equation (10).

1 point at-a-time sequential co-kriging. First, let us consider xnew the point solving the
problem:

xnew = argmax
x

ksns
(x, x) (19)
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Therefore, we want to compute a new simulation at point where the predictor’s MSE is
maximal. Now, let us consider two successive code levels l− 1 and l. The question of interest
is to estimate which of these two code levels is worth being simulated.

First, thanks to the equation (15), we can deduce the contribution of each code levels to
the predictor’s MSE. Let us define the following notation for l = 2, . . . , s:

σ2
δl(x) = σ2

l

(

1−
(

h′
l(x) r′l(x)

)

(

0 H′
l

Hl Rl

)−1(
hl(x)
rl(x)

)

)

(20)

and σ2
δ1(x) = k1n1

(x, x). Then, we have:

klnl
(x, x) =

l
∑

i=1

σ2
δi(x)

l−1
∏

j=i

ρ2j (21)

Let us consider that the parameters (θl)l=1,...,s define the characteristic length-scales of the
kernels ((rl(x, x̃; θl))i=1,...,s (see [Rasmussen and Williams, 2006] p.83). Then, we can approx-
imate the reduction of the IMSE after adding a new point xnew at level l with the following
formula:

IMSEl
red(xnew) =

l
∑

i=1

σ2
δi(xnew)

l−1
∏

j=i

ρ2j

d
∏

m=1

θmi (22)

with θl = (θ1l , . . . , θ
d
l ). Indeed, at each stage, σ2

δi(xnew)
∏l−1

j=i ρ
2
j represents the contribution of

the bias δi(x) to the co-kriging variance and
∏d

m=1 θ
m
i represents the volume of influence of

xnew at level j. This criterion is justify by the fact that the reduction of IMSEl defined by
IMSEl =

∫

Q σ2
δl
(x) dx after adding a new point xnew has the same order of magnitude than

σ2
δi(xnew) times the volume of influence

∏d
m=1 θ

m
i of xnew.

Now, let us consider that the ratio of computational times between the codes yl(x)
and yl−1(x) equals Bl/l−1. It is worth running the code yl−1(x) if Bl/l−1IMSEl−1

red (xnew) >

IMSEl
red(xnew), i.e. if the potential uncertainty reduction by running Bl/l−1 times yl−1(x) is

greater than the one when we run one simulation on yl(x). From this criterion, we can deduce
the following algorithm for an one at-a-time sequential co-kriging model taking into account
both the computational ratios between the different code levels and the contribution of each
level to the total co-kriging variance.

9



Algorithm 1 One point at-a-time sequential co-kriging

1: Find xnew such that xnew = argmaxx k
s
ns
(x, x)

2: for l = 2, . . . , s do

3: if
(

σ2
δl
(xnew) < IMSEl

)

then

4: Run yl−1(xnew)
5: end for

6: else

7: if
(

IMSEl−1
red (xnew)/IMSEl

red(xnew) > 1/Bl/l−1

)

then

8: Run yl−1(xnew)
9: end for

10: end if

11: end if

12: end for

13: if (l = s) then

14: Run yl(xnew)
15: end if

Remarks: Algorithm 1 evaluates for two successive code levels l − 1 and l, which one is
worth being simulated. It starts with the levels one and two, then two and three and so on.
When it finds that the level l − 1 is more promising than the level l, it stops the loop and
simulate xnew at code levels y1(x), . . . , yl−1(x). Since the loop is defined from level 1 to level
s, it favors simulations at low code levels. Therefore, it will tend to learn the coarse code
versions before learning the accurate ones. We note that during the loop of the algorithm 1,
the parameters are not re-estimated. In fact, they are re-estimated after adding the new point
xnew. Moreover, the first test σ2

δl
(xnew) < IMSEl checks in averaged if the code level l at point

xnew is worth being run. Then, the test IMSEl−1
red (xnew)/IMSEl

red(xnew) > 1/Bl/l−1 evaluates
which code levels between l and l − 1 is the most promising. Finally, if we consider that the
code level l is more promising than the code level l − 1, we confront it to the following code
level l + 1. We note that the algorithm 1 is reiterated until a prescribed accuracy is reached
or the computational time budget is spent.

1 point at-a-time sequential co-kriging with adjusted predictor’s MSE. From
Proposition 2, Algorithm 1 and Equation (22), we can extend the criterion (10) to the multi-
fidelity co-kriging model. Let us consider the following quantity:

IMSEl
red,adj(xnew) =

∑l
i=1 σ

2
δi
(xnew)

(

1 +
∑ni

j=1
(εLOO−CV,i(x

i
j)−ρ̂i−1εLOO−CV,i−1(x

i
j))

2

σ2
LOO−CV,i

(xi
j)−ρ̂2i−1

σ2
LOO−CV,i−1

(xi
j)

)

×
∏l−1

j=i ρ
2
j

∏d
m=1 θ

m
i

(23)
with the convention ρ̂0 = 0 and (ρ̂i)i=1,...,l is given by Proposition 2. In equation (23), the krig-
ing variances σ2

δi(x) in equation (21) is replaced with the adjusted kriging variance presented

in Subsection 3.2. We note that
(

εLOO−CV,i(x
i
j)− ρ̂i−1εLOO−CV,i−1(x

i
j)
)2

is the part of the

LOO-CV squared error explained by the bias δi(x) and σ2
LOO−CV,i(x

i
j)− ρ̂2i−1σ

2
LOO−CV,i−1(x

i
j)

is the corresponding LOO-CV predictive variance. To adapt the adjusted co-kriging variance
in a multi-fidelity framework, we just have to replace IMSEl

red(x) with IMSEl
red,adj(x) in the
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algorithm 1.

(qi)i=1,...,s points at-a-time sequential co-kriging. In this paragraph, we propose an
extension for the multi-fidelity model of the q points at-a-time sequential design presented
in Subsection 3.2. Its principle is the following one. First, we select ql new points for the
code yl(x) with the method presented in Subsection 3.2 “LOO-CV based q points at-a-time
Sequential design”. Then, we consider these points as known for the code yl−1(x) and we
select ql−1 new points for this code with the same method. We note that, as presented in
Subsection 3.1, we can use a liar method to compute the new co-kriging variance without
simulating yl−1(x) at the ql new points. Finally, we repeat this procedure for all code levels
from yl−2(x) to y1(x). At the end of the procedure, we have

∑l
i=j q

i new points at level j and

we want to find the allocation {q1, . . . , ql} leading the largest potential uncertainty reduction
and under the constraint of a constant CPU time budget. We note the CPU time budget
T =

∑l
j=1

∑l
i=j q

itj where (ti)i=1,...,s represents the CPU times of codes (yi(x))i=1,...,s. The
algorithm 2 presents the suggested q points at-a-time sequential co-kriging.

Algorithm 2 (qi)i=1,...,s points at-a-time sequential co-kriging

1: Set the budget T > 0 and the allocation {q1, . . . , ql} such that
∑l

j=1

∑l
i=j q

itj = T

2: Set (N i
MCMC)i=1,...,l for the M-H procedures.

3: Generate N l
MCMC samples with respect to klnl

(x, x).

4: Find the N l cluster centers (C l
i)i=1,...,N l such that N l = maxN≥ql minx∈(Cl

i)i
klnl

(x, x)

5: Select from (C l
i)i=1,...,N l the ql points (xlnew,i)i=1,...,ql where klnl,adj

(x, x) is the largest.
6: for m = l − 1, . . . , 1 do

7: Compute km
nm+

∑l
i=m+1

qi
(x, x) with the new points

(

(xjnew,i)i=1,...,ql

)

j=m+1,...,l

8: Generate Nm
MCMC samples with respect to km

nm+
∑l

i=m+1
qi
(x, x).

9: Find the Nm cluster centers (Cm
i )i=1,...,Nm such that Nm =

maxN≥qm minx∈(Cm
i )i k

m
nm+

∑l
i=m+1

qi
(x, x)

10: Select from (Cm
i )i=1,...,Nm the qm points (xmnew,i)i=1,...,qm where km

nm+
∑l

i=m+1
qi,adj

(x, x)

is the largest.
11: end for

In Algorithm 2, klnl+
∑s

i=l+1
qi(x, x) corresponds to the kernel of the Gaussian process Y l

nl
(x)

conditioned by the observations
(

(xjnew,i)i=1,...,qs

)

j=l+1,...,s
when the parameters (σ2

i )i=1,...,l

and (θi)i=1,...,l are considered as known (i.e. this corresponds to a liar method). Furthermore,
klnl+

∑s
i=l+1

qi,adj(x, x) corresponds to the predictor’s variance klnl+
∑s

i=l+1
qi(x, x) adjusted with

the LOO-CV errors and variances:

klnl+
∑s

i=l+1
qi,adj(x, x) =

∑l
i=1 σ

2
δi+

∑s
i=l+1

qi(x)

(

1 +
∑ni

j=1
(εLOO−CV,i(x

i
j)−ρ̂i−1εLOO−CV,i−1(x

i
j))

2

σ2
LOO−CV,i

(xi
j
)−ρ̂2

i−1
σ2
LOO−CV,i−1

(xi
j
)

)

×
∏l−1

j=i ρ
2
j

∏d
m=1 θ

m
i

(24)
where k1

n1+
∑s

i=l+1
qi

and σ2
δi+

∑s
i=l+1

qi
(xnew) are deduced from the equation (15). We note that

for the M-H procedures, we use a Gaussian jumping distribution with a standard deviation
such that acceptance rate is around 30%.
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Furthermore, let us consider the following quantity

IMSEred,q =

l
∑

i=1

∑

r=1,...,qi

σ2
δi(x

i
new,r)

l−1
∏

j=i

ρ2j

d
∏

m=1

θmi (25)

We consider the allocation {q1, . . . , ql} which solves the following optimization problem:

{q1, . . . , ql} = arg max
{q1,...,ql}

IMSEred,q such that

l
∑

j=1

l
∑

i=j

qitj = T (26)

i.e. we look for the allocation leading the maximal uncertainty reduction. This optimiza-
tion problem is very complex to solve and a sub-optimal solution will be often considered.
Nevertheless, when the number of code levels and the budget T are low (e.g. s = 2 in our
application) an exhaustive exploration of the allocation {q1, . . . , ql} can be performed. We are
in that case in the presented application . Furthermore, we note that IMSEred,q is a proxy on

the IMSE reduction when we add
(

(xmnew,i)i=1,...,qm

)

m=1,...,l
at code levels (ym(x))m=1,...,l.

In practical application, the algorithm 2 is reiterated until we reach a prescribed precision
or the computational time budget is exhausted.

5 Applications

We compare in this Section the MinIMSE, KleiCrit and AdjMMSE criteria on toy examples
and on an application concerning a spherical tank under pressure. We present both the cases
of 1 point at-a-time and q points at-a-time sequential kriging. Then, we compare on the
tank application, the suggested sequential kriging and co-kriging methods with s = 2 levels.
The purpose of this section is to emphasize the efficiency of the LOO-CV-based criteria and
to highlight that a multi-fidelity analysis can be worthwhile. Finally, for the multi-fidelity
sequential co-kriging, we present the allocation of the simulations between the coarse code
and the accurate one. We note that for the different examples, we compare the different
methods given a prescribed computational time budget.

5.1 Comparison between sequential kriging criteria

In this subsection, the 1 point at-a-time sequential kriging criteria (MinIMSE, KleiCrit, Ad-
jMMSE) are compared on three tabulated functions:

• Ackley’s function on [−2, 2]2 [Ackley, 1987]:

f(x, y) = −20exp

(

−0.2

√

x2 + y2

2

)

− exp

(

cos(2πx) + cos(2πy)

2

)

+ 20 + exp(1)

• Shubert’s function on [−2, 2]2 [Xian, 2001]:

f(x, y) =

(

5
∑

k=1

kcos ((k + 1)x+ k)

)(

5
∑

k=1

kcos ((k + 1)y + k)

)

• Michalewicz’s function on [0, π]2 [Michalewicz, 1992]:
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f(x, y) = −sin (x)

(

sin

(

x2

π

))20

− sin (y)

(

sin

(

y2

π

))20

The comparison is performed on a test set Dtest composed of ntest = 1000 points uniformly
spread on the input parameter space and from 50 different initial experimental design sets.
We compare the different methods with respect to the Normalized RMSE:

NormRMSE =

√

∑ntest

i=1

(

yreal(x
i
test)− ypred(x)

)2
/ntest

maxx∈Dtest
yreal(x)−minx∈Dtest

yreal(x)
(27)

where yreal(x) is the real value of the output and ypred(x) the predicted one. The initial exper-
imental design sets are LHS designs of 10 points optimized with respect to the S-optimality
[Stocki, 2005]. From these designs, 50 sequential krigings are performed and the convergence
of the mean and the quantiles of the Normalized RMSE are computed for the three criteria.
Furthermore, after each added point, the parameters of the kriging model are re-estimated
with a maximum likelihood method. These estimations are performed thanks to the R library
’DiceKriging’ [Roustant et al., 2012].

Figure 1 illustrates the efficiency of the criterion AdjMMSE. Indeed, for the Shubert’s
and Michalewicz’s functions, we see that the accuracy of the 1 point at-a-time kriging with
this criterion is significantly better than the one of the others criteria (both in terms of
mean and quantiles of the Normalized RMSE). In fact, these functions have the particularity
to have non-stationarity in some areas of the input parameter space. Thus, the errors are
more important in these locations and the suggested criterion focus the new points on it.
Furthermore, the non-stationarity is particularly important for the Shubert’s function. For
this reason, the IMSE criterion performed very bad in that case. Indeed, this criterion is
efficient for stationary functions (i.e. when the predictor’s MSE well predicts the real model
errors). In contrast, the jackknife predictor’s MSE provided by the criterion KleiCrit manages
to catch this non-stationarity and it performs better than the IMSE criterion. Moreover, we
see that the performance of the AdjMMSE and IMSE criteria are equivalent for the Ackley’s
function. We note that the Ackley’s function is perfectly stationary and the errors have thus
the same order of magnitude over the input parameter space.

These examples illustrate the fact that our criterion is more efficient than the other criteria
when the functions are non-stationary and it remains efficient even in the cases where the
functions are stationary (its efficiency is equivalent to the one of the IMSE criterion).

5.2 Spherical tank under internal pressure example

In this section, we deal with an example about a spherical tank under internal pressure. We
are interested in the von Mises stresses on the three points labeled in figure 2. Indeed, we
want to prevent from material yielding which occurs when the von Mises stress reaches the
critical yield strength.

The system illustrated in figure 2 depends on the following parameters:

• P (MPa) ∈ [30, 50]: the value of the internal pressure.

• Rint (mm) ∈ [1500, 2500]: the length of the internal radius of the shell.

• Tshell (mm) ∈ [300, 500]: the thickness of the shell.
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• Tcap (mm) ∈ [100, 300]: the thickness of the cap.

• Eshell (GPa) ∈ [63, 77]: the Young’s modulus of the shell material.

• Ecap (GPa) ∈ [189, 231]: the Young’s modulus of the cap material.

• σy,shell (MPa) ∈ [200, 300]: the yield stress of the cap material.

• σy,cap (MPa) ∈ [400, 800]: the yield stress of the cap material.

The accurate code output y2(x) is the value of the von Mises stress provided by an Aster
finite elements code (http://www.code-aster.org) modelling the system presented in figure
2. We use the notation x = (P,Rint, Tshell, Tcap, Eshell, Ecap, σy,shell, σy,cap). We note that the
material properties of the shell correspond to high quality aluminum and the ones of the cap
corresponds to steel from classical to high quality. Then, the coarse code output y1(x) is the
value of the von Mises stress given by the 1D simplification of the tank (28) (it corresponds
to a perfect spherical tank under pressure, i.e. without cap).

y1(x) =
3

2

(Rint + Tshell)
3

(Rint + Tshell)
3 −R3

int

P (28)

According to equation (28), the actual input dimension of y1(x) is three (it depends only on
P , Rint and Tshell) while a sensitivity analysis performed with a Sobol decomposition gives
that the accurate code depends essentially on four parameters (P , Rint, Tshell and Tcap).
Furthermore, the response is highly stationary. Therefore, only few points are necessary to
well predict the output of the code. For these reasons, we can start the sequential strategies
from an initial experimental design set with only 10 points.

Thus, for the different comparisons, we use a S-optimal LHS design D2 of 10 points for the
code y2(x). For the coarse code y1(x), we start with a design D1 of 20 points. It is created
with the following procedure. First, we create a S-Optimal design D̃1 of 20 points. Second,
we remove from D̃1 the 10 points that are the closest to those of D2. Finally, D1 is the
concatenation of D2 and D̃1 (this procedure ensures the nested property D2 ⊂ D1). We note
that the CPU time is around 1 minute for the accurate code and 10−8 seconds for the coarse
code. Nevertheless, to be in a more realistic case, we consider that the CPU time ratio between
y2(x) and y1(x) equals B2/1 = 10. Furthermore, each sequential procedure is performed with
40 different initial design sets. Then, the mean and the quantiles of probabilities 90% and
10% of the empirical Normalized MSE are computed from a test set composed of 1000 points
uniformly spread on the input parameter space. Finally, for the M-H procedure, we use
a Gaussian jumping distribution such that the acceptance rate is around 30% and we set
NMCMC = 50000 (we use 5 000 samples for the the burn-in procedure of the M-H method,
see [Robert and Casella, 2004]). For the M-H procedure, we use the package R CRAN mcmc.
We note that after each added points, the parameters of the kriging or co-kriging models are
re-estimated with a maximum likelihood method.

The remainder of this section is organized as follows. First we compare the MSE of the 1
point at-a-time sequential kriging with the one of the q = 5 points at-a-time one. Second, we
compare for a given CPU time budget the sequential kriging and cokriging strategies. In the
forthcoming developments, the response i = 1, 2, 3 refers to the value of the von Mises stress
at point i on figure 2.
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5.2.1 Comparison between sequential kriging criteria

Figure 3 compares the different criteria of the 1 point at-a-time and the q = 5 points at-a-time
sequential kriging. We see that the criteria MinIMSE and AdjMMSE give equivalent values
for the MSE for the 1 point at-a-time procedure and they perform better than the KleiCrit
criterion. There are equivalent since the output y2(x) is perfectly stationary. Nevertheless,
the criterion AdjMMSE is the most efficient for the q = 5 points at-a-time procedure. Indeed,
the 5 points provided by a liar method with the MinIMSE criterion are not necessarily those
which maximize the reduction of the IMSE. The method suggested in section 4.2 seems to
give better solution.

5.2.2 Comparison between kriging and co-kriging sequential analysis

In this section, we compare the sequential kriging strategy with the sequential co-kriging with
respect to the AdjMMSE criterion. Figure 4 gives the convergence of the empirical normalized
MSE for the response 1. We see that the sequential co-kriging performs better than the kriging
one. Furthermore, at the beginning of the method, the proportion of runs for the accurate
code is very low. Indeed, the coarse code and the accurate code are extremely correlated for
this response (around 99%) and thus, during the sequential strategy, the bias between the
two codes is well estimated. Then, when the coarse code is well approximated, the sequential
strategy starts to run the accurate one (for a CPU time around 500).

Figure 5 gives the convergence of the errors for the response 2. For this response, the
correlation between the coarse and the accurate code is around 80%. Therefore, the proportion
of runs for the accurate code determined by the sequential strategy is more important than
in Figure 4. Furthermore, we see that this proportion increases with the CPU time. It means
that the sequential co-kriging improves the approximation of the coarse code at the beginning
of the procedure and then focuses on the accurate code. As a result, we see that the sequential
co-kriging strategy is substantially better than the kriging one.

Figures 4 and 5 illustrate the efficiency of the sequential co-kriging when the coarse code
bring information on the accurate code. For the response 3, the coarse code is weakly correlated
with the accurate code (around 45%). This is due to the fact that the coarse code models
the von Mises stress in a perfect spherical tank whereas the response 3 corresponds to the
one in the cap. Figure 6 shows that in this case, the sequential co-kriging model manages to
determine that the coarse code is not worth being simulated. Indeed, the proportion of runs
for the accurate code is very low. Furthermore, it shows that the co-kriging sequential design
performs as well as the kriging one when the coarse code is non-informative.

Finally, Figure 7 shows the efficiency of the (q1, q2) at-a-time sequential co-kriging. We
set in the algorithm 2 that T = q1 + q2 + 10q2 = 120 where the CPU time of the coarse code
is 1 and the one of the accurate code is 10. For the the sequential kriging, we use a q = 10
at-a-time sequential procedure. Furthermore, Figure 7 shows that at the beginning of the
procedure, the sequential co-kriging focuses on the approximation of the coarse code whereas
at the end the number of runs for the accurate code is maximal. We note that the allocation
of runs for the accurate code in figure 7 agrees with the proportion of runs given in Figure 5.

The results of the sequential co-kriging on the different responses show that the criterion
suggested in section 4.1 performs very well. Indeed, it is always better than the sequential
kriging when the coarse code is informative and its performance is equivalent to it when the
coarse code is not useful. Furthermore, the different proportions of runs for the accurate code
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emphasizes that the criterion accurately determines the contribution of each code to the total
model error and the optimal run allocation between the accurate and the coarse codes.

6 Conclusion

This paper deals with sequential strategies for kriging and co-kriging models. The kriging
model is used to approximate the output of a complex computer code and the co-kriging one
allows to improve this approximation thanks to coarse versions of the code.

First, we have presented classical sequential criteria for the kriging model and we have
suggested another criterion based on the Leave-One-Out cross validation errors. This criterion
has allowed us to set the new observations at locations where the model error is important.
The examples presented in the last section have highlighted the efficiency of the suggested
criterion. Indeed, for non-stationary functions, it provides results significantly better than
classical criteria and for stationary ones its performance is equivalent to them. We have also
emphasized the performance of the suggested criterion on a real application. Furthermore, we
show in the application that when the simulations can be performed in parallel, our method
has performed better.

Second, we have presented the extension of our criterion to multi-fidelity co-kriging models.
We have shown in the application that performing a multi-fidelity sequential co-kriging is
worthwhile when the coarse code versions are informative (i.e. highly correlated with the
accurate code). Furthermore, a strength of the proposed approach is that it performs as
well as a sequential kriging when the coarse code versions are not informative. In fact, the
proposed extension takes into account the contribution of each code to the total predictor’s
mean squared errors and it determines the best run allocation between accurate and coarse
code versions given a CPU time budget.
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Figure 1: Comparison between 1 point at-a-time sequential kriging criteria on toy examples.
The bold triangles represent the mean of the empirical MSE for the AdjMMSE criterion, the
bold circles represent it for the MinIMSE criterion and the bold Crosses represent it for the
KleiCrit criterion. Furthermore, the thin triangles, circles and crosses represent the quantiles
of probabilities 10% and 90% of the empirical MSE.
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Figure 2: Scheme of the spherical tank under pressure.
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Figure 3: Comparison between 1 point at-a-time sequential kriging criteria (on left) and
q = 5 points at-a-time sequential kriging criteria (on right) on the spherical tank example.
The bold triangles represent the mean of the empirical MSE for the AdjMMSE criterion, the
bold circles represent it for the MinIMSE criterion and the bold Crosses represent it for the
KleiCrit criterion. Furthermore, the thin triangles, circles and crosses represent the quantiles
of probabilities 10% and 90% of the empirical MSE.
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Figure 4: Comparison between 1 point at-a-time sequential kriging and co-kriging on the
response 1 of the spherical tank example with respect to the AdjMMSE criterion (on the left).
The thick dashed line represents the mean of the empirical MSE for the sequential kriging
and the thick solid line represents it for the sequential co-kriging. The thin lines represent the
quantiles of probabilities 10% and 90% of the empirical MSE. Figure on the right represents
the proportion of runs allocated to the accurate code.
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Figure 5: Comparison between 1 point at-a-time sequential kriging and co-kriging on the
response 2 of the spherical tank example with respect to the AdjMMSE criterion (on the left).
The thick dashed line represents the mean of the empirical MSE for the sequential kriging
and the thick solid line represents it for the sequential co-kriging. The thin lines represent the
quantiles of probabilities 10% and 90% of the empirical MSE. Figure on the right represents
the proportion of runs allocated to the accurate code.
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Figure 6: Comparison between 1 point at-a-time sequential kriging and co-kriging on the
response 3 of the spherical tank example with respect to the AdjMMSE criterion (on the left).
The thick dashed line represents the mean of the empirical MSE for the sequential kriging
and the thick solid line represents it for the sequential co-kriging. The thin lines represent the
quantiles of probabilities 10% and 90% of the empirical MSE. Figure on the right represents
the proportion of runs allocated to the accurate code.
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Figure 7: Comparison between q = 10 points at-a-time sequential kriging and (q1, q2) points at-
a-time sequential co-kriging. On the left, the bold circles represents the mean of the empirical
MSE for the sequential kriging and the bold triangles represent the one of the sequential co-
kriging. Furthermore, the thin circles and triangles represent the quantiles of probabilities
10% and 90% of the empirical MSE. On the right, the squares represent the median number
of runs for the coarse code during the sequential co-kriging and the triangles represent it for
the accurate code.
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