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Formation flying control for satellites:
anti-windup based approach

J. Boada, C. Prieur, S. Tarbouriech, C. Pittet, and C. Charbonnel

Abstract Control theory has significantly evolved in the field of the nonlinear con-
trol. However, the methods used in the aerospace industry lie usually on linear tech-
niques applied to linearized models. The increasing requirements in terms of op-
erational reliability and performance ask for the development of new control tech-
niques more complex in order to meet the new demands. Therefore the industry is
moving to the modern control theory looking for new nonlinear approaches. In par-
ticular, actuators saturation represents a nonlinear phenomenon common in almost
all physical applications. This can then lead to performance degradation, limit cy-
cle appearance, non-desired equilibrium conditions and even system instability. The
objective of this chapter is to adapt and develop the anti-windup compensator design
to the control with high precision for the angular and the linear axes of a satellite. In
the aerospace application field, this situation meets with the drag-free or the forma-
tion flying missions. These missions use high precision thrusters as actuators whose
capacity appears to be critically low. Moreover thrusters have a particular model-
ing. Allocation functions adapted to the anti-windup design are then explored. In
addition considering the current state of the art of the anti-windup design, there is a
strong necessity of using symmetrizing techniques for the saturation. The main ob-
jective of this work consists in applying the developed tools on an aerospace study
case. As an example, a complete methodology is proposed to control a formation
flying mission controlling both attitude and relative position.
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1 Introduction

Formation flying control problem has been an important field of research since the
1990’s. Several possible applications in the space exploration domain make this field
very interesting [15, 24, 1]. In these kinds of missions one seeks to control the for-
mation with a fine precision in both attitude and relative position. Consequently, the
actuator is based on a precise propulsive system. However, these kinds of actuators
have a limited capacity which cannot be exceeded.

The control limitation due to the constraints of the actuators’ maximum capacity
represents a nonlinear phenomenon common in almost all physical applications.
Traditionally, a classical solution, at least in industry,consists in imposing important
margins in order to prevent the actuators from reaching their maximum capacity,
that is, to avoid saturation. In that manner, one tries to ensure the linearity of the
system. However this a posteriori validation is insufficient because, non-nominal
disturbances, transitions between operational modes, andthe presence of system
failures can force the actuators to reach their limits. Actuator saturation can then
lead to performance degradation, limit cycle appearance, non-desired equilibrium
conditions and even system instability [2, 18, 19, 26, 27].

The nonlinear techniques dealing with saturation can be classified in two main
research lines. The first one seeks to introduce the nonlinear saturation in the syn-
thesis process of the controller. The second one introducesan extra layer to the ex-
isting linear controller, accounting for the nonlinearities. This strategy, also called
anti-windup design, allows the designer to keep the existing linear controller (al-
ready validated) and only to introduce a compensator which is only active when
the nonlinearity arises [17, 31, 20, 14, 29, 27, 33]. The design of such a compen-
sator is generally cast in a static optimization problem of the controller parameters.
Accompanying the development of semi-definite programmingand convex opti-
mization [10], the synthesis problem can be formulated as the optimization of a
multi-objective criterium (corresponding to closed-loopstability and performance
specifications) subject to matrix inequalities constraints associated to the dynamical
system.

The objective of this chapter is to depict how the anti-windup compensator de-
sign can be adapted to high precision control of the linear and angular displacements
of a satellite. Consequently, in formation flying control problem, the introduction of
the anti-windup becomes an interesting technique to ensurethe mission require-
ments and its reliability. Moreover, let us point out that space missions involving
thrusters as actuators are modeled in a particular way. The control variables of the
physical systems and the action provided by thrusters are not the same. An alloca-
tion function is included in the modeling of the actuators todistribute the control
among the actuators [11, 22, 4]. In the classical linear approach this function can
be omitted, however, when the saturation of the actuators arises, its behavior has
to be considered in the control design [4]. Allocation functions adapted to the anti-
windup design have to be explored. Moreover the presence of thrusters introduces a
peculiar formulation of the saturation function. The saturation presents asymmetric
bounds with the minimum equal to zero. Considering the current state of the art of
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the anti-windup design, there is a strong necessity of usingsymmetrizing techniques
for the saturation. The symmetrizing procedure and the allocation function defined
are put along with the anti-windup design to be applied in a spacecraft mission con-
figuration.

For anti-windup study purposes, the formation flying problem can be described
by a block diagram as presented in Figure 1. Ifyp appears as attitude and/or relative
position, the control loop would be illustrative of a formation flight configuration.

fC

T ū

0

sat(0,ū)(T)
M

up

P

yp

yr uc
yc

zp

Fig. 1: Control loop block diagram.

Remark 1. yr = 0 for consistency reasons without loss of generality.

In this chapter a formation flying control problem is modeledand solved. This is
the relative position of a two satellites formation. We prefer to focus on this problem
to ease the presentation of the anti-windup methods. However this reduction is not a
necessary simplification, and a more complete multi-variable system with a coupling
of the attitude and the relative position of two satellites could be tackled. For more
details on this last case see [6], where the saturation effects are studied and some
anti-windup methods are developed. Let us emphasize that the anti-windup design
problem considered corresponds to a multiobjective control optimization problem,
which consists in minimizing some performance criteria (closed-loopL2-gain, fuel
consumption) and maximizing the size (via the choice of optimal criteria) of the
state space region of safe operation (guaranteed stabilityaround the origin, attain-
ability of the performance level), in presence of two hard nonlinear phenomena as
the presence of both actuator saturation and allocation function. Thus this kind of
mathematical programming approach can be viewed as complementary to on-line
optimization-based methods, which require in general a high computational effort.

The chapter is organized as follows. First, in Section 2, themodel of the relative
position between two satellites is presented. Only the control of an axis is consid-
ered. Then, in Section 3 the following anti-windup techniques are applied to the rel-
ative position control: the Direct Linear Anti-Windup (DLAW), the Model Recovery
Anti-windup (MRAW) and the Extended Model Recovery Anti-windup (EMRAW).
Simulations illustrate the benefits provided by the anti-windup compensators. Some
concluding remarks end the chapter.
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2 Relative position control

2.1 Relative position plant model

The first relative dynamics to be described is the relative position between two satel-
lites along thez-axis. Let us consider two satellites and two frames fixed to each
satellite.Fsat1 is the first satellite associated frame andFsat2 the second satellite
associated frame. From the third theorem of the rigid body dynamics, and assuming
that the satellite is a point-mass system, the accelerationof a rigid body is propor-
tional to the sum of external forces:

z̈i = m−1
i ∑(Fi) (1)

wherezi is the displacement on thez-axis of satellitei. Hence, ¨zi denotes the accel-
eration on this axis.mi denotes the mass of satellitei and∑(Fi) stands for the sum
of external forces on satellitei.

The control objective is to cancel the lateral position error on thezcoordinate be-
tween the satellites (see Figure 2). Therefore, the relative dynamics can be described
applying (1) to the difference of thezi coordinate withi = 1,2, that is∆z= z1−z2.
The control objective is then to satisfy∆z= 0. Denoting∑(Fi) by Fi for consistency
reasons, it yields∆ z̈= −m−1

2 F2+m−1
1 F1.

DT1(1)

T1(2) T1(3)

T1(4)

T2(1)

T2(2) T2(3)

T2(4)

Satellite 2 Fsat2

Satellite 1

Fsat1 ∆z

z

z

y

y

x

x

Fig. 2: Relative position control configuration.

The state space representation reads:






















ẋp = Apxp +Bpup =

[

0 1
0 0

][

∆z
∆ ż

]

+

[

0 0
m−1

1 −m−1
2

]

up

yp = Cpxp = [1 0]xp = ∆z
zp = Czxp = [1 0]xp = ∆z

(2)
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where the state variables included in the state vectorxp are the relative position (∆z)
and the relative velocity (∆ ż), up = [F1 F2]

′
is the control input,yp = ∆z is the

measured output andzp = ∆z is the regulated output.

2.2 Relative position controller

A centralized controller is used. This means that a unique controller takes the mea-
surements from all satellites in the formation and computesa vectoryc which con-
tains the control output of each satellite. The controller is described through a state
space representation:

{

ẋc = Acxc +Bcuc

yc = Ccxc +Dcuc
(3)

In the relative position problem, the controller is an 1-input 2-outputs (Single
Input Multiple Output or SIMO) linear system with a 5 dimension state vector. The
controller input isuc = yp = ∆z and its outputs areyc = [yc1 yc2]

′
= [Fc1 Fc2]

′
. Fc1

(resp.Fc2) stands for the controller output for the first (resp. second) satellite.

2.3 Relative position actuator model

The satellite formation is actuated by a propulsive system composed of 4 propor-
tional thrusters on each of the two satellites. To apply the required control forces
(F1 andF2) using this propulsive system, thruster management functions have to
be introduced in the control loop. These functions are composed by an allocation
function that transforms the required control efforts(Fc1,Fc2) into thrusters forces,
and an influence matrix that transforms the thruster outputsinto forces applied on
the system. Moreover, the actual forces delivered by each thruster are saturated. The
general expression for the actuator is given as follows:

up = Msat(0,ū)( f (yc)) (4)

whereM is the influence matrix for each satellite,sat is the thruster saturation, and
f is the allocation function. Let us briefly describe all theseelements separately in
the next sections.

2.3.1 The influence matrix

The influence matrix describes the geometric distribution of the thrusters. The phys-
ical distribution of the thrusters is presented in Figure 2.The influence matrices are
then described as follows:
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M1 = [1 −1 −1 1]; M2 = [1 −1 −1 1] (5)

Influence matricesM1 andM2 are associated to Satellite 1 and Satellite 2, respec-
tively.

2.3.2 Thruster saturation

The saturation function is modeled by

sat(0,ū)(T(i)) =







ū(i) if T(i) > ū(i)

T(i) if 0 ≤ T(i) ≤ ū(i)

0 if T(i) < 0
, i = 1, ...,m. (6)

The saturation bounds for the relative position control problem areu = 0 andū =
1mN, andT = [T(1), . . . ,T(m)]

′ is the thrust applied on each satellite.

2.3.3 Allocation function

The allocation function (AF) used on real applications is a highly nonlinear opti-
mized function. Indeed, finding an AF is a dynamic nonlinear optimization problem,
which can be solved using non-linear optimization techniques [22], e.g., quadratic
programming. Another option is to manipulate a simple nonlinear AF based on a
switching structure. This nonlinear allocation function lies on the fact that the con-
trol outputyc is treated component-wise, whereas the AF computes a set of thrustT
for each component of the control output. They are denoted byyc(k) and the set of
thrusts associated is denoted byTk. Finally, the thrust vector applied is the sum of
all Tk with k = 1, ...,mc. The switching structure can be described by the following
expression:

f (yc) =



















Tk
(i) =

{

0 if sign(M(k,i)) 6= sign(yc(k))
yc(k)

τ(k)M(k,i)
if sign(M(k,i)) = sign(yc(k))

,k = 1, ...,mc.

T(i) = ∑mc
k=1 Tk

(i), i = 1, ...,m.

T = [T(1) ... T(m)]
′

(7)

wheresign(·) stands for the function sign andτ(k) stands for the number of thrusters
generating an effort of the same sign asyc(k). τ(k) is described as follows:

τ(k) =
m

∑
i=1

{

sign(M(k,i)) = sign(yc(k))
}

(8)

where{sign(M(k,i)) = sign(yc(k)))} is a boolean function that returns 1 if both ele-
ments are equal or 0 if they are not.
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The relative position control problem presentsm= 4 thrusters andk = 1 control
output. Then the switching AF (7) has the following form for both satellites:

f (yc) =















T(1) = T(4) =

{

0 if yc < 0
yc
2 if yc ≥ 0

T(2) = T(3) =

{

0 if yc ≥ 0
yc
2 if yc < 0

(9)

In that case the actuator is modeled as follows:

up = Msat(0,ū)( f (yc)) =

[

M1 0
0 M2

]

sat(0,ū)

([

f (yc1)
f (yc2)

])

(10)

Another AF is based on the pseudo-inverse matrixM∗ of the influence matrixM and
is given by

T = f (yc) = M∗yc, (11)

In this case the control inputup reads:

up =

[

M1 0
0 M2

]

sat(0,ū)

([

M∗
1yc1

M∗
2yc2

])

(12)

See also [7] where a multi-saturation based allocation function is suggested (to-
gether with an anti-windup approach that used [28]).

2.4 Relative position closed-loop model

With the previously presented plant (2), controller (3) andactuator (10), the closed-
loop system describing the relative position control reads:















































ẋp = Apxp +Bpup =

[

0 1
0 0

][

∆z
∆ ż

]

+

[

0 0
m−1

1 −m−1
2

]

up

ẋc = Acxc +BcCpxp

yp = Cpxp = [1 0]xp = ∆z
zp = Czxp = [1 0]xp = ∆z

up = Msat(0,ū)( f (yc)) =

[

M1sat(0,ū)( f (yc1))
M2sat(0,ū)( f (yc2))

]

yc = Ccxc +DcCpxp

(13)

with f (yc) defined by (9).
System (13) provides a benchmark for further simulations. However the nonlin-

earity introduced by the AF (9) makes complex the characterization of constructive
conditions1 to compute the anti-windup compensator for this system. Forthis rea-

1 in the sense that tractable numerical procedures can be associated to exhibit the matrices of the
anti-windup compensator.
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son an alternative formulation can be used based on (12) leading to the closed-loop
system:















































ẋp = Apxp +Bpup =

[

0 1
0 0

][

∆z
∆ ż

]

+

[

0 0
m−1

1 −m−1
2

]

up

ẋc = Acxc +BcCpxp

yp = Cpxp = [1 0]xp = ∆z
zp = Czxp = [1 0]xp = ∆z

up = Msat(0,ū)(M
∗yc) =

[

M1sat(0,ū)(M
∗
1yc1)

M2sat(0,ū)(M
∗
2yc2)

]

yc = Ccxc +DcCpxp

(14)

3 Anti-windup on the relative position control

The relative position control problem has been modeled. Before dealing with the
anti-windup computation purposes, let us consider the saturation function in (14). It
is asymmetric. Since most of the results on anti-windup synthesis consider symmet-
ric saturations, the saturation has to be symmetrized in order to adapt some of these
results. To do that the symmetrizing technique of [8] is applied. More precisely,
introducing the so-called symmetrizing vectorNζsym= ū/2, consider the scheme
depicted in Figure 3.

+

+

+

+

fC

ū

0

ū−Nζ

−Nζ

M

Nζ

Nζ

P

Fig. 3: Saturation bounds modification

Hence, we define

Nζvar = min
(

max(i)(| f (yc)|),Nζsym(i)

)







1
...
1






, i = 1, ...,m (15)

which verifies thatMNζvar = 0. That corresponds to a Variable Kernel Function
(VKF) and solves the problems of extra consumption as exposed in [8]. Assuming
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the consumption to be proportional to the integral of all thethrust responses one can
check that the actual consumption can be reduced by adequately defining the VKF.
For more detail, the reader can consult [6]. With the saturation symmetrized, the
closed-loop system (14) we want to study in order to design anti-windup loops can
be written as:















































ẋp = Apxp +Bpup =

[

0 1
0 0

][

∆z
∆ ż

]

+

[

0 0
m−1

1 −m−1
2

]

up

ẋc = Acxc +Bcyp +vx

yp = Cpxp = [1 0]xp = ∆z
zp = Czxp = [1 0]xp = ∆z

up = Msat(u0)(M
∗yc) =

[

M1sat(u0)(M
∗
1yc1)

M2sat(u0)(M
∗
1yc2)

]

yc = Ccxc +DcCpxp +vy

(16)

with symmetric boundsu0 = 1
2mNand wherevx andvy are the output signals of the

anti-windup compensator to be designed.

3.1 Anti-windup compensator synthesis

Three types of anti-windup compensators are investigated:the Direct Linear Anti-
Windup (DLAW), the Model Recovery Anti-windup (MRAW) and the Extended
Model Recovery Anti-windup (EMRAW).

All the results developed in the Direct Linear Anti-Windup (DLAW) context are
based upon the use of the dead-zone nonlinearities and associated modified sector
conditions. Indeed, any system with saturation may be rewritten with dead-zone
nonlinearity. Let us recall that the dead-zone function is defined byφ(u0)(yc) = yc−
sat(u0)(yc). In this context, the anti-windup compensator is defined as follows:

AW







ẋaw = Aawxaw+Bawφ(u0)(yc)

vx = [Inc 0]
(

Cawxaw+Dawφ(u0)(yc)
)

vy = [0 Im]
(

Cawxaw+Dawφ(u0)(yc)
)

(17)

wherexaw ∈ ℜ naw is the anti-windup state,naw ≥ 0, φ(u0)(yc), the dead-zone output

is the anti-windup input,v = [v
′
x v

′
y]

′ ∈ ℜ nc+m is the anti-windup output andAaw,
Baw, Caw, Daw are matrices of appropriate dimensions. Figure 4 presents the block
diagram describing the DLAW structure [14], [27].

In the sequel, we consider by simplicity thatvy = 0 to avoid implicit loop and
therefore we consider a dynamic DLAW into the form:

AW

{

ẋaw = Aawxaw+Bawφ(u0)(yc)
vx = Cawxaw+Dawφ(u0)(yc)

(18)
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xc

C

vx

vy

yc

yp

±u0

ud

φ(u0)(yc)

xp
P

+

+

−

DLAW

xaw

sat(u0)(yc)
zp

Fig. 4: Direct Linear Anti-Windup Structure.

wherexaw ∈ ℜ naw is the anti-windup state,naw ≥ 0, vx ∈ ℜ nc is the anti-windup
output andAaw, Baw, Caw, Daw are matrices of appropriate dimensions.

3.1.1 Static DLAW synthesis

In the static case one choosesnaw = 0 and anti-windup matrices are null except
Daw (Aaw = 0, Baw = 0, Caw = 0). Thus, the anti-windup output is given byvx =
Dawφ(u0)(yc) andvy = 0 [16].

The DLAW static gainDaw can be computed by using Lyapunov theory. In par-
ticular, in order to characterize a domain of asymptotic stability for the closed-loop
system (including the plant, the controller with the staticanti-windup loop and the
linear closed-loop system without saturation) a quadraticLyapunov function can be
used to express some conditions in terms of Linear Matrix Inequalities (LMIs). The
main advantages of using quadratic Lyapunov function resulting into LMIs reside in
the fact that the synthesis of the anti-windup loop can then be carried out through the
solution of convex optimization problems, which can be solved by efficient software
packages [3], [21]. Hence, the stability domain can be optimized in some direction
of interest, namely in the∆z direction. In this case, by using the conditions devel-
oped in [6] (see Theorem 3.1 in Chapter 3 of [6]), the static anti-windup gainDaw

obtained is:

Daw =













−0.32 −0.32 0.32 0.32 −1.65 −1.65 1.65 1.65
0.28 0.28 −0.28 −0.28 3.5 3.5 −3.5 −3.5
2.95 2.95 −2.95 −2.95 −6.39 −6.39 6.39 6.39
0.88 0.88 −0.88 −0.88 −1.81 −1.81 1.81 1.81

376.78 376.78−376.78−376.78−665.5 −665.5 665.5 665.5













(19)

Regarding the structure of the static DLAW (19), we can observe the difference
between the first four columns and the last four ones. That is due to the relation of the
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first four columns with the first satellite thrusters, and therelation of the last four
ones with the second satellite thrusters. In addition, it isimportant to remark that
there is a row (the fifth one) whose values outstand in comparison with the others.
Actually this line affects the state of the controller related to the integration. The
anti-windup mission is to attenuate the integral state of the controller which is the
more sensible state to the saturation effects. Therefore itis normal to find a more
important effect on this controller state than on the others. With this anti-windup
technique, we thus recover the usual method of de-charging the integral state, when
a saturation occurs.

3.1.2 Dynamic DLAW synthesis

Using the results in [25], the matricesAaw, Baw, Caw, Daw of the dynamic anti-
windup compensator (18) can be computed by solving some LMIswhen we choose
the order of the anti-windup compensatornaw = np + nc + nl . For more details see
Propositions 3.1 and 3.2 in Chapter 3 of [6]. Nevertheless, in some cases the order
of this anti-windup compensator can be too large to be implemented in a real on-
board calculator. Thus, the goal now is to find a low order anti-windup compensator.
In this case, the main difficulty resides in the choice of matricesAaw andCaw, the
matricesBaw andDaw remaining linearly computationable in the conditions. A way
to do this is to use the full order anti-windup compensator computation as a guide on
the choice of the poles for the fixed order anti-windup synthesis. The computation is
decomposed in two steps. The first one consists in computing the full order DLAW.
From all the poles of the computed full order compensator, only the poles ofAaw

sharing the same magnitude order as those of the linear closed-loop system without
saturation (namedAl ) are retained (see also [5, 9]). The second step consists in
testing the conditions to obtainBaw andDaw, Aaw andCaw being fixed from the first
step (see, for example, [20, 27]).

As in the static anti-windup case, the stability domain is maximized in the relative
position direction∆z. Table 1 shows the poles of the full order dynamic DLAW and
the poles of the linear closed-loop systemAl . The selected poles for the fixed order
DLAW synthesis are marked with∗.

3.1.3 MRAW and EMRAW synthesis

The Model Recovery Anti-Windup (MRAW) consists in selecting the anti-windup
compensator as a dynamical filter, incorporating a model of the plant [14]. The
aim of this filter is to recover the unconstrained closed-loop dynamics. The plant
control is limited by the saturation nonlinearity, thus, recovering the missing control
and filtering it throughout the anti-windup compensator we can recover the missing
dynamics of the plant. This recovered dynamics allows the system to keep tracking
what the closed-loop response would be in the absence of saturation. The equations
describing filter dynamics are stated by:
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Table 1: Full order DLAW eigenvalues in relative position control

eig(Aaw)(∗ ≡ selected) eig(Al )
−8.28·106 (−2.61± j2.88) ·10−1

−6.21·106 (−1.62± j2.02) ·10−1

−4.74·104 (−8.23± j8.23) ·10−3

−1.93·102 −2.73·10−3

−1.61
(−9.11± j27.5) ·10−2

−0.13
−4.38·10−2(∗)

(−8.97± j5.17) ·10−3(∗)
−8.61·10−3(∗)
−7.46·10−3(∗)
−4.11·10−3











ẋaw = Apxaw+Bp
(

satu0(yc +v1)−yc
)

yaw = Cpxaw

v1 = g(xaw)

(20)

wherexaw ∈ ℜ np is the anti-windup compensator state,yaw ∈ ℜ q andv1 ∈ ℜ m its
outputs, andg is nonlinear function suitably designed ([30, 32]). The anti-windup
compensator structure is represented in Figure 5. Notice that, by using the DLAW

yre f

xc

C

yaw

v1

yc

yp

±u0

v1−φ(u0)(yc +v1)

xp
P

+

+

+

−

− MRAW= P

xaw

sat(yc +v1)

zp

Fig. 5: MRAW control block diagram

framework, the anti-windup loop is injected to the controller by consideringvx and
vy as follows:

vx = −Bcyaw

vy = −Dcyaw+v1
(21)

wherevx andvy are described by Figure 4.
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A first possible solution to the MRAW problem is to selectv1 as a linear state
feedback fromxaw designed completely disregarding the saturation effects.These
solutions are associated to local stability properties but, for exponentially stable
plants, the global stability is possible [13]. Another typeof solutions that one can
propose within the MRAW compensation is to selectv1 as a nonlinear function of
the anti-windup compensator statexaw. This type of solution is certainly the most
difficult to design and to implement but it is the most advanced scheme within this
framework. Reference [12] gives constructive conditions to find such a stabilizing
law v1. See also [14], [27], [33] and references therein.

The Extended Model Recovery Anti-Windup (EMRAW) techniques is a combi-
nation of both the DLAW and MRAW structures, as depicted in Figure 6.

+

+

+

+

−

−

−ve

yre f
Eaw

Faw

xc

C

yaw

v1

v1

yc

yp

±u0

v1−φ(u0)(yc +v1)

xp

P

DLAW

MRAW= P

EMRAW
xaw

xaw

sat(yc +v1)
zp

Fig. 6: Extended MRAW block diagram.

The EMRAW strategy is then described by the following equations:

AW :















ẋaw = (Apxaw+Bpv1)+Bpφ(u0)(yc +v1)
yaw = Cpxaw

v1 = Fawxaw

ve = Eawφ(u0)(yc +v1)

(22)

wherexaw∈ ℜ naw is the anti-windup compensator state withnaw = np, yaw∈ ℜ q and
v1 ∈ ℜ m are the outputs generated by MRAW stage andve∈ ℜ nc is the output issued
by the static DLAW stage (gainEaw). NoticeEaw is an static DLAW as it feedbacks
the dead-zone functionφ(u0) directly into the controller dynamicsxc through the
signalve. First an objective-based algorithm, as in [5], (or a coordinate-descending
algorithm as in [23]) is applied to compute some gains, and then some stability
conditions are solved to compute the anti-windup loop. See [6, 9] for more details,
and for the numerical data of this design.
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3.2 Simulations on relative position control

First, the closed-loop system (13) is simulated without anti-windup. System (13) is
simulated from an initial condition ofxp(0) = [∆z ∆ ż]

′
= [−1 0]

′
and2 xc = 01×5.

Let us remind that (13) describes the relative position closed-loop system with the
switching AF (9).
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Fig. 7: Responses of the relative position without anti-windup compensator.

In Figure 7, the solid line presents the∆z response of the system (13) (i.e. nonlin-
ear response). The dot-dashed line shows the response of thesystem without satura-
tion (i.e. linear response). One can realize the effects of the saturation as oscillations
are induced in the nonlinear response of∆z. The control output and the performed
thrust are also shown in Figure 7. The thrust response is saturated and the control
output oscillates. The effects of the saturation on the system (13) fully justify the
introduction of the anti-windup compensator.

In Figure 8, the time evolution of the relative position of both satellites using a
compensator developed by Thales Alenia Space (TAS), Cannes, France is shown. It
can be observed that this ad-hoc compensator succeeds in avoiding the oscillations,
even in presence of the nonlinearities in the closed loop. However, whereas this con-
trol law performs very well in single-input single-output control problems, it cannot
be easily generalized to multivariable systems, and thus tothe non simplified for-
mation flying control problem for which relative position and attitude are coupled.
This is an additional motivation to develop the anti-winduptechniques presented in
this chapter.

2 Throughout the simulations, the controller state is considered to be always initialized at the origin.
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Fig. 8: Responses of the relative position with compensatordeveloped by TAS. Top:
relative position of both satellites. Middle: input of the first satellite. Down: input of
the second satellite.

The closed-loop system (16) is then simulated with the following anti-windup
compensators:

• static DLAW compensator (solid line);
• full order dynamic DLAW compensator (dashed line);
• fixed order dynamic DLAW compensator (dot-dashed line);
• MRAW compensator (line with dots);
• EMRAW compensator computed with a coordinate-descending algorithm that is

denoted Alg. 3.2 (line with circles);
• EMRAW compensator computed with an objective-based algorithm, that is de-

noted Alg. 3.3 (line with stars).

Figure 9 shows the response of the relative position with thedifferent anti-windup
compensators in the control loop. The∆z responses have been split in two small fig-
ures for clarity purposes. From a general overview of the Figure 9 one can conclude
that the oscillation observed in Figure 7 has disappeared with the introduction of the
anti-windup compensator.

Let us start analyzing the response with DLAW. In Figure 9 theresponse with a
dynamic DLAW is smoother than in the static DLAW case which presents a drop
on its slope. The anti-windup action, in the static case, ends as soon as there is
no saturation. Therefore the drop appears. On the contrary,the dynamic DLAW
keeps modifying the controller action even without actuator saturation. In Figure
10 the thrust response suddenly falls with the static DLAW case while it decreases
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Fig. 9: Response of the relative position with several anti-windup compensators.

progressively with the dynamic one. The advantage of a dynamic DLAW is then
proven.

Also in Figure 10, the thrust response with a full order DLAW is noisy. The fast
dynamics in the full order case induces the high frequency oscillation. The pres-
ence of fast and slow modes in the full order DLAW generates numerical problems
for both LMI computation step (bad conditioning effects) and simulation step (nu-
merical precision effects). On the contrary, the fixed orderDLAW does not present
this oscillation because the fast dynamics were not chosen in the synthesis process.
Therefore, the fixed order provides a smooth response without high frequency os-
cillations.

Let us analyze in Figure 9 the∆z response with a MRAW/EMRAW: actually, fast
responses are attained. Moreover the response∆z of the system (16) is faster with
the EMRAW. An explanation to this behavior is find in Figures 11 and 12 where
the anti-windup outputyaw and the reference signalyre f are compared. The system
response with the MRAW attains the reference, that is,yp = yre f andyaw = 0, before
the response with the EMRAW. However the referenceyre f for the MRAW is slower
than the one for the EMRAW. Therefore, the actual responseyp = ∆zof the system
(16) is faster with the EMRAW.

Another comment on the MRAW approach can be done by the analysis of the
thrust response. In Figure 10 large oscillations on the MRAWapproach can be no-
ticed. However the closer it gets to the origin the higher thebang-bang frequency
and hence the stronger the noise induced into the thrust action.
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Fig. 10: Response of the first thruster with several Anti-windup compensators.

0 200 400 600 800 1000
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

Time [s]

y aw
 [m

]

 

 

600 700 800 900

−0.1

0

0.1

 

 

MRAW
EMRAW objective−based (Alg. 3.3)
EMRAW coordinate−descending (Alg. 3.2)

Fig. 11: Anti-windup output response for MRAW/EMRAW approaches.

Finally, Figure 13 presents the stability domain estimation for the different anti-
windup compensators. The MRAW case has been omitted.
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Fig. 13: Stability domain with several anti-windup compensators.

The EMRAW computed with the coordinate-descending algorithm (based on
[23]) provides a larger estimation. Despite slight differences, all the compensators
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ensure (more or less) the same estimated maximal admissible∆zmax(0) (cutting
point with∆ ż= 0 axis). However, the estimation obtained with the full order DLAW
is smaller than the one obtained with the other compensators. This is due to some
numerical problems. The difference between the maximum andthe minimum eigen-
value of Aaw results on a bad conditioning of the LMIs conditions. As a conse-
quence, the stability domain analysis for the full order DLAW is unfeasible.

Let us make two final remarks on the stability domain estimation. First notice that
the size of the stability domain without anti-windup (dots line) is clearly smaller.
The second point is the conservatism of the estimation. Simulations show that the
system is stable (even without anti-windup) for an initial conditionxp(0) = [−1 0]

′
.

However, considering the estimated domain the maximal admissible initial condi-
tion is aroundxp(0) = [−0.15 0]

′
.

Table 2: Summary values on the relative position control

Static DLAW full order DLAW fixed order DLAW
∆zmax(0) = 1√ρ [m] 0.14 0.130.15

Time of response[s] 1570 1160 1390
Consumption[Ns] 2.017 1.829 1.82

AW Order 0 14 5
MRAW EMRAW Algo. 3.2 EMRAW Algo. 3.3

∆zmax(0) = 1√ρ [m] 0.17 0.16

Time of response[s] 750 580 630
Consumption[Ns] 1.679 1.894 1.8192

AW Order 2 2 2

Table 2 summarizes the main values characterizing the anti-windup compen-
sators. These values are:

• the maximal admissible initial condition for the relative position∆zmax(0);
• thetime evolutionfor ∆z in seconds;
• the integral of the thrust response (value related to theconsumption);
• theorder of the anti-windup (AW) compensator.

A certain trade-off has to be done in the optimized compensator design between
performance (consumption, speed of convergence) and size of the stability domain
(ρ).

The time evolution appears as a remarkable value for the comparison. It has been
defined as the time when the∆z response has reached the 99% of the gap between
its initial condition and the origin. In these simulations the initial relative position is
∆z= −1m. It has been understood as∆z= ±0.01m.

Note the important gap between the time evolution of the system with a DLAW
or with a MRAW/EMRAW. With these last approaches the responses are certainly
faster. In addition, this improvement does not come with an undesirable increase of
the consumption.



20 J. Boada, C. Prieur, S. Tarbouriech, C. Pittet, and C. Charbonnel

Let us remind that the value representing the consumption isjust the integral
of the thrusters response with relation to the time, and not the actual consumption.
These values are however proportional.

Remark 2.Because of its simplicity, its efficiency in terms of time evolution and its
guaranteed stability domain, the EMRAW structure arises asan interesting archi-
tecture for the anti-windup computation. However the initialization process for the
associated algorithms is not trivial. In addition, the anti-windup compensator order
is restricted to the order of the plant.

Remark 3.The full order DLAW presents fast and slow modes. These modesgen-
erate numerical problems for both LMI computation step (badconditioning effects)
and simulation step (numerical precision effects). Therefore, the fixed order DLAW
is an interesting alternative to the full order one. Although some strategies are pro-
posed in the literature, the choice of theAaw poles is not strictly formalized.

Remark 4.Even if in Table 2 the static DLAW presents the worst values ofall com-
pensators, these values are not too much far from those obtained with other ap-
proaches. On the other hand, the static DLAW is easy to compute because of the
associated LMIs simplicity. It is also easy to implement because it is simply a static
gain. Therefore, a systematic procedure can be designed forthe static DLAW com-
putation.

4 Conclusion

Anti-windup compensator design represents the core of thischapter. For ease of
understanding and methods comparisons, the relative position control system has
been taken as a simplified study case. Different anti-windupcompensators have been
evaluated for this problem. The closed-loop system modeling this control problem
has been initially provided. The simplicity of the system has allowed the character-
ization of the main features of the anti-windup compensators. The simulations have
allowed to point out the interest of the EMRAW approach. Similarly to the study
presented in this chapter, the attitude and relative position control system has also
been studied. This application presents the particularityof being a multi-variable
system with a coupling of the attitude over the relative position. For more details on
this last case see [6].

Interesting point for further research, regarding the EMRAW, concerns on the
anti-windup order reduction. Indeed, one main drawback of the EMRAW is that the
plant and the anti-windup compensator are forced to have thesame order. In large
order models, this constraint is unacceptable for future physical implementations.
Therefore, it would be interesting to develop constructivemethods to reduce the
anti-windup order, for example, eliminating secondary dynamics of the considered
plant. In this scenario, the results could be related with the anti-windup synthesis on
an uncertain system.
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