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Formation flying control for satellites:
anti-windup based approach

J. Boada, C. Prieur, S. Tarbouriech, C. Pittet, and C. Chamblo

Abstract Control theory has significantly evolved in the field of thenlioear con-
trol. However, the methods used in the aerospace industnslially on linear tech-
nigues applied to linearized models. The increasing reguénts in terms of op-
erational reliability and performance ask for the develeptof new control tech-
nigues more complex in order to meet the new demands. Theréfe industry is
moving to the modern control theory looking for new nonlinapproaches. In par-
ticular, actuators saturation represents a nonlineargghenon common in almost
all physical applications. This can then lead to perfornesshegradation, limit cy-
cle appearance, non-desired equilibrium conditions ard system instability. The
objective of this chapter is to adapt and develop the antidwp compensator design
to the control with high precision for the angular and thedinaxes of a satellite. In
the aerospace application field, this situation meets \mitrdrag-free or the forma-
tion flying missions. These missions use high precisiornstiens as actuators whose
capacity appears to be critically low. Moreover thrusteasena particular model-
ing. Allocation functions adapted to the anti-windup des@ge then explored. In
addition considering the current state of the art of the-airidup design, there is a
strong necessity of using symmetrizing techniques for #teration. The main ob-
jective of this work consists in applying the developed somh an aerospace study
case. As an example, a complete methodology is proposechtoota formation
flying mission controlling both attitude and relative pasit
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1 Introduction

Formation flying control problem has been an important fiélcesearch since the
1990's. Several possible applications in the space exjidordomain make this field
very interesting [15, 24, 1]. In these kinds of missions ogeks to control the for-
mation with a fine precision in both attitude and relativeipos. Consequently, the
actuator is based on a precise propulsive system. Howéese kinds of actuators
have a limited capacity which cannot be exceeded.

The control limitation due to the constraints of the actusitmaximum capacity
represents a nonlinear phenomenon common in almost aliigathyapplications.
Traditionally, a classical solution, at least in industignsists in imposing important
margins in order to prevent the actuators from reaching theximum capacity,
that is, to avoid saturation. In that manner, one tries taenthe linearity of the
system. However this a posteriori validation is insuffitibecause, non-nominal
disturbances, transitions between operational modestrengresence of system
failures can force the actuators to reach their limits. Atdu saturation can then
lead to performance degradation, limit cycle appearanoe;desired equilibrium
conditions and even system instability [2, 18, 19, 26, 27].

The nonlinear techniques dealing with saturation can b&siflad in two main
research lines. The first one seeks to introduce the nomlgaaration in the syn-
thesis process of the controller. The second one introdarcestra layer to the ex-
isting linear controller, accounting for the nonlinea#i This strategy, also called
anti-windup design, allows the designer to keep the exjdiimear controller (al-
ready validated) and only to introduce a compensator wtgobnly active when
the nonlinearity arises [17, 31, 20, 14, 29, 27, 33]. Thegtesif such a compen-
sator is generally cast in a static optimization problenmhefdontroller parameters.
Accompanying the development of semi-definite programnaind convex opti-
mization [10], the synthesis problem can be formulated asofstimization of a
multi-objective criterium (corresponding to closed-lostpbility and performance
specifications) subject to matrix inequalities constsaagsociated to the dynamical
system.

The objective of this chapter is to depict how the anti-wipdempensator de-
sign can be adapted to high precision control of the linedraaryular displacements
of a satellite. Consequently, in formation flying contrabplem, the introduction of
the anti-windup becomes an interesting technique to ertberenission require-
ments and its reliability. Moreover, let us point out thaasp missions involving
thrusters as actuators are modeled in a particular way. @hteat variables of the
physical systems and the action provided by thrusters arthacsame. An alloca-
tion function is included in the modeling of the actuatordistribute the control
among the actuators [11, 22, 4]. In the classical linear @gogr this function can
be omitted, however, when the saturation of the actuatasesrits behavior has
to be considered in the control design [4]. Allocation fuoes adapted to the anti-
windup design have to be explored. Moreover the presencdewsters introduces a
peculiar formulation of the saturation function. The satiam presents asymmetric
bounds with the minimum equal to zero. Considering the austate of the art of
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the anti-windup design, there is a strong necessity of usingmetrizing techniques
for the saturation. The symmetrizing procedure and theatlon function defined
are put along with the anti-windup design to be applied inacspraft mission con-
figuration.

For anti-windup study purposes, the formation flying prablean be described
by a block diagram as presented in Figure Yylhppears as attitude and/or relative
position, the control loop would be illustrative of a forruat flight configuration.

— Z
u u P
N ¢ yc= f > f sa(o_m(TL M ’ >
0 Yp

Fig. 1: Control loop block diagram.

Remark 1. y= 0 for consistency reasons without loss of generality.

In this chapter a formation flying control problem is modededl solved. This is
the relative position of a two satellites formation. We prebd focus on this problem
to ease the presentation of the anti-windup methods. Havileigereduction is not a
necessary simplification, and a more complete multi-végigystem with a coupling
of the attitude and the relative position of two satellitesid be tackled. For more
details on this last case see [6], where the saturationteffee studied and some
anti-windup methods are developed. Let us emphasize taartti-windup design
problem considered corresponds to a multiobjective cooptmization problem,
which consists in minimizing some performance criteriageld-loop%»-gain, fuel
consumption) and maximizing the size (via the choice ofropticriteria) of the
state space region of safe operation (guaranteed stadibitynd the origin, attain-
ability of the performance level), in presence of two hardlimear phenomena as
the presence of both actuator saturation and allocatioctitm Thus this kind of
mathematical programming approach can be viewed as coraplany to on-line
optimization-based methods, which require in general b bamputational effort.

The chapter is organized as follows. First, in Section 2ntloelel of the relative
position between two satellites is presented. Only therobof an axis is consid-
ered. Then, in Section 3 the following anti-windup techmégjare applied to the rel-
ative position control: the Direct Linear Anti-Windup (DM#), the Model Recovery
Anti-windup (MRAW) and the Extended Model Recovery Antindup (EMRAW).
Simulations illustrate the benefits provided by the antiduip compensators. Some
concluding remarks end the chapter.
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2 Relative position control

2.1 Relative position plant model

The first relative dynamics to be described is the relativ&@tjpm between two satel-
lites along thez-axis. Let us consider two satellites and two frames fixedatche
satellite..Zsan is the first satellite associated frame affid,p the second satellite
associated frame. From the third theorem of the rigid bodyadyics, and assuming
that the satellite is a point-mass system, the accelerafiarrigid body is propor-

tional to the sum of external forces:

Z=m'y(F) (1)
wherez is the displacement on tteaxis of satelliteé. Hence z denotes the accel-
eration on this axism denotes the mass of satellitandy (F) stands for the sum
of external forces on satelliie

The control objective is to cancel the lateral position eamthez coordinate be-
tween the satellites (see Figure 2). Therefore, the reldwamics can be described
applying (1) to the difference of the coordinate with = 1,2, that isAz=z — z.
The control objective is then to satisfiz = 0. Denotingy (F ) by F for consistency
reasons, it yielddz = —m, *F, + m;1Fy.

Satellite 2 ‘f Fsay
To2) To3)
Satellite 1 z
7777777 >y
X |
«’é/‘satl Az !
1
I
Tay | Taw
X I
I
‘ ‘
Ti) Tia) D

Fig. 2: Relative position control configuration.

The state space representation reads:

. 01| |Az 0 0
e = App+ Bllp = {0 0] [A'Z] i [mll _mzl} p
(2)



Formation flying control for satellites: anti-windup bassggproach 5

where the state variables included in the state vegtare the relative position\z)
and the relative velocityAz), up = [F1 Fg], is the control inputy, = Az is the
measured output arg} = Azis the regulated output.

2.2 Relative position controller

A centralized controller is used. This means that a uniquérober takes the mea-
surements from all satellites in the formation and compatesctory. which con-
tains the control output of each satellite. The controBedéscribed through a state
space representation:
{ Xe = AcXc + Belc 3)
Ye = CeXc + Delc

In the relative position problem, the controller is an 1tih@-outputs (Single
Input Multiple Output or SIMO) linear system with a 5 dimemsistate vector. The
controller input isuc = yp = Az and its outputs arg. = [yc1 ycz]/ = [Fa Fcz]’. Fe1
(resp.Fc,) stands for the controller output for the first (resp. se¢aadellite.

2.3 Relative position actuator model

The satellite formation is actuated by a propulsive systemposed of 4 propor-
tional thrusters on each of the two satellites. To apply gguired control forces
(F1 and ) using this propulsive system, thruster management fonsthave to
be introduced in the control loop. These functions are casagdy an allocation
function that transforms the required control effdifés;, Fr2) into thrusters forces,
and an influence matrix that transforms the thruster outiptiwsforces applied on
the system. Moreover, the actual forces delivered by eacistiér are saturated. The
general expression for the actuator is given as follows:

Up = MS&RO’J) (f(ye)) (4)

whereM is the influence matrix for each satelligatis the thruster saturation, and
f is the allocation function. Let us briefly describe all thesements separately in
the next sections.

2.3.1 The influence matrix
The influence matrix describes the geometric distributith@thrusters. The phys-

ical distribution of the thrusters is presented in Figur&l2e influence matrices are
then described as follows:
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Mlz[l -1 -1 1]; Mzz[l -1 -1 1] (5)

Influence matrice$/; andM; are associated to Satellite 1 and Satellite 2, respec-
tively.

2.3.2 Thruster saturation

The saturation function is modeled by

U

<u> if Ti) > Uy
< U

>u
sat(o,@ (T(l ) (,) if 0 < T( i)
0 if T() <0

i=1,..m (6)

3

The saturation bounds for the relative position controbem areu = 0 andu =
ImN, andT = [T3),..., Tim]" is the thrust applied on each satellite.

2.3.3 Allocation function

The allocation function (AF) used on real applications isighly nonlinear opti-
mized function. Indeed, finding an AF is a dynamic nonlinggimization problem,
which can be solved using non-linear optimization techeg22], e.g., quadratic
programming. Another option is to manipulate a simple nwdr AF based on a
switching structure. This nonlinear allocation functigeslon the fact that the con-
trol outputy, is treated component-wise, whereas the AF computes a deustT

for each component of the control output. They are denotegiRyand the set of
thrusts associated is denoted B Finally, the thrust vector applied is the sum of
all T* with k = 1,...,m.. The switching structure can be described by the following
expression:

if sign(M)) 7 sign(yc( ) K= 1..m
fly |\</| S|gn(M ki) =SigN(Ye)) 7 T )
) z T ., M
= [ (1) Tm ]
wheresign(-) stands for the function sign arrg< stands for the number of thrusters
generating an effort of the same signyag). 7 is described as follows:
m . .
T = _Z{SIQWM(k,i)) = sign(yen) } (8)
1=

where{sign(M)) = sign(yx)))} is a boolean function that returns 1 if both ele-
ments are equal or O if they are not.
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The relative position control problem presents- 4 thrusters ané = 1 control
output. Then the switching AF (7) has the following form fath satellites:

0 ify:<O
Tw=Tw=\ %ify.>0
f(yc) = 2 . 9)
1o . _J0ify>0
2= 1'6— y_20|fyc<0

In that case the actuator is modeled as follows:

up=Msatoa (1) = | "0y [ saton ([ 10| ) o

Another AF is based on the pseudo-inverse maithof the influence matrid and
is given by

T = f(ye) =My, 11)
In this case the control inpui, reads:
Mg O M1Ye1
=[5 s som ([152]) w

See also [7] where a multi-saturation based allocationtfonds suggested (to-
gether with an anti-windup approach that used [28]).

2.4 Relative position closed-loop model

With the previously presented plant (2), controller (3) actuator (10), the closed-
loop system describing the relative position control reads

. 01| |Az 0 O
Xp=ApXp+Bplp=| 55| | oz | T m L —myt | Y
Xe = AcXc + BcCpXp

¥p=CpXp=[1 Oxp = Az

z,=Cxp=[1 Oxp=Az

tp = Msato (%) = |
Ye = CeXe + DcCpXp

(13)

Masato i (f(yer)) ]
Masato i (f(ye2))

with f(yc) defined by (9).

System (13) provides a benchmark for further simulatiorsvéler the nonlin-
earity introduced by the AF (9) makes complex the charaza#dn of constructive
conditiong to compute the anti-windup compensator for this system tifierrea-

Lin the sense that tractable numerical procedures can beiaissbto exhibit the matrices of the
anti-windup compensator.
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son an alternative formulation can be used based on (12hkpéaithe closed-loop
system:

. 01 |Az 0 O
Xp=ApXp+Bplp=| 55| | oz | T m L —myt | Y
Xe = AcXc + BcCpXp

Yp=CpXp=[1 Oxp=Az

z,=Cxp=[1 Oxp=Az

up = Msatg g (M*yc) = [
Ye = CeXe + DcCpXp

(14)

Maisato g (M1 Ye1) }
Mzsato g (M3Yc2)

3 Anti-windup on the relative position control

The relative position control problem has been modeledo®eflealing with the
anti-windup computation purposes, let us consider theatidm function in (14). It
is asymmetric. Since most of the results on anti-winduplsysis consider symmet-
ric saturations, the saturation has to be symmetrized iardodadapt some of these
results. To do that the symmetrizing technique of [8] is agghlMore precisely,
introducing the so-called symmetrizing vecté{sym = u/2, consider the scheme
depicted in Figure 3.

+ a
€ Ll f /
0

\/’/NZ

y
z
y
N

Fig. 3: Saturation bounds modification

Hence, we define

Nvar = min(ma;) (| f (Ye)]),Nlsymiiy) | |, i=1,....m (15)
1

which verifies thatMN{yar = 0. That corresponds to a Variable Kernel Function
(VKF) and solves the problems of extra consumption as expwsE8]. Assuming
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the consumption to be proportional to the integral of allttiveist responses one can
check that the actual consumption can be reduced by adégdafming the VKF.
For more detail, the reader can consult [6]. With the saitbmagsymmetrized, the
closed-loop system (14) we want to study in order to desiginvéindup loops can
be written as:

. 01| Az 0O O
oot 33 (2]
Xe = AcXe + Beyp + W

¥p=CpXp=[1 Oxp = Az

zp=Cxp=[1 Oxp=Az

Misat,, (M7
up:MsaT(uO)(M*yc):[ 188 0) ( 1ycl)]

Mzsat(l,lo) (MIyCZ)
Ye = CeXe + DcCpXp +Vy

(16)

with symmetric boundsg = %mN and wheres, andvy are the output signals of the
anti-windup compensator to be designed.

3.1 Anti-windup compensator synthesis

Three types of anti-windup compensators are investigabedDirect Linear Anti-
Windup (DLAW), the Model Recovery Anti-windup (MRAW) and eéhExtended
Model Recovery Anti-windup (EMRAW).

All the results developed in the Direct Linear Anti-WindupL(AW) context are
based upon the use of the dead-zone nonlinearities andiassbmodified sector
conditions. Indeed, any system with saturation may be t@mriwith dead-zone
nonlinearity. Let us recall that the dead-zone functioreifireed by, (V) = Yo —
sat, (Ye). In this context, the anti-windup compensator is definedis\s:

Vx = [lIn, O] (C/alwxanr Daw@uy) (YC)) (17)

Xaw = AawXaw + Bawy,) (Yc)
AW
vy = [0 Im] (Cawxaw+ Dawqo(uo)(yc))

wherexay € 0" is the anti-windup statélaw > 0, @) (Ye), the dead-zone output
is the anti-windup inputy = [v., v;,]/ € O"etMis the anti-windup output anday,
Baw, Caw: Daw are matrices of appropriate dimensions. Figure 4 preskatblock
diagram describing the DLAW structure [14], [27].

In the sequel, we consider by simplicity thgt= 0 to avoid implicit loop and
therefore we consider a dynamic DLAW into the form:

.y | Xaw = AawXaw + Baw@ ) (Ye)
1
N { Vx = CawXaw+ Daw@yy) (Ye) (18)
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Ug ﬁ

Zp
. Y - -

G + 2

-+ ‘& @

+
Yp
(P(Uo)<yc>
Vy
DLAW
Vx

Fig. 4: Direct Linear Anti-Windup Structure.

wherexay € 0w is the anti-windup statejayw > 0, vx € 0" is the anti-windup
output andAaw, Baw, Caw, Daw are matrices of appropriate dimensions.

3.1.1 Static DLAW synthesis

In the static case one chooseg, = 0 and anti-windup matrices are null except
Daw (Aaw = 0, Baw = 0, Caw = 0). Thus, the anti-windup output is given by =
Daw@ ) (Ye) andvy = 0 [16].

The DLAW static gairDgy can be computed by using Lyapunov theory. In par-
ticular, in order to characterize a domain of asymptotibitity for the closed-loop
system (including the plant, the controller with the statnti-windup loop and the
linear closed-loop system without saturation) a quadtatapunov function can be
used to express some conditions in terms of Linear Matriguiadities (LMIs). The
main advantages of using quadratic Lyapunov function tiegspinto LMIs reside in
the fact that the synthesis of the anti-windup loop can treecatoried out through the
solution of convex optimization problems, which can be sdliay efficient software
packages [3], [21]. Hence, the stability domain can be agtchin some direction
of interest, namely in théz direction. In this case, by using the conditions devel-
oped in [6] (see Theorem 3.1 in Chapter 3 of [6]), the statit-@mdup gainDay
obtained is:

—-0.32 -0.32 032 032 —-165 —-165 165 165
028 028 -0.28 -0.28 35 35 -35 -35
Daw=| 295 295 -295 -295 -6.39 —6.39 639 639 (29)
088 088 -088 -088 —-181 —1.81 181 181
37678 37678 —376.78 —376.78 —6655 —6655 6655 6655

Regarding the structure of the static DLAW (19), we can obxséne difference
between the first four columns and the last four ones. Thatgdalthe relation of the
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first four columns with the first satellite thrusters, and taktion of the last four
ones with the second satellite thrusters. In addition, itngortant to remark that
there is a row (the fifth one) whose values outstand in corapanvith the others.
Actually this line affects the state of the controller relto the integration. The
anti-windup mission is to attenuate the integral state efdbntroller which is the
more sensible state to the saturation effects. Therefasenibrmal to find a more
important effect on this controller state than on the oth@éfgh this anti-windup

technique, we thus recover the usual method of de-chargeniptegral state, when
a saturation occurs.

3.1.2 Dynamic DLAW synthesis

Using the results in [25], the matricégy, Baw, Caw, Daw Of the dynamic anti-
windup compensator (18) can be computed by solving some kMen we choose
the order of the anti-windup compensaigy, = np + nc + n;. For more details see
Propositions 3.1 and 3.2 in Chapter 3 of [6]. Neverthelesspime cases the order
of this anti-windup compensator can be too large to be impteed in a real on-
board calculator. Thus, the goal now is to find a low orderwaiidup compensator.
In this case, the main difficulty resides in the choice of tagAgy andCyy, the
matricesB, andDgy remaining linearly computationable in the conditions. Aywa
to do this is to use the full order anti-windup compensatongotation as a guide on
the choice of the poles for the fixed order anti-windup sysithél he computation is
decomposed in two steps. The first one consists in computefutl order DLAW.
From all the poles of the computed full order compensatdy; tire poles ofAqy
sharing the same magnitude order as those of the lineardsloep system without
saturation (namedy) are retained (see also [5, 9]). The second step consists in
testing the conditions to obtaBy, andDaw, Aaw andCyy being fixed from the first
step (see, for example, [20, 27]).

As in the static anti-windup case, the stability domain iximazed in the relative
position directiomAz. Table 1 shows the poles of the full order dynamic DLAW and
the poles of the linear closed-loop syst&m The selected poles for the fixed order
DLAW synthesis are marked with

3.1.3 MRAW and EMRAW synthesis

The Model Recovery Anti-Windup (MRAW) consists in selegtithe anti-windup

compensator as a dynamical filter, incorporating a modehefglant [14]. The

aim of this filter is to recover the unconstrained closedsldgnamics. The plant
control is limited by the saturation nonlinearity, thug;aeering the missing control
and filtering it throughout the anti-windup compensator &g recover the missing
dynamics of the plant. This recovered dynamics allows tistesy to keep tracking
what the closed-loop response would be in the absence oatiatu The equations
describing filter dynamics are stated by:
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Table 1: Full order DLAW eigenvalues in relative positiomtm|

eigAaw)(x = selectedl eigiA)
-8.28-10° (—2.61+j2.88)-10°1
—6.21-10° (-1.624j2.02)-10°*
—4.74.10% (—8.234j8.23)-10°3
-1.93-10° —2.73-10°8
-161
(—9.11+j275)-10°2
-0.13
—4.38-1072(%)
(—8.974+ j5.17)- 10 3(%)
—8.61-1073(%)
—7.46-1073(%)
—4.11.10°3

Xaw = ApXaw+ Bp (Saho (Ye+ V1) — yc)
Yaw = CpXaw (20)
V1 = g(Xaw)
wherexgy € 0™ is the anti-windup compensator stayg, € 0% andv, € O™ its

outputs, and is nonlinear function suitably designed ([30, 32]). Thei-avihdup
compensator structure is represented in Figure 5. Notag Ity using the DLAW

2
-
> » A

Ye sat(ye+ V1)

Yp

Yref

(f‘_ Yaw
+

Fig. 5: MRAW control block diagram

Vi

framework, the anti-windup loop is injected to the coneolby consideringyx and
vy as follows:
Vx = —BcYaw
21
Vy = —DcYaw+ V1 (21)

wherevy andvy are described by Figure 4.
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A first possible solution to the MRAW problem is to selegtas a linear state
feedback fronmx,y designed completely disregarding the saturation effddtese
solutions are associated to local stability properties fart exponentially stable
plants, the global stability is possible [13]. Another tygfesolutions that one can
propose within the MRAW compensation is to seleces a nonlinear function of
the anti-windup compensator statg,. This type of solution is certainly the most
difficult to design and to implement but it is the most advahseheme within this
framework. Reference [12] gives constructive conditianéirid such a stabilizing
law v1. See also [14], [27], [33] and references therein.

The Extended Model Recovery Anti-Windup (EMRAW) technigiga combi-
nation of both the DLAW and MRAW structures, as depicted iguFe 6.

Zp

- Y / satye + i) -
¢ -+ > - »
>~ <] | X o %]

. A+ Yp

- -

y 1~ Q) (Ye+V1)

A

Vi

Ve = :
Yref @]—? ‘
pLAw | [V

- Yaw

aw ] Xaw

A

MRAW= & [ Yaw]|

+A EMRAW

Fig. 6: Extended MRAW block diagram.

The EMRAW strategy is then described by the following equradi

Xaw = (ApXaw+ BpVv1) + Bp@y,) (Yo + V1)

;| Yaw=CoXaw (22)
V1 = FawXaw
Ve = Eaw@ug) (Yo + V1)

wherexay € 0" is the anti-windup compensator state withy, = np, yaw € 09 and
v; € O™ are the outputs generated by MRAW stage and [1™ is the output issued
by the static DLAW stage (gaiBay). NoticeEay is an static DLAW as it feedbacks
the dead-zone functiom,, directly into the controller dynamicg through the
signalve. First an objective-based algorithm, as in [5], (or a cooatk-descending
algorithm as in [23]) is applied to compute some gains, amah thome stability
conditions are solved to compute the anti-windup loop. $e8][for more details,
and for the numerical data of this design.
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3.2 Simulations on relative position control

First, the closed-loop system (13) is simulated withoui-eumidup. System (13) is
simulated from an initial condition of,(0) = [Az AZ' =[-1 0 and? X = Oxs.
Let us remind that (13) describes the relative positionedel®op system with the
switching AF (9).

—Nonlinear response without AW
- - -Linear response without AW

Az[m]
£

i i i i i
1000 1200 1400 1600 1800 2000
Time [s]

. i i i
0 200 400 600 800

—Nonlinear response without AW
- - -Linear response without AW
""""""""""" - s—

i i i i i i
800 1000 1200 1400 1600 1800
Time [s]

T
—Nonlinear response without AW
- - -Linear response without AW

800 1000 1200 1400 1600 1800
Time [s]

Fig. 7: Responses of the relative position without antiguip compensator.

In Figure 7, the solid line presents the response of the system (13) (i.e. nonlin-
ear response). The dot-dashed line shows the responsesyfstieen without satura-
tion (i.e. linear response). One can realize the effectse$aturation as oscillations
are induced in the nonlinear response\af The control output and the performed
thrust are also shown in Figure 7. The thrust response isatatland the control
output oscillates. The effects of the saturation on theesygtl3) fully justify the
introduction of the anti-windup compensator.

In Figure 8, the time evolution of the relative position otlbcatellites using a
compensator developed by Thales Alenia Space (TAS), CaRrasce is shown. It
can be observed that this ad-hoc compensator succeedddimnavine oscillations,
even in presence of the nonlinearities in the closed loopdver, whereas this con-
trol law performs very well in single-input single-outpuwirdrol problems, it cannot
be easily generalized to multivariable systems, and thulseaon simplified for-
mation flying control problem for which relative positiondaattitude are coupled.
This is an additional motivation to develop the anti-windephniques presented in
this chapter.

2 Throughout the simulations, the controller state is casid to be always initialized at the origin.
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Fig. 8: Responses of the relative position with compensigoeeloped by TAS. Top:
relative position of both satellites. Middle: input of thesfisatellite. Down: input of
the second satellite.

The closed-loop system (16) is then simulated with the fahg anti-windup
compensators:

static DLAW compensator (solid line);

full order dynamic DLAW compensator (dashed line);

fixed order dynamic DLAW compensator (dot-dashed line);

MRAW compensator (line with dots);

EMRAW compensator computed with a coordinate-descendgugithm that is
denoted Alg. 3.2 (line with circles);

e EMRAW compensator computed with an objective-based algmrithat is de-
noted Alg. 3.3 (line with stars).

Figure 9 shows the response of the relative position witlditierent anti-windup
compensators in the control loop. TAgresponses have been split in two small fig-
ures for clarity purposes. From a general overview of theifd@® one can conclude
that the oscillation observed in Figure 7 has disappeartttie introduction of the
anti-windup compensator.

Let us start analyzing the response with DLAW. In Figure 9rssponse with a
dynamic DLAW is smoother than in the static DLAW case whickgants a drop
on its slope. The anti-windup action, in the static case sea®lsoon as there is
no saturation. Therefore the drop appears. On the conttaylynamic DLAW
keeps modifying the controller action even without actua@turation. In Figure
10 the thrust response suddenly falls with the static DLABkcahile it decreases
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Fig. 9: Response of the relative position with several amtielup compensators.

progressively with the dynamic one. The advantage of a dym&hAW is then
proven.

Also in Figure 10, the thrust response with a full order DLAS\hDisy. The fast
dynamics in the full order case induces the high frequencillagon. The pres-
ence of fast and slow modes in the full order DLAW generateserical problems
for both LMI computation step (bad conditioning effectspgaimulation step (nu-
merical precision effects). On the contrary, the fixed olleAW does not present
this oscillation because the fast dynamics were not chastreisynthesis process.
Therefore, the fixed order provides a smooth response withigh frequency os-
cillations.

Letus analyze in Figure 9 th&z response with a MRAW/EMRAW: actually, fast
responses are attained. Moreover the respdizsef the system (16) is faster with
the EMRAW. An explanation to this behavior is find in Figuresdnd 12 where
the anti-windup outpuyay and the reference signgk are compared. The system
response with the MRAW attains the reference, thatjss yrer andyaw = 0, before
the response with the EMRAW. However the refereyigefor the MRAW is slower
than the one for the EMRAW. Therefore, the actual respgpseAz of the system
(16) is faster with the EMRAW.

Another comment on the MRAW approach can be done by the asafshe
thrust response. In Figure 10 large oscillations on the MRa#{Wroach can be no-
ticed. However the closer it gets to the origin the higherlihag-bang frequency
and hence the stronger the noise induced into the thrustacti
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Finally, Figure 13 presents the stability domain estinrafar the different anti-
windup compensators. The MRAW case has been omitted.
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Fig. 12: Reference response for MRAW/EMRAW approaches.
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Fig. 13: Stability domain with several anti-windup competoss.

The EMRAW computed with the coordinate-descending alpori{based on
[23]) provides a larger estimation. Despite slight diffeces, all the compensators
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ensure (more or less) the same estimated maximal admigsig(0) (cutting
point withAz= 0 axis). However, the estimation obtained with the full gideAW
is smaller than the one obtained with the other compensakbis is due to some
numerical problems. The difference between the maximuntfachinimum eigen-
value of Ay results on a bad conditioning of the LMIs conditions. As asm®n
quence, the stability domain analysis for the full order DUAs unfeasible.

Let us make two final remarks on the stability domain estiomatfirst notice that
the size of the stability domain without anti-windup (datee) is clearly smaller.
The second point is the conservatism of the estimation. Bimns show that the
system is stable (even without anti-windup) for an initiahditionx,(0) = [—1 0.
However, considering the estimated domain the maximal ssibie initial condi-
tion is aroundkp(0) = [-0.15 0.

Table 2: Summary values on the relative position control

Static DLAW full order DLAW fixed order DLAW
AZmay(0) = % [m] 0.14 0130.15
Time of responsés| 1570 1160 1390
ConsumptioriNg 2.017 1829 182
AW Order 0 14 5
MRAW  EMRAW Algo. 3.2 EMRAW Algo. 3.3
AZmay(0) = % [m] 0.17 016
Time of responseés| 750 580 630
Consumptior[Ng 1.679 1894 18192
AW Order 2 2 2

Table 2 summarizes the main values characterizing thewantlup compen-
sators. These values are:

the maximal admissible initial condition for the relativegition A zmnax(0);
thetime evolutiorfor Azin seconds;

the integral of the thrust response (value related ta@tresumptiol
theorder of the anti-windup (AW) compensator.

A certain trade-off has to be done in the optimized compens#tsign between
performance (consumption, speed of convergence) and fthe stability domain
(0)-

The time evolution appears as a remarkable value for the adegm. It has been
defined as the time when tifez response has reached the 99% of the gap between
its initial condition and the origin. In these simulatiohg tinitial relative position is
Az= —1m. It has been understood Az = +0.01m.

Note the important gap between the time evolution of theesgstith a DLAW
or with a MRAW/EMRAW. With these last approaches the respsrare certainly
faster. In addition, this improvement does not come with aglesirable increase of
the consumption.
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Let us remind that the value representing the consumptigusisthe integral
of the thrusters response with relation to the time, andhmattual consumption.
These values are however proportional.

Remark 2Because of its simplicity, its efficiency in terms of time &wgon and its
guaranteed stability domain, the EMRAW structure arisearagteresting archi-
tecture for the anti-windup computation. However the alitiation process for the
associated algorithms is not trivial. In addition, the amithndup compensator order
is restricted to the order of the plant.

Remark 3The full order DLAW presents fast and slow modes. These mgdas
erate numerical problems for both LMI computation step (baaditioning effects)
and simulation step (numerical precision effects). Traesfthe fixed order DLAW
is an interesting alternative to the full order one. Althbwpme strategies are pro-
posed in the literature, the choice of thgy poles is not strictly formalized.

Remark 4Even if in Table 2 the static DLAW presents the worst valueslibéom-
pensators, these values are not too much far from thosenebitavith other ap-
proaches. On the other hand, the static DLAW is easy to coenpetause of the
associated LMIs simplicity. It is also easy to implementdese it is simply a static
gain. Therefore, a systematic procedure can be designélaefstatic DLAW com-
putation.

4 Conclusion

Anti-windup compensator design represents the core ofdiégpter. For ease of
understanding and methods comparisons, the relativeigoosiontrol system has
been taken as a simplified study case. Different anti-wircduppensators have been
evaluated for this problem. The closed-loop system modétliis control problem
has been initially provided. The simplicity of the systens lalowed the character-
ization of the main features of the anti-windup compensafbine simulations have
allowed to point out the interest of the EMRAW approach. &nhy to the study
presented in this chapter, the attitude and relative pwositontrol system has also
been studied. This application presents the particulafitgeing a multi-variable
system with a coupling of the attitude over the relative fiasi For more details on
this last case see [6].

Interesting point for further research, regarding the ENRA&oncerns on the
anti-windup order reduction. Indeed, one main drawbackeEMRAW is that the
plant and the anti-windup compensator are forced to haveahee order. In large
order models, this constraint is unacceptable for futungsiglal implementations.
Therefore, it would be interesting to develop constructivethods to reduce the
anti-windup order, for example, eliminating secondaryaityics of the considered
plant. In this scenario, the results could be related wighthti-windup synthesis on
an uncertain system.
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