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Abstract— The typical architecture of an Electric Power
Assistance Steering (EPAS) system includes a static map to
provide the correct amplification to the driver’s exerted torque.
In literature, it is generally known as booster curve. This
paper concerns the study of the amplification criteria, that are
commonly used to these booster curves. The basic concepts
of the Electric Power Steering (EPS) systems with a realistic
model for the friction contact, that acts on the wheels are
discussed. A relation between the assistance and the driver’s
torque is provided, under the hypothesis of a position-oriented
control of the movement and the Stevens’ power law. Finally,
the simulation results proposed at the end of this paper validate
the shape of the booster curves and are in accord with the initial
hypothesis.

Index Terms— Electric Power Steering (EPS) system, Dahl
friction model, static optimization.

I. INTRODUCTION

Nowadays, vehicles have been widely equipped with
power steering systems and the way of providing assist
torque is various. The EPAS systems have the tendency
to replace the hydraulic power steering, due to better fuel
consumption [1], [2]. They include the mechanical model of
the steering column and the power steering unit. Moreover,
this last element has the aim to reduce the steering efforts
to a reasonable level, to ensure the most possible road feel
feedback to the driver and to improve the return-to-center
performance of the steering system.
The assistance provided by the electric motor of EPS systems
reproduces the hysteresis cycle of the hydraulic valve, as
shown in Fig. 1: the amplification torque U grows, according
to the value of the driver’s torque τv and the vehicle speed
V , then saturates. If the driver’s torque changes in direction,
we have the downhill phase of the amplification torque.
During this phase, the amplification torque decreases, until
reaching the lower saturation values. In literature, we can
find many stationary models for the EPS system ([3], [4],
[5], [6], [7],[8], [9], [10], [11]), where the hysteresis cycle is
approximated by a single curve. Nevertheless, these investi-
gations do not provide ground foundations (other than these
curves reproduce the behaviour of the older power steering
systems, based on hydraulic valves), neither evidence that
they are optimal for the driver in any sense. This work aims
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Fig. 1. Example of the booster curve, provided by the EPAS system,
reported in [3].

for providing some rationality to these curves and validating
their optimality for the drivers.
To this aim, it is interesting to refer to the literature con-
cerning the criteria at the basis of the human coordination,
that try to explain the human movement by minimizing a cost
function. For example, to optimize the muscular effort during
a one degree-of-freedom repetitive exercise motion, authors
in ([12], [13]) choose to maximize the power spent by the
user. To explain the trajectory formation in a constrained
point-to-point motion, in [14] authors propose a combined
criterion minimizing the variation of the hand contact force
and the change of the actuating force over the course of
the movement. In the case of a planar horizontal movements
with one mechanical degree of freedom [15], the authors find
an analytical expression for the predicted minimum torque
change trajectories. In [16], the cost function is the square of
the magnitude of jerk (rate of change of acceleration) of the
hand integrated over the entire movement. The hypothesis at
the basis of this paper is that driver’s coordination provide
a steering wheel movement that minimize the jerk criterion.
Solving this optimization, the optimal steering wheel trajec-
tories are derived. These trajectories allow to retrieve the
driver’s and the amplification torques, that model the shape
of the booster curves.
The paper is organized as follows: in Section II, the main
equations describing the EPAS system are introduced and the
amplification model is defined; in Section III, the optimiza-
tion problem, that will predict the optimal booster curves,
is developed. Finally, in Section IV, significant simulation
results and the conclusions are discussed.



TABLE I
CONSTANT PARAMETERS OF THE EPSS

Symbol Description Value
Jv Steering wheel inertia 0.025 kgm2

Jm Motor inertia 0.0004 kgm2

Jc Column inertia 0.04 kgm2

Jw Rack inertia 0.000784 kgm2

k Column stiffness 100 Nmrad−1

N1 Steering column-wheels gear ratio 13.67
N2 Motor-steering column gear ratio 17
Bv Steering wheel viscosity 0.01 Nmrad−1 s−1

Bm Motor shaft viscosity 0.0032 Nmrad−1 s−1

Fc Coulomb friction force 2.9 N
Fn Normal force 249.37 N
L Patch length 0.15 m
σ0 Rubber longitudinal stiffness 40 m−1

σ2 Viscous relative damping 0.0018 sm−1

P Polynomial order 13

II. TORQUES ACTING ON THE EPS SYSTEM

The dynamical equations governing an EPS system are
(see [17], [18] and [19]):

Jvθ̈v = τv− k(θv−θs)−Bvθ̇v (1)

JT θ̈s = −k(θs−θv)−N2
2 Bmθ̇s−σ2

θ̇s

N2
1
− τa

N1
+U (2)

with JT =
(

Jc +N2
2 Jm + Jw

N2
1

)
, U = N2u and θv, θs and θm

are, respectively, the steering wheel, the motor-shaft and the
motor angles. The constants of the model are defined in
Table I.

Let make the hypothesis that the stiffness k of the steering
column is infinity or that its effect can be compensated
as proposed in [17]. In this case, it is possible to neglect
the torsion of the column: i.e. θv − θs = 0 and consider
the equivalent steering wheel angle θv = θs = θ . Summing
Eq. (1) with Eq. (2), it is possible to obtain:

Jθ̈ +Bθ̇ +
τa

N1
= τv +U (3)

where J = Jv+JT and B = Bv+N2
2 Bm+ σ2

N2
1

are, respectively,
the total inertia and the total viscosity of the system at the
steering wheel level. From Eq. (3) arises that at stand hill,
(or very low vehicle speeds, that is the common situation
where the assistance acts), the most influencing torque, that
opposes to the driver’s torque, is the friction contact torque.
For this reason, it is mandatory to have a realistic model
of it and the following paragraph will be dedicated to the
description of the adopted friction contact torque.

A. Friction contact torque at stand-still

The load torque τa is described by the Dahl’s model ([20],
[21], [22]), given by the following differential equation:

dF
dθ1

= σ0

(
1− F

Fc
sgn
(
θ̇1
))

(4)

where σ0 is the rubber longitudinal stiffness coefficient, Fc
is the Coulomb friction force and θ1 = θ/N1 is the steering

wheel angle projected at the tire level. The friction force |F |
will never be larger than Fc, if its initial value is |F(0)|< Fc.
To obtain a time-domain model, the following change of
coordinates is required:

dF
dt

=
dF
dθ1

dθ1

dt
=

dF
dθ1

θ̇1 = σ0

(
1− F

Fc
sgn(θ̇1)

)
θ̇1 (5)

The load torque τa in Eq. (3) is:

τa = FnLF (6)

where Fn and L are, respectively, the normal force and the
patch length.
For a constant speed θ̇1 = ˙̄

θ1, it is possible to obtain the
following steady-state friction force F̄ :

F̄ = σ0z̄ = Fc sgn( ˙̄
θ1) (7)

This model is a first-order dynamic system, whose steady-
state behaviour gives the Coulomb friction force, as shown in
Eq. (7). For this model, it is possible to compute the solution
of its differential equation in closed form for a sign-changing
speed signal. Let consider a time interval t ∈ [0, t1], where
the speed signal is positive and the system starts with the
initial conditions, i.e. F(θ0) = 0 and θ(0) = θ0, the solution
is:

F(t) = Fc

[
1− e−

σ0
Fc

(
θ(t)−θ0

N1

)]
(8)

If the speed signal becomes negative during a time interval
t ∈ [t1, t2], then the solution is:

F(t) = Fc

[
−1+2e

σ0
Fc

(
θ(t)−θ(t1)

N1

)
− e

σ0
Fc

(
θ(t)−2θ(t1)

N1

)]
(9)

Note that this solution is evaluated starting from initial
conditions, that guarantee the continuity of the solution at the
time instant t1, when the sign change of the speed happens.
Finally, if the speed changes again in sign, during the time
interval t ∈ [t2,T ], the solution is:

F(t) = Fc

[
1−2e−

σ0
Fc

(
θ(t)−θ(t2)

N1

)
+

2e−
σ0
Fc

(
θ(t)+θ(t1)−2θ(t2)

N1

)
− e−

σ0
Fc

(
θ(t)+2θ(t1)−2θ(t2)

N1

)] (10)

Details on the computation of these solutions are shown
in [23]. For the purposes of this paper, the computation of
the analytic solution is limited to three consecutive sign
changes of the speed, but the proposed method can be
applied even for more general cases. To compute the analytic
solution, the time instant when the sign change takes place
must be known. The friction force is only a function of
the displacement and the sign of the relative velocity. This
implies that it will depend only from the sign of the velocity,
but not from its magnitude.



B. Perception of the load torque
At stand still, the main force opposing to the driver’s

effort is the contact friction. In this situation, it is possible to
assume that the assistance U acts to compensate, first of all,
a part of the contribution of the load torque τa in Eq. (3).
Indeed at steady-state conditions:

τa

N1
= τv +U (11)

In order to design the assistance amplification, the hypothesis
that the driver’s perception of the load torque obeys to the
Stevens’ power law ([24], [25], [26]) is done:

δ

(
τa

N1

)n

= τv (12)

where the term δ is the intensity magnitude of the friction
torque and n describes the rate of growth of the sensation
of the stimulus and depends on the sensory modality of the
driver (e.g. perception of force or perception of position).
The value of δ is tuned to obtain a realistic value of the
amplification torque, while to choose the value of n, it is
mandatory to refer to the literature, concerning the control
of the movement and to some experimental results.
During the steering movement, some authors ([27], [28]),
show that drivers prefer exerting their control, basing on
the transfer function between the friction contact load and
the steering angle (position-oriented control), rather than the
transfer function between the friction torque and the steering
torque (torque-oriented control). This can be explained by
the fact that the neuro-muscular system is better suited to
control the steering angle than the exerted torque, thanks to
the gamma (γ) motor neurons, that adapt the length of the
spindles according to the hand wheel angle [28].
In [24], authors determine experimentally the value of n for
both cases of torque-oriented and position-oriented control.
For each case, they produce 3 experiments. In particular, for
what concerns the position-oriented control, during the first
experiment they require to 12 subjects to make a numerical
estimation of the perceived magnitude of sensation. During
the second one, they require to the same subjects to adjust the
stimulus to produce a sensory magnitude equivalent to given
numbers. Finally, they employ both magnitude estimation
and magnitude production to develop a scale of perception
of steady-state steering wheel angle. The value of the rate n
is determined by least square identification of the real data
with Stevens’ power law. They obtain an average value of
n = 0.93, that is n < 1, meaning that the sensation of the
angle grows at a slower rate than the angle. Note that results
concerning the torque-oriented experiments indicate a rate of
growth of the sensation n> 1 to explain how human perceive
the torque sensation in an opposite way.
Considering what has been highlighted to this point, in
this paper a position-oriented control is considered and
simulations are provided for values of n≤ 1.

C. Relation with the assistance torque
To obtain a relation between the assistance torque and

the driver’s torque in steady-state, Eq. (11) is substituted in

Eq. (12), as follows:

δ (τv +U)n = τv (13)

By solving for U , it is possible to obtain:

U = n

√
τv

δ
− τv (14)

When the dynamic terms of inertia and viscosity are in-
cluded, the same closed-form solution for the assistance U
is not reachable, but it follows:

Jθ̈ +Bθ̇ +δ

(
τa

N1

)n

= τv (15)

Let consider Eq. (3), we can express the assistance torque
U , as the following difference:

U =
τa

N1
−δ

(
τa

N1

)n

(16)

In this case, it is not possible to retrieve the corresponding
value for the assistance torque in closed form, because it
is necessary to solve Eq. (15) to obtain the corresponding
values in Eq. (16). For this reason, it is necessary to introduce
the optimization problem, shown in Section III.
To generalize the problem, the normalized form of the time
is adopted:

t∗ =
t
T

(17)

where T is the final simulation time, considered to execute
the movement. Differentiating this time, it is possible to get:

dt∗ =
dt
T

(18)

In the new set of coordinates, the equations of the model
becomes:

J
T 2

d2θ

dt∗2
+

B
T

dθ

dt∗
+δ

(
τa

N1

)n

= τ
∗
v (19)

The only time-invariant term in Eq. (19) is the friction torque,
while the total inertia and the total viscosity decrease as
slower the driver executes the movement.

III. PROBLEM FORMULATION

A. Position-oriented control of the movement

As discussed in Section I, many criteria used to explain
the human movement are based on the minimization of a cost
function. They can be divided in two main classes: dynamic
and kinematic criteria.
Dynamic optimization criteria aim to minimize quantities
like the energy or the power ([12], [13]), the torque and
the torque change [14] exerted during a movement.
The most common kinematic criterion is based on the
minimization of the jerk [29]. This function is widely used
in literature to describe human pointing, because authors
assume that the major goal of motor coordination is the
production of the smoothest possible movement of the hand.
Concerning the driving task, some authors formulated a
position-oriented control ([27], [28]), that is in accordance
with the kinematic optimization criteria. For this reason to



obtain the profile of the booster curves for the dynamic case,
an optimization problem basing on the minimization of the
jerk function will be formulated in the following paragraph.

B. Optimization problem

The considered movement consists into bringing the steer-
ing wheel from 0 rad to π/2 rad and returning it to its initial
position. The problem is to find the optimal trajectory θ̂ , that
minimizes the cost index I:

I =
∫ T

0

(
d3θ

dt3

)2

dt (20)

under the constraint to have a driver’s torque τv = 0 at the
beginning and at the end of the movement.
In the normalized form of the time, the optimization problem
becomes

min
θ̂∗

∫ 1

0

(
d3θ ∗

dt∗3

)2

dt∗ (21)

with the boundary conditions on the trajectory

θ ∗(0) = 0 θ ∗(1) = 0 θ ∗(0.5) = π/2
θ̇ ∗(0) = 0 θ̇ ∗(1) = 0 θ̇ ∗(0.5) = 0
θ̈ ∗(0) = 0 θ̈ ∗(1) = 0

(22)

and on the driver’s torque

τv(0) = 0 τv(1) = 0 (23)

The condition τv(0) = 0 is guaranteed by the constraint to
impose that the movement begins with speed and acceleration
null and by the initial condition imposed on the friction
torque F(0) = 0. In the same way, to guarantee the condition
τv(1) = 0, it is mandatory to impose that the load torque τa
must be null at the final time τa(1) = 0, but this implies
F(1) = 0.
As the optimization procedure will use the analytic solution
of the Dahl’s friction torque, the constraint F(1) = 0 can be
imposed on the function in Eq. (10), obtained for t ∈ [t2,1],
as follows:

F(1) = Fc

[
1−2e

− σ0
Fc

(
θ∗(1)−θ∗(t∗2 )

N1

)
+2e

− σ0
Fc

(
θ∗(1)+θ∗(t∗1 )−2θ∗(t∗2 )

N1

)
+

− e
− σ0

Fc

(
θ∗(1)+2θ∗(t∗1 )−2θ∗(t∗2 )

N1

)]
= 0

(24)

Using the boundary conditions imposed on the optimization
problem, the values of θ ∗(1) and θ ∗(t∗1 ), respectively, zero
and π/2 rad, can be substituted in Eq. (24), and the only
unknown variable becomes the angle θ ∗(t∗2 ):

F(1) = Fc

[
1−2e

σ0
Fc

θ∗(t∗2 )
N1 +2e

− σ0
Fc

(
π
2 −2θ∗(t∗2 )

N1

)
+

− e
− σ0

Fc

(
π−2θ∗(t∗2 )

N1

)]
= 0

(25)

Setting x= e
σ0
Fc

θ∗(t∗2 )
N1 , Eq. (25) can be written as the following

second order algebraical equation:

1−2x+
(

2e−
σ0
Fc

π
2

1
N1 − e−

σ0
Fc

π
N1

)
x2 = 0 (26)

The value for the angle θ ∗(t∗2 ) is obtained from the negative
solution of this equation (the positive one is not compatible
with the other constraints of the problem). Using this value,
it possible to impose a further constraint on the trajectory,
that guarantees the condition F(1) = 0:

θ
∗(t∗2 ) = θ2 (27)

Nevertheless, it is not possible to predict a priori the instant
t∗2 , when the steering wheel path may assume this value. To
overcome this problem, an external dichotomy loop is used
for the estimation of this value.

C. Static optimization problem

The problem to solve is a dynamic, non-linear, constrained
optimization problem. To simplify the research of the optimal
solution, it can be modified in a static, non-linear, constrained
optimization problem.
Let make the hypothesis that among the set of the feasible
solutions, the optimal one has the following polynomial
form:

θ
∗(t∗) =

P

∑
k=0

akt∗k (28)

where P is the order of the polynomial and ak is the single
coefficient of the polynomial.
The derivatives of Eq. (28) provide the analytical expressions
for θ̇ ∗(t∗) and θ̈ ∗(t∗), that can be substituted in the Eq. (21)
of the cost function, in the equations of the constraints (22),
(23), (27) and in the movement equation (19), to retrieve the
required torque in Eq. (16).
The optimization algorithm looks for the combinations of
the polynomial ak with k = 0 . . .P, that minimize the cost
function.
To impose the boundary conditions at the initial, intermediate
and final time, it is sufficient to substitute the numerical
values for the time in the polynomial equations. Remark
that 9 boundary conditions are imposed; as consequence, the
degree of the polynomial must be greater in order to allow
to the optimization procedure to choose among different
solutions.

IV. SIMULATION RESULTS

The solution of this problem is obtained applying a con-
vex programming algorithm, implemented with the software
Matlab 2011 R©.
The produced trajectories, shown in Fig. 2, result in a twelfth
order polynomial in time for the profile of the steering wheel
angle and its derivatives. The cost function determines the
form of the movement trajectory. The details are determined
by the boundary conditions. Given this information and the
duration of the movement, the trajectory of the steering wheel
is specified in its entirety. No other information is required.
As expected from an optimization that minimizes the jerk,
the optimal trajectories are smooths and regulars. Note that
the angular trajectory passes through the angle θ2 at the time
t2 = 0.8 s. This passage allows to obtain both the load and
the driver’s torques to be null at the final time.
Three examples of amplification torque are proposed. They
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Fig. 2. Evolution of the angular and speed profile used to evaluate the
analytic solution of the contact friction model.

are obtained by tuning the intensity magnitude δ and the rate
of growth of the sensation of the stimulus n. For each case,
two simulations are provided. They correspond, respectively,
to steady-state case in Eq. (14) and to the general formulation
in Eq. (16). The final simulation time is T = 15 s, that
provides a quasi-static case and a realistic booster curve.
In Fig. 3, the coefficients are n = 1 and δ = 0.3; in Fig. 4,
n = 0.9 and δ = 0.3, while in Fig. 5, n = 0.5 and δ = 1.
The predicted profiles of the booster curves are strongly
dependent from the value of n. For the case in Fig. 3,
the profile is linear in the stationary case; the hysteresis
phenomena due to the influence of the inertia and the
viscosity is evident when the transient state is considered.
For the cases n < 1, shown in Figs. 4 and 5, at steady-state
the curve has an exponential behaviour. This characteristic
is more accentuated, as the coefficient n diminishes. The
amplification is almost negligible for driver’s torques in
the interval −1 ≤ τv ≤ +1 Nm, while it grows for more
important values. The hysteresis effect is present when the
optimization in transient state is carried out, due to the
influence of the inertial and viscosity torques. Nevertheless, it
is possible to conclude that the commonly used amplification
curves correspond to the profile obtained with n < 1. This
means that the Stevens’ coefficient for the rate of growth of
the stimulus corresponds to the hypothesis of the position-
oriented control of the movement.

V. CONCLUSIONS

The purpose of this paper is to provide some rationality the
existing criteria used in EPAS systems. To this aim, the study
of the main physical forces acting on the steering system is
proposed. In particular, attention focused on a realistic model
of the contact friction torque, because it represents the main
torque that the assistance compensates.
The analysis was carried out in steady-state and transient
conditions to provide a mathematical relation between the
provided assistance and the driver’s exerted torque. In steady-
state, a relation in closed form between the assistance torque
and the driver’s torque was founded. For the transient case,
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an optimization procedure is applied to reproduce the shape
of the booster curves.
The study showed that the profile of the booster curve can be
linked to minimization criteria based on the steering wheel
jerk, coupled with the Stevens’ power law. Moreover, the
analysis showed that the profile of the predicted booster
curves is strictly influenced by the rate of growth of the
sensation of the stimulus, coming from the contact friction
torque, but the commonly used booster curves are closed
to those obtained, making the hypothesis of the position-
oriented control of the movement.
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