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Approximating the vanishing capillarity limit of two-phase

flow in multi-dimensional heterogeneous porous medium

Boris Andreianov∗ Konstantin Brenner† Clément Cancès‡

Abstract

Neglecting capillary pressure effects in two-phase flow models for porous media may lead to
non-physical solutions: indeed, the physical solution is obtained as limit of the parabolic model
with small but non-zero capillarity. In this paper, we propose and compare several numerical
strategies designed specifically for approximating physically relevant solutions of the hyperbolic
model with neglected capillarity, in the multi-dimensional case.

It has been shown in [Andreianov&Cancès, Comput. Geosci., 2013, to appear] that in
the case of the one-dimensional Buckley-Leverett equation with distinct capillary pressure
properties of adjacent rocks, the interface may impose an upper bound on the transmitted flux.
This transmission condition may reflect the oil trapping phenomenon. We recall the theoretical
results for the one-dimensional case which are used to motivate the construction of multi-
dimensional finite volume schemes. We describe and compare a coupled scheme resulting as
the limit of the scheme constructed in [Brenner&Cancès &Hilhorst, HAL preprint no.00675681,
2012) and two IMplicit Pressure – Explicit Saturation (IMPES) schemes with different level of
coupling.

Keywords two-phase flow, heterogeneous porous medium, discontinuous capillarity, vanishing
capillarity, Buckley-Leverett model, oil trapping, admissible solution, finite volume approximation

MSC2010 subject classification 76S05, 35L65, 65M08

Introduction

Consider a flow in porous medium of a mixture of two immiscible phases (typically, oil and water).
In this note, we start with a well-established parabolic-elliptic model that accounts for capillarity
forces through a nonlinear function π(x, s) where x is a point location (the dependence on x accounts
for physical properties of the medium) and s is the saturation of one of the phases. In this case,
the flow is driven by convection (first-order) and diffusion/capillarity (second order) forces. Yet
in large time and space scales which typically occur in geological applications, it is tempting to
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neglect the second-order effects. Formally, this results in a hyperbolic-elliptic system of equations.
In one space dimension the elliptic equation is integrated explicitly, and the resulting Buckley-
Leverett equation is a hyperbolic scalar conservation law. In the case of heterogeneous medium
with sharp transitions between layers, both theory and numerical approximation of this equation
were deeply investigated in recent years. In the present paper, our goal is to benefit both from
the understanding of the coupling conditions at the interface between multidimensional porous
media [17] and the understanding of the relevant hyperbolic limit in the one-dimensional case [4]
in order to propose a consistent numerical strategy for the hyperbolic-elliptic model that appears
in dimensions two and three. Starting from the the scheme exhibited in the work [8], we build and
test numerical schemes that agree with the vanishing capillarity paradigm.

Let us first discuss the one-dimensional case following the references [4, 13, 14, 24, 25]. In these
works, the Buckley-Leverett equation is seen as the singular limit of parabolic equation with capil-
larity or viscosity terms. The resulting solutions are characterized intrinsically as entropy solutions.
In general, entropy solutions are weak (distributional) solutions satisfying additional integral in-
equalities that single out the physically relevant solution. In particular, in the fundamental case
of a homogeneous medium, and also in the case of a heterogeneous medium with gradually chang-
ing physical properties, the classical Kruzhkov theory of entropy solutions [25] fully describes the
vanishing capillarity limit (see, e.g., [24] and references therein).

The situation is very different when a jump heterogeneity is present in the medium, as this
is the case at the interface between two different geological layers. In this case, we deal with a
discontinuous-flux Buckley-Leverett equation (see [1,4,10,24] and references therein) that we see as
the limit, as ε → 0, of the parabolic model

φ(x) st + f(x; s)x = ε(λ(x; s)π(x, s)x) (1)

with piecewise constant in x functions f , λ and π; we refer to Section 1 for details. The analysis
of [15] (see [13, 14] for more details) shows that, according to the relation between the capillarity
parameters on the two sides of the rock, two qualitatively different kinds of solution may appear. The
optimal entropy conditions (see [1, 24]) select the weak solution of the discontinuous-flux Buckley-
Leverett equation that facilitates the migration of the phases across the interface between the two
layers. The barrier entropy conditions of [14] select the weak solution of the same equation that
minimizes the flux of the phases across the interface. Notice that this latter case can be seen as
a rough mathematical model for the oil trapping phenomenon, responsible for the formation of
natural oil reservoirs. Furthermore, it was shown in [4] that infinitely many intermediate notions of
entropy solution (accounting for a more or less stringent limitation of the flux conductivity of the
interface) may appear at the vanishing capillarity limit. More exactly, given the convective fluxes
fl,r(s) on the left (l) and on the right (r) from the interface, the appropriate entropy inequalities
depend on the shape of capillary pressure functions πl,r(s). As a consequence, one may state that

the physically relevant solution of the Buckley-Leverett equation
takes into account the shape of (formally neglected) capillary pressure functions.

Roughly speaking, in the relevant solution the values of capillary pressure on each side from the
interface should coincide or be “connected” by a suitable interface layer (see [4] for details).

Due to this observation, the numerical approximation of the two-phase flow in heterogeneous
media, at geological scales, becomes a particularly delicate issue. On the one hand, discretization
of the full parabolic problem (as the one of [8]) may be too expensive with respect to the precision

2



required. On the other hand, whenever the saturation is taken as the primal variable straightforward
discretization of the singular limit must fail, because the formal equation at the limit does not
contain any information on the capillary pressure functions; it becomes impossible to distinguish
between “optimal”, “barrier” and the intermediate kinds of solutions to the problem. Thus, in order
to capture the physically relevant solution while discretizing the Buckley-Leverett equation, we
have to complement a standard approximation strategy (such as fully implicit or IMplicit Pressure
– Explicit Saturation (IMPES) scheme with time-explicit three-point finite volume approximation
of the hyperbolic equation) with a specific procedure which goal is to connect the values of capillary
pressure.

Such a scheme was developed in [4] (see also [5]) in the one-dimensional case. Yet the multi-
dimensional situation is different, because an elliptic equation for the pressure cannot be eliminated
from the system. Therefore, we start with the multi-dimensional scheme of [8], set the capillarity
parameter ε equal to zero, and introduce a series of simplifications aimed at reducing the com-
putational complexity. The resulting schemes are compared numerically. Notice that, due to the
low regularity of solutions of the equation giving fluid velocity, it does not seem possible to extend
the theoretical study from the one-dimensional case to the multi-dimensional one. Thus, numerical
evidence is the key ingredient of validation of the scheme, along with the convergence proof valid
in the one-dimensional case only.

The paper is organized as follows. In Section 1 we describe the models. In Section 2 the
information inferred from analysis of the one-dimensional case is outlined. Section 3 is the core of
the paper: different versions of the finite volume scheme are presented. Section 4 provides numerical
results.

1 Description of the models

In this paper, we consider a new model that is directly obtained from the one studied in [8, 17];
while we neglect the capillary diffusion within the rocks, we keep track of the singular effect linked
to the capillary pressure discontinuity at the interface. In Section 1.1, we briefly present the case of
non-zero capillary diffusion whose contribution away from inner interfaces is neglected in the model
given in Section 1.2.

In the sequel we assume that the porous medium Ω ⊂ R
d is made of two different rocks Ω1,Ω2

separated by an interface Γ = ∂Ω1 ∩ ∂Ω2. For the sake of simplicity, we assume that both Ωi are
polygonal subdomains, and we restrict our study to the case of a finite time horizon T > 0.

1.1 The parabolic model

Our starting point is the model where immiscible incompressible two-phase flow in the homoge-
neous porous medium Ωi is governed by the coupling of the degenerate parabolic equation on the
saturation

φi∂ts+∇ · (utfi(s) +Kiλi(u)(−∇πi(u) + ρg)) = qo(s), (2)

with the uniformly elliptic equation

∇ · ut = qo(s) + qw(s), ut = −Ki (Mi(s)∇P − ζi(s)g) . (3)

In equations (2) and (3), φi ∈ (0, 1) denotes the porosity, s ∈ L∞(Ω× (0, T ); [0, 1]) is the saturation
of the oil phase, ut is the total speed, the fractional flow fi(s) is an increasing function such
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that fi(0) = 0 and fi(1) = 1, Ki is the intrinsic permeability tensor of the rock Ωi, λi is a non-
negative function satisfying λi(0) = λi(1) = 0 and λi(s) > 0 for s ∈ (0, 1), the capillary pressure
function πi is increasing and belongs to L1(0, 1), ρ denotes the difference between the density of
oil and the density of water, while g is the gravity. The oil and water source terms qo, qw satisfy
qo(0) ≥ 0, qw(1) ≥ 0. The function Mi(s) is such that Mi(s) ≥ α > 0 for all s ∈ [0, 1], and ζi(s)
is a smooth function. The function P is the so called global pressure which is a kind of weighted
mean of the phase pressure [19]. We stress here that since P is not a physical pressure, it can be
discontinuous at the rock discontinuities.

Let us now focus on the transmission conditions across Γ. Due to conservation of mass, one has

∑

i=1,2
ut · ni = 0,

∑

i=1,2
(utfi(s) +Kiλi(u)(−∇πi(u) + ρg)) · ni = 0. (4)

It has been pointed out in [17] that it is natural to extend the notion of phase pressure by con-
sidering πi as multivalued graphs, in order to give sense to the transmission conditions across rock
discontinuities. Therefore, the capillary pressure has also to be considered as multivalued, yielding
the introduction of the maximal monotone graph π̃i defined by

π̃i(s) = πi(s) if s ∈ (0, 1), π̃i(0) = [−∞, πi(0)] and π̃i(1) = [πi(1),+∞].

Requiring the “continuity” of the extended phase pressure turns to requiring the existence of a
measurable function π : Γ× (0, T ) → R such that

π ∈ π̃1(s1) ∩ π̃2(s2) and P1 − Z1(π) = P2 − Z2(π), (5)

where Zi(p) =
∫ p

0
fi ◦ π̃

−1
i (a)da and si, Pi denote the traces of s, P on Γ×(0, T ) from the side of Ωi.

The system (2)–(5) is complemented by an initial condition on the saturation

s(x, 0) = s0(x) ∈ [0, 1] for almost all x ∈ Ω, (6)

and by boundary conditions. Here we consider the simplest choice, i.e. no-flux boundary conditions:

(utfi(s) +Kiλi(u)(−∇πi(u) + ρg)) · n = ut · n = 0 on ∂Ω ∩ ∂Ωi × (0, T ). (7)

We could deal with more general boundary conditions, but this is beyond the scope of this paper.

Let us point out that under suitable assumptions on the data, system (2)–(7) admits at least
one solution [17], and it can be approximated by means of a fully implicit Finite Volume scheme
of [8].

1.2 The singular limit as capillarity is neglected

As explained for example in [3, 4, 15], rock heterogeneities strongly influence the behavior of the
flow, since a singular effect can be induced at the rock discontinuities. Therefore our purpose is to
consider the capillarity only at the rock discontinuity, and to neglect it within the homogeneous
domain where it plays a minor role. From a practical point of view, we slightly modify equation (2)
to get

φi∂ts+∇ · (utfi(s) + λi(u)ρKig) = qo(s), (8)
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and we modify the flux continuity relations at the interface to get

∑

i=1,2
ut · ni = 0,

∑

i=1,2
(utfi(s) +Kiλi(u)ρg) · ni = 0 on Γ× (0, T ). (9)

Finally, the boundary condition (7) takes the form

(utfi(s) + λi(u)ρKig) · n = ut · n = 0 on ∂Ω ∩ ×(0, T ). (10)

Notice that for a given total speed ut, equation (8) is a scalar conservation law. As noticed in [9],
the no-flux boundary condition (10) is satisfied in a strong sense thanks to the fact that ut · n = 0
and λi(0) = λi(1) = 0 for the flux function F defined by F(x, t; s) = ut(x, t)fi(s) + λi(s)ρKig.

In our simplified model, we should keep the formal jump conditions (5) so that the contribution
of the capillarity is taken into account at the interface between the different rocks where it plays a
crucial role. Let us stress that due to an interface layer that may develop as ε → 0, (5) may not hold
for the solutions we construct. Yet, as shows the study of the one-dimensional case (Section 2), it is
correct to prescribe (5) at the level of the numerical approximation; as the discretization step goes
to zero, a numerical boundary layer may be observed. Except in Section 2, we do not investigate
the precise meaning that should be given to (5). Our goal is to solve numerically the problem
described by equations (3),(5),(6),(8)–(10).

2 Entropy solutions of the one-dimensional Buckley-Leverett

model

In the one-dimensional case, equation (3) implies that ut does not depend on the space variable,
so that the model reduces to a single scalar conservation law with discontinuous flux function for
the sole unknown s (see [1, 2, 7, 10] and references therein for examples and general theory of such
problems). Here we give a summary of the relevant analysis carried out in [4], with emphasis on
the numerical recipe of flux limitation and introduction of the pressure transmission parameter π.

In [4], the Buckley-Leverett equation in piecewise homogeneous two-rocks’ medium with interface
situated at {x = 0} is seen as the singular limit, as ε → 0, of the problems the form (1) with

f(x, ·) =

{

fl(·), x < 0
fr(·), x > 0

, λ(x, ·) =

{

λl(·), x < 0
λr(·), x > 0

, π(x, ·) =

{

πl(·), x < 0
πr(·), x > 0

. (11)

Here, the phases are labeled in such way that fl,r are functions having at most one extremum within
[0, 1] which is a local maximum. Recall that we have fl,r(0) = 0 and also fl(1), fr(1) coincide.

For ε > 0, the weak traces of the total fluxes fl,r(s)− ελl,r(s)∂xπl,r(s) at {x = 0} in (1) should
match in order to ensure the conservation of the two phases. Moreover, the phase pressures should
be continuous as long as the phase is present on both sides of the interface [17,21]; this leads to the
trace relation π̃l(s(t, 0

−)) ∩ π̃r(s(t, )
+)) 6= ∅ with multivalued π̃l,r , as explained above. Existence

of solutions for ε > 0 is shown in [16] (see also [4]) and compactness of the resulting family of
solutions sε comes under the additional assumption of strict nonlinearity of fl,r (the general case
can be treated via a more specific BVloc argument, see [4, Appendix A.1]).

The limit s of (sε)ε satisfies the Kruzhkov entropy inequalities [25] away from the interface:

∂t
(

φ(x)|s − κ|
)

+ ∂xΦ(x; s, κ) ≤ 0 in D′
(

(R \ {0})× (0, T )
)

, (12)
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where φ(x) = φl11x<0 + φr11x>0 and Φ(x; s, κ) = Φl(s, κ)11x<0 + Φr(s, κ)11x>0, Φl,r(·, κ) being
the Kruzhkov entropy-fluxes sign (· − κ)(fl,r(·) − fl,r(κ)). Further, due to the conservative weak
formulation of the equation, the conservativity relation at x = 0 passes to the limit and yields
the Rankine-Hugoniot condition fl(s(t, 0

−)) = fr(s(t, 0
+)) (for strictly nonlinear fl,r strong traces

s(t, 0±) exist due to Kruzhkov inequalities (12); see [7] for more generality). While the relation
connecting capillary pressures does not pass to the limit, the condition inherited as ε → 0 can be
described implicitly by the specific global adapted entropy inequality:

∂t
(

φ(x)|s − c(x)|
)

− ∂xΦ(x; s, c(x)) ≤ 0 in D′(R× (0, T )), (13)

with c(x) :=

{

sπl , x < 0
sπr , x > 0.

(14)

Actually, the issue of interface coupling for the singular limit of (1) as ε → 0 reduces to the
selection of the couple (sπl , s

π
r ) called connection, as described in [4]. Two qualitatively different

cases may occur:

(I) the fluxes are connected at the “optimal connection level”:

fl(s
π
l ) = fr(s

π
r ) = F̄ opt where F̄ opt = min{max[0,1] fl,max[0,1] fr}, (15)

with, moreover, f ′
l (s

π
l ) ≤ 0 and f ′

r(s
π
r ) ≥ 0. (16)

In this case, the vanishing capillarity limits are the “optimal solutions” obtained by Kaasschi-
eter [24]. One can observe that in this case, the pressures are not connected: πl(s

π
l ) 6= πr(s

π
r ).

(II) both capillary pressures and fluxes are connected:

(16) holds, and π̃l(s
π
l ) ∩ π̃r(s

π
r ) 6= 0, and fl(s

π
l ) = fr(s

π
r ) = F̄ ≤ F̄ opt. (17)

Notice that in both cases (I) and (II) we have (16). Except for very specific configurations of fluxes
fl,r, the two inequalities are strict in the case (II), while only one of them is strict in the case (I).
As a consequence, following the terminology of [2, 10] the connection (sπl , s

π
r ) consists in a strictly

undercompressive discontinuity in case (II), while it is only marginally undercompressive in case
(I).

Remark 2.1 The case (II) was judged exceptional and neglected in the pioneering work [24]; let us
stress that both (I) and (II) can be relevant, depending on the shape of the nonlinearities fl,r and
πl,r. We refer to [4] for a detailed discussion, and to [13,14] for examples.

To be precise, if (II) is possible then (sπl , s
π
r ) obeys (II), so that (I) only occurs when (II) cannot

be realized. In practice, finding sπl,r corresponds to intersecting the graph of a strictly decreas-
ing function with a non-decreasing graph. Hence the uniqueness of the intersection point in (II)
follows, while (I) happens when existence fails. In addition, one can observe that among all un-
dercompressive (in the above sense) shocks with connected fluxes, conditions (I),(II) minimize the
gap |πl(s

π
l ) − πr(s

π
r )|, which is an intuitively appealing feature. We refer to [4] for the study of

elementary vanishing capillarity profiles that provides the justification of the selection rule (I),(II)
.

As shown in [4], the function c(x) in (14) chosen according to (I),(II) appears as an explicit
vanishing capillarity limit for (1), i.e., it is an admissible solution for a very special initial datum. It
is remarkable that the knowledge of (cπl , c

π
r ) and the rigid structure of the semigroups of solutions

of (1) permit to characterize vanishing capillarity limits for all initial data. Indeed, we have
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Theorem 2.1 For every initial datum u0 ∈ L∞(R) there exists a unique u ∈ C([0, T ];L1
loc(R))

weak solution of (1),(11) with ε = 0 that satisfies the Kruzhkov entropy inequalities (12) away from
the interface and the global adapted entropy inequality (13) with sπl,r in (14) given by the selection
rule (I),(II). Moreover, the limit, as ε → 0, of solutions uε of (1) with datum u0 exists and coincides
with u.

This means that the property of being vanishing capillarity limit (which is very difficult to check
directly) is fully characterized by entropy and well-chosen adapted entropy inequalities.

It is easily seen that extending such analysis to the multi-dimensional situation does not seem
possible with respect to the existing state of the art. But some insight can be carried from the
one-dimensional situation to the general case. Specifically, let us insist on the role of the parameter
F̄ which takes values in the interval [F̄ bar, F̄ opt]. It provides the connection level, which turns out
to be the most relevant physical parameter at the vanishing capillarity limit. While the value F̄
in (II) indicates the level of the interface flux for the particular solution c(x) given by (14), it is
shown in [4] thatF̄ is the largest possible value of the interface flux fl(s(t, 0

−)) = fr(s(t, 0
+)) for

any solution of our singular limit problem. Thus the optimal entropy solution corresponding to
F̄ opt and case (I) optimizes (maximizes) the capacity of the interface to conduct the flow of the
phases; the barrier entropy condition corresponding to F̄ bar minimizes the flow, which can be seen
as a model for the oil trapping phenomenon.

The value F̄ depends on fl,r but also on πl,r that are formally absent from (1) when ε = 0.
Let us denote it F̄π, in order to stress this dependence. The value F̄π is determined by an easy
algorithm solving a monotone nonlinear equation on [0, 1]. It can be seen as the physical parameter
that records the action of the capillary diffusion at the interface between the two rocks. But F̄π

can also be used, in a strikingly simple way, in the numerical simulation in order to guarantee the
convergence of approximations to the physically correct solution. Indeed, as explained in [4, Prop. 9]
(see also [5]), it is enough to take the Godunov numerical flux G suitable for the approximation of
the optimal solution (see [1]) and consider

Fint : (zl, zr) 7→ min
{

F̄π, G(zl, zr)
}

,
with the optimal flux G : (zl, zr) 7→ min

{

fl
(

min{zl, s̄l}
)

, fr
(

max{s̄r, zr}
) } (18)

where s̄l,r := argmax[0,1]fl,r. Finally, let us stress that the flux limitation in the Godunov scheme
can be achieved by a less explicit method that nevertheless has a clear numerical interpretation; we
will use it thoughout Section 3. Denote by Gl,r the Godunov fluxes (see, e.g., [1, 5, 22]) associated
with fl,r, respectively; they can be computed using s̄l,r.

Lemma 2.2 (see [4, Lem. 8 andProp. 9]) Let (zl, zr) ∈ [0, 1]2, then the system

{

π ∈ π̃l ∩ π̃r

Gl(zl, π
−1
l (π)) = Gr(π

−1
r (π), zr)

(19)

admits at least one solution π ∈ R. The value Fint(zl, zr) := Gl(zl, π
−1
l (π)) = Gr(π

−1
r (π), zr) is

defined uniquely by (19), furthermore, it coincides with the value computed by the explicit formula
(18).

The lemma introduces an additional variable π on the interface that serves to connect the pressures
in the vanishing capillarity limit; while it is rather useless for the one-dimensional problem, the
value π will be instrumental in the multi-dimensional schemes of Section 3. Following closely the
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proof of [4, Prop. 9] one finds the algorithm to determine the value π without solving (19); but
this is not our goal. Heading towards a simpler practical implementation, let us generalize (19) as
follows.

Proposition 2.3 If the Godunov fluxes Gl,r are replaced in the scheme of [4] (including equation
(19) for Fint) by consistent with fl,r monotone Lipschitz continuous numerical fluxes Rl,r (see,
e.g., [22]), then the scheme still converges to the solution given by Theorem 2.1.

Proof: It is easily checked that Fint(a, b) remains increasing in a and decreasing in b. Thus the
scheme is monotone, and due the the Crandall-Tartar lemma, discrete L1 contraction inequalities
follow. Therefore the convergence arguments as in [4, Prop. 6] apply provided we show that the
solution (14) of equation (1) avec ε = 0 is a limit of some solutions of the scheme. This is obvious
in case (II) because (14) gives a stationary solution to the scheme, due to the consistency of fluxes
Rl,r. In case (I), we use a numerical counterpart of the construction of [4, Prop. 3(ii)]: using the
monotonicity of the numerical flux, one constructs an appropriate stationary numerical profile. E.g.,
the situation where sπl = s̄l we take the value s̃πl ∈ [0, s̄l] such that πl(s̃

π
l ) = πr(s

π
r ). There exists a

solution to the scheme

u = (ui)
0
i=−∞ such that u0 = s̃πl , Rl(u−1, u0) = fr(s

π
r ) and ∀i ≤ −1 Rl(ui−1, ui) = Rl(ui, ui+1),

that we complement by the constant values ui := sπr for i > 0. The profile is monotone in i thanks
to the monotonicity of Rl, hence there exists ℓ := limi→−∞ ui. Due to the continuity of Rl, from
the above scheme we obtain that Rl(ℓ, ℓ) = limi→−∞ Rl(ui−1, ui) = fr(s

π
r ), which yields ℓ = soptl .

By a simple scaling argument, uh(x) =
∑

i∈Z
ui11[(i−1)h,ih] converges, as h → 0, to the function

(14). �

Remark 2.2 A particular case of construction (19) of the interface fluxes appears, under the form

Fint(zl, zr) := Gl(zl, s) = Gr(s, zr) for some s ∈ [0, 1], (20)

in the early work of Chavent, Cohen and Jaffré [18]. The choice of numerical fluxes (20) means that
connection of the saturation values is expected at the interface; that is, πl ≡ πr should be assumed in
our model. Therefore the so obtained solutions correspond to the mathematical vanishing viscosity
method. Notice that (20) was also used by Diehl [20] to characterize vanishing viscosity limits
for general conservation laws with discontinuous flux (see [20, Section 3]). Let us stress that if
πl 6≡ πr, the vanishing viscosity regularization of the Buckley-Leverett equation leads, in general, to
non-physical solutions.

3 Finite volume approximation at vanishing capillarity limit

We propose three finite volume schemes designed for approximating problem (3), (5), (6), (8)–(10).
The first one is described in Section 3.2. It is obtained by neglecting the inner capillary diffusion
in the scheme proposed in [8], which yields a fully implicit (and thus fully coupled) scheme whose
unknowns are the saturations (sn+1

K ) and the pressures (Pn+1
K ) in the control volumes as well as

the capillary pressure transmission parameters (πn+1
σ ) on the edges σ lying in the inner interface

Γ. The main advantage of this scheme is that it preserves energy bounds, ensuring some stability.
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Its main drawback is of course its computational cost, that we aim to reduce in the variants of the
scheme. The first alternative we propose in Section 3.3 consists in the IMPES scheme decoupling the
saturations (sn+1

K ) from the pressure and capillary pressure unknowns (Pn+1
K ) and (πn+1

σ ). Further,
in Section 3.4 we propose an algorithm that fully decouples the saturations (sn+1

K ), the pressures
(Pn+1

K ) and the interface capillary pressures (πn+1
σ ).

For the sake of simplicity, we suppose in the sequel that the porous medium is isotropic, i.e.
Ki = kiId, so that the elliptic equation (3) can be approximated by means of a two-point flux
FV-scheme. The consistency of such a method requires the so-called orthogonality condition on the
mesh that is recalled in Section 3.1. The natural extensions to the case of anisotropic porous media
and to more general meshes are not discussed in this paper.

3.1 Discretization of Ω× (0, T )

Since the scheme used for discretizing the elliptic equation is based on a two-point flux approxima-
tion, the space discretization has to fulfill some admissibility condition. The notion of admissible
discretization of Ω is inspired from the one given in [22], and additionally requires that each cell K is
either in Ω1 or in Ω2. We note Ti the set of all the cells included in Ωi, so that Ωi =

⋃

K∈Ti
Ki. As a

consequence, the interface Γ is made of a union of a subset of edges denoted by EΓ, i.e. Γ =
⋃

σ∈EΓ
σ.

For each cell K ∈ T , there is a point xK ∈ K called center of K such that, denoting by K|L the
edge between K and its neighboring cell L, the straight line (xKxL) is orthogonal to K|L. We refer
to [8, Definition 2.1] for a complete definition of the notion of admissible discretization of Ω that
we use here.

The size of the mesh is h = maxK∈T diam(K); we ask the usual regularity assumption for a
family of meshes, namely, that there exist α > 0 such that |K| ≥ αhd, |∂K| =

∑

σ∈EK
|σ| ≤ 1

α
hd−1

for K ∈ T . The time discretization consists of a sequence of time steps
(

∆tn
)

)0≤n≤N which have
to fulfill a CFL condition when explicit schemes are considered. We set t0 = 0, tn+1 = tn + ∆tn

and assume tN = T .

3.2 The coupled implicit scheme

The scheme proposed now consists in fully neglecting the capillary diffusion (that is, merely setting
ε = 0) in the scheme proposed and validated in [8] for ε > 0. Let us stress that for the one-
dimensional case, the scheme of [8] is asymptotic-preserving, i.e., as ε → 0 it converges a numerical
scheme that does approximate the entropy solution described in Section 2 (see [4, Cor. 10]).

The first equation of (3) is approximated by

∑

σ∈EK

|σ|un+1
K,σ = |K|qo(s

n+1
K ) + |K|qw(s

n+1
K ) ∀K ∈ T , (21)

where un
K,σ is an approximation of 1

∆tn|σ|

∫ tn+1

tn

∫

σ
ut · nK,σdxdt, where nK,σ denotes the normal to

σ outward w.r.t. K. The source term qo is supposed to be decreasing and such that qo(0) = 0,
while the source term qw is supposed to be increasing and such that qw(1) ≥ 0. The quantity un+1

K,σ

is given by

un+1
K,σ = 0 if σ ⊂ ∂Ω, un+1

K,σ = ki

(

Mn+1
K|L

Pn+1
K − Pn+1

L

d(xK , xL)
+ ζn+1

K|L

)

if σ = K|L ∈ Ei, (22)
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where Mn+1
K|L =

MK(sn+1

K
)ML(sn+1

L
)d(xK ,xL)

MK(sn+1

K
)d(xK,σ)+ML(sn+1

L
)d(xL,σ)

and ζn+1
K,L denotes the Rusanov numerical flux for

the flux function ζi(s)g ·nK,σ and for the Riemann problem with initial data sn+1
K 11x<0+sn+1

L 11x>0.
The case σ = K|L ∈ EΓ is treated by means of the introduction of two new unknowns Pn+1

K,σ and

Pn+1
L,σ to enforce the continuity of the flux (4) and the pressure condition (5) at the discrete level.

Denoting by gK,σ = g · nK,σ, we prescribe at the interface that for all σ = K|L ∈ EΓ,

un+1
K,σ + un+1

L,σ = 0 with un+1
J,σ = kJ

(

MJ(s
n+1
J )

Pn+1
J − Pn+1

J,σ

d(xJ , σ)
+ ζJ (s

n+1
J )gJ,σ

)

, J = K,L. (23)

Moreover, the interface pressures Pn+1
K,σ and Pn+1

L,σ have to fulfill

Pn+1
K,σ − ZK(πn+1

σ ) = Pn+1
L,σ − ZL(π

n+1
σ ), (24)

where the unknowns (πn+1
σ )σ∈EΓ

are used to ensure the pressure transmission. Notice that for every
σ ∈ EΓ, unknowns P

n+1
K,σ and Pn+1

L,σ are readily eliminated thanks to the linear relations (23)–(24).

The initial datum s0 is discretized by setting s0K = 1
|K|

∫

K
s0(x)dx. Equation (8) is discretized

by
sn+1
K − snK
∆tn

|K|+
∑

σ∈EK

|σ|Fn+1
K,σ = |K|qo(s

n+1
K ), (25)

Fn+1
K,σ = 0 if σ ⊂ ∂Ω, Fn+1

K,σ = R
(

Fn+1
K,σ ; sn+1

K , sn+1
L

)

if σ = K|L ∈ Ei, (26)

where
Fn+1

K,σ denotes the function s 7→ fK(s)un+1
K,σ + kKρλK(s)gK,σ

and where R(F ; sL, sR) denotes the Rusanov flux corresponding to the flux function F and to left
and right states given by sL, sR. To handle the fluxes across the interfaces σ ∈ EΓ, additional
unknowns πn+1

σ introduced in (24) are exploited. Namely, for σ = K|L ∈ EΓ, the flux Fn+1
K,σ is

defined by

Fn+1
K,σ + Fn+1

L,σ = 0 where for J = K and J = L, Fn+1
J,σ = R

(

Fn+1
J,σ ; sn+1

J , π̃−1
J (πn+1

σ )
)

. (27)

Relations (27) yield one equation per unknown πn+1
σ , σ ∈ EΓ, thus the system is closed. Notice

that (24),(27) are directly inspired by the approach (19) of the one-dimensional case, but where the
Godunov flux has been replaced by the Rusanov flux by virtue of Proposition 2.3.

The main advantage of this approximation is that it is unconditionally stable with respect to
the time discretization. The following proposition can be proved by following the method proposed
in [8].

Proposition 3.1 For all admissible discretization of Ω, and for all n ∈ {0, . . . , N−1}, there exists
(

(sn+1
K )K∈T , (P

n+1
K )K∈T , (π

n+1
σ )σ∈EΓ

)

∈ [0, 1]#T × R
#T × R

#EΓ

solution to the scheme (21)–(27).

It is possible, following the sketch of the proof of Proposition 3.5 in [8], to derive the following
estimate on the discrete L2((0, T );H1(Ωi)) semi-norm (cf. [21, 22]):

∑

i=1,2

∑N−1

n=0
∆tn

(

∑

σ=K|L∈Ei

|σ|
(Pn+1

K − Pn+1
L )2

d(xK , xL)

)

≤ C. (28)
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From this estimate, we can prove that the piecewise constant approximate pressure PD converges
weakly in L2(Ωi × (0, T )) towards some pressure P ∈ L2((0, T );H1(Ωi)). We also deduce from
the fact that 0 ≤ sn+1

K ≤ 1 for all K ∈ T that the piecewise constant approximate saturation
sD converges in the L∞(Ω × (0, T )) weak-⋆ sense towards a function s in L∞(Ω × (0, T )), with
0 ≤ s ≤ 1 a.e. in Ω× (0, T ). This is obviously not sufficient to pass to the limit in the nonlinearities
if the problem. Nevertheless, a complete convergence study of the scheme presented above has
been performed in [4] in the one-dimensional framework, where it was possible to establish rigorous
convergence results.

3.3 The (P, π)–s partially decoupled explicit scheme

As it will appear in the Section 4 where the numerical results are exhibited, the scheme proposed in
Section 3.2 is quite expensive due to the fact that it is fully coupled and implicit. Our goal is then to
uncouple some discrete equations, introducing an IMPES (IMplicit Pressure – Explicit Saturation)
discretization of equations (3), (5), (6), (8)–(10). To do so, given

(

snK
)

K∈T
, we compute first the

pressure variables
(

(Pn+1
K )K∈T , (π

n+1
σ )σ∈EΓ

)

, and then we use these new values of the pressures to

compute
(

sn+1
K

)

K∈T
by means of an explicit finite volume scheme.

a) Pressure step. We assume that
(

snK
)

K∈T
is given in [0, 1]#T . The system we intend to solve

is then
∑

σ∈EK

|σ|un+1
K,σ = |K|qo(s

n
K) + |K|qw(s

n
K) ∀K ∈ T , (29)

un+1
K,σ = 0 if σ ⊂ ∂Ω, un+1

K,σ = ki

(

Mn
K|L

Pn+1
K − Pn+1

L

d(xK , xL)
+ ζnK|L

)

if σ = K|L ∈ Ei, (30)

un+1
K,σ + un+1

L,σ = 0, un+1
J,σ = kJ

(

MJ(s
n
J)

Pn+1
J − Pn+1

J,σ

d(xJ , σ)
+ ζJ (s

n
J )gJ,σ

)

, J=K,L, if σ ∈ EΓ. (31)

while equation (24) still has to hold. After eliminating Pn+1
K,σ and Pn+1

L,σ thanks to (24) and (31), we

obtain a system of #T equations (29) for the #T + #EΓ unknowns
(

Pn+1
K

)

K∈T
,
(

πn+1
σ

)

K∈T
. In

order to close the system we impose that, for all σ ∈ EΓ,

Fn
K,σ + Fn

L,σ = 0 where for J = K and J = L, Fn
J,σ = R

(

Fn+1
J,σ ; snJ , π̃

−1
J (πn+1

σ )
)

. (32)

Note that if un+1
K,σ is given, then equation (32) has a solution πn+1

σ thanks to a version of Lemma 2.2.

Proposition 3.2 Given
(

snK
)

K∈T
∈ [0, 1]#T , there exists a solution

(

(Pn+1
K )K∈T , (π

n+1
σ )σ∈EΓ

)

belonging to R
#T × R

#EΓ

to the problem (24), (29)–(32).

b) Saturation step. This step consists in deducing
(

sn+1
K

)

K∈T
from

(

snK
)

K∈T
and the freshly

computed pressures
(

Pn+1
K

)

K∈T
,
(

πn+1
σ

)

σ∈EΓ
. This is done by means of an explicit finite volume

scheme.

Equation (8) is now discretized by

sn+1
K − snK
∆tn

|K|+
∑

σ∈EK

|σ|Fn
K,σ = |K|

(

−Lqos
n+1
K + qo(s

n
K) + Lqos

n
K

)

, (33)
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where Lqo denotes the Lispchitz constant of qo, and where

Fn
K,σ = 0 if σ ⊂ ∂Ω, Fn

K,σ = R
(

Fn+1
K,σ ; snK , snL

)

if σ = K|L ∈ Ei (34)

(in addition, recall that the fluxes Fn
K,σ for σ ∈ EΓ have already been computed during the pressure

step in (32)). A CFL condition is mandatory to ensure stability of the scheme at this step. Denoting
by Lfi (resp. Lλi

) the Lispchitz constant of fi (resp. λi), then we require that

∆tn ≤ α2h
(

maxi∈{1,2} Lfi maxσ∈E |u
n+1
K,σ |+ |ρ||g|maxi∈{1,2} Lλi

)

. (35)

Proposition 3.3 Given
(

snK
)

K∈T
∈ [0, 1]#T , and given

(

(Pn+1
K )K∈T , (π

n+1
σ )σ∈EΓ

)

∈ R
#T ×R

#EΓ

,

under the CFL condition (35), for all K ∈ T one has 0 ≤ sn+1
K ≤ 1.

The above result follows from the fact that equation (33) can be rewritten as

sn+1
K = snK −

∆tn

(1 + Lqo)|K|

∑

σ∈EK

|σ|Fn
K,σ +∆tn

qo(s
n
K)

(1 + Lq0)
,

the right-hand side of the above expression being a nondecreasing function with respect to (w.r.t.)
each of the variables snK , K ∈ T . Notice that the interface fluxes Fn

K,σ given by (32) depend in a
monotone and Lipschitz continuous way on snK and snL because, thanks to Lemma 2.2, they can be
rewritten under the form (18) on which monotonicity and Lipschitz continuity is obvious. Remark
also that the discretization of the source term in (33) is such that it is linear w.r.t. sn+1

K (thus the
scheme remains explicit), and so that it is increasing w.r.t. sn+1

K and nonincreasing w.r.t. snK . This
yields a stabilization of the scheme in the sense that the CFL condition (35) does not depend on
the source term qo.

3.4 The fully decoupled explicit scheme

Notice that in Pressure Step of the above IMPES scheme, relations (24) and (32) involving (πn+1
σ )σ∈EG

are fully coupled. In particular, the expressions of the flux functions Fn+1
K,σ needed to compute Fn

K,σ

depend on the whole set of values of (πn+1
σ )σ∈EG

via the values un+1
K,σ . Here, we propose a variant

of the previous scheme where the computation of the capillary pressure transmission parameters
(

πn+1
σ

)

σ∈EΓ
is decoupled from the computation of the global pressures

(

Pn+1
K

)

K∈T
.

For this scheme, we need to initialize the capillary pressure. To do so, we build π0
σ as the linear

interpolation between the neighboring cell values of the capillary pressure:

π0
σ =

πK(s0K)d(xL, σ) + πL(s
0
L)d(xK , σ)

d(xK , xL)
, ∀σ = K|L ∈ EΓ. (36)

a) Global pressure step. Values
(

snK
)

K∈T
and (πn

σ )σ∈EΓ
being given, we obtain

(

Pn+1
K

)

K∈T
as

solution to (29)–(31), closed by the interface relation

Pn+1
K,σ − ZK(πn

σ ) = Pn+1
L,σ − ZL(π

n
σ ), ∀σ ∈ EΓ. (37)

This system is linear and one can check that it admits a unique solution
(

Pn+1
K

)

K∈T
∈ R

#T .
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b) Capillary pressure step. The previous step also yields the values un+1
K,σ , thus the expressions

of the fluxes Fn+1
K,σ are made available. Now we can compute the values πn+1

σ for each σ ∈ EΓ by
solving

Fn
K,σ + Fn

L,σ = 0 with Fn
J,σ = R

(

Fn+1
J,σ ; snJ , π̃

−1
J (πn+1

σ )
)

for J = K,L (38)

(we have one nonlinear equation per edge σ ∈ EΓ, solved separately for each σ). Existence of a
solution πn+1

σ and uniqueness of the resulting fluxes Fn
K,σ follow by a monotonicity argument, as

for Lemma 2.2.

c) Saturation step. The saturations (sn+1
K )K∈T are computed explicitly by equations (33) and

the fluxes readily computed with (38) and (34).

4 Numerical experiments

All the three schemes of Section 3 preserve the physical bounds on the saturation s. It seems much
more delicate to achieve stability estimates like (28), especially for the fully decoupled scheme, and
convergence analysis is beyond our reach. Therefore we now switch to numerical tests. Below,
the fully decoupled scheme is used in all the test cases; the fully implicit and the IMPES schemes
actually yield quite close numerical solutions but a longer computational time.

4.1 Comparison with 1D reference solution obtained by a convergent

scheme.

Let Ω = (−1, 1)2 be 2−dimensional domain composed of two horizontal layers Ω1 = {(x, y) ∈ Ω|y <
0} and Ω2 = {(x, y) ∈ Ω|y > 0}, which corresponds to different rock-types. We prescribe a zero
total flux on the whole boundary ∂Ω. The boundary conditions for the saturation equation are
given by

s = 0.5 on Γ1 = {(x, y) ∈ ∂Ω s.t. |y| = 1},

(utfi(s) + λi(u)Kig) · n = 0 on Γ2 = {(x, y) ∈ ∂Ω s.t. |x| = 1},

the initial saturation is set to s0 = 0.5. We set g = −9.81ey, µo = 1, µw = 3, ρo = 0.87, ρw = 1,
and

f =
s

s− µo/µw(1− s)
, λ = (ρo − ρw)

s(1− s)

µws− µo(1− s)
, ζ =

ρo
µo

s+
ρw
µo

(1 − s)

The porosity φ is constant and set to φ = 1; the absolute permeability K is given by K1 = 10,
K2 = 5.

We take capillary pressure curves πi(s) :=πi,0− ln(1−s) that differ only by the value of the entry
pressure: π1,0 is set to 0, while π2,0 takes values 0.5 (Test 1a) or 2 (Test 1b). The flow is driven by
buoyancy and by the spatial discontinuity: roughly speaking, the second rock has a smaller pores,
so that it is more attractive for water. The total flow ut being zero, the oil phase is displaced from
the rock Ω2.

This is actually the 1D test borrowed from [4]; there exists an x-independent solution. However,
using triangular meshes we ensure that the scheme we test is truly 2D. Indeed, discrete solution
is computed by the fully decoupled IMPES scheme on structured triangular meshes with different
number of volumes. It is compared to the reference 1D numerical solution evaluated using 1000 grid
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points (this is indeed a reference solution, due to Th. 2.1 and Prop. 2.3). We present the results in
Fig. 1 (Test 1a), Fig. 2 (Test 1b). In each case, 2D schemes for two different choices of numerical
fluxes (namely the Godunov and the Rusanov ones) are compared. For the final time T = 0.2,
the error in the norm L2((0, T ) × Ω) is plotted at the right of Fig. 1, 2. We observe convergence
rates close to 1 (for the Godunov flux) and 0.5 (the Rusanov flux). Notice that in Test 1a the two
discretizations exhibit quite different behavior. In fact, for both choices of fluxes the connecting
capillary pressure π is such that π−1

2 (π) > 0. Thus, a small amount of oil propagating in the
domain Ω2 is due only to the extra diffusion introduced by Rusanov flux. This is not the case for
the Godunov flux, which provides the exact solution to the Riemann problem.

Figure 1: Test 1a (left to right): Oil saturation profile at t = 0.1 and t = 0.2 (Godunov flux);
Godunov/Rusanov comparison; Error in L2, red for Godunov (the bottom line) and black for
Rusanov; dashed lines: slopes 1 and 1/2.

Figure 2: Test 1b (left to right): Oil saturation profile at t = 0.1 and t = 0.2 (Godunov flux);
Godunov/Rusanov comparison; Error in L2, red for Godunov (bottom line) and in black for
Rusanov; dashed lines: slopes 1 and 1/2.

4.2 A 2D flow constrained by capillary barriers

We now turn to a truly 2D test case inspired from [23, test case 4.3]. The 2D domain Ω (see
Fig. 3, top left), which mostly consists of rock Ω1, is initially saturated in water: s0 = 0. The flow
is constrained by a presence of two barriers (rock Ω2) having a higher entry pressure (π0,1 = 0,
π0,2 = 1.5). The vertical boundaries are assumed to be impermeable, so on ΓN zero flux is prescribed
for both phases. At the bottom and the top of Ω we prescribe a constant rate of a total flux, i.e

ut · n = −1 on Γin, ut · n = 1 on Γout.
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The constant saturation value s = 0.5 is imposed on Γin. We use the same set of data as previously,
except for the absolute permeability K1,2 now assumed to be equal to 1 in both sub-domains. We
use here the Rusanov scheme as an approximate Riemann solver.

Figure 3: Test 2. Computational domain and the oil saturation field at time t =
0.075, 0.2, 0.4, 0.6, 0.8.

Even if both rocks Ωi have the same intrinsic permeability (so that the flux function is continuous
across the interface), it appears that some oil remains trapped under the capillary barriers. Indeed,
due to singular capillary effects at rock discontinuities, the relevant solution is not the usual entropy
solution [4]. A flux limitation [6] is active at the lower boundary of the barrier, hampering the
progression of the oil phase. This singular effect depends on the capillary pressure functions πi,
despite the capillary diffusion has been neglected within the rocks Ωi.
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