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Quenched Central Limit Theorems for Random

Walks in Random Scenery

Nadine Guillotin-Plantard ∗ and Julien Poisat †

Abstract

Random walks in random scenery are processes defined by

Zn :=
n∑

k=1

ωSk

where S := (Sk, k ≥ 0) is a random walk evolving in Z
d and ω := (ωx, x ∈

Z
d) is a sequence of i.i.d. real random variables. Under suitable assump-

tions on the random walk S and the random scenery ω, almost surely
with respect to ω, the correctly renormalized sequence (Zn)n≥1 is proved
to converge in distribution to a centered Gaussian law with explicit vari-
ance.

1 Introduction and results

The random walk in random scenery. Let ω = (ωx)x∈Zd be a sequence of
IID real random variables (the scenery) defined on a probability space (Ω,F ,P).
Let (Xn)n≥1 be a sequence of IID random variables defined on another prob-
ability space (Ω′,A, P ), taking values in Z

d, d ≥ 1. Define the random walk
S = (Sn)n≥0 by S0 = 0 and

∀n ≥ 1, Sn =
n
∑

k=1

Xk.

When the support of X1 is a subset of N∗, (Sn)n≥0 is called a renewal process.
Each time the random walk is said to evolve in Z

d, it implies that the walk
is truly d-dimensional, i.e. the linear space generated by the elements in the
support of X1 is d-dimensional.

∗Institut Camille Jordan, CNRS UMR 5208, Université de Lyon, Université Lyon 1, 43,
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The random walk in random scenery (RWRS) is the process defined by

∀n ≥ 1, Zn =

n
∑

k=1

ωSk
.

In other words, Zn is the sum of the random variables (ωx)x∈Zd collected by the
random walk S up to time n.

RWRS was first introduced in dimension one by Kesten and Spitzer [26]
and Borodin [6, 7] in order to construct new self-similar stochastic processes.
Functional limit theorems for RWRS have been first obtained under the product
measure P⊗P , usually called the annealed case. For d = 1, Kesten and Spitzer
[26] proved that when X and ω belong to the domains of attraction of different
stable laws of indices 1 < α ≤ 2 and 0 < β ≤ 2, respectively, then there exists
δ > 1

2 such that
(

n−δZ[nt]

)

t≥0
converges weakly as n → ∞ to a continouous

δ-self-similar process with stationary increments, δ being related to α and β by
δ = 1−α−1+(αβ)−1. The limiting process can be seen as a mixture of β-stable
processes, but it is not a stable process. When 0 < α < 1 and for arbitrary β,

the sequence
(

n− 1
β Z[nt]

)

t≥0
converges weakly, as n → ∞, to a stable process

with index β (see [9]). Bolthausen [5] (see also [17]) gave a method to solve the
case α = 1 and β = 2 and especially, he proved that when (Sn)n∈N is a recurrent

Z
2-random walk, the sequence

(

(n logn)−
1
2Z[nt]

)

t≥0
satisfies a functional central

limit theorem. More recently, the case d = α ∈ {1, 2} and β ∈ (0, 2) was solved
in [9], the authors prove that the sequence

(

n−1/β(logn)1/β−1Z[nt]

)

t≥0
converges

weakly to a stable process with index β. Finally for any arbitrary transient Zd-
random walk, it can be shown that the sequence (n− 1

2Zn)n is asymptotically
normal (see for instance [30] page 53).

Far from being exhaustive, we can cite strong approximation results and laws
of the iterated logarithm [16, 15, 28], limit theorems for correlated sceneries or
walks [14, 22], large and moderate deviations results [2, 10, 8, 20], ergodic and
mixing properties (see the survey [24]).

Our contribution in this paper is a quenched scenery version of the distri-
butional limit theorems, i.e. we prove that for P-almost every fixed path of the
random scenery, a limit theorem holds for Zn (correctly renormalized). It is
worth remarking that when the random walk S is fixed, functional limit the-
orems for the sequence (Z[nt])t≥0 have been proved (see [17, 23, 21]). Indeed,
conditionally to the random walk, the sum Zn can be viewed as a sum of IID ran-
dom variables weighted by the local time of the random walk. Roughly speaking
functional central limit theorems hold true as soon as the self-intersection local
time of the random walk converges almost surely to some constant. To be com-
plete let us mention that in the case when the scenery is given as a sequence
of positive and heavy-tailed IID random variables coarse graining techniques
have been used in [4] to derive a distributional limit theorem for P-almost ev-
ery realization of the scenery when the random walk evolves in Z

d with d ≥ 2.
However, the coarse graining scheme is adapted to heavy-tailed environment,
which is quite different from our setup (in which scenery random variables have
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at least finite second moment), since it relies on the existence of traps, that is,
roughly speaking, regions of the environment with large values. Therefore, it
does not seem to be applicable to our context, although another coarse graining
technique could presumably be designed to tackle the case of d = 2 and scenery
random variables with finite second moment.

Statement of the results. We denote by (A) the following assumptions on
the random scenery (wx)x∈Zd :

ω0
(law)
= −ω0, (1.1)

E(|ω0|k) < +∞ (∀k ≥ 1), (1.2)

E(ω2
0) = 1. (1.3)

Quenched central limit theorems are proved for the RWRS in the three following
cases:

Theorem 1.1 (Renewal process case). Suppose that d = 1, that the support of
X1 is an aperiodic set of N

∗, m := E[X1] < +∞ and E[X2
1 ] < +∞. Then,

under assumption (A), we have ω-a.s,

([Zn − EZn]/
√
n)n≥1

(law)−→ N (0, 1− 1/m).

In the case of planar random walks with finite non-singular covariance ma-
trix, we are able to prove a convergence in law to a Gaussian random variable
along some subsequences:

Theorem 1.2. Suppose that d = 2, that the random walk is symmetric with
finite non-singular covariance matrix Σ. Then, under assumption (A), for all
ν > 0, ω-a.s

Ztm√
tm log tm

(law)−→ N (0, σ2),

where tm = [exp(m1+ν)] and σ2 = (2π
√
detΣ)−1.

Theorem 1.3. Suppose that the random scenery is centered, square integrable
with variance one and that one of the following assumptions holds:

Assumption (1) : d ≥ 3 and X1 is square integrable.

Assumption (2) : X1 is in the domain of attraction of a strictly stable law
with index α ∈ (0, 2) and d > α.

Then, we have ω-a.s,

(Z[nt]/
√
n)t≥0

(law)−→ (σBt)t≥0,

where (Bt)t≥0 is a real Brownian motion and

σ2 = γ2
∑

k≥0

k2(1− γ)k−1
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with
γ = P (Sk 6= 0 for any k ≥ 1) ∈ (0, 1).

Remarks:
1- Assumptions in Theorems 1.1 and 1.3 imply that the random walk is tran-
sient. It easily follows from Local limit theorems for the random walk (see [31,
Theorem 1]).
2- Theorem 1.3 still holds if the random variables Xn, n ≥ 1 are only assumed
to belong to the basin of attraction of a stable distribution.

Our paper is organized as follows. In Section 2, results about self-intersections
and mutual intersections of Zd- random walks with finite or infinite second mo-
ment are collected. In Section 3, Theorems 1.1, 1.2 and 1.3 are proved. In
order to prove Theorem 1.3, we see the process (Zn)n≥0 as a functional of the
environment viewed from the particle (i.e. from the random walker) and use a
theorem of Derrienic and Lin [18] on invariance principles for Markov chains
started at a point to deduce a quenched invariance principle for (Zn)n≥0. This
approach can be followed as soon as the number of mutual intersections of two
independent copies of the random walk up to time n is asymptotically less than√
n. Since this does not apply under the assumptions of Theorems 1.1 and 1.2,

we rather use for those cases the method of moments, at the cost of assuming
moments of any order for the scenery.

2 Preliminaries

In the following, we use the notation

X := X − EX

and
un = O(vn) ⇐⇒ ∃C > 0 : |un| ≤ Cvn.

Mutual and self-intersection local times. We will denote by Nn(x) the
time spent by the walk in site x up to time n, that is

∀x ∈ Z
d, ∀n ≥ 1, Nn(x) =

n
∑

k=1

1 {Sk=x}.

The RWRS can be rewritten as

Zn =
∑

x∈Zd

ωxNn(x),

and we have
Zn =

∑

x∈Zd

ωxNn(x).
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We will denote by I
[p]
n the p-fold self-intersection local time of the walk up to

time n, which writes

∀p ≥ 2, ∀n ≥ 1, I [p]n =
∑

x∈Zd

[Nn(x)]
p =

∑

1≤k1,...,kp≤n

1 {Sk1
=Sk2

=...=Skp}
,

and we abbreviate I
[2]
n as In. If N

(1)
n (x) and N

(2)
n (x) are the respective local

times of S(1) and S(2), two independent copies (or replicas) of the walk S –

these notations will be kept throughout the paper – we define Q
[p,q]
n by

Q[p,q]
n =

∑

x∈Zd

[N (1)
n (x)]p[N (2)

n (x)]q =
∑

1≤k1,...,kp≤n
1≤l1,...,lq≤n

1
{S

(1)
k1

=...=S
(1)
kp

=S
(2)
l1

=...=S
(2)
lq

}

for all (p, q) ∈ N
2 and all n ≥ 1. The mutual intersection local time of two

replicas up to time n is Q
[1,1]
n and abbreviated as Qn.

Moments estimates of local times. We collect here a number of useful
estimates for the moments of I

[p]
n and Q

[p,q]
n .

Proposition 2.1 (Mutual intersections of random walks with finite variance).
Suppose (Sn)n≥0 is as in Theorem 1.3, Assumption (1).

1. If d ≥ 5,

Q∞ = sup
n≥1

Qn =
∑

k,l≥1

1
{S

(1)
k =S

(2)
l }

is a.s finite and
∀k ≥ 1, E⊗2[Qk

∞] < +∞.

2. If d = 4, for all k ≥ 1 there exists a constant C = C(k) such that

E⊗2[Qk
n] ≤ C(logn)k.

3. If d = 3, for all k ≥ 1 there exists a constant C = C(k) such that

E⊗2[Qk
n] ≤ Cnk/2.

Proposition 2.2 (Mutual intersections of random walks with infinite variance).
Suppose (Sn)n≥0 is as in Theorem 1.3, Assumption (2).

1. If α < d/2,

Q∞ = sup
n≥1

Qn =
∑

k,l≥1

1
{S

(1)
k =S

(2)
l }

is a.s finite and
∀k ≥ 1, E⊗2[Qk

∞] < +∞.
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2. If α = d/2, for all k ≥ 1 there exists a constant C = C(k) such that

E⊗2[Qk
n] ≤ C(logn)k.

3. If d/2 < α < d, for all k ≥ 1 there exists a constant C = C(k) such that

E⊗2[Qk
n] ≤ Cnk(2−d/α) ≪ nk.

Proposition 2.3 (Self-intersections and mutual intersections of two-dimen-
sional random walks with finite covariance matrix). Suppose that (Sn)n≥0 sat-
isfies the assumptions of Theorem 1.2.

1. For all p, k ≥ 1, there exists a constant C = C(p, k) such that

E[(I [p]n )k] ≤ Cnk(logn)k(p−1).

2. (In/(n logn))n≥1 converges a.s to σ2 as n → +∞.

3. For all k ≥ 1,

E[Ikn ]
n→+∞∼ σ2k(n logn)k.

4. For all k ≥ 1 there exists a constant C = C(k) such that

E⊗2[Qk
n] ≤ Cnk.

Proof of Proposition 2.1. Items (1), (2) and (3) can be respectively found in
[27, Lemma 1], [29, Lemma 1] and [13, Lemma 6.2.2].

Proof of Proposition 2.2. We reduce the proof of Items (1), (2) and (3) to the
case k = 1, since it is not too difficult to show (see [12, Proof of Lemma 5.2])
that for all k ≥ 2 there exists a constant C > 0 such that

E⊗2[Qk
n] ≤ C[E⊗2Qn]

k.

The upper bound for k = 1 comes from

E⊗2[Qn] =
n
∑

k,l=1

P⊗2(S
(1)
k = S

(2)
l ) =

n
∑

k,l=1

∑

x∈Zd

P (Sk = x)P (Sl = x)

=

n
∑

k,l=1

P (Sk+l = 0)

≤ C

n
∑

k,l=1

(k + l)−
d
α

≤ C

n
∑

k=1

k1−
d
α ,

which is enough to conclude. We have used the Chapman-Kolmogorov equation
for symmetric random walks to go from line 1 to line 2, the Local Limit Theorem
(see [31, Theorem 1]) from line 2 to line 3, and the fact that d > α from line 3
to line 4.
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Proof of Proposition 2.3. Item (2) was proved in [11, Theorem 1] and a proof of
Item (4) can be found in [3, Equation (2.10)]. Since Item (3) is a consequence
of Items (1) and (2), we only need to prove Item (1). We have

E[(I [p]n )k]1/k

= E











∑

1≤l1,...,lp≤n

1 {Sl1
=Sl2

=...=Slp}





k






1/k

≤ C
n
∑

l1=1

E











∑

l1≤l2≤...≤lp≤n

1 {Sl1
=Sl2

=...=Slp}





k






1/k

by triangular inequality

≤ C
n
∑

l1=1

E











∑

l1≤l2≤...≤lp≤n

1 {Sl2−l1
=...=Slp−lp−1

=0}





k






1/k

by stationarity of the increments

≤ Cn E
(

Nn(0)
k(p−1)

)1/k

.

Since (see the proof of Lemma 2.5 in [5] ) for any m ≥ 1,

E(Nn(0)
m) ∼ C log(n)m,

Item (1) follows.

We now focus on the case of a renewal process, that is when (Sn)n≥0 is as
in Theorem 1.1. In this special setup, (Sn)n≥0 is increasing and we obviously

have Nn(i) ∈ {0, 1} for all n, i ≥ 1. Therefore, In = I
[p]
n = n for all n, p ≥ 1.

We define for all p ≥ 1,

J [p]
n =

∑

i≥1

Nn(i)
p
, (2.1)

and we abbreviate J
[2]
n as Jn.

Proposition 2.4. Suppose (Sn)n≥0 is as in Theorem 1.1. Then

1. (Qn/n)n≥1 converges a.s to 1/m.

2. (Jn/n)n≥1 converges a.s to 1− 1/m.

3. For all p ≥ 1, there exists C = C(p) such that

J [p]
n ≤ Cn.

4. For all k ≥ 1,

E[Jk
n ]

n→+∞∼ (1 − 1/m)knk.
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5. There exists a constant C such that

E⊗2

[

(

Qn

n
− 1

m

)2
]

≤ C

n
.

Remark 2.1. We will use several times the following identity: if S(1), . . . , S(k)

are k independent copies of a renewal process S, then

∑

i≥1

k
∏

j=1

N (j)
n (i) =

∣

∣

∣

∣

∣

∣

k
⋂

j=1

{S(j)
1 , . . . , S(j)

n }

∣

∣

∣

∣

∣

∣

.

Proof of Proposition 2.4. Let us first prove Item (1). By using Remark 2.1 with
k = 2, we get

∑

i≥1

N (1)
n (i)N (2)(i) = Qn :=

∣

∣

∣{S(1)
1 , . . . , S(1)

n } ∩ {S(2)
1 , . . . , S(2)

n }
∣

∣

∣ .

Remark that S∩ := S(1)∩S(2) is again a renewal process with interarrival mean
(ie. the mean of the increments) equal to

lim
n→+∞

P (n ∈ S∩)−1 = lim
n→+∞

P (n ∈ S)−2 = m2

by the Renewal Theorem (see [1, Theorem 2.2, Chapter I]). Therefore we get

|S∩ ∩ {1, . . . , n}| n→+∞∼ n/m2.

But
Qn = S∩

σn

where
σn := min(S(1)

n , S(2)
n ),

and σn
n→+∞∼ mn almost surely, which gives

Qn
n→+∞∼ n/m.

Let us now prove Item (2). We have

1

n

∑

i≥1

Nn(i)
2
=

1

n

∑

i≥1

Nn(i)
2 − 2

n

∑

i≥1

Nn(i)E[Nn(i)] +
1

n

∑

i≥1

(E[Nn(i)])
2.

First,
∑

i≥1

Nn(i)
2 =

∑

i≥1

Nn(i) = n.
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We conclude by remarking that

∑

i≥1

Nn(i)E[Nn(i)] = E(2)
∑

i≥1

Nn(i)N
(2)
n (i) = E(2)Qn ∼ n/m,

∑

i≥1

(E[Nn(i)])
2 = E⊗2

∑

i≥1

N (1)
n (i)N (2)

n (i) = E⊗2Qn ∼ n/m,

where the asymptotics come from Item (1) and the Bounded Convergence The-
orem. We go now to the proof of Item (3). For all integers l ≥ 2,

|J [l]
n | ≤

∑

i≥1

|Nn(i)|l ≤
∑

i≥1

(Nn(i)+ENn(i))
l ≤ 2l−1





∑

i≥1

Nn(i)
l +
∑

i≥1

[ENn(i)]
l



 .

But
∑

i≥1 Nn(i)
l =

∑

i≥1 Nn(i) = n and (see Remark 2.1)

∑

i≥1

[ENn(i)]
l = E⊗l

∑

i≥1

N (1)
n (i) . . . N (l)

n (i) =

∣

∣

∣

∣

∣

∣

l
⋂

j=1

{τ (j)1 , . . . , τ (j)n }

∣

∣

∣

∣

∣

∣

≤ n.

Item (4) is a straightforward consequence of Items (2) and (3) (by the Bounded
Convergence Theorem). We finish with the proof of Item (5). Let U = (Un)n≥1

and V = (Vn)n≥1 be the two identically distributed renewal processes defined
by

S∩
n = S

(1)
Un

= S
(2)
Vn

. (2.2)

Then
Qn = min(NU

n , NU
n ),

where

NU
n := U ∩ {1, . . . , n},

NV
n := V ∩ {1, . . . , n},

and so,

E⊗2

(

Qn

n
− 1

m

)2

≤ E⊗2

(

NU
n

n
− 1

m

)2

+ E⊗2

(

NV
n

n
− 1

m

)2

= 2E⊗2

(

NU
n

n
− 1

m

)2

From Equation (2.2) and the Renewal Theorem, we get

Un ∼ Vn
n→+∞∼ nm

almost surely, meaning that

EU1 = EV1 = m.
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Moreover, EU2
1 < +∞ since

U1 ≤ S
(1)
U1

= S∩
1

and E[(S∩
1 )

2] < +∞ from [19, Proposition 3.2]. Then we get

E⊗2

[

(

NU
n

n
− 1

m

)2
]

≤ 2
VarNU

n

n2
+ 2

(

ENU
n

n
− 1

m

)2

= O
(

1

n

)

by using [1, Propositions 6.1 and 6.3, Chapter V].

3 Proof of the results

3.1 Proof of Theorem 1.1

We suppose S is as in Theorem 1.1. For all k ≥ 1, we denote by mn(k) the
moments

mn(k) := E[(Zn/
√
n)k].

Let us recall that if Z is a standard Gaussian random variable, then for all
k ≥ 1, E[Z2k−1] = 0 and E[Z2k] = (2k− 1)!! := (2k− 1)× (2k− 3)× . . .× 3× 1.

3.1.1 Control of the moments

In the following proof we denote by c.f. a combinatorial factor whose precise
value is irrelevant and ck will be a constant only depending on k which may
change from line to line.

Lemma 3.1 (Convergence of quenched averaged moments). For all k ≥ 1,

E[mn(2k)]
n→+∞−→ (1− 1/m)k(2k − 1)!! (3.1)

E[mn(2k − 1)] = 0 (3.2)

Proof. Equation (3.2) is a direct consequence of Assumption (1.1). Let k ≥ 1
and let us prove Equation (3.1). We have

E[mn(2k)] = EE[(Zn/
√
n)2k]

=
1

nk

∑

i1,...,i2k≥1

E(ωi1 . . . ωi2k)E
[

Nn(i1) . . . Nn(i2k)
]

=
1

nk

k
∑

j=1

Cn(j)

where

Cn(j) := c.f.
∑

i1,...,ij≥1
p6=q⇒ip 6=iq

l1+...+lj=2k; lj∈2N∗

[

j
∏

m=1

E[ωlm
im

]

]

E

[

j
∏

m=1

Nn(im)
lm

]
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The above sum is restricted to even lj ’s because of Assumption (1.1). For any
j ≤ k − 1, we have

Cn(j) ≤ ck
∑

i1,...,ij≥1
l1+...+lj=2k

lj∈2N∗

[

j
∏

m=1

E[ωlm
im
]

]

E

[

j
∏

m=1

Nn(im)
lm

]

≤ ck
∑

l1+...+lj=2k
lj∈2N∗

E









∑

i≥1

Nn(i)
l1



 . . .





∑

i≥1

Nn(i)
lj









= ck
∑

l1+...+lj=2k
lj∈2N∗

E[J [l1]
n . . . J [lj ]

n ]

≤ ckn
j from Item (3) of Proposition 2.4.

Therefore,

E[mn(2k)] =
Cn(k)

nk
+O

(

1

n

)

. (3.3)

Let us now compute Cn(k). We have:

Cn(k) = (2k − 1)!!
∑

i1,...,ik≥1
all distinct

E(ω2
i1 ) . . .E(ω

2
ik
)E
[

Nn(i1)
2
. . . Nn(ik)

2
]

,

(2k− 1)!! being the number of pairings of 2k elements. From Assumption (1.3)
we get

Cn(k) = (2k − 1)!!
∑

i1,...,ik≥1
all distinct

E
[

Nn(i1)
2
. . . Nn(ik)

2
]

= (2k − 1)!!E[Jk
n ]

− (2k − 1)!!
∑

i1,...,ik≥1
ip=iq for at least
one couple(p,q)

E
[

Nn(i1)
2
. . . Nn(ik)

2
]

.

With the same argument as in the case j ≤ k−1, the second term is in O(nk−1).
From Item (4) of Proposition 2.4 we then get

Cn(k)

nk
→
(

1− 1

m

)k

× (2k − 1)!!. (3.4)

With Equations (3.3) and (3.4) we conclude the proof.

Lemma 3.2 (Control of the variance of moments). For all k ≥ 1,

1. Var[mn(2k)] = O(1/n)
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2. Var[mn(2k + 1)] = O(1/
√
n)

Proof. Let us start with the variance of even moments. Let k ≥ 1. From the
proof of Lemma 3.1 we get on the one hand

[Emn(2k)]
2 =






(2k − 1)!!E











∑

i≥1 Nn(i)
2

n





k












2

+O(1/n)

=
(

(2k − 1)!!E[(Jn/n)
k]
)2

+O(1/n).

On the other hand,

E[mn(2k)
2] = E

[

E[(Zn/
√
n)2k]2

]

=
1

n2k
E











∑

i1,...,i2k≥1

ωi1 . . . ωi2kE[Nn(i1) . . .Nn(i2k)]





2






=
1

n2k

∑

i1,...,i2k≥1
j1,...,j2k≥1

E[ωi1 . . . ωi2kωj1 . . . ωj2k ]E
[

Nn(i1) . . . Nn(i2k)
]

(3.5)

× E
[

Nn(j1) . . . Nn(j2k)
]

(3.6)

=: Σ1(n) + Σ2(n) + Σ3(n). (3.7)

where Σ1(n) corresponds to pairings of the set {i1, . . . , i2k, j1, . . . , j2k} which
associate an index with another index of the same group (the two groups of
indices being {i1, . . . , ik} and {j1, . . . , jk}). It is equal to
(2k − 1)!!2

n2k
E[ω2

1 ]
2k

∑

i1,...,ik≥1
j1,...,jk≥1
all distinct

E
[

Nn(i1)
2
. . . Nn(ik)

2
]

E
[

Nn(j1)
2
. . . Nn(jk)

2
]

= − (2k − 1)!!2

n2k

∑

i1,...,ik≥1
j1,...,jk≥1
at least two
indexesequal

E⊗2

[

N
(1)
n (i1)

2

. . .N
(1)
n (ik)

2

N
(2)
n (j1)

2

. . . N
(2)
n (jk)

2
]

+
(2k − 1)!!2

n2k
(EJk

n)
2.

Since
∣

∣

∣

∣

∣

∣

∑

i≥1

N
(1)
n (i)

k

N
(2)
n (i)

l

∣

∣

∣

∣

∣

∣

≤
√

√

√

√

∑

i≥1

N
(1)
n (i)

2k

√

√

√

√

∑

i≥1

N
(2)
n (i)

2l

(3.8)

=

√

J
[2k](1)
n J

[2l](2)
n (3.9)

≤ ck,l × n, (3.10)

12



from item (3) of Proposition 2.4, the first term in the line above is in O(1/n).
The term Σ2(n) corresponds to mixed pairings, that is pairings for which an
index of the set {i1, . . . , i2k} is paired with an index of the set {j1, . . . , j2k}.
More precisely we have:

Σ2(n) =
1

n2k

∑

2≤p≤2k
p even

A(p)

where A(p) is equal to

c.f.
∑

k1,...,kp≥1
i1,...,ik−p/2≥1
j1,...,jk−p/2≥1

all distinct

E⊗2

[

N
(1)
n (i1)

2

. . . N
(1)
n (ik−p/2)

2

N
(2)
n (j1)

2

. . . N
(2)
n (jk−p/2)

2

×N
(1)
n (k1)N

(2)
n (k1) . . . N

(1)
n (kp)N

(2)
n (kp)

]

≤ ckE
⊗2











∑

i≥1

N
(1)
n (i)

2





k−p/2



∑

i≥1

N
(2)
n (i)

2





k−p/2



∑

i≥1

N
(1)
n (i)N

(2)
n (i)





p






+O(n2k−1)

:= ckE
⊗2



[J (1)
n ]k−p/2[J (2)

n ]k−p/2





∑

i≥1

N
(1)
n (i)N

(2)
n (i)





p

+O(n2k−1)

Since
∑

i≥1

N
(1)
n (i)N

(2)
n (i) = Qn − E(1)Qn − E(2)Qn + E⊗2Qn,

we have




∑

i≥1

N
(1)
n (i)N

(2)
n (i)





p

=











∑

i≥1

N
(1)
n (i)N

(2)
n (i)





2






p/2

(3.11)

= (4n)p











1

4n

∑

i≥1

N
(1)
n (i)N

(2)
n (i)





2






p/2

≤ ckn
p





1

n

∑

i≥1

N
(1)
n (i)N

(2)
n (i)





2

(3.12)

≤ ckn
p

[

(

Qn

n
− 1

m

)2

+

(

E(1)Qn

n
− 1

m

)2

+

(

E(2)Qn

n
− 1

m

)2

+

(

E⊗2Qn

n
− 1

m

)2
]

. (3.13)

13



Using [EX ]2 ≤ E[X2] we get





∑

i≥1

N
(1)
n (i)N

(2)
n (i)





p

≤ ckn
p

[

(

Qn

n
− 1

m

)2

+ E(1)

(

Qn

n
− 1

m

)2

+ . . .

+E(2)

(

Qn

n
− 1

m

)2

+ E⊗2

(

Qn

n
− 1

m

)2
]

.

Since
[J (1)

n ]k−p/2[J (2)
n ]k−p/2 ≤ ckn

2k−p,

from Item (3) of Proposition 2.4, finally using Item (5) of Proposition 2.4, we
get

A(p) ≤ ckn
2kE⊗2

(

Qn

n
− 1

m

)2

= O(n2k−1),

so that:
Σ2(n) = O(1/n).

As for Σ3(n), it is the part of the sum in Equation (3.6) when at least four of the
indices i1, . . . , i2k, j1, . . . , j2k are equal. By combining item (3) of Proposition
2.4 and equations (3.8), (3.9) and (3.10), we have

Σ3(n) = O(1/n),

which ends the proof for even moments. Let us now consider the variance of
odd moments. Let k ≥ 1. On one side E[mn(2k + 1)] = 0. Therefore,

Var(mn(2k + 1)) = E(mn(2k + 1)2) = E
[

E[(Zn/
√
n)2k+1]2

]

=
1

n2k+1

∑

i1,...,i2k+1≥1
j1,...,j2k+1≥1

E[ωi1 . . . ωi2k+1
ωj1 . . . ωj2k+1

]

× E[Nn(i1) . . .Nn(i2k+1)]E[Nn(j1) . . . Nn(j2k+1)]

= Σ1(n) + Σ2(n),

where Σ1(n) is the part corresponding to pairings of the set {i1, . . . , i2k+1, j1, . . . , j2k+1}
and Σ2(n) is the other part. With the same argument as above we get

Σ2(n) = O(1/n)

and

Σ1(n) =
1

n2k+1

∑

1≤p≤2k+1
p odd

A(p)

14



where A(p) is equal to

c.f.
∑

k1,...,kp≥1
i1,...,ik+(1−p)/2≥1
j1,...,jk+(1−p)/2≥1

alldistinct

E⊗2

[

N
(1)
n (i1)

2

. . . N
(1)
n (ik+(1−p)/2)

2

N
(2)
n (j1)

2

. . . N
(2)
n (jk+(1−p)/2)

2

×N
(1)
n (k1)N

(2)
n (k1) . . . N

(1)
n (kp)N

(2)
n (kp)

]

= c.f.E⊗2











∑

i≥1

N
(1)
n (i)

2





k+ 1−p
2




∑

i≥1

N
(2)
n (i)

2





k+ 1−p
2




∑

i≥1

N
(1)
n (i)N

(2)
n (i)





p






+O(n2k)

= c.f.E⊗2



(J (1)
n )k+(1−p)/2(J (2)

n )k+(1−p)/2





∑

i≥1

N
(1)
n (i)N

(2)
n (i)





p

+O(n2k).

Then

|A(p)| ≤ ckn
2k+1−pE⊗2

∣

∣

∣

∣

∣

∣

∑

i≥1

N
(1)
n (i)N

(2)
n (i)

∣

∣

∣

∣

∣

∣

p

≤ ckn
2k+1E⊗2

∣

∣

∣

∣

∣

∣

1

n

∑

i≥1

N
(1)
n (i)N

(2)
n (i)

∣

∣

∣

∣

∣

∣

≤ ckn
2k+1

√

√

√

√

√E⊗2





1

n

∑

i≥1

N
(1)
n (i)N

(2)
n (i)





2

≤ ckn
2k+1/2.

The last line is obtained by the same computations as in Equations (3.12),
(3.13) and Item (5) of Proposition 2.4. Finally, Σ2(n) = O(1/

√
n), which ends

the proof.

3.1.2 Conclusion

Proof of Theorem 1.1. We now prove that ω-almost surely, the moments of
Zn/

√
n with respect to P converge to the moments of Z, Gaussian random

variable with zero mean and variance 1− 1/m. Let k ≥ 1 and tm := [mν ] with
ν > 2. First we have

|mtm(k)− E(Zk)| ≤ |mtm(k)− Emtm(k)|+ |Emtm(k)− E(Zk)|.

The first term tends to zero ω almost surely because of Lemma 3.2 and Borel-
Cantelli Lemma, and the second term tends to zero because of Lemma 3.1. We
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are left with the control of |mn(k)−mtm(k)| for tm < n ≤ tm+1. Let

Dm = sup
tm<n≤tm+1

|E[Zn
k
]− E[Ztm

k
]|.

We have for all tm < n ≤ tm+1

|mn(k)−mtm(k)| ≤ t−k/2
m |E[Zn

k
]− E[Ztm

k
]|+ |E[Ztm

k
]|
∣

∣

∣

∣

1

nk/2
− 1

t
k/2
m

∣

∣

∣

∣

≤ Dmt−k/2
m + |E[Ztm

k
]|
∣

∣

∣

∣

∣

1

t
k/2
m+1

− 1

t
k/2
m

∣

∣

∣

∣

∣

≤ Dmt−k/2
m + |E[(Ztm/

√
tm)k]|

∣

∣

∣

∣

∣

(

tm
tm+1

)k/2

− 1

∣

∣

∣

∣

∣

.

In the second term of the last line, the first factor converges ω-almost surely
whereas the second factor obviously tends to 0 from the definition of tm. There-
fore, we now only need to prove that the first term tends to zero ω-almost surely.
For any even integer l ≥ 2,

t−kl/2
m EDl

m ≤ t−kl/2
m

tm+1
∑

n=tm+1

E

[

|E[Zn
k − Ztm

k
]|l
]

≤ t−kl/2
m

tm+1
∑

n=tm+1

E





[

E(Zn − Ztm)(
k−1
∑

i=0

Zn
i
Ztm

k−1−i
)

]l




≤ ct−kl/2
m

tm+1
∑

n=tm+1

EE(Zn − Ztm)l
k−1
∑

i=0

Zn
il
Ztm

(k−1−i)l

≤ ct−kl/2
m

tm+1
∑

n=tm+1

(

EE(Zn − Ztm)2l
)1/2

(

k−1
∑

i=0

EEZn
2il
Ztm

2(k−1−i)l

)1/2

(3.14)

≤ ct−kl/2
m

tm+1
∑

n=tm+1

(n− tm)l/2

(

k−1
∑

i=0

niltl(k−1−i)
m

)1/2

(3.15)

≤ ct−kl/2
m

(

tm+1
∑

n=tm+1

(n− tm)l/2

)

t(k−1)(l/2)
m

≤ ct−l/2
m (tm+1 − tm)1+l/2

≤ Cmν−1−l/2.

To go from (3.14) to (3.15), we use the fact that EE[Zn
k
] ≤ Cnk/2 (Lemma

3.1) plus the fact that

EE[(Zn − Ztm)2k] ≤ C(n− tm)k,
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which comes as a slight modification of what we did in the proof of Lemma 3.1.
It is then enough to choose l > 2ν to apply Borel-Cantelli Lemma and obtain

ω almost sure convergence to zero of Dmt
−k/2
m .

3.2 Proof of Theorem 1.2

We assume S is as in Theorem 1.2. For all k ≥ 1, we denote by mn(k) the
moments

mn(k) := E[(Zn/
√

n logn)k].

The proof is very similar to the proof of Theorem 1.1. The main difference is
that the process (Zn)n≥0 doesn’t need to be recentered. As a consequence, the

Jn’s defined in Equation (2.1) will be replaced by the In’s, and the Nn(i)’s by
the Nn(i)’s.

3.2.1 Control of the moments

Lemma 3.3 (Convergence of quenched averaged moments). For all k ≥ 1,

E[mn(2k)]
n→+∞−→ σ2k(2k − 1)!! (3.16)

E[mn(2k − 1)] = 0 (3.17)

Proof. Equation (3.17) is a direct consequence of Assumption (1.1). Let k ≥ 1
and let us prove Equation (3.16). Adapting the proof of Lemma 3.1, we have:

E[mn(2k)] = EE[(Zn/
√

n logn)2k]

=
1

(n logn)k

∑

i1,...,i2k≥1

E(ωi1 . . . ωi2k)E [Nn(i1) . . . Nn(ik)]

=
1

(n logn)k

k
∑

j=1

Cn(j)

where

Cn(j) := c.f.
∑

i1,...,ij≥1
p6=q⇒ip 6=iq
l1+...+lj=2k

lj∈2N∗

[

j
∏

m=1

E[ωlm
im
]

]

E

[

j
∏

m=1

Nn(im)lm

]

For all j ≤ k − 1, we can prove as in the previous section, using Item (1) of
Proposition 2.3 that:

Cn(j) ≤ ckn
j(log n)2k−j .

Moreover,

Cn(k) = (2k − 1)!!
∑

i1,...,ik≥1
all distinct

E(ω2
i1 ) . . .E(ω

2
ik )E[Nn(i1)

2 . . . Nn(ik)
2],

17



so from Item (3) of Proposition 2.3, we get

Cn(k)

(n logn)k
→ σ2k × (2k − 1)!!, (3.18)

which concludes the proof.

Lemma 3.4 (Control of the variance of moments). We have the following:

Var[mn(2k)] = O(1/(logn)2),

Var[mn(2k + 1)] = O(1/ logn).

Proof. We only adapt the proof given in the previous section. Let us start with
the variance of even moments. Let k ≥ 1. From the proof of Lemma 3.3 we can
get on the one hand

[Emn(2k)]
2 =

(

(2k − 1)!!E[(In/(n logn))k]
)2

+O(log n/n),

and on the other hand,

E[mn(2k)
2] = Σ1(n) + Σ2(n) + Σ3(n),

where the Σi(n) (i ∈ {1, 2, 3}) are the same as those appearing in Equation
(3.7), except that the recentered local times Nn(i)’s must be replaced by the
local times Nn(i)’s, and the Jn’s by the In’s. With these modifications, the
proof of Lemma 3.2 can be reproduced, and thanks to Item (1) of Proposition
2.3, we get

Σ1(n) =
(2k − 1)!!2

(n logn)2k
(EIkn)

2 +O(logn/n).

From the same item we also have

Σ3(n) = O(log n/n).

Finally,

Σ2(n) =
1

(n logn)2k

∑

2≤p≤2k
p even

A(p)

where

A(p) ≤ ckE
⊗2
(

[I(1)n ]k−p/2[I(2)n ]k−p/2Qp
n

)

+O(n2k−1(logn)2k+1).

Using multidimensional Hölder inequality, we obtain

E⊗2
(

[I(1)n ]k−p/2[I(2)n ]k−p/2Qp
n

)

≤
[

E⊗2(I(1)n )3k−3p/2
]1/3 [

E⊗2(I(2)n )3k−3p/2
]1/3

[E⊗2Q3p
n ]1/3

≤
[

EI3k−3p/2
n

]2/3

[E⊗2Q3p
n ]1/3

≤ Cn2k(log n)2k−p from Items (1) and (4) of Proposition 2.3.
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This ends the proof for even moments.
Let us now consider the variance of odd moments. Let k ≥ 1. Again, by

adapting the proof of Lemma 3.2, we get

Var[mn(2k + 1)] =
1

(n logn)2k+1

∑

1≤p≤2k+1
p odd

A(p) +O(logn/n).

where A(p) is equal to

c.f.
∑

k1,...,kp≥1
i1,...,ik+(1−p)/2≥1
j1,...,jk+(1−p)/2≥1

alldistinct

E⊗2
[

N (1)
n (i1)

2 . . . N (1)
n (ik+(1−p)/2)

2N (2)
n (j1)

2 . . . N (2)
n (jk+(1−p)/2)

2

×N (1)
n (k1)N

(2)
n (k1) . . . N

(1)
n (kp)N

(2)
n (kp)

]

= c.f.E⊗2











∑

i≥1

N (1)
n (i)2





k+(1−p)/2



∑

i≥1

N (2)
n (i)2





k+(1−p)/2



∑

i≥1

N (1)
n (i)N (2)

n (i)





p






+O(n2k(logn)2k+2)

= c.f.E⊗2[(I(1)n )k+(1−p)/2(I(2)n )k+(1−p)/2Qp
n] +O(n2k(logn)2k+2)

We then use Hölder inequality to obtain

E⊗2
(

[I(1)n ]k+(1−p)/2[I(2)n ]k+(1−p)/2Qp
n

)

≤
[

E⊗2(I(1)n )3k+3(1−p)/2
]1/3 [

E⊗2(I(2)n )3k+3(1−p)/2
]1/3

[E⊗2Q3p
n ]1/3

≤
[

EI3k+3(1−p)/2
n

]2/3

[E⊗2Q3p
n ]1/3

≤ Cn2k+1(log n)2k+1−p from Items (1) and (4) of Proposition 2.3 ,

which ends the proof.

Let tm = [exp(m1+ν)] for some ν > 0. From Borel-Cantelli lemma, ω-
almost surely, the moments of Ztm/

√
tm log tm with respect to P converge to

the moments of Z, Gaussian random variable with zero mean and variance σ2.
Theorem 1.2 follows from the classical moment theorem.

3.3 Proof of Theorem 1.3

The random process ξ := (ξk)k≥0 defined as ξk := (ωSk+x)x∈Zd , k ≥ 0 is a

Markov chain on the state space X := (R)Z
d

with transition operator defined
for any bounded measurable function f as

Pf(ω) = E[f((ωX1+x)x∈Zd)].
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The Markov chain ξ is stationary and ergodic (from Kakutani random ergodic
theorem [25]). The stationary law µ is given by the product law of the random
variables wx, x ∈ Z

d. A direct application of the main theorem in [18] gives
us the result. Indeed, choose f as the projection on the zero component i.e.
f : X → R;ω → ω0. The random scenery being assumed centered and square
integrable, it implies that

∫

f(x)dµ(x) = 0 and f ∈ L2(µ). Then,
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2,µ

= E





(

n
∑

k=1

E[wSk
]

)2




= E











∑

x∈Zd

ωxNn(x)





2






=
∑

x,y∈Zd

E(wxwy)E
⊗2[N (1)

n (x)N (2)
n (y)]

=
∑

x∈Zd

E⊗2[N (1)
n (x)N (2)

n (x)]

= E⊗2[Qn] = O(nα)

with 0 ≤ α < 1 from Propositions 2.1 and 2.2.

4 Conclusion and further comments

As stated in the introduction, this paper is a first attempt in proving distribu-
tional limit theorems for random walk in quenched random scenery. The method
of moments we used to prove Theorems 1.1 and 1.2 requires the existence of the
moments of any order of the scenery. To relax this assumption a new approach
should be developed.
The case of the dimension one was not discussed in the paper and is far from
being trivial. We are only able to prove that if there is such a quenched limit
theorem then the limit law necessarily depends on the scenery.
Another non trivial question is to extend Theorem 1.2 in order to get a limit
theorem along the full sequence of the integers.
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(2007)

[21] Guillotin-Plantard, N., Prieur, C.: Central limit theorem for sampled sums
of dependent random variables. ESAIM Probab. Stat. 14, 299–314 (2010)

[22] Guillotin-Plantard, N., Prieur, C.: Limit theorem for random walk in
weakly dependent random scenery. Ann. Inst. Henri Poincaré Probab. Stat.
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