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Abstract In this paper, we introduce a new distribution on Z?, which can be
viewed as a natural bivariate extension of the Skellam distribution. The main
feature of this distribution a possible dependence of the univariate components,
both following univariate Skellam distributions. We explore various properties
of the distribution and investigate the estimation of the unknown parameters
via the method of moments and maximum likelihood. In the experimental
section, we illustrate our theory. First, we compare the performance of the
estimators by means of a simulation study. In the second part, we present two
applications to a real data set and show how an improved fit can be achieved
by estimating mixture distributions.

Keywords Skellam distribution - Bivariate Skellam distribution - Maximum
likelihood estimate.
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1 Introduction

In recent years, there has been a growing interest in studying bivariate discrete
random variables, in an effort to explain phenomena in various areas of appli-
cation. More specifically, bivariate discrete random variables are appropriate
for modelling paired count data exhibiting correlation. Paired count data oc-
cur in many contexts such as marketing (joint purchases of two products),
econometrics (number of voluntary and involuntary job changes), insurance
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(number of accidents in a site before and after infrastructure changes), engi-
neering (faults due to different causes), epidemiology (joint concurrence of two
different diseases), and many others.

The Bivariate Poisson Distribution (BPD), originally derived by McK-
endric (1926) as a solution to a differential equation arising in a biological
application, is probably the best known bivariate discrete distribution. For
a comprehensive treatment of the bivariate Poisson distribution and its mul-
tivariate extensions, the reader can refer to the books of Kocherlakota and
Kocherlakota (1992) and Johnson et al. (1997), and the review articles by Pa-
pageorgiou (1997) and Kocherlakota and Kocherlakota (1997). The BPD has
found many applications recently (e.g., Karlis and Ntzoufras (2003) have used
it for modelling sports data). Many other bivariate discrete distributions have
been introduced, for details we refer to Marshall and Olkin (1990), Boucher
et al. (2008), and Cheon et al. (2009). In particular, we cite the Bivariate
Negative Binomial Distribution (BNBD), which was used in insurance theory
for describing of the number of accidents in transportation, and the Bivariate
Geometric Distribution (BGD), which is considered plausible for reliability
modelling. Note that the literature on bivariate count distributions with neg-
ative correlation is limited. One of the reasons is that negative correlation
in bivariate counts occurs rather infrequently. However there are such mod-
els in the literature, as for example the bivariate Poisson-lognormal model of
Aitchinson and Ho (1989), the finite mixture model developed in Karlis and
Meligkotsidou (2007) and models based on copulas see, e.g. Nikoloulopoulos
and Karlis (2009) and the references therein.

In contrast to the well-known situation when the paired data are counts,
i.e., observed on N2, sometimes the data take values in Z2. For example, when
analysing intra-daily stock prices the changes take both positive and negative
integer values, known also as ticks (the price can go up or down on certain
predefined ranges of value). The price change is therefore characterized by dis-
crete jumps. While bivariate discrete distribution for non-negative paired data
are now abundant, to our best knowledge there is a shortage of bivariate dis-
crete distribution defined on Z2. We intend to contribute to this literature by
presenting a bivariate discrete distribution based on the Skellam distribution.

The remainder of the paper proceeds as follows. Firstly, we present the
considered bivariate Skellam distribution and investigate some of its properties
in Section 2. Section 3 describes two possible approaches for estimating the
unknown parameters efficiently. Section 4 presents results from a simulation
study and a real data set, respectively. Last, Section 5 is devoted to the proofs.

2 The BSkellam(Ag, A1, A2) distribution
Before analyzing the bivariate setting, we recall the definition of the univariate
Skellam distribution.

Definition 1 (Skellam(A\1, \2) distribution) Let A\; > 0 and Ay > 0. We
say that the random variable X has the Skellam distribution, denoted by
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Skellam(\q, A\p), if and only if
X LUy~ Uy,

where U; and Us; are two independent random variables such that U; ~
Poisson(A;) for any ¢ € {1,2}. The probability mass function of X is given
by

P(X =) = e~ Matr2) )2 i uda)® z €L
b (z + )kl '
i=max(0,—x)
The distribution of the difference between two independent Poisson random
variables was derived by Irwin (1937) for the case of equal parameters. Skellam
(1946) and Prékopa (1953) discussed the case of unequal parameters. Further
details can be found in e.g. Karlis and Ntzoufras (2008) and Al-Zaid and Omair
(2010).

Remark 1 The definition of the Skellam distribution can be extended to more
than the simple difference of two independent Poisson distributions. Indeed,
let X7 and X5 be two independent Poisson random variables with parameters
6, and 65 respectively. Let YV; = X; + W, for ¢ = 1,2, where W is a random
variable independent of X, and Xs. Thus, Z =Y, — Y5 = X; — X, also follows
a Skellam(61, 63) distribution.

Inspired by the trivariate reduction method derived by Johnson et Kotz
(1969), the purpose of this paper is to study a natural bivariate extension of the
Skellam(\q, \2) distribution, including dependence between the components.
It is described below.

Definition 2 (BSkellam(Ao, A1, A2) distribution) Let Ao > 0, Ay > 0 and
A2 > 0. We say that the bivariate random variable (X7, X2) follows a bivariate
Skellam distribution, denoted by BSkellam(Ag, A1, A2), if and only if

X ~ Skellam(A1, Ag), and Xy ~ Skellam(Az, Ag).

The probability mass function of (X7, X5) is given by

]P)(Xl = l‘l,XQ = IQ) = 67(>\1+)\2+>\0)>\T1>\§2 Z

i=max(0,—x1,—x2)

(Ao A)*
(21 + 8)!(z + )4

for all (z1,x2) € Z2.

Remark 2 Note that Z = X7 — X5 ~ Skellam(A1, A2). Hence, the probability
distribution of Z is independent of A\g. Moreover, for Ay = 0, the bivariate
Skellam distribution reduces to the product of two independent Poisson dis-
tributions.

Lemma 1 below investigates some of the basic properties of the BSkellam(Ag, A1, A2)
distribution.
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Lemma 1 Let \g >0, Ay > 0, A2 > 0 and (X1, X2) ~ BSkellam(Ao, A1, A2).
Then

— the mean of (X1, X2) is (A — Ao, A2 — Ao) and the covariance matriz equals

AL+ Ao Xo
E:

Ao A2 + Ao

— the correlation coefficient of (X1, X2) is
Ao
VO +X0) 2+ No)

Once again, one can see that A\g > 0 implies that X, and X5 are dependent
random variables.

— the characteristic function of (X1, Xs2) can be calculated as

cor(Xy, Xs) =

¢(X1,X2)(t17t2) _ 6>\1(eit1_1)6/\2(eit2_1)6>\0(e—it1—it2_1) v (tl,tg) c 72.

Remark 3 Using the characteristic function of (X1, X5) ~ BSkellam (Ao, A1, A2),
the probability mass function of (X7, X5) can be expressed by

P(Xl :.’L‘l,XQ :1]2) =

1 " " —ix —ix
(27T)2/ ¢(X1,X2)(t1at2)€ 1t1€ 2t2dt1dt2 v (.1‘1,.132) EZ2. (1)

—T —T

In particular, this yields the following equality

T pm
ity _ ity _ —ity—ity _ 1\ _: it
/ / e)\l(e 1)6)\2 (e 1)6)\0(6 1)6 ity o —iyts dtdts =
—nJ—7

—  (AoA1ho)’
(2m)2e=(Curbatdo) yo 30 §° (AoA1Ao)

m N (I,Cl,(EQ) € Z2. (2)

=0

Lemma 2 below presents a Gaussian approximation result for the BSkellam (Ao, A1, A2)
distribution.

Lemma 2 Let \g > 0, \; > Ao and Ao > Ao and suppose that Ay and Ao
are large enough. Then, the distribution of (X1, X2) can be approzimate by the
following bivarirate gaussian distribution

)\1 — )\0 /\1 — )\0 )\0
N2

)\2 — /\0 /\0 )\2 - >\O

Remark 4 Recall that the distribution of X; and X5 can be approximated by
a Gaussian distribution for large values of A1 + Ag and Ay + Ao, respectively.
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3 Parameter estimation

This section is devoted to the estimation of the parameters of a BSkellam(Ag, A1, A2)
distribution via the method of moments and the method of the maximum like-
lihood, respectively. Let A\g > 0, A; > 0, and Ay > 0 be unknown parameters
and (X1,1,X21),...,(X1,n,X2n) be n iid. bivariate random variables with

the common distribution BSkellam(Ag, A1, A2).

3.1 The method of moments

Set, for any j € {1, 2},

_ 1 & 1 _ _
X, = p ;Xj,,», and Cy o = | ;(Xl,i - X1)(X2,; — Xo).
In view of Lemma 1, the method of moment provides
— the estimator ;\0 = (2 for Ag,

— the estimator

for \;, j € {1,2}.

Remark 5 Thanks to the strong law of large numbers, note that ;\j converge
a.s. to \; for j € {0,1,2}.

Remark 6 The moment estimates of Ay do not exist if C; 2 < 0. To solve this
problem, a modification is done such that the negative estimate of Ay is set to
zero and the other estimate is set to equal the absolute value of the respective
sample mean.

3.2 Maximum likelihood estimation

For any z = (z,y) € Z? and A = (X, A1, A2) € [0,00[3, set

oo

Ao Az)!
G\ z) =X > (xif),(yi)w

i=max(0,—z,—y)

Lemma 3 For any (z,y) € Z* holds

0G(\,z) = Ao

el 2 — 1 1
. A1G(>\,z)+ /\1G(>\, (xz+1,y+1)),

OG(\, z) Y

Ao
otNz) Y 20 Ly+1
e )\2G()\,z)+ G\ (z+ 1,y + 1)),

and
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For any i € {1,...,
A= (Ao, A1, A2) € [0,00[*
LA z2) =

i=1

n}, set z; = (w1,4,20,) € Z2, z = (21,...
. Then, the likelihood function is given by

H]P)(Xl = Il,iaX2 = 332,1‘) =€

’ Zn)a and

,n()\0+)\1+/\2) H G(}\7 Z’L)

i=1

Therefore, the j-th partial derivative of the log—likelihood function equals

OlnL(\z)
N,

n 9G\zi)

O\

7=

for any j € {0,1,2}. From Lemma 3 follows

Oln L()\ ) G()\7 zi +1)
0\ - + A le ' G\, z)
OlnL(\,z) Ao G(A, zl+1
9o Zx?’ Z GOnz)
and
OlnL(\z)

G\ 2z +1)
a>\0 z; )\ Zl '

Let Z; = (X34, Xa,) for any i € {1,...,n}. The maximum likelihood estimate

A= (;\0, A, 5\2) satisfies

1 & Ao o= G\, Z; + 1)
A 2% Alz G\ Zy)

1 =1 i=1

)

1 & Ao = G\, Zi +1
0:—n+TZX271+TOZg
A i G(AZy)

2i1

)\Z+1
+Z oz

i=1

; (3)

Therefore, >, G\, Z; + 1)/G(5\, Z;) = n and, a fortiori,
5\1 :Yl +5\0, 5\2 :Y2+5\0. (4)

Substituting (4) into the last equation of the system of equations (3), we
obtain the following equation for \y:

z": X1+A0,X2+AO,AO) Z; +1)
Pl G((X1 + Ao, X2 + Ao, Xo), Zi)
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Then, \; and )y follow directly from Ao and (4), and the maximum likelihood
estimates \ are complete. Nevertheless, for practical purposes a direct numer-
ical maximization of expression 1 and 2, respectively, is also a straightforward
approach, and applied in the what follows.

Remark 7 The maximum likelihood estimator A is asymptotically normally
distributed N3(\,I71(\)), where I()) is the Fisher information matrix with
entries

O = OIn LA, (X1, X)) L
I ;(\)=-E ( 10N with (i, 7) € {1,2,3}.

Traditionally, this matrix can be estimated by I (5\), which allows the construc-
tions of confidence intervals or hypothesis tests.

3.3 Extensions of the bivariate Skellam

Having only three parameters, the bivariate Skellam distribution is a rather
parsimonious distribution for bivariate data. However, along with the parsi-
mony naturally come certain drawbacks. For example, mean and skewness of
the marginal distributions have identical sign, and the standard deviation de-
pends on the same parameters as the mean. In order to increase the flexibility
of the bivariate Skellam, we propose two extensions: Firstly, the inclusion of a
shift parameter and, secondly, mixtures of bivariate Skellam distributions.

Shifted BSkellam distribution. The inclusion of a shift parameter k = (k1, ko)
in the bivariate Skellam is straightforward. Then, we obtain a new bivariate
random variable (X7, Xo.) = (X1 + k1, X2 + ko) with probability mass

P(X1x =21, Xow = 22) =P(X1 =21 — k1, Xo = 22 — k)

where (X7, X2) ~ BSkellam(Ag, A1, A2).
Basic properties of this distribution are (E(Xi.),E(X2.)) = (E(X;) +
k1, E(Xax) + k2) = (M — Ao + k1, A2 — Ao + k2), and the covariance matrix
identical to that of (X1, Xa2).

Mixzture of BSkellam distributions. Distributions based on the mixture of sev-
eral bivariate Skellam distributions can be characterized by the probability
mass

M
P(X1e =21, X20 = 22) = Z PP (Xim = 21, Xom = 22),

m=1

where E%Zl Pm =1, pm > 0 and (X1, Xam) ~ BSkellam (Ao, A1m, A2m)
for all m € {1,..., M}. Let us observe that, for all ¢ € Z, we have

P(Xie =) me (X1m = 1) and P(Xae = 19) me (Xom =1).
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It follows that

M
(E(X10), E(X24)) = (D Pn(Aim = Aom),

m=1

Pm ()\Qm - )\Om))v

M=
1=

cov(Xie, Xoe) = P (Aom + (A1m — Aom) (A2m — Aom)) —

m=1

M
Z pm()\lm - )\Om) pm(/\2m - /\Om)a
m=1

1=

M M 2
V(Xlo) = Z pm(>\1m + AOm + (Alm - AOm)z) - <Z pm()\lm - AOm)) )
m=1 m=1

and

M M 2
V(XQ-) = Z pm()\Qm + /\Om + ()\2m - /\Om)2) - <Z pm(>\2m - >\Om)> .

m=1 m=1

Moments of higher order for this distribution cannot be derived easily, and
may thus be approximated by Monte Carlo methods for practical applica-
tions.

Naturally, both extensions can also be combined by mixtures of shifted bi-
variate Skellam distributions. Parameter estimation for a shifted BSkellam dis-
tribution, a mixture of BSkellam distributions, and mixtures of shifted BSkel-
lam distribution may be carried out by numerical maximization of the log
likelihood. However, it may be noted that this procedure can become compu-
tationally demanding, because it requires optimization over a set of parameters
with continuous and discrete-values entries.

4 Applications

In this application section, we present a Monte Carlo study in the next Section
4.1, followed by an application to real data in Section 4.2 and 4.3.

4.1 Monte Carlo study

In this section we briefly demonstrate some properties of the bivariate Skel-
lam distribution and the parameter estimation procedures. More precisely, we
consider two settings (termed Setting 1 and 2 in the following), dealing with
a bivariate Skellam distribution with parameters (Ao, A1, A2) = (4,2,3) and
(Mo, A1, A2) = (4,35,40), respectively. Figure 1 shows random samples with
500 observations each from Setting 1 in the left and Setting 2 in the right
panel. The two settings are subject to different correlation, which equals 0.617
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and 0.0966, respectively. For the two samples displayed, the estimated corre-
lation equal 0.628 (p < 2.2e-16) and 0.0975 (p = 0.0292), respectively.

In a first Monte Carlo experiment, we investigate the departure from nor-
mality in the two settings. For this purpose, we generated 1000 samples having
1000 observations for each of the settings and performed the Shapiro-Wilk test
for multivariate normality. In Setting 1, having comparably small values of \;,
1 = 1,2, 3, normality is rejected at 5%-level for 87.2% of the samples. However,
the corresponding proportion in the second setting reduces to 30.1%. This in-
dicates that the the bivariate Skellam can be approximated by a Gaussian
distribution for large values of \;, ¢ = 1,2,3, which supports the results of
Lemma 2.

In a second Monte Carlo experiment, we investigate the properties of the
method of moments and maximum likelihood estimators. To this end, the
two parameter sets described above were used for generating 1000 samples
of observations of size n = 50, 100, and 200, respectively. Subsequently, the
parameters were estimated by the method of moments and by maximization
of the likelihood. Figure 2 shows Box plots of the estimated parameters. The
method of moments estimates have white background and the boxes corre-
sponding to the maximum likelihood estimator are coloured grey. The dashed
black lines represent the true parameter values. Several phenomena are visible:
First, both estimators seem to be consistent. Second, both estimators seem un-
biased. Third, the maximum likelihood estimator has a lower variability than
the method of moments estimator. Finally, it may be noted that normality of
the estimators cannot be rejected for the large majority of samples at 5%-level
(30 of 36, Shapiro-Wilk).

4.2 Soccer results

The data analyzed in this section are soccer results from the qualifications
matches to the soccer world championship 2014 that took place in June and
September 2012. The data are available for download on the FIFA web site
(http://www fifa.com/worldcup/preliminaries/matches/date=092012.html).
More precisely, we consider the difference of goals scored by the home and
the guest team during the first and second half, respectively, of the match.
Figure 3 shows the 239 observations. The average difference in the first half
equals 0.155 (s.d.: 1.19) and 0.172 (s.d: 1.54) in the second half. Moreover, the
estimated correlation of the differences calculated from the first and second
half takes the value 0.412 (p < 0.001). This indicates that an independent
modelling of the variables would not be appropriate.

We fitted four different models to the data: first, a bivariate Skellam and
a shifted bivariate Skellam distribution. Secondly, mixtures of bivariate Skel-
lam and shifted bivariate Skellam distributions. These four models are denoted
BSk, sBSk, mix-BSk, and mix-sBSk, respectively, in the following. The param-
eters of all models were estimated by maximization of the log-likelhood. Table
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1 displays the maximized values of the log-likelihood and the model selection
criteria AIC and BIC. Both mixture models have two components, because
models with a higher number of components are rejected by both selection
criteria.

The AIC shows a preference for the mix-sBSk, while the BIC prefers the
more parsimonious mix-BSk without shift. The estimated parameters of the
mix-BSk take the values

(o1 A1, Agr) = (0.383,0.561,0.955),
(Aozs A1z, Aaz) = (2.190,2.300, 1.490),
(p1,p2) = (0.685,0.315),

and the respective estimates for mix-sBSk equal

(5\017 5\117 5\21
(5‘027 5\127 5\22

) = (0.272,0.463,0.836),

)
(P1,P2)

)

)

(

(1.000, 1.120, 2.780),
(0.503, 0.497),
(
(

(]%11; ]%21
(];12; ];322

0,-2),
0,0).

The simpler models with only one component are less favoured, which is
underlined by the statistics presented in Table 2. This table shows the first
three moments of the marginal distributions and the correlation for both the
sample data and the estimated models.

The marginal means reproduced well by all models. As to standard devia-
tion, skewness and correlation values, the mixture models show their superior-
ity to the simpler models with only one component. Each of the two mixture
models has its small advantages and disadvantages: While the model without
shift comes closer to the correlation and skewness values of the data, the model
incorporation a shift better captures the standard deviation of the sample.

The better fit of the mixture models also becomes visible in Figure 4,
which shows histograms of the marginal distribution of the data with the four
fitted models. From a contextual point of view, the application of a mixture
model may be motivated by the comparably large heterogeneity of the matches
carried out for a the qualification of the soccer world championship. For ex-
ample, matches of more or less equally strong teams can be expected to have
a distribution different to that of a matches of teams with large performance
differences. However, further investigation of such hypothesis goes beyond the
scope of this paper.

4.3 Analysis of EURO-Bund and Schatz future

In this section, we analyze data from the EURO-Bund and Schatz future, re-
spectively, recorded on November 29** 2011. The maturity of both futures was
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December 2011, and the smallest possible price change (tick) equals 0.01 and
0.005 for Bund and Schatz future, respectively. Prices of the two futures are
recorded for intervals of two minute length, where the last trade in each inter-
val determines the corresponding price. If no trades took place in an interval,
the price was supposed to be unchanged. In order to avoid non-representative
outliers, we restrict our observation period to the main trading hours from
9h15 to 17h15, resulting in 240 observations. During this period, the Bund fu-
ture dropped slightly from 134.28 to 133.4, whereas the Schatz future remained
almost unchanged (109.98 vs. 109.985). Figure 5 displays the price changes of
the two futures in ticks, as well as their sample ACF, cross-correlation func-
tion, and a bivariate scatter plot. The two data series are time series, however,
neither the ACF nor the cross-correlation function indicate the presence of any
temporally lagged dependencies. Nevertheless, the two series are correlated at
lag zero, the estimated correlation equals 0.664 (p < 0.001).

As in the previous sections, we fitted different models to the data. Here, we
restrict ourselves to the simple bivariate Skellam (BSk) model and mixtures
of bivariate Skellam distributions (mix-BSk), because preliminary analyses
showed that a substantial increase in the log-likelihood could be easily achieved
by increasing the number of mixture components, whereas shifted distributions
only had a comparably small effect. Table 3 displays the maximized values of
the log-likelihood and the model selection criteria AIC and BIC. Both AIC an
BIC prefer the mixture model with 4 states.

The better fit of the mixture models also becomes visible in Figure 6, which
shows histograms of the marginal distribution of the data with the two fitted
models. The simple BSk fails to reproduce in particular the marginal of the
Schatz future, for which the mix-BSk provides a more satisfactory image.

The estimated parameters of BSk take the values

(Mo, A1, A2) = (6.051,5.672,6.051),

and the respective estimates for mix-BSk equal
(Mo Aa1) = (0.570,1.375,0.651),
(} A22) = (3.042,0.000,2.657),
(Mo3» A1z, Aez) = (0.000,5.873,1.300

(Aoa» Aa, 5\ 24) = (
(P1, P2, P3,Da) = (

)s
7.406, 0.000, 6.106),
0.410, 0.283,0.183,0.125).

5 Proofs

Proof of Lemma 1.
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— For any i € {1,2}, we have E(X;) = A\; — Ao and V(X;) = \; + \g. We have
Cou (X1, X2) = Ag. From these equalities follows the covariance matrix X.

— Using the first point, we obtain cor(X1, X2) = Cp, (X1, X2)//V(X1)V(X3) =

Ao/ (A1 + Ao) (A2 + o).

For any (t1,t2) € Z?2, the characteristic function of (X7, X3) is,

B (11, 12) = B XH05) = (Va0 itV

= (e iUzttt t)loy — ¢ (1)) gy, (t2)duy, (—t1 — t2)
_ eAl(eitl71)6/\2(67‘1271)e>\0(e—it1—it271)'

This ends the proof of Lemma 1.
|
Proof of Lemma 2. Set Wy = 1/(A; —Ao) X1 and Wy = 1/(A2—Ag) X3 For
Ao and A; large enough, using the third point of Lemma 1 and e” ¥ l+z+22/2
follows
by wo) (1, t2) = xy x5y (T1/ (A1 — Ao), t2/ (A2 — o))
_ MR 1) a2/ B2 R0 11y g (et /A mita /(e —ho) )
~ 6)\1(itl/(Al—Ao)—(l/Q)tf/(M—)\0)2)6)\2(it2/()\2—>\0)—(1/2)t§/(>\2—)\0)2)
eMo(=it1/(A1=Xo)=it2/(A2—=X0)=(1/2)(t1/(A1=X0)+t2/(A2=20))?)
— it gita o= (1/2)(t1/(A1=20))+13/(A2=X0)+2t1t2 /(A1 =X0) (A2~ o))

for any (t1,t2) € Z2. The last term is the characteristic function of a bivariate
random variable

78 (1) G S 3eia =0 im0 ™™))-

Therefore (W7, W) can be approximated by this distribution and, a fortiori,

>\1on )\17)\0 )\0
X1, X5) = N , .
(K, Xz) 2<<)\2—)\0> ( Ao &—m))

Lemma 2 is proved.

Proof of Lemma 3. For any (x,%y) € Z? holds

G\, z) _ )\gf}\gi (AoALAg)!
(

N z+0)l(y + )l

=0
=X A2§($+i)!(y+i)!i!+)\1)\2;Z(x+i)!(y+i)!i[
(AoA2)" 1A
(z+i+ Dy +i+1)k!

o0

= GO FAN Y
L i=0

A
= 20 2) + 2G4+ 1,y +1)).
A A
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The other equalities can be proved similarly, and the proof of Lemma 3 is
complete.
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Fig. 1 Two samples with 500 observations each, generated from a bivariate Skellam distri-
bution with true parameters (Ao, A1, A2) = (4,2,3) and (Ao, A1, A2) = (4,35,40) in the left
(respectively right) panel. To improve the visualization, Gaussian jitter was added to the

observations.
Ao A A2
@ — : © — : ' 0O M.M. est.
~7 . 1 o- i B MLest
©o— ! + . < 3 4+ . ‘ 4 .
— — ! + L, : i i ' 4+
o L P~ . i 4 . ~ o Lo '
= ‘ 1 L Bl | o | e L -
R e R I e e =ra e =
I b L - Lo L N e e '
P 4 : ! + P +
~ - She I - : +
4 ' + o+
T T T T T T T T T
n=50 100 200 50 100 200 50 100 200
Ao M o A
&4 g+ i

A S : b+ i g ! i .

' ! . + ' ' . i ' . +
T IS B I Poid T
: HEHebs | HeEEsas sHeHs e
goq—+~ T~ 84— L T+ 1+ — 1 T L
& ; i " ! i E g i v

o ' ! ' 1 ; i
T+ &4+ . - :
. o _| -
o N
N S
! T T T T T T T T T
n=50 100 200 50 100 200 50 100 200
Fig. 2 Parameter estimates from 100 from simulated sequences of length n = 50, 100,

and 200. The upper three panels were simulated from a bivariate Skellam with parameters
(Aos A1, A2) = (4,2,3), the lower three panels result from the parameters (Mo, A1, A2) =
(4, 35,40) in the left and right panel, respectively. Box plots corresponding to the method of
moments (M.M.) and maximum likelihood (M.L.) estimator have white (respectively grey)
background. The dashed black lines represent the true parameter values.
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Fig. 3 Goal difference between home and guest team at half-time and at the end of the
match. For improved visualization, Gaussian jitter was added to the observations.
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Table 1 Model selection

T T T T
-2 0 2 4
Goal difference 1st half

This table shows log-likelihood, AIC, and BIC values for the four estimated models.

BSk

sBSk mix-BSk  mix-sBSk

logL
AIC
BIC

-814
1634
1645

-802 -794
1614 1600
1632 1621

=787
1595
1630

Table 2 Moments and correlation

This table summarizes the first three moments of the marginal distributions and the corre-

lation of the data and models.

Mean S.d. Skew. Corr.
Data 0.155 0.172 1.19 1.54 0.00101  -0.439 0.412
BSk 0.155 0.172 2.1 212 0.0507 0.0555 0.461
sBSk 0.155 0.172 149 2.51 0.0845 0.292 0.346
mix-BSk 0.155 0.172 143 1.56 -0.00228 -0.503 0.434
mix-sBSk  0.155 0.172 1.19 1.61 0.0422  -0.102 0.338

Table 3 Model selection

This table shows log-likelihood, AIC, and BIC values for the four estimated models.

no. states 1 2 3 4 5
logL -1075 -1149 -1096 -1075 -1073
AIC 2173 2310 2211 2173 2176
BIC 2215 2331 2242 2215 2228
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Fig. 4 Histogram of the marginal distributions with fitted models.
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Fig. 5 Price changes of Bund and Schatz future in the top panels. The middle panels show
the sample ACF of the two data series. The lower two panels show a bivariate scatter plot
of the data and the empirical cross-correlation. For improved visualization, Gaussian jitter
was added to the observations in the scatter plot.
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Fig. 6 Histogram of the marginal distributions with fitted models.
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