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Abstract

We consider the limit of some barotropic compressible fluid model with Korteweg forcing term, studied
in [1], as the exponent of the barotropic law goes to infinity. This provides a free boundary problem model,
with capillary effects, and therefore generalizes the free boundary model obtained by Lions and Masmoudi
[5]. Our interest for such free boundary problem stems from a study of the Leidenfrost effect.
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1 Introduction

1.1 The physical motivations
In this article, we focus on the dynamic behavior of a fluid submitted to an evaporation process. In particular,
this study is motivated by the understanding of the Leidenfrost effect. This effect is observed, for example, for
droplets of fluid set on heated support whose temperature is much higher than the evaporation temperature
of the fluid. Many applications could be cited, from the optimization of lab-on-chip to the understanding of
heating transfers default in nuclear plants.
This modeling problem is rather difficult to address mathematically in its full complexity. In this article, we
present a first step toward the comprehension of the full mechanism, where we removed all thermals effects. In
this study, the simplified model will give, as described below, asymptotically a complete isothermal Leidenfrost
model.

1.1.1 The Leidenfrost phenomenon

The Leidenfrost effect can be observed in the behavior of a droplet of water set on a heating support. If the
support temperature is sufficiently high (typically 200 Celsius degrees), the droplet will slide on the support
much more rapidly and longer than in the case of a drop on a less heated supports. This mechanism is very
important and is the key of several phenomenas, in particular, it can be observed in cooling circuit of nuclear
plants. Typically, we consider the case of a droplet of fluid separated from an heated support by a thin film of
vapor. Several modeling milestones can be cited

• management of the fluid state transition at the interface,

• understanding of the interface evolution submitted to evaporation,
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• choice of the fluid models in the gas and in the liquid phase.

In [3], a model is proposed and numerical simulations via a level-set method are exposed. The main choices are

• fluid and vapor are incompressible,

• the interface is a thin zone of compressible melting of fluid and vapor,
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FIGURE 1: Leindenfrost effect.

This system, temperature dependent, models the phase transition under heat constraint via a relaxed diver-
gence in the compressible zone (the limit case is given by a divergence whose support is the interface between
gaz and fluid).
The size of the interface asymptotically has to vanish in order to obtain a Leidenfrost model. However we
developed a numerical scheme based on the level-set method to the non sharp interface model. The model will
induce very rich partial differential equations whose theoretical study is not directly reachable. In order to begin
to understand the theoretical trends of the problem, we introduce a simplified model.

1.1.2 A simplified model of droplet

In this simplified model, only two species are considered (against three for the Leidenfrost relaxed system). Fur-
thermore, the model does not take into consideration the temperature variations, in particular, the compressible
zone does not manage the phase transition between liquid and gaz.
The two species are an incompressible fluid and a compressible one. Using ideas introduced by Lions and Mas-
moudi [5], we prove existence of a solution to this model as a limit of a subsequence of solutions of a compressible
Navier-Stokes-Korteweg equation which was studied by Bresch, Desjardins and Lin [1].

1.2 Goals of the study
1.2.1 The Lions and Masmoudi free boundary problem

In [5], the authors studied in a very interesting way the existence of solutions for a free boundary problem
between a compressible fluid and an incompressible one. The idea of the proof is to consider a barotropic
compressible model and to pass to the limit when the pressure law exponent goes to infinity. If one chooses a
suitable initial density, it is possible to obtain a compressible/incompressible coupling.

Let us recall more precisely this result. Let T > 0 and Ω = T3 be the torus in R3. We consider a source
term f ∈ L1(0, T ;L2(Ω)) and an intial density such that

ρ0
n ∈ L1(Ω), 0 ≤ ρ0

n ≤ 1,

∫
− ρ0

n ≤M < 1.
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Let m0
n ∈ L2(Ω), and assume that (ρ0

n,m
0
n) converges in some suitable space to some (ρ0,m0). For γn large

enough, there exists (ρn, un) solution of the compressible Navier-Stokes problem:

∂tρn + div(ρnun) = 0 in Ω× (0, T ) (1)
∂t(ρnun) + div(ρnun ⊗ un)− ν∆un +∇ργnn = ρnf in Ω× (0, T ) (2)

ρn = ρ0
n, ρnun = m0

n in Ω× {0} (3)

Lions and Masmoudi proved the convergence, when γn →∞ of (at least a subsequence of) (ρn, un) to a solution
of the following free-boundary problem:

Find (ρ, u,Π) solution of

∂tρ+ div(ρu) = 0 in Ω× (0, T ) (4)
0 ≤ ρ ≤ 1 in Ω× (0, T ) (5)
∂t(ρu) + div(ρu⊗ u)− ν∆u+∇Π = ρf in Ω× (0, T ) (6)
div u = 0 a. e. in {ρ = 1} (7)
Π = 0 a. e. in {ρ < 1} (8)
Π ≥ 0 a. e. in {ρ = 1} (9)

ρ = ρ0, ρu = m0 in Ω× {0} (10)

The compressible part of the model is obtained with a zero pressure law. More general pressure law in the
approximating compressible model could converge to a more general pressure law at the limit, but we will not
study this generalization in the present work. Let us recall which weak meaning of solutions is understood in
the above problem statement:

• Regularity of solutions: the following regularity was obtained for the above problem. ∀p ∈ [1,+∞),

ρ ∈ L∞(0, T ;L∞(Ω)) ∩ C(0, T ;Lp(Ω)), ∇u ∈ L2(0, T ;L2(Ω)), u ∈ L2(0, T ;H1(Ω)), Π ∈M(0, T ;L1(Ω))

• Initial conditions: ρu(0) = m0 ∈ L2(Ω) and ρ(0) = ρ0 ∈ L1(Ω), 0 ≤ ρ0 ≤ 1 and
∫
− ρ0 < 1.

• Equation (4) is considered to hold almost everywhere.

• Condition (6) and equations (3-4) are compatible from the following:

Proposition 1 ([5], Lemma 2.1) Let u ∈ L2(0, T ;H1(Ω)) and ρ ∈ L2(Ω × (0, T )) such that ∂tρ +
div(ρu) = 0 and ρ(0) = ρ0. Then the following two assertions are equivalent:

1. div u = 0 on ρ ≥ 1 and 0 ≤ ρ0 ≤ 1,

2. 0 ≤ ρ ≤ 1.

• Next, equations (3) and (5) are considered in the distributional sense.

• At last, the condition (7) and (8) are rewritten as

ρΠ = Π ≥ 0

where the product ρ times Π was given a meaning using the regularity results.
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1.2.2 The Korteweg case: what we study

We are aiming at generalizing this existence result and limiting process to the case where the source term is
a Korteweg type term, and the viscosity is proportional to density. This is of interest for our study since this
would take into account the capillary energy on the interface between vapor and liquid.

We consider the following free-boundary problem: find (ρ, u) solution of

∂tρ+ div(ρu) = 0 in Ω× (0, T ) (11)
0 ≤ ρ ≤ 1 in Ω× (0, T ) (12)
∂t(ρu) + div(ρu⊗ u)− ν div(ρD(u)) +∇Π = κρ∇(∆ρ) in Ω× (0, T ) (13)
div u = 0 a. e. in {ρ = 1} (14)
Π = 0 a. e. in {ρ < 1} (15)
Π ≥ 0 a. e. in {ρ = 1} (16)

ρ = ρ0, ρu = m0 in Ω× {0} (17)

where κ and ν are positive constants. This problem will be shown to be the limit, when γn →∞ of a compressible
Korteweg model studied by Bresch, Desjardins and Lin [1], in its weak formulation: see Theorem 1, section 2.2.

2 From a compressible Korteweg-Navier-Stokes problem to the free
boundary problem

2.1 A Korteweg barotropic Navier-Stokes model from Bresch, Desjardins and Lin
Let us recall the existence result obtained in [1]. Let P a pressure law such that P (s) ≥ 0, P ′(s) ≥ 0. Let

Ξ(s) =

∫ s

0

τP ′(τ)dτ, Π(s) = s

∫ s

0

P (τ)

τ2
dτ.

Assume there exists A > 0, η < +∞ when d = 2 (resp. η < 4 when d = 3) such that for s large enough,

Ξ(s) ≤ AsηΠ(s). (18)

Let m0 ∈ L2(Ω) and ρ0 ∈ L1(Ω) verifying suitable energy estimates. Then there exists a global weak solution
of

∂tρ+ div(ρu) = 0 in Ω× (0, T ) (19)
∂t(ρu) + div(ρu⊗ u)− ν div(ρD(u)) +∇P (ρ) = κρ∇(∆ρ) in Ω× (0, T ) (20)

ρ = ρ0, ρu = m0 in Ω× {0} (21)

The existence of solutions of compressible Navier-Stokes equations with Korteweg term is obtained for this
particular form of the viscous stress tensor, i.e. with a viscosity coefficient proportional to the density. As we
got interested into a free boundary problem for fluids with surface tension (in relation with a phase change
problem we are investigating), the fact that this viscosity coefficient vanishes in the void regions was relevant
for our application. Due to this particular form, however, the notion of solution developed by Lions [4] has to
be modified. The weak formulation indeed incorporates the density as a weight function, as test functions are
now of the form ρφ.

We now consider the case where Pn(s) = sγn , with γn > 0. Therefore the function Ξn is given by

Ξn(s) =
γn

γn + 1
sγn+1.

We take the initial density ρ0
n ≥ 0 a.e. and bounded in L1(Ω) and such that

ρ0
n ∈ Lγn(Ω), ∃C > 0,

∫
(ρ0
n)γndx ≤ Cγn.
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and ∫
− ρ0

n = Mn for some Mn such that 0 < Mn ≤M < 1, and Mn →M.

The initial momentum m0
n ∈ L

2γn
γn+1 (Ω), and set u0

n =
m0
n

ρ0n
on {ρ0

n > 0}, and zero elsewhere. This initial velocity
is assumed to be such that ρ0

n|u0
n|2 is bounded in L1(Ω). The initial conditions are

ρnun(0) = m0
n, ρn(0) = ρ0

n (22)

and we assume that ρ0
nu

0
n converges weakly in L2(Ω) to some m0 and ρ0

n weakly in L1(Ω) to some ρ0. Moreover,
the following uniform (in n) energy estimates are assumed on ρ0

n and u0
n:

∃C > 0,∀n,
∫

Ω

κ
|∇ρ0

n|2

2
+ Π(ρ0

n) + ρ0
n

|u0
n|2

2
dx ≤ C,

∫
Ω

|∇
√
ρ0
n|2dx ≤ C. (23)

From [1] the existence of (ρn, un) verifying (22-23) and

∂tρn + div(ρnun) = 0 in Ω× (0, T ) (24)
∂t(ρnun) + div(ρnun ⊗ un)− ν div(ρnD(un)) +∇ργnn = κρn∇(∆ρn) in Ω× (0, T ) (25)

is proved, for any γn > 0. The following notion of solution was introduced: (ρn, un) is solution to the compress-
ible Navier Stokes with Korteweg term provided that the following regularity holds,

ρn ∈ L2(0, T ;H2(Ω)), ∇ρn and ∇√ρn ∈ L∞(0, T ;L2(Ω)d),
√
ρnun ∈ L∞(0, T ;L2(Ω)d),

√
ρnD(un) ∈ L2(0, T ;L2(Ω)d×d)

and the following equations are fulfilled:

∂tρn + div(ρnun) = 0 in D((0, T )× Ω), ρn(0, ·) = ρ0
n in D′(Ω) (26)

and for all v ∈ C∞([0, T ]× Ω)d with v(T, ·) = 0, there holds

∫
Ω

ρ0
nu

0
n · ρ0

nv(0, ·) +

∫ T

0

∫
Ω

(ρ2
nun · ∂tv + (ρnun ⊗ ρnun) : D(v)

− ρ2
n(un · v) div un − νρnD(un) : ρnD(v)− νρnD(un) : (v ⊗∇ρn)

+ Ξn(ρn) div v − κρ2
n∆ρn div v − 2κρn(v · ∇ρn)∆ρn)dxdt = 0. (27)

What we aim to do is to prove compactness as γn → +∞ of this sequence of solutions, in order to recover
a free boundary problem with Korteweg source term.

Remark 1 The Korteweg term brings H2 space-regularity thanks to the density dependence of viscosity. But
the latter kills the space regularity of u for vanishing ρ. A special notion of weak solution was therefore necessary.

2.2 The limit problem: a Korteweg free boundary problem in weak formulation
In the remaining of this article, we will prove and comment the following compactness result:

Theorem 1 At least a subsequence of (ρn, un,Ξn(ρn)) converges toward (ρ, u,Ξ), such that

ρ ∈ L2(0, T ;H2(Ω)) ∩ L∞(0, T ;H1(Ω)), ∇ρ and ∇√ρ ∈ L∞(0, T ;L2(Ω)d),
√
ρu ∈ L∞(0, T ;L2(Ω)d),

√
ρD(u) ∈ L2(0, T ;L2(Ω)d×d), Ξ ∈M((0, T )× Ω),
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verifying the following weak formulation of (11-17):

∂tρ+ div(ρu) = 0, in D′((0, T )× Ω), with ρ(x, 0) = ρ0 ∈ D′(Ω),

and for all φ ∈ C∞((0, T )× Ω)d such that φ(·, T ) = 0, one has:∫
Ω

ρ0u0 · ρ0φ(·, 0)dx+

∫ T

0

∫
Ω

[
ρ2u · ∂tφ+ ρu⊗ ρu : D(φ)

− ρ2(u · φ) div u− νρD(u) : ρD(φ)− νρD(u) : φ⊗∇ρ
+Ξ div φ− κρ2∆ρdiv φ− 2κρ(φ · ∇ρ)∆ρ

]
dxdt = 0 (28)

Moreover, there holds 0 ≤ ρ ≤ 1 and ρΞ = Ξ ≥ 0 a.e.

Remark 2 This model therefore corresponds to the interaction of an incompressible fluid with a compressible
pressureless fluid with possibly void areas. The incompressible fluid is located on {ρ = 1}, the function Ξ being
determined by incompressibility condition. Note that Ξ physically represents the product of the density times a
pressure. The latter seems not defined as such in this model. However remark that the identity ρΞ = Ξ means
that Ξ itself can be thought as a pressure, and for ρ > 0 we formally recover (11-17). The compressible fluid
is located elsewhere (0 ≤ ρ < 1), where ρΞ = Ξ means that the Ξ is zero. The model therefore provides no
information on the velocity in the void area {ρ = 0}.

Remark 3 Let us explain why we considered this limit model by a formal argument. The pressure term before
the passing to the limit is Pn(ρ) = ργn . One has∫

Ξn(ρn) div(φ) = −
∫
∇Ξn(ρn) · φ = −

∫
ρnP

′
n(ρn)∇ρn · φ

= −
∫
ρn∇Pn(ρn) · φ =

∫
Pn(ρn) div(ρnφ)→

∫
Π div(ρφ) =

∫
ρΠ div(φ) + Π∇ρ · φ

Since Π 6= 0 only when ρ = 1, Π∇ρ is formally taken to be zero. Therefore a first guess would have been to write
ρΠ instead of Ξ in the above formulation. However, we were unable to prove that (a subsequence of) Ξn(ρn)
converges toward ρΠ. In contrast, we were able to prove that Ξn(ρn) converges, and that ρnΞn(ρn) converges to
the same limit.

Some remarks are in order for the energy estimates and limiting process:

• We start from the weak formulation of [1] and then pass to the limit on the exponent of pressure law. The
proof of compactness used in [1] was valid for a fixed exponent in the pressure law and pressure estimate
is of course not uniform with respect to that exponent.

• Hopefully, estimates on (ρn, un) from [1] do not make use of pressure induced bounds which permits to
re-use them.

• We adapt the steps from [5] to our setting. The first step amounts to prove that the limit density remains
between 0 and 1, and to control the regions where ρn exceeds 1, as n→ +∞.

• In step 2 one seeks an extra integrability (uniform in γn) for the pressure term. The presence of Korteweg
term brings space regularity, and therefore compactness, but the presence of a viscosity coefficient propor-
tional to the density introduces difficulties to control the velocity. Therefore the special weak form (28)
of [1] has to be used.

• The last step is the passing to the limit in this weak formulation.

• For now on, we consider the case f = 0 for simplicity. Extension to e.g. f ∈ L1(0, T ;L2(Ω)) is indeed
straightforward.
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2.3 Energy estimates
The sequence of functions (Ξn(ρn)), does verify assumptions (18) but not uniformly in n when γn → +∞.
This estimate was used in [1] in order to obtain uniform integrability on the pressure. This means that we will
have to use techniques from [5] to gain this extra uniform integrability of ρn, which are is given directly by the
estimates. On another hand, some estimates of [1] are indeed uniform in n, as far as the condition (18) on the
pressure law is not involved:

‖∇ρn‖L∞(0,T ;L2(Ω)d) ≤ C, ‖∇√ρn‖L∞(0,T ;L2(Ω)d) ≤ C, (29)

‖ρn‖L∞(0,T ;H1(Ω)) ≤ C, ‖ρn‖L2(0,T ;H2(Ω)) ≤ C, (30)

‖√ρnD(un)‖L2(0,T ;L2(Ω)d×d) ≤ C, ‖D(ρn
3
2un)‖

L2(0,T ;L
3
2 (Ω)d×d)

≤ C, (31)

‖ρn
3
2un‖L2(0,T ;L3(Ω)d) ≤ C (n ≤ 3), ‖√ρnun‖L∞(0,T ;L2(Ω)d) ≤ C (32)

The first step first relies on an estimate on the density. The energy estimate (5) from [1], states that

d

dt

∫
Ω

κ|∇ρn|2

2
+ Πn(ρn) + ρn

|un|2

2
dx+ ν

∫
Ω

2ρnD(un) : D(un)dx = 0 (33)

with Πn(s) = 1
γn−1s

γn . Thus this energy equality still gives the same estimate as in [5] and the first step is
identical. We give a sketch of it for the reader’s convenience. The above estimate leads to

∃C > 0, ∀n, ‖ρn‖L∞(0,T ;Lγn ) ≤ Cγn.

By Holder inequality we have for any 1 < p <∞, and n such that γn > p,

‖ρn‖L∞(0,T ;Lp) ≤ ‖ρn‖θnL∞(0,T ;L1)‖ρn‖
1−θn
L∞(0,T ;Lγn )

for θn defined by 1
p = θn + 1−θn

γn
. From the mass conservation and assumptions made on ρ0

n we have

‖ρn‖L∞(0,T ;Lp) ≤Mθn
n (Cγn)

1−θn
γn .

And passing to the lim sup in p and n gives:

‖ρ‖L∞(0,T ;L∞) ≤ 1.

Moreover, (ρn − 1)+ goes to zero uniformly in t in all Lp.

2.4 Uniform bound on pressure terms
The next step aims at proving a L1 bound on Ξn(ρn). Consider (27) in the distributional sense:

∂t(ρ
2
nun) + div(ρnun ⊗ ρnun) + ρ2

n(div un)un − ν div(ρ2
nD(un))

+ νρnD(un)∇ρn +∇Ξn(ρn)− κ∇(ρ2
n∆ρn) + 2κρn∆ρn∇ρn = 0 (34)

and apply (−∆)−1 div with periodic boundary conditions: we get an extra ρn compared to [5]:

Ξn(ρn)−
∫
−Ξn(ρn) = ∂t[(−∆)−1 div(ρ2

nun)] +RiRj(ρ
2
nu

i
nu

j
n) + (−∆)−1 div(ρ2

n(div un)un)

− νRiRj [ρ2
nD(un)] + ν(−∆)−1 div(ρnD(un)∇ρn) + κρ2

n∆ρn + 2κ(−∆)−1 div[ρn∆ρn∇ρn] (35)

where Ri := (−∆)−
1
2 ∂i is the Riesz transform (which is bounded on Lr, 1 < r < ∞, [2]). Integrating would

cancel everything, hence we multiply by ρn, to get

ρnΞn(ρn)− ρn
∫
−Ξn(ρn) = ρn∂t[(−∆)−1 div(ρ2

nun)] + ρnRiRj(ρ
2
nu

i
nu

j
n) + ρn(−∆)−1 div[ρ2

nun div un]

− νρnRiRj [ρ2
nD(un)] + νρn(−∆)−1 div[ρnD(un)∇ρn] + κρ3

n∆ρn + 2κρn(−∆)−1 div[ρn∆ρn∇ρn] (36)
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We compute

ρn∂t[(−∆)−1 div(ρ2
nun)] = ∂t[ρn(−∆)−1 div(ρ2

nun)]− div(ρnun)(−∆)−1 div(ρ2
nun)

and as
div(ρnun)(−∆)−1 div(ρ2

nun) = div(ρnun(−∆)−1 div(ρ2
nun))− ρnuinRiRj(ρ2

nu
j
n)

we are reduced to bound all these terms.
Arguing as in [5], equation (39), p. 384, but with the extra ρn, we have a bound on the time derivative given

by
2‖ρn(−∆)−1 div(ρ2

nun)‖L∞(0,T ;L1(Ω)).

This quantity is indeed bounded, since we have bounds on:

ρn in L∞(0, T ;L6(Ω)),
√
ρn in L∞(0, T ;L12(Ω)),

√
ρnun in L∞(0, T ;L2(Ω)).

This gives a bound on:
ρ2
nun in L∞(0, T ;L

4
3 (Ω)).

Then (−∆)−1 div(ρ2
nun) is bounded in L∞(0, T ;Lq(Ω)) for 1

q = 3
4 −

1
N , that is q = 12

5 since N = 3. This can be
multiplied by ρn bounded in L∞(0, T ;L6(Ω)) to give

ρn(−∆)−1 div(ρ2
nun) bounded in L∞(0, T ;L

12
7 (Ω)).

Next, from the boundness of operators Ri, the term ρnu
i
nRiRj(ρ

2
nu

j
n) behaves like ρnRiRj(ρ2

nu
i
nu

j
n), which

we consider now.
As ρ

3
2
nun is bounded in L2(0, T ;L3(Ω)) and √ρnun is bounded in L∞(0, T ;L2(Ω)), we get:

ρ2
nu

i
nu

j
n bounded in L2(0, T ;L

6
5 (Ω)).

As the Ri are bounded on all Lr, 1 < r <∞, and ρn is bounded in L∞(0, T ;L6(Ω)) this gives:

ρnRiRj(ρ
2
nu

i
nu

j
n) bounded in L2(0, T ;L1(Ω)).

Let us turn to ρn(−∆)−1 div[ρ2
nun div un]. From the bound on √ρnD(un) in L2(0, T ;L2(Ω)), and since ρ

3
2
n is

bounded in
L2(0, T ;L3(Ω)) ∩ L∞(0, T ;L

3
2 (Ω)) ⊂ L 4

3 (0, T ;L1(Ω)),

the (−∆)−1 div operator and Sobolev embedding W 1,1(Ω) ⊂ L 3
2 (Ω) (in dimension 3), gives

(−∆)−1 div[ρ2
nun div un] bounded in L

4
3 (0, T ;L

3
2 (Ω)).

Upon multiplication by ρn, which is bounded in L∞(0, T ;L6(Ω)) this gives a

ρn(−∆)−1 div[ρ2
nun div un] bounded in L

4
3 (0, T ;L

6
5 (Ω)).

As for the term ρnRiRj(ρ
2
nD(un)), √ρnD(un) is bounded in L2(0, T ;L2(Ω)) and ρn is bounded in:

L∞(0, T ;L6(Ω)) ∩ L2(0, T ;L∞(Ω)) ⊂ L8(0, T ;L8(Ω)).

From the boundness of Riesz operators, this amounts to study ρ
5
2
nD(un), and ρ

5
2
n is bounded in L

16
5 (0, T ;L

16
5 (Ω)),

which gives
ρnRiRj(ρ

2
nD(un)) bounded in L

16
13 (0, T ;L

16
13 (Ω)).

The last momentum term is ρn(−∆)−1 div[ρnD(un)∇ρn]. First ∇ρn is bounded in:

L2(0, T ;L6(Ω)) ∩ L∞(0, T ;L2(Ω)) ⊂ L 10
3 (0, T ;L

10
3 (Ω)),
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and √ρnD(un) in L2(0, T ;L2(Ω)). Recall that ρn is bounded in L8(0, T ;L8(Ω)), thus we obtain

ρnD(un)∇ρn bounded in L
80
69 (0, T ;L

80
69 (Ω)).

Note that 69
80 + 1

8 < 1, so the smoothing operator (−∆)−1 div and the L8(0, T ;L8(Ω)) bound on ρn give:

ρn(−∆)−1 div[ρnD(un)∇ρn] bounded in Lp(0, T ;Lq(Ω)) for some p, q > 1.

Let us turn to the Korteweg terms, the first being ρ3
n∆ρn, we note that ∆ρn is bounded in L2(0, T ;L2(Ω)) and

ρ3
n is bounded in L

8
3 (0, T ;L

8
3 (Ω)) which leads to:

ρ3
n∆ρn bounded in L

8
7 (0, T ;L

8
7 (Ω)).

Next, we look after the second term ρn(−∆)−1 div(ρn∆ρn∇ρn), which is handled since ∆ρn is bounded in
L2(0, T ;L2(Ω)) and ∇ρn in L

10
3 (0, T ;L

10
3 (Ω)). As ρn is bounded in L8(0, T ;L8(Ω)), we get a bound of

ρn∆ρn∇ρn in L
40
37 (0, T ;L

40
37 (Ω)).

Applying (−∆)−1 div gives a bound in L
40
37 (0, T ;W 1, 4037 (Ω)) ⊂ L 40

37 (0, T ;L
120
71 (Ω)) by Sobolev embeddings. Not-

ing that one also has ρn bounded in

L∞(0, T ;L6(Ω)) ∩ L2(0, T ;L∞(Ω)) ⊂ L14(0, T ;L7(Ω)),

as 1
14 + 37

40 < 1 and 71
120 + 1

7 < 1 we get a bound in a Lp(0, T ;Lq(Ω)) with p, q > 1.

As a conclusion, we obtained an uniform bound of

ρnΞn(ρn)− ρn
∫
−Ξn(ρn) in Lp(0, T ;L1(Ω)) for some p > 1.

This estimation gives in turn a bound on Ξn(ρn). Indeed integrating the bounded expression (recall that
Ξn(ρn) = γn

γn+1ρ
γn+1
n ) we get for n large enough,∫ T

0

∫
Ω

ργn+2
n −Mn

∫ T

0

∫
Ω

ργn+1
n ≤ C(1 +

1

γ n
) ≤ 2C (37)

with Mn ≤M < 1, which in turn implies, using sa ≤ sa+1 + s for a ≥ 1 and s ≥ 0,∫ T

0

∫
Ω

ργn+1
n ≤

∫ T

0

∫
Ω

ργn+2
n + ρn ≤ 2C +M

∫ T

0

∫
Ω

ργn+1
n ⇒

∫ T

0

∫
Ω

ργn+1
n ≤ 2C

1−M
. (38)

This estimate induces an L1 bound on the equivalent expression Ξn(ρn) and then from (37) on ρnΞn(ρn).
Moreover the same trick applied to ργnn gives∫ T

0

∫
Ω

ργnn ≤
∫ T

0

∫
Ω

ργn+1
n + ρn ≤

2C

1−M
+M

∫ T

0

∫
Ω

ργnn ⇒
∫ T

0

∫
Ω

ργnn ≤
2C

(1−M)2
. (39)

3 Passing to the limit

3.1 Compactness
From (37-39) we deduce that up to the extraction of a subsequence there exists Π,Ξ,Λ ∈ M((0, T ) × Ω) such
that

(ρn)γn ⇀ Π, Ξn(ρn) ⇀ Ξ, ρnΞn(ρn) ⇀ Λ. (40)
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Next, from the conservation law

∂tρn = −div(ρnun) is bounded in L2(0, T ;H−1(Ω))

and from (30), ρn is bounded in L2(0, T ;H2(Ω))∩L∞(0, T ;H1(Ω)), therefore using classic compactness results
[6] we have up to subsequence, the following strong convergence of densities:

ρn → ρ in L
2
s (0, T ;H1+s(Ω)) ∩ C([0, T ];Hs(Ω)) (41)

for all s ∈ (0, 1). The limit function ρ ∈ L2(0, T ;H2(Ω)), thanks to (29), is such that ∇ρ and ∇√ρ belong to
L∞(0, T ;L2(Ω)d). Then arguing as in [1], using the bound (32) on √ρnun, which converges weakly to some g,
we can define a limit velocity u = g√

ρχ{ρ>0} and prove that ρnun converges weakly to √ρg = ρu, such that

∂tρ+ div(ρu) = 0, in D′(Ω× (0, T )), with ρ(x, 0) = ρ0 ∈ D′(Ω).

Next, we recall the weak form,

3.2 Weak limits and nonlinear terms

∫
Ω

ρ0
nu

0
n · ρ0

nφ(·, 0)dx+

∫ T

0

∫
Ω

[
ρ2
nun · ∂tφ+ ρnun ⊗ ρnun : D(φ)

− ρ2
n(un · φ) div un − νρnD(un) : ρnD(φ)− νρnD(un) : φ⊗∇ρn

+Ξn(ρn) div φ− κρ2
n∆ρn div φ− 2κρn(φ · ∇ρn)∆ρn

]
dxdt = 0 (42)

and consider the different nonlinear terms for which we justify the limiting process.
The initial term (ρ0

n)2u0
n is handled using the assumptions on initial data: indeed from the energy estimate

(23) we get the strong convergence in L2(Ω) of a subsequence of ρ0
n, which shows that for this subsequence,

(ρ0
n)2u0

n converges toward (ρ0)2u0.
The momentum term ρ2

nun, up to a subsequence, weakly converges to ρ2u, from the strong convergence of
a subsequence of ρn in C(0, T ;L3(Ω)) and the weak convergence of a subsequence of ρnun in L2(Ω).

The convergence of inertial term ρnun ⊗ ρnun amounts to prove the strong convergence of ρnun to ρu in
L2(0, T ;L2(Ω)d). This is ensured using (31) and (32) on ρ

3
2
nun and the identity ρ2

nu
2
n = ρ

3
2
nun ·

√
ρnun. Then

the strong convergence of ρ
3
2
nun to ρ

3
2u is proved as in [1].

The viscous term ρ2
nD(un) can be rewrittten as ρ

3
2
n
√
ρnD(un), upon which a classical strong-weak argument

can be used, from (41) and (31).
Likewise, the term ρn∇ρnD(un) which can also be written as √ρn

√
ρnD(un)∇ρn as a product of (sub-

)sequences converging respectively strongly, weakly, and strongly from (41) and (31).
The first Korteweg term ρ2

n∆ρn is easy to handle due to the strong convergence of ρn in (41) and the weak
of ∆ρn from (30). The second Korteweg term ρn∆ρn∇ρn amounts to consider respectively strong, weak, strong
convergences obtained from (41) and (30).

At last, the term Ξn(ρn) which is equivalent to ργn+1
n , converges in measure to Ξ, ργnn toward Π, and

ρnΞn(ρn) toward Λ from (40). The strong convergence of ρn in C([0, T ];Hs(Ω)) to ρ, is not sufficient to derive
Ξ = ρΠ and Λ = ρΞ. By the way we were not able to prove Ξ = ρΠ, since our weak formulation has an extra
ρ. However with similar arguments as [5] and [4], we can pass to the limit in (35) and subsequently multiply
by ρ to get

ρΞ− ρ
∫
−Ξ = ρ∂t[(−∆)−1 div(ρ2u)] + ρRiRj(ρ

2uiuj) + ρ(−∆)−1 div(ρ2(div u)u)

− νρRiRj [ρ2D(u)] + ρν(−∆)−1 div(ρD(u)∇ρ) + κρ3∆ρ+ 2κρ(−∆)−1 div[ρ∆ρ∇ρ] (43)
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and in (36) to get

Λ− ρ
∫
−Ξ = ρ∂t[(−∆)−1 div(ρu)] + ρRiRj(ρ

2uiuj) + ρ(−∆)−1 div[ρ2udiv u]

− νρRiRj [ρ2D(u)] + νρ(−∆)−1 div[ρD(u)∇ρ] + κρ3∆ρ+ 2κρ(−∆)−1 div[ρ∆ρ∇ρ] (44)

which gives Λ = ρΞ.

3.3 Pressure identity
It remains to prove the equality on Ξ and density which degenerate to the null pseudo pressure law in the
compressible zone, to get our free boundary model. Recall that Ξn(ρn) = γn

γn+1ρ
γn+1
n . Let ε > 0, and n0 large

enough so that for n ≥ n0 and for all x ≥ 0, there holds

xγn+2 ≥ xγn+1 − ε.

Then we get
ρnΞn(ρn) ≥ Ξn(ρn)− γn

γn + 1
ε

so that using the above limits,
ρΞ ≥ Ξ− ε

which gives, letting ε→ 0,
ρΞ ≥ Ξ.

At last, since we proved that 0 ≤ ρ ≤ 1, the reverse equality obviously holds: ρΞ ≤ Ξ. We therefore proved that

ρΞ = Ξ.

which achieves the proof of theorem 1.

4 Conclusion
From this model, we could ask which extensions could be developed in order to have a finer modelling of the
Leidenfrost phenomenon, which is our ultimate goal. For instance, the pressure free result in the incompressible
zone could be improved into a more general pressure law. This modification would be a first step toward the
model introduced in [3]. As in the model developed in [5], we could tune Πn(ρn) in such a way that it would
converge to Π(ρ) when n goes to ∞.
Another possibility would be to introduce, in the compressible part of the model, a mass transfer mechanism
dependent of temperature.

Acknowledgment: The authors warmly thank D. Bresch for bringing [5] to their knowledge and for various
discussions and advices around this work.
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