
HAL Id: hal-00744331
https://hal.science/hal-00744331

Submitted on 22 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Postponing commitment to preserve opportunities when
dynamically assigning new goals to UAVs

Pierre-Yves Dumas

To cite this version:
Pierre-Yves Dumas. Postponing commitment to preserve opportunities when dynamically assigning
new goals to UAVs. COGnitive systems with Interactive Sensors (COGIS’2009), Nov 2009, Paris,
France. �hal-00744331�

https://hal.science/hal-00744331
https://hal.archives-ouvertes.fr

Postponing commitment to preserve opportunities when dynamically
assigning new goals to UAVs

Pierre-Yves Dumas
THALES Aerospace Division - 2 Avenue Gay Lussac, 78852 Elancourt, FRANCE

patrick.taillibert@fr.thalesgroup.com

This paper presents our distributed approach to
dynamically assign new goals to a fleet of Unmanned
Aerial Vehicles (UAVs). Decisions to assign new goals are
not instantaneous and they tend to become obsolete
because UAVs move continuously. We use the date of
commitment to handle this.
This paper introduces how we use a function relating the
arrival date to the date of commitment in order to postpone
commitment to preserve opportunities. The data of this
function are stored in a structure we name commitment
vector.

1. Introduction

Continuously moving agents like Unmanned Aerial
Vehicles (UAVs) tend to be used in dynamic situations
where more and more units are deployed and more and
more parameters are taken into account. Decisions to
dynamically update the schedules of these agents cannot be
considered instantaneous, mainly because human decision
must remain central in the decision process. Since agents
move continuously, not instantaneous decisions tend to
become obsolete. Architectures must be specifically
designed in order to handle this. A previous paper of our
laboratory [1] presented our distributed approach
combining multi-agent and trajectory planning techniques
to coordinate several UAVs involved in temporally
constrained missions. Our approach uses the date of
commitment to take decision duration into account.

We consider a decision to be a choice among mutually
exclusive scenarios computed out of a simulation. In a
dynamic context a scenario tends to stop being an option
when time runs. Time runs even while scenarios are being
computed and while human are evaluating them. When
eventually an order is committed as a result of this
evaluation, at the date of commitment, the context must be
the one which was the reference when computing the lately
evaluated scenarios. If well anticipated, this date of
commitment is efficient to make sure that decisions will
not be obsolete once made.

Despite being efficient, the raw date of commitment is not
easy to use because it assumes that the decision duration
can be predicted. Experiences we performed with
demonstrators taught us that opportunities are lost if this
date of commitment is predicted too soon or too late. We
should then predict it as accurately as possible. This is
however difficult because the decision duration depends on

what scenarios are evaluated and these very scenarios
depend on the date of commitment. Therefore there is a
dependence loop that leaves us with no other option but an
approximate guess based on experience.

To overcome this problem, rather than considering a single
date of commitment, we studied ∆(τ) the function relating
the arrival date to the date of commitment. We discovered
that ∆(τ) is a non- decreasing function and often displays
constant parts we refer to as steps. We also discovered that
we can use these steps to postpone commitment to preserve
opportunities in our dynamic system. This spares complex
problems induced by (de/re)-commitment. Moreover the
non-decreasing property facilitates the approximation of
∆(τ). We store the steps in ∆(τ) as a vector of pairs of
points of ∆(τ). We refer to this vector as the commitment
vector.

The outline of this paper is as follows. Section 2 describes
the system architecture on which our coordination model
relies. Section 3 exposes the coordination model we
propose. Section 4 presents the commitment vector.
Section 5 explains how to use this vector to preserve
opportunities in a dynamic system. Then we finally
conclude.

2. System Architecture Design

It is now admitted that Distributed Systems of Agents, also
called Multi-Agent Systems (MAS) are well suited to
design large scale distributed systems made of multiple
autonomous and heterogeneous entities engaged in one or
more activities, and where coordination is a major issue.
Indeed, the different properties i.e. modularity, flexibility,
robustness, scalability and decentralization, required by
such systems, are inherent characteristics of MAS. That is
why we have based our work concerning multiple UAVs
coordination on the multi-agent paradigm.

In the architecture we present, two types of intelligent
entities interact: the first one is human (Operator) and the
second is computational (UAVs and Ground Control
Station - GCS), as depicted in Fig.1.

Fig.1. System Architecture Overview

The human operator represents a chain of command. His
purpose is to enact and monitor assignment of missions to
UAVs. Decision and control continuously remain his in our
approach

Computational entities are intelligent agents [2]. Basically,
an intelligent agent is an autonomous entity able to
perceive its environment, to exhibit a goal-directed
behaviour and to interact with other computational or
human agents.

The GCS agent is an interface between the human operator
and the UAVs. It transmits orders from the human operator
to the UAVs (such as a new temporarily constrained
mission) in one way. It transmits data from UAVs to the
human operator in the other way. The GCS can assist the
human operator as we will see in section 5.

The behaviour of each UAV agent is driven by a single
goal: to perform the different missions requested by the
human operator. A mission is to visit a site within a
window time. To accomplish this goal, a UAV agent is
structured as depicted in Fig.2.

Each UAV agent is made up of four modules. The
environment model (module #1) contains data, such as
wind field, about the dynamic environment. These data are
initially predicted, then they are updated in real-time during
the flight by on-board sensors or data emitted by the GSC
Agent (module #2). Using the environment model, a UAV
agent is able to produce time-optimal trajectories via an on-
board planner (module #3) we developed [3,4]. A UAV can
dynamically re-plan in-flight its trajectory with its
embedded planner. This decentralizes computations and
reduces data transfers between the UAVs and the GCS. A
UAV agent can use its on-board planner to produce a
hypothetical trajectory while following its current
trajectory. Eventually the 4th module (module #4) executes
inner and outer decisions, controls this execution and
decides autonomously according the feedback of this
control.

Fig.2. UAV Agent – Internal Architecture

The on-board planner is assumed to give a good answer but
not necessarily the best because the speed matters more
than the optimality. Other planners than the one we
developed could be considered. We do not assume that the
same calculation must give twice the same result or that
adding constraints should never allow a better result.

Assuming each UAV evolves at a constant altitude, the
environment is modelled by a 2-D Euclidean space P.
As shown in Fig.3., P contains the following items: sites to
visit (white dots), static obstacles (dark regions) and
moving obstacles (dotted circles) and a wind field (grey
arrows).

Fig.3. Environment of a UAV Agent

Sites, denoted by Sj (j � [1, m]) are strategic places to be

visited by the UAV within a time window []+−= jjj ttT ,

to fulfil the mission Mj. By convention S1 and Sm denotes
the take-off site and the landing site.
Static obstacles are closed surfaces of any shape,
corresponding to dangerous or inaccessible areas.

Moving obstacles Ol are disks of radius r l. They correspond
to punctual mobiles surrounded by a circular safety zone.
The position of Ol is given at every time t, and denoted
p(Ol,t).

Finally, the wind field W is known by measurement or
forecasting. Data about W are thus discontinuous, defined
on the nodes of a mesh (grey arrows).

3. Coordination Model Overview

The basic scenario we will refer to is a fleet of several
UAVs controlled by a human operator through a GCS.
While each UAV is completing its own list of missions
initially planned, a new mission (a new site to be visited in
a time window) is requested. Every mission is to be
completed by a single UAV.

3.1 Goal (new mission) assignment problem

The calculation of the trajectory, as we explained in section
2, is handled in a distributed manner by the UAVs.
Therefore a convenient way to solve the goal assignment
problem is to use the well-known negotiation-based
interaction protocol called Contract Net Protocol (CNP)
[5]. This protocol relies on the human contracting
mechanism (announce, bid, award cycles) and allows tasks
to be distributed among a group of agents.

Whereas in the original CNP the roles of agents are not
necessarily specified in advance, they are fixed in our
approach. The human operator plays the role of the
manager (announces, receives, evaluates bids and awards
to a contractor). The GSC assists him. The UAVs play the
role of potential contractors (receives, evaluates, bids or
declines, and performs the task if awarded). The bids
emitted by the UAVs during the goal assignment task are a
set of data returned by their on-board trajectory planners.

The manager should decline each bid he is not interested in
as fast as possible, in order for the matching UAV to be
released of every constraints related to the tender. This is
important if several tenders can happen to be concurrent,
possibly with several managers. Such a situation is the
topic of another of our on-going works.

The whole process cannot be considered instantaneous,
especially since the human has to evaluate bids. In the
meantime, UAVs continue flying and a bid may not be
anymore performed when eventually awarded. To
overcome this problem we use the date of commitment.

Fig.4. Coordination model

3.2 Date of Commitment

As we mentioned before, trajectory computation and goal
assignment take time. In order to provide a coordination
model taking into account duration of both computed
planning and human deliberation, we proposed [1] to
introduce a mechanism commonly used in the human
coordination: a date of commitment (denoted by τ). This
date of commitment is a date ahead used instead of the
current date to compute data to drive a decision in order for
this decision to be up to date when its resulting orders are
committed. In our assignment model this happens when the
human operator, assisted by the GCS, eventually awards a
single bid.

Despite being efficient, the raw date of commitment is not
easy to use because it assumes that the decision duration
can be predicted. If this duration is not accurately
predicated, the date of commitment will be more
constraining than it should and opportunities will be lost. In
our assignment model the duration of the awarding process,
performed by the human operator, assisted by the CGS,
depends on which bids are received, what is unknown
when the tender starts and when the date of commitment
has to be chosen.

To overcome this problem we studied what happen when
different dates of commitment are chosen. That led us to
use ∆(τ) the function relating the arrival date to the date of
commitment whom we store the main data in the
commitment vector instead of a raw date of commitment.

The human operator, assisted by GCS, awards
the bid of a single UAV (here UAV1)

4 ∆∆∆∆(ττττ) and the commitment vector

Our global concern is to make UAVs perform missions
when minimizing the flight time. In the fallowing example
the speed is constant, so spatially longer means also
temporarily longer. We consider also a single UAV to
simplify notation. We eventually assume that our planner
returns always the best trajectory (whose the duration is the
shortest) to schedule missions of an UAV. Reality is
generally much more complex but the purpose of our
example is to focus on some properties of ∆(τ).

4.1 Presentation

Before assigning a new mission, our UAV is flying
following its own initial trajectory T0. This initial trajectory

T0 is expressed as a succession of n waypoints denoted by

wi (i � [1, n]). The first waypoint w1 matches S1, the take-

off site (grey with number 1), the last waypoint wn matches
the landing site Sm (grey with number m), some other
waypoints are related to a site (here a single one, grey with

S2). Every waypoint wi is met at a meeting time τi.

 T0 (Initial trajectory)

 S1

 S2

 Sm

Fig.5.1. Initial trajectory T0

Let us now consider a new site (dark grey with Sx) we want
the UAV to visit to perform a new mission. In our example
we do not consider the constraint of the time window.

For every date of commitment τi there is a matching

trajectory Tτi that allows to visit Sx in addition of S1 to Sm.

Tτi is the same that T0 until τj. After τ j, Tτj can (and will

likely) be different from T0 in order to visit the new
waypoint. On the next column there are four samples of
such trajectories. The new trajectory is grey and on the top
when the initial one is white and partly hidden under the
new one.

 Tτ1 Tτ11
 τ1 S1

 τ11
 S2 S2

 Sx Sx

 Sm Sm

 Tτ19 Tτ26
 S1 S1

 S2 S2

 τ19
 Sx Sx

 τ26
 Sm Sm

Fig.5.2. Four trajectories as sample Tτi

We can see in our example that every Tτi is longer than T0.
The reason is simple: adding a new waypoint we add new
constraints. Since our planner minimize the flight duration,

the trajectory length of Tτi is necessarily longer than the

one of T0, and therefore less good.

Also the later is τi, the more the UAV must wait before

changing its trajectory τi relatively to T0. This is obviously

a constraint that becomes stronger when τi becomes later.

Therefore the bigger i, the later τi, the longer Tτi.

We define ∆(τ) the function relating the arrival date to the
date of the commitment to visit Sx in addition of S1 to Sm.
Below is the curve of this function in our example.

0

0,5

1

1,5

2

2,5

3

0 5 10 15 20 25 30

Fig.6.1. Example of ∆(τ)

We can see on our example that there is a step until half
way, a bit later after visiting S2. There is also a small step a
bit later.

We consider that the second step is too short to be
meaningful, it may indeed be the mere result of how the
planner works. More generally we consider that a step is
made of at least 3 consecutive points with an equal arrival
date. We can see in our example that there is only one such
a step, all over the first half of the curve.

Such steps in ∆(τ) are very common. The counter-part
situation of those steps is when every postponing of the
date of commitment means giving up on a solution that was
the best until then. Especially when getting close to the
landing site, the new trajectory looks more and more like
the initial trajectory plus a round trip to the new point,
which is worse and worse.

Since we are interested in steps, we store the points
matching their bounds in a set of data we name
commitment vector. We also store in this vector the points
matching S1 to Sm. We eventually store the trajectories
matching these points in order to be able to use them if we
want so, without a recalculation that may in deed give
another result depending on the inner process of the
planner.

0

0,5

1

1,5

2

2,5

3

0 5 10 15 20 25 30

Fig.6.2. Example of commitment vector

4.2 Calculation

It would be expensive to build ∆(τ) if we call the planner

once per τi. However since this function is not decreasing
and display steps, we can pick points until we get a result
with the desired accuracy. Especially if we get two points
with a same delay, we can spare calls to the planner for

every τi between these points.

This function ∆(τ) has other characteristics. For example
steps often end just after visiting a site in a way similar of
what typically happen before landing. Such characteristics
can lead to find out heuristics.

Since we introduced ∆(τ) and the matching commitment
vector and how to calculate it, let us see what it is useful
for.

5 Using steps to postpone commitment

The function ∆(τ) makes possible for the manager to see
how late will be a UAV to perform a new goal depending
on the date of commitment. Every step of the commitment
vector means that for the matching period, commitment can
be postponed without delaying the landing of the UAV. We
can use this possibility in our dynamic context where new
goals appear.

In the CNP we saw sooner in the third section, the default
behaviour would be to award the UAV with the smallest
delay caused by the new mission and to immediately
commit the matching new schedule. Let us imagine we
have this opportunity when the current date is included in a
step. Since we are in a dynamic context where new goals
can be added at anytime, a second new goal may appear
before the end of this step. It may happen also that the
schedule committed with the first new goal leaves no
opportunity or only bad opportunities to perform the new
mission while alternative and better organisation would be
possible now that we know these both missions. Such
alternative and better organisation, if exists, may require
complex operations such as (de/re)-commitment [6]. It
would have been more efficient to wait to commit, since
the step revealed by the vector of commitment was saying
we could do it without delaying the landing.

This way, we can use steps in the commitment vector to
postpone commitment until the end of the current step, if
exists, in order to preserve opportunities for incoming new
missions which we do not know yet anything about. Since
steps are common, according the many experiments we
performed, the system becomes much more reactive.

To take advantage of this situation, the human operator, as
a manager of our CNP, is not requested to select a single
UAV but as many as he wants. Such selected UAVs are not
automatically awarded. The CGS, as an assistant of the
manager, is the entity that will eventually award a single
UAV among them. It should be noted once again that in
our approach final decision remains to the human operator
since even if he is not the last one to choose, he is the one
who choose the domain of the final choice.

Conclusion

We presented an approach to dynamically update the
schedule of a fleet of mobile agents, for instance
Unmanned Aerial Vehicles (UAVs). This approach is
based on a Contract Net Protocol (CNP) where the CGS,
assisting the human manager, postpones the commitment
according the commitment vector, based on ∆(τ), the
function representing the delay at the new arrival waypoint
to visit, in order to be efficiently reactive. The decision
remains to the human.

The strongest characteristic of ∆(τ) is to be not decreasing,
and to often display steps. This characteristic is useful for
both calculation and utilisation of this function. Other
characteristics exist.

We expect ∆(τ) and the commitment vector to hep us to
solve complex problems such as (de/re)-commitment.

References

1 Soulignac M. et al. Combining Multi-Agent Systems and

Trajectory Planning Techniques for UAV Rendezvous
Problems. COGIS 2007.

2 Wooldridge, M.J. Intelligent Agents. In Gerhard Weiss
(Ed.). Multiagent Systems. A Modern Approach to
Distributed Artificial Intelligence. The MIT Press,
MA.

3 Soulignac, M et al. Fast Trajectory Planning for
Multiple Site Surveillance through Moving Obstacles
and Wind. Proc. Of the 25th Workshop of the UK
Planning and Scheduling Special Interest Group
(planSIG), 2006, pp 25-31.

4 Soulignac, M et al. Multiple Path Planning using
Wavefront Collision. Proc. Of the IEEE/RSJ
International Conference on Intelligent Robots and
Systems (2007 IROS), to appear.

5 Smith, R.G. The Contract-Net Protocol: High Level
Communication and Control in a Distributed Problem
Solving. IEEE Transactions on Computers, 1981, pp
1104-1113.

6 Jiri Vokrinek, Antonin Komenda, Michal Pechoucek.
Decommitting in Multi-agent Execution in Non-
deterministic Environment: Experimental Approach.
AAMAS 2009.

