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This paper presents our distributed approach to 
dynamically assign new goals to a fleet of Unmanned 
Aerial Vehicles (UAVs). Decisions to assign new goals are 
not instantaneous and they tend to become obsolete 
because UAVs move continuously. We use the date of 
commitment to handle this.  
This paper introduces how we use a function relating the 
arrival date to the date of commitment in order to postpone 
commitment to preserve opportunities. The data of this 
function are stored in a structure we name commitment 
vector. 
 
1. Introduction 
 
Continuously moving agents like Unmanned Aerial 
Vehicles (UAVs) tend to be used in dynamic situations 
where more and more units are deployed and more and 
more parameters are taken into account. Decisions to 
dynamically update the schedules of these agents cannot be 
considered instantaneous, mainly because human decision 
must remain central in the decision process. Since agents 
move continuously, not instantaneous decisions tend to 
become obsolete. Architectures must be specifically 
designed in order to handle this. A previous paper of our 
laboratory [1] presented our distributed approach 
combining multi-agent and trajectory planning techniques 
to coordinate several UAVs involved in temporally 
constrained missions. Our approach uses the date of 
commitment to take decision duration into account. 
 
We consider a decision to be a choice among mutually 
exclusive scenarios computed out of a simulation. In a 
dynamic context a scenario tends to stop being an option 
when time runs. Time runs even while scenarios are being 
computed and while human are evaluating them. When 
eventually an order is committed as a result of this 
evaluation, at the date of commitment, the context must be 
the one which was the reference when computing the lately 
evaluated scenarios. If well anticipated, this date of 
commitment is efficient to make sure that decisions will 
not be obsolete once made. 
 
Despite being efficient, the raw date of commitment is not 
easy to use because it assumes that the decision duration 
can be predicted. Experiences we performed with 
demonstrators taught us that opportunities are lost if this 
date of commitment is predicted too soon or too late. We 
should then predict it as accurately as possible. This is 
however difficult because the decision duration depends on 

what scenarios are evaluated and these very scenarios 
depend on the date of commitment. Therefore there is a 
dependence loop that leaves us with no other option but an 
approximate guess based on experience. 
 
To overcome this problem, rather than considering a single 
date of commitment, we studied ∆(τ) the function relating 
the arrival date to the date of commitment. We discovered 
that ∆(τ) is a non- decreasing function and often displays 
constant parts we refer to as steps. We also discovered that 
we can use these steps to postpone commitment to preserve 
opportunities in our dynamic system. This spares complex 
problems induced by (de/re)-commitment. Moreover the 
non-decreasing property facilitates the approximation of 
∆(τ). We store the steps in ∆(τ) as a vector of pairs of 
points of ∆(τ). We refer to this vector as the commitment 
vector. 
 
The outline of this paper is as follows. Section 2 describes 
the system architecture on which our coordination model 
relies. Section 3 exposes the coordination model we 
propose. Section 4 presents the commitment vector. 
Section 5 explains how to use this vector to preserve 
opportunities in a dynamic system. Then we finally 
conclude. 
 
2. System Architecture Design 
 
It is now admitted that Distributed Systems of Agents, also 
called Multi-Agent Systems (MAS) are well suited to 
design large scale distributed systems made of multiple 
autonomous and heterogeneous entities engaged in one or 
more activities, and where coordination is a major issue. 
Indeed, the different properties i.e. modularity, flexibility, 
robustness, scalability and decentralization, required by 
such systems, are inherent characteristics of MAS. That is 
why we have based our work concerning multiple UAVs 
coordination on the multi-agent paradigm.  
 
In the architecture we present, two types of intelligent 
entities interact: the first one is human (Operator) and the 
second is computational (UAVs and Ground Control 
Station - GCS), as depicted in Fig.1. 



 
 

Fig.1. System Architecture Overview 
 
The human operator represents a chain of command. His 
purpose is to enact and monitor assignment of missions to 
UAVs. Decision and control continuously remain his in our 
approach 
 
Computational entities are intelligent agents [2].  Basically, 
an intelligent agent is an autonomous entity able to 
perceive its environment, to exhibit a goal-directed 
behaviour and to interact with other computational or 
human agents. 
 
The GCS agent is an interface between the human operator 
and the UAVs. It transmits orders from the human operator 
to the UAVs (such as a new temporarily constrained 
mission) in one way. It transmits data from UAVs to the 
human operator in the other way.  The GCS can assist the 
human operator as we will see in section 5. 
 
The behaviour of each UAV agent is driven by a single 
goal: to perform the different missions requested by the 
human operator. A mission is to visit a site within a 
window time. To accomplish this goal, a UAV agent is 
structured as depicted in Fig.2. 
 
Each UAV agent is made up of four modules. The 
environment model (module #1) contains data, such as 
wind field, about the dynamic environment. These data are 
initially predicted, then they are updated in real-time during 
the flight by on-board sensors or data emitted by the GSC 
Agent (module #2). Using the environment model, a UAV 
agent is able to produce time-optimal trajectories via an on-
board planner (module #3) we developed [3,4]. A UAV can 
dynamically re-plan in-flight its trajectory with its 
embedded planner. This decentralizes computations and 
reduces data transfers between the UAVs and the GCS. A 
UAV agent can use its on-board planner to produce a 
hypothetical trajectory while following its current 
trajectory. Eventually the 4th module (module #4) executes 
inner and outer decisions, controls this execution and 
decides autonomously according the feedback of this 
control. 
 

 
 

Fig.2.  UAV Agent – Internal Architecture 
 

The on-board planner is assumed to give a good answer but 
not necessarily the best because the speed matters more 
than the optimality. Other planners than the one we 
developed could be considered. We do not assume that the 
same calculation must give twice the same result or that 
adding constraints should never allow a better result.  
 
Assuming each UAV evolves at a constant altitude, the 
environment is modelled by a 2-D Euclidean space P. 
As shown in Fig.3., P contains the following items: sites to 
visit (white dots), static obstacles (dark regions) and 
moving obstacles (dotted circles) and a wind field (grey 
arrows). 
 

 
Fig.3. Environment of a UAV Agent 

 

Sites, denoted by Sj (j � [1, m]) are strategic places to be 

visited by the UAV within a time window [ ]+−= jjj ttT ,  

to fulfil the mission Mj. By convention S1 and Sm denotes 
the take-off site and the landing site. 
Static obstacles are closed surfaces of any shape, 
corresponding to dangerous or inaccessible areas. 



 
Moving obstacles Ol are disks of radius r l. They correspond 
to punctual mobiles surrounded by a circular safety zone. 
The position of Ol is given at every time t, and denoted 
p(Ol,t). 
 
Finally, the wind field W is known by measurement or 
forecasting. Data about W are thus discontinuous, defined 
on the nodes of a mesh (grey arrows). 
 
3. Coordination Model Overview 
 
The basic scenario we will refer to is a fleet of several 
UAVs controlled by a human operator through a GCS. 
While each UAV is completing its own list of missions 
initially planned, a new mission (a new site to be visited in 
a time window) is requested. Every mission is to be 
completed by a single UAV. 
 
3.1 Goal (new mission) assignment problem 
 
The calculation of the trajectory, as we explained in section 
2, is handled in a distributed manner by the UAVs. 
Therefore a convenient way to solve the goal assignment 
problem is to use the well-known negotiation-based 
interaction protocol called Contract Net Protocol (CNP) 
[5].  This protocol relies on the human contracting 
mechanism (announce, bid, award cycles) and allows tasks 
to be distributed among a group of agents. 
 
Whereas in the original CNP the roles of agents are not 
necessarily specified in advance, they are fixed in our 
approach. The human operator plays the role of the 
manager (announces, receives, evaluates bids and awards 
to a contractor). The GSC assists him. The UAVs play the 
role of potential contractors (receives, evaluates, bids or 
declines, and performs the task if awarded). The bids 
emitted by the UAVs during the goal assignment task are a 
set of data returned by their on-board trajectory planners.  
 
The manager should decline each bid he is not interested in 
as fast as possible, in order for the matching UAV to be 
released of every constraints related to the tender. This is 
important if several tenders can happen to be concurrent, 
possibly with several managers. Such a situation is the 
topic of another of our on-going works. 
 
The whole process cannot be considered instantaneous, 
especially since the human has to evaluate bids. In the 
meantime, UAVs continue flying and a bid may not be 
anymore performed when eventually awarded. To 
overcome this problem we use the date of commitment. 

 
 

Fig.4. Coordination model 
 
3.2 Date of Commitment 
 
As we mentioned before, trajectory computation and goal 
assignment take time. In order to provide a coordination 
model taking into account duration of both computed 
planning and human deliberation, we proposed [1] to 
introduce a mechanism commonly used in the human 
coordination: a date of commitment (denoted by τ). This 
date of commitment is a date ahead used instead of the 
current date to compute data to drive a decision in order for 
this decision to be up to date when its resulting orders are 
committed. In our assignment model this happens when the 
human operator, assisted by the GCS, eventually awards a 
single bid. 
 
Despite being efficient, the raw date of commitment is not 
easy to use because it assumes that the decision duration 
can be predicted. If this duration is not accurately 
predicated, the date of commitment will be more 
constraining than it should and opportunities will be lost. In 
our assignment model the duration of the awarding process, 
performed by the human operator, assisted by the CGS, 
depends on which bids are received, what is unknown 
when the tender starts and when the date of commitment 
has to be chosen. 
 
To overcome this problem we studied what happen when 
different dates of commitment are chosen. That led us to 
use ∆(τ) the function relating the arrival date to the date of 
commitment whom we store the main data in the 
commitment vector instead of a raw date of commitment. 
 
 
 
 

The human operator, assisted by GCS, awards 
the bid of a single UAV (here UAV1) 



4 ∆∆∆∆(ττττ) and the commitment vector 
 
Our global concern is to make UAVs perform missions 
when minimizing the flight time. In the fallowing example 
the speed is constant, so spatially longer means also 
temporarily longer. We consider also a single UAV to 
simplify notation. We eventually assume that our planner 
returns always the best trajectory (whose the duration is the 
shortest) to schedule missions of an UAV. Reality is 
generally much more complex but the purpose of our 
example is to focus on some properties of ∆(τ). 
 
4.1 Presentation 
 
Before assigning a new mission, our UAV is flying 
following its own initial trajectory T0. This initial trajectory 

T0 is expressed as a succession of n waypoints denoted by 

wi (i � [1, n]). The first waypoint w1 matches S1, the take-

off site (grey with number 1), the last waypoint wn matches 
the landing site Sm (grey with number m), some other 
waypoints are related to a site (here a single one, grey with 

S2). Every waypoint wi is met at a meeting time τi.  

 
        T0 (Initial trajectory)

  S1               
                 
                  
                 
                  
                  
                 

             S2   
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 
                 

         Sm       
                            

 
Fig.5.1. Initial trajectory T0 

 
Let us now consider a new site (dark grey with Sx) we want 
the UAV to visit to perform a new mission. In our example 
we do not consider the constraint of the time window. 
 
 
 
 

For every date of commitment τi there is a matching 

trajectory Tτi that allows to visit Sx in addition of S1 to Sm. 

Tτi is the same that T0 until τj. After τ j, Tτj can (and will 

likely) be different from T0 in order to visit the new 
waypoint. On the next column there are four samples of 
such trajectories. The new trajectory is grey and on the top 
when the initial one is white and partly hidden under the 
new one. 
 
        Tτ1         Tτ11
  τ1                 S1               
                                  
                                    
                                  
                                    
                                    
                             τ11    
             S2                S2   
                                    
                                    
                                    
                                    
                                    
                                    
                                    
       Sx                  Sx           
                                    
                                    
                                    
                                    
                                    
                                  
         Sm                Sm       
                                                        

        Tτ19         Tτ26
  S1                 S1               
                                  
                                    
                                  
                                    
                                    
                                  
             S2                S2   
                                  
                                  
                                  
                                  
                                  
                                  
             τ19                      
       Sx                  Sx           
                                    
                                     
                                    
                                    
                                    
                          τ26       
         Sm                Sm       
                                                        

 

Fig.5.2. Four trajectories as sample Tτi 

 



We can see in our example that every Tτi is longer than T0. 
The reason is simple: adding a new waypoint we add new 
constraints. Since our planner minimize the flight duration, 

the trajectory length of Tτi is necessarily longer than the 

one of T0, and therefore less good. 

 

Also the later is τi, the more the UAV must wait before 

changing its trajectory τi relatively to T0. This is obviously 

a constraint that becomes stronger when τi becomes later. 

Therefore the bigger i, the later τi, the longer Tτi. 
 
We define ∆(τ) the function relating the arrival date to the 
date of the commitment to visit Sx in addition of S1  to Sm. 
Below is the curve of this function in our example. 
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Fig.6.1. Example of ∆(τ) 
 
We can see on our example that there is a step until half 
way, a bit later after visiting S2. There is also a small step a 
bit later.  
 
We consider that the second step is too short to be 
meaningful, it may indeed be the mere result of how the 
planner works. More generally we consider that a step is 
made of at least 3 consecutive points with an equal arrival 
date. We can see in our example that there is only one such 
a step, all over the first half of the curve.  
 
Such steps in ∆(τ) are very common. The counter-part 
situation of those steps is when every postponing of the 
date of commitment means giving up on a solution that was 
the best until then. Especially when getting close to the 
landing site, the new trajectory looks more and more like 
the initial trajectory plus a round trip to the new point, 
which is worse and worse. 
 
Since we are interested in steps, we store the points 
matching their bounds in a set of data we name 
commitment vector. We also store in this vector the points 
matching S1 to Sm. We eventually store the trajectories 
matching these points in order to be able to use them if we 
want so, without a recalculation that may in deed give 
another result depending on the inner process of the 
planner. 
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Fig.6.2. Example of commitment vector 

 
4.2 Calculation 
 
It would be expensive to build ∆(τ) if we call the planner 

once per τi. However since this function is not decreasing 
and display steps, we can pick points until we get a result 
with the desired accuracy. Especially if we get two points 
with a same delay, we can spare calls to the planner for 

every τi between these points.  
 
This function ∆(τ) has other characteristics. For example 
steps often end just after visiting a site in a way similar of 
what typically happen before landing. Such characteristics 
can lead to find out heuristics. 
 
Since we introduced ∆(τ) and the matching commitment 
vector and how to calculate it, let us see what it is useful 
for. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



5 Using steps to postpone commitment 
 
The function ∆(τ) makes possible for the manager to see 
how late will be a UAV to perform a new goal depending 
on the date of commitment. Every step of the commitment 
vector means that for the matching period, commitment can 
be postponed without delaying the landing of the UAV. We 
can use this possibility in our dynamic context where new 
goals appear. 
 
In the CNP we saw sooner in the third section, the default 
behaviour would be to award the UAV with the smallest 
delay caused by the new mission and to immediately 
commit the matching new schedule. Let us imagine we 
have this opportunity when the current date is included in a 
step. Since we are in a dynamic context where new goals 
can be added at anytime, a second new goal may appear 
before the end of this step. It may happen also that the 
schedule committed with the first new goal leaves no 
opportunity or only bad opportunities to perform the new 
mission while alternative and better organisation would be 
possible now that we know these both missions. Such 
alternative and better organisation, if exists, may require 
complex operations such as (de/re)-commitment [6]. It 
would have been more efficient to wait to commit, since 
the step revealed by the vector of commitment was saying 
we could do it without delaying the landing. 
 
This way, we can use steps in the commitment vector to 
postpone commitment until the end of the current step, if 
exists, in order to preserve opportunities for incoming new 
missions which we do not know yet anything about. Since 
steps are common, according the many experiments we 
performed, the system becomes much more reactive. 
 
To take advantage of this situation, the human operator, as 
a manager of our CNP, is not requested to select a single 
UAV but as many as he wants. Such selected UAVs are not 
automatically awarded. The CGS, as an assistant of the 
manager, is the entity that will eventually award a single 
UAV among them. It should be noted once again that in 
our approach final decision remains to the human operator 
since even if he is not the last one to choose, he is the one 
who choose the domain of the final choice. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Conclusion 
 
We presented an approach to dynamically update the 
schedule of a fleet of mobile agents, for instance 
Unmanned Aerial Vehicles (UAVs). This approach is 
based on a Contract Net Protocol (CNP) where the CGS, 
assisting the human manager, postpones the commitment 
according the commitment vector, based on ∆(τ), the 
function representing the delay at the new arrival waypoint 
to visit, in order to be efficiently reactive. The decision 
remains to the human. 
 
The strongest characteristic of ∆(τ) is to be not decreasing, 
and to often display steps. This characteristic is useful for 
both calculation and utilisation of this function. Other 
characteristics exist. 
 
We expect ∆(τ) and the commitment vector to hep us to 
solve complex problems such as (de/re)-commitment. 
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