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Abstract—In this paper, we propose an architecture that uses
a tender protocol, the Contract Net Protocol (CNP), to let human
operators express their consent about the allocation of goals to
Unmanned Aerial Vehicles (UAVs) in a constrained environment.
The CNP has several good points: it has an appropriate level
of automation; it is simple; it spares the bandwidth. But if
bids are evaluated solely on the base of a numerical payoff,
the CNP cannot fully convey human preference in complex
situations. Thus, we extended and implemented the CNP within
our framework, Aerial, to enable a more subjective human
feedback. We detail how we build the bids and how we filter
them to not flood the user. We also explain how we enable a
dependable commitment in a dynamic context when the award
time is not accurately foreseen.

Index Terms—MAS, CNP, commitment, elicitation

Increasing levels of autonomy in Unmanned Aerial Vehicles
(UAVs) are expected to reduce the need for human intervention
in operations. However, UAVs are not a substitute for human
involvement in the battle-space. We focus on low levels of au-
tomation (LOA) because human control of UAVs is axiomatic
for military relevance[1]. These low levels of automation state
that the automatic systems make suggestions and carry them
out when humans agree.

We believe that a tender protocol with human operators as
awarder agents is suitable in that context. An early tender
protocol is the Contract Net Protocol (CNP). It was primarily
intended to handle fully automated negotiations, e.g. in e-
commerce[2]. Usually, awarder agents are easily automated
because they merely award the bid with the best score. But in
real-life tenders between companies, the choice has two fac-
tors: the cost and the quality. We want to use human operators
as awarder agents to identify the best couple plan/score.

Humans are not that rational that they could fully express
their policy, which could be automated and convey human
touch at full speed. We want to give human operators an
opportunity to clarify their expectations when their policy may
be misleading. This is elicitation. Each bid is meant to be
an alternative way to understand what matters the most. For
instance, if a default efficiency function allows to cancel either
x or y, a bid may suggest to cancel explicitly x and another
y.

We aim to identify in the default efficiency function what
approximation could be critically given too much credit. For
instance, as in the example above, two tasks a priori rated as
of the same priority may seem more different once one out of

the two has to be cancelled.
Our implementation and the choices we made are heavily

dependent on our context, but our approach may be of some
interest in many fields involving humans within mostly auto-
mated systems.

In section I we present the related work. In section II we
detail how we build the bids and how we filter them to not
flood the user. In section III we explain how we enable a
dependable commitment in a dynamic context when the award
time is not accurately foreseen. In section IV we expose our
conclusion.

I. RELATED WORK

A. The Contract Net Protocol

TRACONET[3] is a system that manages a fleet of vehicles.
Our context is alike because UAVs are vehicles. Agents in
TRACONET are self-interested and must make negotiation
decisions in real-time with bounded computational resources.
Human operators can be considered to some extent as such
agents.

Within TRACONET, Sandholm implemented the Contract
Net Protocol (CNP), a tender protocol. The CNP was created
by Smith[2] and Sandholm extended it[4].

The CNP involves an awarder agent and several bidder
agents. It works as follows (figure 1 depicts the flow in the
fashion standardized by the Foundation for Intelligent Physical
Agents).

1) The awarder makes a task announcement.
2) The available bidders evaluate the task announcement

and submit bids if they are suited.
3) The manager evaluates the bids and awards one.
If awarder agents are human operators, the CNP suits

well the low levels of automation proposed by Sheridan and
Verplank[5] and their counterpart in other LOA views[6][7].
These low levels of automation work as follows.

1) Automatic systems compute alternatives and narrow a
selection.

2) Human operators choose one of these alternatives.
3) Automatic systems carry out the chosen alternative.
There are two motives to favor the CNP: it spares the

bandwidth and it is intelligible.



• Our available bandwidth is scarce and the CNP has no
extraneous message traffic. The control of the UAVs must
be adequately addressed in the current air traffic man-
agement framework. Thus, it must bear the shortage of
VHF frequency bands and limit itself to sparse and short
messages[8]. Compared with other auctions (e.g. English
auctions or Dutch auctions that are open ascending or
descending price auctions), the tender is a first-price
sealed bid auction that needs few messages. Furthermore,
messages can be kept short and to the point through the
use of the bid specification mechanism.

• Another good point of the CNP is its intelligibility be-
cause it is turn-based with only four turns: the announcing
turn (awarder’s first turn); the bidding turn (bidders’
first turn); the awarding turn (awarder’s second turn);
the performing turn (bidders’ second turn). However, to
remain user friendly, the CNP must also convey not too
many bids (see section II) and result in deterministic
outcomes (see section III).

Usually, the CNP handles fully automated negotiations, thus
we discuss next how to involve human operators.

B. Human involvement

Human operators in current architectures to control UAVs
are the primary responsible factor in terms of goal-driven
decision-making: they specify the constraints and demands
settings for the automated systems (7.1.1 in [1]).

Since goals and constraints are the primitives that human
operators use to interact with the automated system, a straight
forward design is to base the automated systems on constraints.
Playbook[9], the leading framework to manage UAV missions,
has an architecture that revolves around a constraint-based
planner (a modified SHOP2 [10]).

Our framework, Aerial, is also based on a planner:
Airplan[11]. This planner is not constraint-based but it can
handle constraints of three types:
• those preloaded as the mission context (e.g. winds that

can vary over time, obstacles, . . . )

Fig. 1. Early CNP.

• those explicitly expressed by human operators (e.g. where
to go, when, . . . )

• those implicitly expressed by human operators (i.e. auto-
matically deduced after what expressed human operators).

It is critical to be able to deduce some implicit constraints,
otherwise the user may fail to provide the system with proper
input. Miller et al.[9] give the following example. Suppose
an operator wants to perform a portion of Time Sensitive
Targeting task, say, performing surveillance on a target, be-
ginning at a specific time, and for a particular duration. The
automation may check the availability of resources and find
that no UAVs are available at the specified start time. If the
automation has no additional models of the operators intent,
it may stop searching, and report that such a plan cannot be
created. A human subordinate, however, may understand that
surveillance for some period is better than no surveillance at
all, realize that adequate resources will become available 5
minutes later than the specified start time, and offer a relaxed
plan as an alternative.

In Playbook this issue is addressed by structuring the
architecture so that such knowledge can be incorporated into
the automation. This knowledge is abstracted from the task
models, so the operator does not see it. Playbook offers the
ability to provide priorities between alternate goals and states.
These abstract value statements that a supervisor might provide
are referred to as his or her policy for performance in the
domain. A policy statement is an abstract, general, a priori
statement of the relative importance or value of a goal state
in the domain. In its simplest form, policy provides a method
for human operators to mathematically define what constitutes
efficiency.

Much like Playbook, our strategy is to propose high level
features with a default setting. For instance, in the example
above, a solution is to maximize a score based on a dimin-
ishing marginal utility function. A tick box allows the user
to activate this feature and relax the problem. The default
setting of this feature assumes that every additional minute is
worth half as much as the previous one. Beyond a threshold,
any more minute is worthless. The value of the first minute
depends on the priority (low/medium/high/top) of the task.
As in Playbook, human operators mathematically define what
constitutes efficiency.

C. Elicitation

The limit of the approach above is that the scores behind
these high level features can combine into an abstruse global
score. If this global score is based on appreciations that are
uncertain and approximate rather than fixed and exact, the
mathematical efficiency ends up being disconnected of the
reality.

In the end, users can be deceived by the very policy they
expressed. This undermines the reason why humans remain
in the system. Consideration of the technological viability of
UAV systems, and the legal constraints, suggests that a human-
in-the-loop system will be the most valuable and therefore the



most likely mode of operation to provide the required super-
vision and discrimination[12]. Context sensitivity is important
for assessing the quality of military decision making[13]. Hu-
mans have making capability not easily matched by artificial
intelligence in computers. But without appropriate feedback,
operators are indeed out-of-the-loop.

With the CNP, we aim to let the user regain some control
when the global score gets too complex in terms of meaning.
We think about bids as questions/suggestions like Did you
mean [this] and consider [that]? Because if so, the best
solution is indeed . . . .

Like Lily Rachmawati and Dipti Srinivasan[14], we do
not trust real-valued parameters and prefer managing Pareto-
optimal fronts. Our elicitation algorithm orders the fronts and
converts the choices into bids of the CNP.

II. ANOTHER WAY TO USE THE CNP

A. Considering quality/score rather than score alone

We will consider three examples to set up the context.
1) If several UAVs were ticked as last resort: Let two

UAVs be d1 and d2. They are the only ones able to achieve
x : visit this city. For some reason, they where ticked as
last resort to achieve x. It could be because they are poorly
suitable for the task; or because they are more expensive
and because the task is dangerous; or because they belong
to another team. The UAVs can be poorly suitable for a task
because their relevant sensors or weapons are not the best ones
in that situation; or because they are more difficult to control;
or because they are less stealth. The reasons why d1 and d2
where ticked as last resort are different and it is difficult to
compare them. But this does not mean that they are equal and
that minor factors, like the fuel, should make the difference.

2) If several tasks were ticked to be done as soon as possi-
ble: Let two tasks be x : visit this city and y : visit this city
as in figure 2. The wind blows west. There is three basic
ways to understand the purpose of the user: achieve x as
soon as possible, then achieve y as soon as possible (we
note ⇓ x, y); conversely, achieve y as soon as possible, then
achieve x as soon as possible; or achieve x and y in any
order as soon as possible (we note ⇓ (y + x)). There are two
possible plans, the first is to visit x at 1 and y at 9 (we note
⇓ x = 1;⇓ y = 9;⇓ (x + y) = 9), the second is to visit y
at 4 and x at 9 (we note ⇓ y = 4;⇓ x = 6;⇓ (x + y) = 6).
This calls for elicitation. But it would not be enought to just
clarify the priority between x and y, since this priority may
be balanced with the performance it allows. Hence, if asked
what would be best out of ⇓ x, y, ⇓ y, x and ⇓ (y + x),
the user may prefer ⇓ x, y, but if asked what would be
best out of ⇓ x = 1;⇓ y = 9;⇓ (x + y) = 9 and
⇓ y = 4;⇓ x = 6;⇓ (x+ y) = 6, the user may indeed prefer
the latter. Neither the score alone nor the plan alone is enough
to decide, both must be consider at once in a quality/score
ratio.

3) If one task out of several ones must be canceled: Let
three tasks be x, y, z : visit these cities as in figure 3. There
is no possible plan if no task is cancelled. All the tasks have

Fig. 2. If several tasks were ticked to be done as soon as possible.

Fig. 3. If one task among several must be canceled.

the same priority. If any task is cancelled, the two other can be
achieved. The first plan is to cancel z (we note ¬z), another is
to cancel x, the last one is to cancel y. It may be hazardous to
rely on a policy based on the assumption that x, y and z have
exactly the same priority. Elicitation based on a quality/score
ratio is safer.

In a real situation, the options introduced in the examples
above tend to combine exponentially. The user cannot handle
that many options and only the most relevant ones can be
submited to his or her appreciation. We discuss next how to
do that.

B. Generating the bids

Our generic approach works as follows:
1) Create options associated with tasks.
2) Decide how these options combine into a global score.
3) Decide what parts of the combination are suspicious.
4) Decide how to build alternatives revolving around the

elicitation of these suspicious parts.
5) Propose these alternatives as bids.
Previous examples are based on options that can be associ-

ated with a task. These options are summarized in table I. A
task has a priority which is either 1 (low) or 2 (medium) or 3
(high) or 4 (top).

With these options, we define a mathematical efficiency. We
have rules to combine these options. For instance if two tasks
have option 1 ticked, we minimize the earliest date at which
they are both complete. We consider some of these choices
as suspicious and we raise warnings whenever we use them.
Similarly, if one task is cancelled rather than another one with
the same priority, we also raise warnings. The order in which
we raise warnings is summarized next.
• two tasks with option 1.
• two tasks with priority 3, one with option 2, one with

option 3.
• two tasks with priority 3 with option 2.



TABLE I
OPTIONS ASSOCIATED WITH A TASK

� This task has to be done as soon as possible (option 1). Because of
this option, this task has a top priority and cannot be canceled without
explicit consent through the award of a bid. Without this option, no
task can have a top priority.

� Can cancel any task with high priority? The default value is
no.
� Can cancel any task with medium priority? There is no default
value, the user has to choose explicitly.
� Can cancel any task with low priority? The default value is
yes.

� This task has to last as much as possible (option 2). Due to
diminishing marginal utility, we assume that no marginal utility can
be worth cancelling a task with high or top priority.

� Can cancel any task with a lower priority? The default value
is yes.

� This task is better not performed by [some UAVs] (option 3).
� Can cancel any task with a lower priority? The default value
is yes.

• two tasks with priority 3 with option 3.
• two tasks with priority 3, one cancelled, cancelling the

other one would achieve a similar result.
• two tasks with priority 2, one with option 2, one with

option 3 (i.e. same warning than earlier but with priority
2 instead of priority 3, from now on we loop down to
priority 1).

• . . .
• two tasks with priority 1, one cancelled, cancelling the

other one would achieve a similar result.
When we raise a warning, we may create bids. The number

of bids is up to the user. He or she can change anytime
this number. Each warning has a method to create bids. The
number of bids that a method creates is easily known. If this
number is less than twice the remaining number of available
bids, all the bids for this method are computed at once. Else
we compute no more bids. This way, we do not flood the user
with bids.

If the user is interested in a specific warning, we compute
the relevant bids. This is an optional step in our CNP that is
not in the original CNP. This step can be repeated.

The methods are summarized next.
• n tasks t1, . . . , tn with option 1: n bids. The first one
⇓ t1, (t2 + . . . + tn) does t1 as soon as possible and
minimizes the earliest date at which all the other tasks
are complete. The last bid is ⇓ tn, (t1 + . . .+ tn−1).

• n + m tasks with priority k, n with option 2, m with
option 3: m bids. All of them minimize how short is the
shortest task among t1, . . . , tn, because of diminishing
marginal utility. Initially, the tasks must be normalized
if they do not have the same norm (e.g. if one usually
lasts for minutes and another one usually lasts for tens of
minutes). Each bid relaxes the option 3 for a task among
tn+1, . . . , tm to see how it improves the way tasks with
option 2 are done. The user can request bids that consider
several times the relax of the option 3.

• n tasks with priority k with option 2: n bids. Each
maximizes the length of a task and minimizes how short

Fig. 4. Aerial within a UAV system.

is the shortest other one, because of diminishing marginal
utility.

• n tasks with priority k with option 3: n bids. Each
bid relaxes the option 3 for a task among t1, . . . , tn to
see how it improves the rest. This improvement is the
marginal cost. The bid is meant to decide if for one task,
this option 3 is worth its marginal cost. The user can
request bids that consider several times the relax of the
option 3.

• n tasks with priority k, some must be cancelled: consid-
ering the lattice of the combinations to cancel these n
tasks, one bid per feasible node not strictly dominated
by another node. If there are too many nodes, only those
that cancel up to two tasks are considered. If there is still
too many nodes, only those that cancel a single task are
considered.

Due to this methods, each bid is based on a local mathemat-
ical efficiency, as opposed to a global mathematical efficiency.

The automated systems stay in charge of most of the
choices: bids cover only a few options among many that could
be considered. But thanks to the ordered warnings, this few
options are a priori the most significant. They allow the user
to consider several alternatives based on the hypothesis that
tasks that where roughly rated equal may not be equal any
longer when they compete for resources.

This process to generate bids is part of our CNP that is part
of Aerial. We detail next how this three layers interact.

C. Our architecture

A top view of a system that involves humans and computers
leads to see on the one hand every one and on the over hand
everything. Our CNP involves mainly two proxy agents, one
that acts as a representative of every one, and one that acts as
a representative of everything. We add a third agent to support
the talk. Figure 4 details how the agents interact.

1) The Awarder: The Awarder conveys human consent. It
acts as a representative of every human involved in allocating
goals: a sensor operator, a flight operator, a mission coordi-
nator, sometimes people outside the Control Ground Station
(CGS).

2) The Bidder: The Bidder conveys automated bidding. It
acts as a representative of everything that is automated in the
UAV System, i.e. it is everything except the Awarder. Unlike



Fig. 5. Our human friendly Contract Net Protocol.

the contractors of the original CNP that are expected to be
many, with up to a bid each, the contractor is alone but can
submit many bids.

3) The Mediator: The Mediator supports the talk: it man-
ages communications and provides minor features. For exam-
ple it can early filter the UAVs that cannot achieve a task
because they do not have the matching equipment.

These agents interact through our CNP as in figure 5.
We consider that our CNP is human friendly unlike the
original one meant to handle fully automated relationships.
Its specificities are as follows.
• There is a single bidder that emits several bids rather than

several bidders that emit a bid each.
• The call for proposal includes boundaries for the award

time, this is meant to relax the use of a strict deadline.
• The awarding step lasts for an unforeseen lapse of time.

It makes more difficult to get a dependable commitment.
• There are loser messages to free agents from their com-

mitment, like in TRACONET.
• An optional step allows the awarder to request more bids.
• The bid includes three parts and does not include the

plan.
– The first part of the bid are the warnings about

which choices are made by the local mathematical
efficiency. These warnings are about the same in
every bid, so they are factorized. The warnings that
are specific, mostly those that tell what tasks are
canceled, are enlighten. This warnings about the
canceled tasks can be used to browse through bids,
to find those who cancel other tasks and those who
cancel the same ones.

– The second part is the achievements that tell what

was optimized. The outcome may depend on the
award time. This outcome is what the commitment
is meant to ensure.

– The third part is a score, or conversely a cost, that is
the local mathematical efficiency. This may depend
on the award time as well. The decreasing of the
score, or the increasing of the cost, is the cost of the
commitment.

Most of these features are related to the commitment. What
is the commitment and how it is computed is discussed in the
next section.

III. COMMITMENT

In this section, we will refer to what follows.

D = {d1, . . . , dm} a set of m UAVs.
g0 a set of physical constraints.
G = {g1, . . . , gn} a set of n goals where every goal is

a set of tactical constraints.
A a Boolean matrix m × n where ai,j is true if gj is

allocated to di and false otherwise.
σi = g0∧(¬ai,1∨g1)∧. . .∧(¬ai,n∨gn) the summed up

constraint on the behavior of di. The set of physical
constraints g0 always applies. If ai,j is true, then this
states that gj is allocated to di and the set of tactical
constraints gj applies.

A UAV di carries out a plan pi computed by Airplan
minimizing a cost ci. Thus Airplan(di, σi) = (pi, ci). A plan
pi is a set of constraints, thus it is also a single complex
constraint (the conjunction of the constraints it includes as a
set).

The new goal is gn+1. As every goal, gn+1 is a set of
constraints and as such can be seen as a single complex
constraint.

The deadline is δmax. The commitment is to consider that
this plan pi constrains the behavior of di till δmax. Thus, at any
given time t, the commitment is a constraint (t > δmax)∨ pi.

As three constraints, gn+1, σi and t > δmax ∨ pi can be
summed up in a single constraint gn+1∧σi∧((t > δmax)∨pi).
This constraint is the new input that Airplan needs to compute
a new plan p′i with a cost c′i that allows the UAV di to success
in these three points:

• to achieve the new goal, thanks to gn+1.
• to achieve the other goals it was having yet, thanks to σi.
• to be faithful to its commitment till the deadline of the

tender δmax, thanks to (t > δmax) ∨ pi.

Airplan(di, gn+1 ∧ σi ∧ ((t ≤ δmax)⇒ pi)) = (p′i, c
′
i)

The marginal cost to carry out a new goal is
mcost(di, gn+1, δ

max) = c′i − ci. If the UAV and the new
goal are left implicit:

mcost(δmax) = c′i − ci



Fig. 6. Map. With a constant speed v, one space unit u is the distance a
UAV can cover in one time unit u of the chart 7.

A. Overview

Let d1 and d2 be two vehicles, d1 makes a round trip, d2
is stationary. Their trajectories are as in figure 6. The place
is an empty Euclidean space. d1 has to visit four cities. The
cities can be visited anytime in any order. Every trajectory is
computed by a constraint-based Traveler Salesman Problem
(TSP) solver. Now, a new city has to be visited. Any vehicle
could technically do it at the cost of an additional distance.
But there is a risk that cannot be mathematically expressed
and that requires human consent. This risk is subjective, it
could be friendly fire, collateral damage, failure or casualties.
This risk may be related to the vehicle, thus it makes sense to
neither exclude d1 nor d2, even if d2 is most of the time closer.
The decision is complex and human operators need some time
to make it. How long it will take is unknown.

The decision making is stressful, thus human operators
expect the awarded UAV – if any – to carry out the mission
when requested to do so. They want commitment. Bellow
is how commitment is described by Sandholm[4]: In mutual
negotiations, commitment means that one agent binds itself to
a potential contract while waiting for the other agent to either
accept or reject its offer. [. . . ] When accepting, the second
party is sure that the contract will be made, but the first party
has to commit before it is sure. The commitment starts when
one UAV bids and lasts till the bid of this UAV is awarded or
rejected.

The original CNP uses an expiration time as part of the
task announcement. Smith says about it that it is a deadline
for receiving bids and that time is not critical in the negotiation
process. For example, bids received after the expiration time
of a task announcement are not catastrophic: at worst, they
may result in a suboptimal selection of contractors. However
time is indeed critical and this deadline is a way to handle it.

Suppose that the environment is deterministic, as in the
above example since the trajectories of the UAVs are known.
Let δmax be this deadline. We know where each UAV will

be at δmax. Thus one bid can be computed considering where
one UAV will be rather than where the UAV is, this is simply
anticipation. Let be δ the award time. If δ ≤ δmax, no
matter where the UAV is, it can still continue to perform its
initial plan till δmax and then carry out the task as expected.
Otherwise, if δ > δmax, it is safer to cancel the tender
because of uncertainty. Thus, the deadline, in a deterministic
environment, is a way to enable a trustworthy commitment.

We do not consider that the environment is stochastic
because we believe that its complexity is beyond stochastic
modeling. It cannot be as simple as generating targets ac-
cording to a spatio-temporal Poisson process [15]. Most often,
the changes of the environment are accurately predicted. This
enables bounded rational decision making.

The commitment is a constraint over the behavior of a UAV:
it may narrow how this UAV can participate in other tenders.
Thus, it is better to free a UAV of its commitment as soon
as possible. Sandholm uses explicit loser messages to do that
and do not let the contractors wait till the deadline. We do
as well. When one bid is awarded, all other are automatically
rejected. One bid may also be early rejected when no bid has
yet been awarded.

To motivate the Awarder to respond quickly, Sandholm[4]
proposes that a bid includes a required payment fn (element
6.5.b of its contractee message) that increases over time. The
later is the award time δ, the more expensive is the required
payment. Unlike the expiration time, fn does not force a
strict deadline, which can inefficiently constrain the Awarder’s
deliberation scheduling as we explain next.

B. The Awarder’s deliberation scheduling

The Awarder needs time to decide what bid to award, if
any. This decision is complex and it is not possible to foresee
during the task announcement how long it takes to make it.
Further vicissitudes may delay it:

• Humans may be busy due to a workload pick in another
process.

• Many or few bids may be received.
• Bids may be surprisingly simple (e.g. operators may

find obvious the prevalence of a bid over others when
computers saw them all as Pareto dominant).

• Bids may be surprisingly complex (e.g. operators may
need additional information).

• Communications may lack continuity (e.g. for stealthy
reasons).

• Computers may be busy (e.g. it happens during fast paced
simulation).

Thus, the spontaneous deliberation scheduling is unpre-
dictable. We may however decide to force a strict deadline
upon it. It would be convenient since this deadline, in our
deterministic environment, makes possible the commitment.
Let δ be the end of the spontaneously scheduled deliberation
is unpredictable and the award time. There are three possible
outcomes.



1) δ > δmax: The commitment is over and without
any further information, it is best to cancel the tender. But
sometimes the commitment could actually be extended, and
if so, it is not efficient to cancel the tender. Let us focus on
d1 in our example. If δmax = 125 and if the spontaneously
scheduled deliberation ends at 175, it would seem safer to
cancel the whole process since the commitment is over. But
mcost(175) = mcost(125), so the commitment could be
extended.

2) δ 6≈ δmax ∧ δ < δmax: The commitment is not over
and the task can be successfully carried out. It is easy to get
this situation with a high δmax. However, the commitment
is a constraint part of the input of Airplan. This constraints
constrains more when δmax is higher, thus, if δmax is too high,
no UAV can afford this commitment and no bid come. Even
without being extreme, δ < δmax means that the problem
may have been relaxed and that better plans may have been
lost. Let us still focus on d1 in our example with δmax = 125.
If now the spontaneously scheduled deliberation ends at 75
then mcost(d1, gn+1, 75) < mcost(d1, gn+1, 125). With the
other UAV, mcost(d2, gn+1, 75) = mcost(d2, gn+1, 125)
but mcost(d2, gn+1, 75) > mcost(d1, gn+1, 75) and
mcost(d2, gn+1, 125) < mcost(d1, gn+1, 125). It means
that if humans have no subjective preference, d1 will be
chosen rather than d2 when it would have been more efficient
to choose d2.

3) δ ≈ δmax ∧ δ < δmax: The remaining situation has
none of the disadvantages of the two previous ones, there is
no need to extend the commitment and the problem could not
have been relaxed. However, this situation should be unlikely
since δ in till unpredictable because δmax is decided during the
task announcement. The complexity is beyond what could be
stochastically modeled. Asking the operator would be unfair
and useless(we know that δmax cannot be well predicted),
stressful (the operator understands that it has consequences)
and counterproductive (giving the operator something more to
worry about).

Indeed, Sandholm is right, a strict deadline can inefficiently
constrain the Awarder’s deliberation scheduling. The approach
we propose it to let human operators be aware of the conse-
quences of how much time they spend to decide. Rather than
telling them what would be mcost(δmax) for a single deadline
δmax, we tell them what is mcost(δ) for date of end of the
spontaneous deliberation. In our example, the result if figure
7.

It is similar to the required payment fn of Sandholm
(element 6.5.b of its contractee message) meant to free the
bidders from the commitment of their bids. What we want to
focus on is the advantage for the human decision process.

C. mcost(δ) is intelligible

One may worry if the curve mcost(δ) does make the bid
too complex and unintelligible. There are three reasons why
mcost(δ) remain intelligible.

1) It is non-decreasing: The curve mcost(δ) is non-
decreasing. This property is a straight consequence of how

Fig. 7. mcost(d1, gn+1, δ) and mcost(d2, gn+1, δ). The flat one is
mcost(d2, gn+1, δ). With a constant speed v, one time unit u is how long
a UAV needs to cover one space unit u of the chart 6.

mcost(δ) was expressed: mcost(δmax) = c′i − ci with
Airplan(di, gn+1 ∧ σi ∧ ((t ≤ δmax) ⇒ pi) = (p′i, c

′
i)

minimizing c′i and Airplan(di, σi) = (pi, ci) minimizing
ci. Thus, when δmax gets higher, ((t ≤ δmax) ⇒ pi)
constrains more, c′i is less minimized (or remains equal) and
mcost(δmax) = c′i − ci increases (or remains equal).

2) [δmin, δmax] should be short, up to half an hour: It
leaves few room to display many phases.

3) There are steps: A step is wherever mcost(δ)′, the
derivative of mcost(δ), is null. To have an idea of how com-
mon steps are, we randomly generated hundreds of missions
like the one of d1. The closer the UAV gets to home, the most
unlikely is it to be in a step. To illustrate this, we split each
mission into 20 equal sections. We use each mission twice, as
in a round trip, so that the order of the TSP solution is neutral.
We make the initial number of cities vary. For every section,
we display the probability to be in a perfect step (α = 0).
Figure 8 shows the results for 5 and 12 initial cities. With
more cities, there are more combinations available, thus the
probability to quickly find a next step when leaving one is
higher. This is why the probability to be in a step decreases
slower with 12 cities than with 5. To put it another way, with
only 5 cities, the probability is high in the sixteenth section to
straightly fly back home. In that case, there are no more steps
within the remaining sections. With 12 cities, in the sixteenth
section, the probability to have to visit a few more cities is
high, and thus there is still room for some steps within the
remaining sections.

The above experiment use constraints that are too simple
to be realistic. Fortunately, complex constraints seem to raise
a bit more steps than basic constraints. Complex constraints
tend to make opportunities and sanctions stronger. Thus, it is
more likely to have to wait for long before a very attractive
opportunity arises. It may sound like a bad situation, but
instead it results in a very long and readable step. Our tests
do not allow us to be very affirmative. As we said earlier, it is
not an easy task to stochastically model missions. There are
two major biases:
• What if the new goal can be postponed to a second trip?

If so, there is a permanent step, as with d2.
• What if the new goal cannot be postponed forever? If so,

the probability to be in a step at the beginning of the trip



Fig. 8. Steps appear often in mcost(δ). Steps appear less often when the
UAV is almost home. The number of visited cities has little incidence.

is not that high.
In the end, the probability to be in a step mainly depends on

how long the new goal can be postponed. If the new goal is an
emergency with an absolute priority, there is no step. But we
address situations where time does not run that quickly and
where humans can decide to take longer to come out with a
decision.

D. How to compute mcost(δ)

Since mcost(δ) is non-decreasing, we can use an imperfect
planner that relies on a discretized space, that does not always
find a solution (even when some exist), and that may not
find the best solution. Planners that can handle the operational
constraints used to plan UAV flights often have these limits.
Airplan is no exception. We can use the increasing property
to complete and flatten mcost(δ).

If mcδ0 is known for δ = δ0, and if mcδ2 is known for
δ = δ2, and if δ2 > δ1 > δ0, then mcδ2 > mcδ1 > mcδ0 .
This means that something can be known about mcδ1 without
computing it. If mcδ2 − mcδ0 < α where α is the least
meaningful difference, this means that mcδ1 does not even
have to be computed. Same if δ2 − δ0 < β where β is the
least meaningful difference. We use that in some sort of root-
finding algorithm:

Start with the ordered set of known costs mcall =
{mcδmin ,mcδmax} and the matching ordered set of
possible award times δall = {δmin, δmax}.
Select any consecutive couple (mci,mck) in mcall

such as mck−mci ≥ α and δk− δi ≥ β. A possible
award time δj such as δi < δj < δk must also exists.
Repeat as long as a new couple is found.
Choose a possible award time δj halfway between
δi and δk.
Add mcδj to mcall and δj to δall

IV. CONCLUSION

We have presented Aerial, a framework meant to let humans
express their consent over the allocation of tasks to UAVs in a
real-time context. Aerial is based on an extended CNP whom
the bids aim at elicitation. A strong commitment is granted
despite an unpredictable lapse of time between the call for
proposals and the award time.

The decision remains complex. Bids include complex data
like warnings and achievements, and scores may vary over
time, till the expiration time. Considering these data, it is up
to the human operators to decide what couple plan/score is the
best. Human operators are given the opportunity to plainly and
soundly control what the automated system carries out.

In future work we will address concurrency when several
teams of human operators share a single fleet.
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