
HAL Id: hal-00744319
https://hal.science/hal-00744319

Submitted on 22 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

P2q hierarchical decomposition algorithm for quantile
optimization : application to irrigation strategies

Olivier Crespo, Jacques-Eric J.-E. Bergez, Frederick Garcia

To cite this version:
Olivier Crespo, Jacques-Eric J.-E. Bergez, Frederick Garcia. P2q hierarchical decomposition algorithm
for quantile optimization : application to irrigation strategies. Annals of Operations Research, 2011,
190 (1), pp.375-387. �10.1007/s10479-008-0503-2�. �hal-00744319�

https://hal.science/hal-00744319
https://hal.archives-ouvertes.fr


Noname manuscript No.

(will be inserted by the editor)

P2q hierarchical decomposition algorithm

for quantile optimization:

application to irrigation strategies design
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Abstract Decision theory dealing with uncertainty is usually considering criteria such

as expected, minimum or maximum values. In economic areas, the quantile criterion

is commonly used and provides significant advantages. This paper gives interest to

the quantile optimization in decision making for designing irrigation strategies. We

developed P2q, a hierarchical decomposition algorithm which belongs to the branching

methods family. It consists in repeating the creation, evaluation and selection of smaller

promising regions. Opposite to common approaches, the main criterion of interest is

the α-quantile where α is related to the decision maker risk acceptance. Results of

an eight parameters optimization problem are presented. Quantile optimization pro-

vided optimal irrigation strategies that differed from thus reached with expected value

optimization, responding more accurately to the decision maker preferences.

Keywords Simulation-based optimization · quantile optimization · irrigation

management

1 Introduction

Quantiles are already largely used in many economic applications. For instance, the

Value-at-Risk is defined as a quantile of the distribution of losses and is applied to
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risk management in finance, insurance, or banking (Jorion 2001). They are also largely

involved in quantile regression (Koenker and Basset 1978) for optimal allocation design.

Rostek (2007) lists advantages of using the quantile instead of the mean or standard

deviation when faced with a decision problem under uncertainty. The main ones are

the improved robustness to fat tails and the predictions not driven by outliers. The

improved robustness is due to the uselessness of responses quantification. The user does

not need indeed to prefer one solution 10 times more than another, he just needs to rank

them. This implies that no a priori preferences are needed, which allows to resolve the

problem without user dependence. This conclusion is also true for maxmax and maxmin

optimization. The former consists in maximizing the maximum payoff of a random

variable, since the latter consists in maximizing the minimum one. The first kind of

optimization is said optimistic, and the decision maker target is to increase the best

expected outcome without regard to the worst cases. The second kind of optimization

is said pessimistic, and the decision maker try to limit the worst achievable outcome

by maximizing it. These criteria have been applied to game theory, robust control,

bargaining and others areas. However these criteria have been criticized for basing the

choice on what may be extreme and unlikely outcomes. Quantile optimization is then

intermediate between the extremes maximum and minimum maximization. Robustness

is still improved compared to mean and standard deviation analysis, and predictions

are not driven by unlikely outliers. Even more, no user preferences are needed but a

risk acceptance, called anticipation level in Rostek (2006).

The aim of this study is to design a simulation optimization algorithm adapted

to quantiles optimization, and to analyze on some agricultural applications, the worth

of optimizing quantiles instead of expected values. Due to the complex nature of our

application, we assume that computing probability distributions or utility function is

too expensive. We thus focus on optimization methods that do not need prior knowledge

of the uncontrollable parameters. Simulation optimization concerns systems without an

explicit analytical expression, but where instead only responses of sampled stochastic

simulation runs L are available. The formulation of that kind of optimization involves

input variables θ, constraints on these decision variables that should take value into

a feasible region Θ and an objective function defined on these variables, J : θ → R.

The common formulation of the optimization problem consists in defining J(θ) as

the expected value E[L(θ, ω)] with ω the uncontrollable input variables vector of the

stochastic system (Andradóttir (1998), Ólafsson and Kim (2002) Fu et al (2005)).

Quantile optimization consists then in replacing the expected value of L by the quantile

of order α:

max
θ∈Θ

J(θ) = qα[L(θ, ω)]. (1)

We present in this paper P2q, a new and original algorithm for solving this diffi-

cult simulation optimization problem. We applied the P2q algorithm to the problem

of optimizing irrigation strategies for corn, based on the crop simulation model MOD-

ERATO (Bergez et al 2001) in order to get the greatest simulated yield. This case

application is a good illustration of the kind of simulation optimization problems that

exists in crop management.

The plan of the paper is the following: first, we define quantiles and give limitation

to the quantile optimization problem. Next, we describe the principle of the P2q algo-

rithm we propose and the risk interpretation of the quantile of order α. In section 4,

we give some information on the biodecisional simulation model used to simulate the

irrigation strategies and we set up the simulation experiments. We then present the
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Fig. 1 Quantile of order α separating the probability distribution of a random variable.

results of the quantile optimization for different quantile orders, and we discuss the

pros and cons of this quantile optimization approach.

2 Quantile optimization

As extremes pessimistic and optimistic indices can be optimized with maxmin and max-

max approaches, a non extreme risk acceptance index can be improved using quantile

optimization. Furthermore in most of the cases, quantile estimation will rely on more

possible outcomes than the unique extreme taken into account for either maxmax or

maxmin optimizations. In opposition to the usual mean expected value provided to

decision makers, the quantile estimation can provide relative pessimistic or optimistic

options in accordance to decision risk acceptance. This new optimization point of view

is a tool that can provide relevant advices with both farmers that want to increase the

X% worst possible outcomes or those who focus on the X% best.

Let α be a fixed probability in ]0, 1[. The quantile of order α of the random variable

J is the threshold qα such that the probability of observing J lower than qα is equal to

α: P (J < qα) = α. For instance, if we are interested in the 10% highest values of J , we

will compute the quantile of order α = 0.9. If we take α = 0.5 then we get the median.

Figure 1 shows the probability distribution of the random variable J . The quantile

qα of order α is dividing the surface into two parts. The left hand side represents the

probability of reaching a value lower than qα: it is equal to α. The right hand side

represents the probability of reaching a value greater than qα: it is equal to 1 − α.

The optimization problem we consider consists in optimizing the α-quantile of

the random variable L(θ, ω). The decision maker has thus to characterize his risk

acceptance through the order α. This scalar α ∈ [0, 1] is a subjective belief up to the

decision maker, such that α = 0 is equivalent to a maxmin (pessimistic) approach and

α = 1 is a maxmax (optimistic) approach.

The common objective function is transformed from the expected value of simula-

tion outcomes into the quantile of order α, which leads usually to different decisions.

Thus the use of quantile in simulation-based optimization is not vain and we propose

hereafter to evaluate its interest for irrigation strategies design.
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3 The P2q algorithm

3.1 A hierarchical algorithm

The P2q algorithm is an extension of the P2 and P2p algorithms we introduced in

Crespo et al (2008) and Bergez et al (2004). It is based on a hierarchical decomposi-

tion of the decision space into a binary tree and belongs to the family of stochastic

branching methods, like stochastic branch-and-bound or nested partitions methods. It

is dedicated to large continuous input variables problems. It encloses a single objective

function, which can be the combination of weighted multiple objectives.

The decision space Θ is a hyper-rectangle or region. The P2q optimization aims at

finding small hyper-rectangles that we call R which include the decision vectors that

maximize the quantile of order α of performance measures L(θ, ω). We assume that

a hyper-rectangle is small enough, or unbreakable, when any decision vector included

in this hyper-rectangle is indiscernible from the others. This is defined by the user for

every dimension d of the D−dimensional problem as the width step of the dimension

d ∈ D.

Let us call pending regions the regions that are still breakable (in opposition to

the unbreakable ones). Initialization allocates the initial decision space as the single

pending region of the list pendingRL of all the pending regions. The first step con-

sists in selecting out from the pending regions list pendingRL, the region which is

potentially optimal: we call it the promising region. This promising region is either

selected in accordance to one or two indices evaluated from the decision vectors in-

cluded in the pending regions, or it is randomly chosen following a low probability set

for the whole process. The second step divides this promising region into two parts

either following a trivial equal partitioning process or techniques looking at producing

the most different sub regions. These two parts are offspring regions and are collected

in the offspringRL list. During the third step, each of these offspringRL regions

is sampled uniformly, simulated and quantiles are evaluated. This evaluation is the

main concern of this study. Eventually, the pending regions list pendingRL is updated,

and the three previous steps are repeated until stopping criteria are completed (usually

time and/or simulation runs limits) or the pending regions list is empty.

The three main steps of selection, division and evaluation are discussed in Crespo

et al (2008). The combination included in the P2q algorithm involves the three following

techniques. Selection considers only the quantile of order α of the performance measures

simulated for each pending region R ∈ pendingRL. The division technique involves

the determination of one included vector which translates as best as possible an ideal

(defined by the user) separator vector called pivot. The promising region is then cut

apart along the previously defined pivot vector in order to split the longest dimension

d ∈ D into two parts. The quantile of performance measures is computed during the

evaluation step as defined in the following section 3.2.
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3.2 Quantile evaluation

Let us call R ⊂ Θ a decision subspace that includes decision vectors θ. The evaluation

of R relies on N×M performance measures L(θi, ωj) simulated (i = [1..N ], j = [1..M ]).

The number N of θ simulated is proportionally related to the widest dimension of the

considered subspace. These N decision vectors θ are uniformly sampled within the R

decision subspace. Each of these decision is simulated coupled with M uncontrollable

parameter ω randomly selected within a collection of either historical observed or

computationally generated ω. The amount M of uncontrollable ω is set for the whole

process.

Let α ∈ [0, 1] be a scalar such that the quantile q0[L(θi, ωj)] is the smallest value

of the performance measures and q1[L(θi, ωj)] the largest. We use a weighted average

method to estimate the quantile of order α. The first step consists in ordering the

performance measures within a region such that L0 is the smallest value and L(N×M)−1

is the largest. Let p be the integer part of ((N × M) − 1)×α, and let g be its fractional

part. The weighted average estimation of the α order quantile of performance measures

is done as follow.

qα[L(θi, ωj)] = Lp + g × (Lp+1 − Lp) (2)

According to the previous quantile estimation process, the evaluation criterion J(R)

of the decision subspace R is computed as follow.

J(R)θ∈R = qα[L(θ, ω)]. (3)

4 Application to irrigation management

We applied this new approach to design of irrigation strategies. The aim of this section

is to present the problem we used to test the P2q algorithm.

4.1 MODERATO Simulator

MODERATO (Bergez et al 2001) is a plot-based annual-based model aimed at evalu-

ating current irrigation strategies for corn and at proposing improved strategies. It has

been developed in close collaboration with irrigation advisers. It combines a dynamic

and biophysical corn crop model with a dynamic decision model. The crop model is

described in Wallach et al (2001). In short, the model is based on the general capta-

tion / conversion of the solar radiation allowing for leaf area and biomass development.

Depending on phenological stages, efficiency of radiation conversion differs. Yield is

calculated thank to the use of a dynamic harvest index. A water budget integrating

transpiration and evaporation is computed on a 4-layer soil. Water stress modifies plant

growth and harvest index.

The decision model consists of a set of decision rules for different management

decisions. A decision rule can be seen as a function linking some indicators of system

status, in this case the cropping system, to the action to be performed. It is written

as a Boolean condition: ”IF <indicator> <operator> <threshold> THEN <action1>

ELSE <action2>”. A crop management strategy is composed by three simple rules

(Sowing, Fertilizing and Harvest) and by the Irrigation Strategy, which, in its turn,

is defined by five elementary rules: i) a rule to determine if irrigation is to be used
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to facilitate plant emergence (Irrigation at Sowing Rule); ii) a rule to decide when to

start the main irrigation period (Starting Rule); iii) a rule to determine when to start

a new irrigation round (Returning Rule); iv) a rule to delay irrigation due to weather

conditions (Delaying Rule); v) a rule to decide when to stop irrigation (Ending Rule).

The crop model updates the state variables each day and passes their values to the

decision model together with the explanatory variables of that day.

The constraints to irrigation and available in MODERATO may be divided into

three categories:

Equipment constraints: maximum flow available due to pumping capacity per hectare;

maximum and minimum amount of irrigation allowed.

Resource constraints: a limited total amount of water for irrigation and a decreased

flow rate during the irrigation period.

Regulatory or human constraints: irrigation bans on some days of the week, farmers

reluctance to work for all or part of certain days, etc.

Constraints may vary during the irrigation period. For example river flow may

decrease in summer, reducing the pumping flow. Regulations may be issued to reduce

water consumption because of water shortage, possibly by prohibiting irrigation on

certain days. These modifications of the general context over the irrigation period can

be taken into account in the irrigation scheduling. However, as MODERATO is used

at a strategic level, those modifications have to be anticipated to be tested.

An irrigation strategy is then defined as the set of rules (indicators - thresholds)

activated for a given irrigation context.

MODERATO can run over a climatic series but every year is independent.

4.2 Case study

Tests have been run on an eight-parameter strategy as follows.

The main irrigation period starts from T1 as soon as the soil water deficit

reaches D1. An amount I1 is applied. Once an irrigation cycle ends, a new

cycle starts when the soil water deficit reaches D2. An amount I2 is applied.

For the irrigation cycle following T3, if the soil water deficit is greater than D3

before this irrigation cycle starts, a last irrigation cycle is performed; otherwise

the irrigation campaign ends. An amount I3 is applied.

Other cultural operations are modeled with decision rules, such as the sowing or the

harvest. Details of these rules are provided in the table 1. Soil properties and climatic

series used are describing south west of France. The variation in rainfall during the two

summer months as it ranges from 30 to 240 mm, underlining the unpredictable nature

of rainfall in the area.

The irrigation equipment used for the study allows a 3.5 mm/day flow rate. A 180

mm limitation of available water is applied. No flow rate restrictions during summer

(except those due to the equipment) are imposed.

The objective function to be maximized is the α-quantile of the direct margin (i.e.

the gross margin minus specific costs for a given activity, here irrigation). The direct

margin regarding irrigation can be written as a weighted sum of multiple criteria:

L(θi, ωj) = a(θi, ωj).B − [C + d(θi, ωj).E + f(θi, ωj).G] (4)
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Operation Rules
Sowing Sowing is between 20 April and 30 May as soon as the cumulative rainfall

during the previous 3 days is less than 15 mm. Variety Cécilia is sown at 80
000 plants/ha. Cécilia is a late growing variety requiring 1045 accumulated
thermal units (ATU) from sowing to flowering and 1990 ATU from sowing
to maturity (35% grain humidity).

Fertilization A single application of 200 kg/ha of nitrogen is made at sowing.
Harvest The crop is harvested when grain moisture content reaches 20% or accu-

mulated thermal units since sowing reach 2100 ATU and if the cumulative
rainfall during the previous 3 days is less than 15 mm. In any case, the
crop must be harvested before 15 October.

Irrigation

Sowing Irrigation to facilitate plant emergence (caused either by dryness
or crust created by heavy rainfall on silty soil) is not taken into ac-
count, nor irrigation to dissolve fertilizer.

Starting irrigation Part of the optimization process.
Next irrigation round Part of the optimization process.
Delay irrigation Precipitation delays irrigation. When the cumulative

rainfall over the 5 previous days is more than 10 mm, one day de-
lay is applied for every 4 mm. The delay cannot exceed 7 consecutive
days.

Stopping irrigation Part of the optimization process.

Table 1 General description of the strategy simulated.

where L(θi, ωj) is the direct margin for climate ωj and the strategy θi, a(θi, ωj) is

the grain yield obtained under climate ωj and using the strategy θi, B is the selling

price for corn, C is the operational costs for corn production, d(θi, ωj) is the amount

of water used under climate ωj and using the strategy θi, E is the cost of irrigation

water, f(θi, ωj) is the number of irrigation cycles performed under climate ωj and using

the strategy θi and G is the cost of carrying out a new irrigation cycle. The average

selling price for maize (grain) is assumed to be 106.71 ¤/Mg in the Toulouse area.

Operational costs (seed, weeding, fertilizer, insurance) are assumed to be 327.77 ¤/ha.

The cost of irrigation water is assumed to be 0.76 ¤/mm and the setting up of a new

irrigation cycle is assumed to be 7.62 ¤/ha.

4.3 Experiments

We considered 10 replications for each alternative. The initial feasible region is defined

in table 2 as the ranges of the different parameters from the strategy described in

section 4.2.

Some procedure parameters were set for all experiments. The maximum number of

simulation was set to 2 million. The probability of randomly choosing the promising

region is set to 20% and the sampling follows a uniform distribution. The density of

samples which are use to evaluate a decision subspace is set to 1. According to the P2

procedure, it means that the region R evaluation is based on at least as many θ as step

number along the widest dimension. Finally the number M of uncontrollable ω is set

to 49 and they are randomly chosen in weather data observed in the area of concern.

Each time the direct margin quantile increased, we stored it as well as the number

of simulation runs used to achieve it. These stored values presented a strictly increasing
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Table 2 The eight parameters of the irrigation strategy to be optimized. Min and max show
the range of each parameter within which the optimum is sought. A step is the minimum
feasible range of the parameter.

Names Meaning unit min max step

T1 Accumulated thermal unit to start the irriga-
tion campaign

◦C.day 200 1250 5

D1 Soil water deficit to start the irrigation mm 20 150 3
I1 Irrigation applied at the first irrigation mm 5 50 2
D2 Soil water deficit to start a new irrigation cycle mm 20 150 3
I2 Irrigation depth applied mm 5 50 2
T3 Accumulated thermal units to stop the irriga-

tion

◦C.day 1250 2000 5

D3 Soil water deficit to stop irrigation mm 20 150 3
I3 Irrigation applied at the last irrigation round mm 5 50 2

curve in the simulation runs/direct margin criteria space. The general shape of this

curve was made up of two distinct phases: one with a large improvement in direct

margin quantile with a few simulation runs, and another with a tiny improvement with

an infinite number of simulation runs. The large amount of simulation runs insured that

every optimization processes reached the second phase of low improvement.

In order to highlight the advantages of quantile optimization, we first compare opti-

mal regions reached for expected value and quantile optimizations. Then we compared

quantile optimization of order 0.1 to order 0.9. The optimization process included in

P2q is a minimization. The translation of any maximization into a minimization al-

lows any problem to be handled. However in this case, in opposition to what we said

in the earlier quantile definition section, the quantile of order 0.1 divided the 10% best

solutions from the 90% worst, and the quantile of order 0.9 divided the 90% best from

the 10% worst.

5 Results

5.1 Quantile vs. expected value optimizations

Figure 2 shows 50 random strategies simulated in four regions. The + are strategies

included in the initial research domain. The × are strategies included in the optimal

region reached with expected value optimization. The ∗ are strategies included in the

optimal region reached with 0.1-quantile optimization. The � are strategies included

in the optimal region reached with 0.9-quantile optimization. Every strategy is plotted

two times. The first is upside and is located on the graph by its average value and its

0.1-quantile. The second is downside and is located on the graph by its average value

and its 0.9-quantile.

The optimal regions reached high α-quantile and expected value comparing to

the strategies simulated within all the decision space. In one hand, the 50 strategies

simulated in the 0.1-quantile optimal region are maximizing the threshold dividing the

10% best responses and the 90% lower ones. It reflects an optimistic decision indicator

focusing on optimizing the best responses. In the other hand, the 50 strategies simulated

in the 0.9-quantile optimal region are maximizing the threshold dividing the 90% best
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Fig. 2 Two times 50 strategies of four different regions.
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responses and the 10% lower ones. It reflects a pessimistic decision indicator focusing

on optimizing the worst responses.

5.2 Different quantile orders optimizations

Figure 3 shows the cumulative distributions of the optimal regions respectively reached

with 0.1- and 0.9-quantile optimization. These distributions rely on 2450 performance
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Fig. 4 Input variables envelope of the 10 optimal regions reached for the 10 replications of
the P2q algorithm: 0.1-quantile optimization.

measures, so that the 0.1-quantile divided the 245 best measures from the 2205 others

and so that the 0.9-quantile divided the 245 worst measures from the 2205 others.

These thresholds are pictured as ⊓ upper bounded by 245 and 2205 measures from a

distribution quantile to the other. So the width of these ⊓ translates the improvement

of the α-quantile. For example, 0.9-quantile reached a value larger than 400 ¤/ha when

the optimized quantile order is α = 0.9, and it reached a value close to 360 ¤/ha when

the optimized quantile order is α = 0.1.

Latter figures characterized criteria responses of optimal regions. The next figures

4 and 5 are multiple axis charts representing the decision variable space. Couples of

thin lines bound the parameters defining the optimal regions that were reached for

the 10 replications of the P2q algorithm. The couple of bold lines is an envelope of all

of them. Each axis, leveled from 0 to 100, depicts each parameter from the minimum

(0%) to the maximum (100%) values available and defined in table 2.

The largest 0.1-quantile direct margin reached over all replications is 691 ¤/ha

and an average value of 537 ¤/ha (figures 3 and 4). The related decision vector de-

picted a first irrigation started after observing small accumulated temperature (below

725 oC.day) and water deficit (below 60 mm), and the application of a medium amount

of water (between 18 and 32 mm 8 out of 10 times). The new irrigations are performed

as soon as a small water deficit is observed (less than 55 mm) and a large amount of

water is applied (more than 32 mm). The three last parameters leading to the eventual
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Fig. 5 Input variables envelope of the 10 optimal regions reached for the 10 replications of
the P2q algorithm: 0.9-quantile optimization.

irrigation campaign end are more variable. Yet we noticed that 6 out of 10 times the

accumulated temperature T3 leading to the irrigation campaign end is included in the

25% of low values (below 1440 oC.day). In the meanwhile 8 out of 10 times the water

deficit D3 is included within the 25 and 50% of the proposed values (respectively 52 and

85 mm). The last irrigation amount does not show any of the previous consistencies.

The largest 0.9-quantile direct margin reached over all replications is 412 ¤/ha and

an average value of 543 ¤/ha (figures 3 and 5). The related decision vector depicted

a first irrigation started after observing a wide accumulated temperature (from 200

to 1000 oC.day) and small water deficit (below 40 mm), and the application of a

variable amount of water. The new irrigations are performed as soon as a small water

deficit is observed (less than 40 mm) and a large amount of water is applied (more than

32 mm). The accumulated temperature T3, the water deficit D3 and the water amount

I3 leading to the last irrigation are very variable and no consistency is ostensible.
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6 Discussion

6.1 Quantile optimization efficiency

As we expected, P2q as P2, reached optimal regions with high objective function

average value. The highest direct margin average value was achieved with the usual

expected value optimization of the performance measures. However, α-quantile opti-

mizations reached regions with greater α-quantiles (figure 2).

This means that the region distribution shapes were distinct. Figure 3 shows the

cumulative distributions of the optimal regions reached with 0.1- and 0.9-quantile op-

timization. The deviation around the expected value which is about 540 ¤/ha in both

cases, is very large. This highlights the significance of using quantile optimization. In-

deed, optimization of the single expected value does not care about the shape of the

region distribution. So, the decision maker can either reach optimal region with ex-

pected value probability of appearance close to one or zero. The perspective that the

predicted decision will lead indifferently to the most likely or the most unlikely solution

of optimal expected value, is not attractive. The optimization of quantile associated to

the decision maker risk acceptance focus on more representative strategies and reduce

the former misbehavior risk of appearance.

The results showed that the algorithm is as efficient to produce optimal region as

the prior P2. Furthermore it focuses on optimizing quantile thresholds which translate

a new decision maker preference. Thus since the decision maker is able to characterize

his risk acceptance, quantile optimization handled both with the efficiency of the pre-

dicted decision and the probability of its quantile of interest. That makes the quantile

optimization more accurate to propose optimal decisions leading to optimal solutions

according to the risk acceptance or aversion of the decision maker.

6.2 Optimal irrigation plans

Granting a large enough number of simulations, sensitive parameters are the same

(figures 4 and 5). In one hand, the envelopes of optimal variables D1, D2 and I2

were thin, which underlines the large influence of these parameters. In the other hand,

envelops of optimal variables D3 and I3 were wide, which underlines the small influence

of these parameters. This observation was already true for the optimal decision space

proposed with optimization of the expected value (figure 6). Main differences were

related to T1 and I1 parameters. The 0.1-quantile optimization led to relatively small

intervals compared to the ones reached with 0.9-quantile optimization. We noticed

two main limitations. The first one is that we simulated a water limited case, so that

depending on the climate, the limit could have been reached or not and implied larger

variability in the irrigation stopping rule decision parameters. The second one is that

the decision parameter I2 was always high valued and may have been larger depending

on the range we set to it. But I2 is an irrigation amount and its range variation should

be discussed before any change.

Although the shapes of optimal regions were similar, the surface of the envelopes

reached with quantile optimizations was larger than the one reached with expected

value optimization. This observation corroborates that the quantile optimization is

harder than expected value optimization.
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Fig. 6 Input variables envelope of the 10 optimal regions reached for the 10 replications of
the P2 algorithm: expected value optimization.

7 Conclusion and perspectives

Granting that the decision maker is able to characterize his risk acceptance, results

showed that optimizing quantiles leads to different optimal regions than optimizing ex-

pected value. As quantiles optimization allow the decision maker to take into account a

new preference (the risk acceptance) which is not involved in expected value optimiza-

tion, the new optimal regions reached by the P2q algorithm address more accurately

the decision maker preferences. Although we noticed that quantile optimization re-

quires an extra sorting process and thus is more time demanding, it adds significant

value to the design of irrigation strategies.

Though quantile optimization is commonly used in economic fields, it is unusual

to use it to design agricultural strategies. This study emphasized the usefulness of

quantile as an optimization criterion. This value should even be increased if combined

with multiobjective optimization procedures. It seems indeed very attractive to be able

to maximize simultaneously a small and a large quantile orders. It means that we could

maximize the yield of poor crops and maximize the yield of efficient crops at the same

time, such that the algorithm reaches decision subspace that avoid the small pay-off

while maximizing the large ones.
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