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Summary Various theories of internal gravity wave generation by the broadside oscillations of a horizontal circular disk are reviewed
and compared with existing low-resolution conductimetric measurements and new high-resolution PIV measurements.

MOTIVATION

Internal tides, generated in the density-stratified ocean by the oscillation of the barotropic tide over bottom topography,
play a crucial role in the energy balance of the Earth–Moon system [1]. This has led to a recent revival of the classical topic
of internal gravity wave generation by oscillating bodies. Wave energy dissipates owing to wave breaking and sub- and
superharmonic excitation, at regions where the wave rays either intersect each other, reflect at the bottom or are tangent
to the topography [2]. Accordingly, accurate modelling of the bottom boundary condition is determinant. However, all
analytical models to date consider idealized free-slip boundaries instead of the actual no-slip boundaries, except for a
recent study of the oscillating circular disk [3]. We specialize to this problem, review the possible theoretical approaches
and compare their outcome with existing experimental data and with a new and improved set of data.

THEORY

A horizontal circular disk of radius a oscillates vertically at the frequency ! with velocityw0e�i!t in a uniformly stratified
fluid of buoyancy frequencyN with! < N , as shown in Figure 1. In cylindrical coordinates .r; '; ´/ non-dimensionalized
as .R; ';Z/ D .r; '; ´/=a, with upward vertical ´-axis, the inviscid solutions of [4, 5, 6] are all equivalent to the integral
representation, for the vertical velocity w non-dimensionalized as W D w=w0,
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with � D arccos.!=N/ the angle of propagation of the waves to the vertical and J0 and j1 cylindrical and spherical
Bessel functions, respectively.
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Figure 1. Oscillating disk geometry.

Kinematic viscosity � affects the waves according to the Stokes number S2 D !a2=�. For large S2, it is generally
believed that only wave propagation is affected while generation remains inviscid [7]. Hence, with free-slip forcing and
viscous wave attenuation according to [8, §4.10] corrected in [9] for near-field effects, the velocity becomes
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For arbitrary S2 hence no-slip forcing, [10] reduced artificially the problem to a Dirichlet one by replacing the actual disk
by one oscillating through an aperture in an infinite fixed plate, whereas [3] solved the proper mixed problem by Tranter’s
method. We retain the latter. A combination of two terms follows,
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namely the waves themselves with complex attenuation factor�1 and a boundary layer with attenuation factor�2, where
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and Re�1;2 > 0. The amplitude A.K/ is a Neumann series of spherical Bessel functions,
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with coefficients satisfying an infinite linear system solved by truncation,
1X

mD0

am

Z 1
0

K2j2l .K/j2m.K/

Œ2K2 � iS2 C 2K.K2 C iS2 tan2 �/1=2�1=2.K2 C iS2 tan2 �/1=2
dK D ıl0: (6)

As S2 !1 the boundary layer becomes negligible except close to the disk and the waves reduce to (2).

EXPERIMENT

We assess the relative merits of these theories by comparison with experiment in Figure 2. The only data to date are
conductimetric measurements for a large disk at high S2 D 1000 and a small disk at lower S2 D 210 [10]. Only
the viscous theories (2) and (3)–(6) account for the asymmetry of the profile for the large disk in Figure 2(a), but poor
data sampling prohibits more definite conclusions to be drawn. To overcome these limitations, new experiments were
performed at ENS de Lyon using Particle Image Velocimetry at high resolution. Comparison in Figure 2(c) for a small
disk at S2 D 250 shows excellent agreement about the shape of the profile for the two theories, but some disagreement
persists about the amplitude, attributed to the small but finite thickness of the experimental disk (ensuring its rigidity).
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Figure 2. Velocity envelope along a vertical line R D const for (a) the large disk of S2 D 1000 and (b) the small disk of S2 D 210 in
the experiments of [10], and along the horizontal line .Y D 0;Z D 1/ for (c) the disk of S2 D 250 in the present experiments. The
black markers represent the experimental data: 18 and 10 big triangles in (a) and (b), respectively, and 841 small circles in (c). The
lines represent the theoretical predictions: (1) in blue, (2) in red, from [10] in olive green and (3)–(6) in apple green.

In order to discriminate between the large-S2 theory (2) and the finite-S2 theory (3)–(6), larger values of S2 must be
considered. At S2 D 1000, the two theories still exhibit a small discrepancy in Figure 2(a). The boundary layer term, at
least 106 times smaller that the wave term, is not involved. Closer investigation shows that it is only for S2 D 0.106/ that
the large-S2 limit is actually reached, prohibiting the use of free-slip boundaries at any smaller S2.

CONCLUSION

Based on the example of the oscillating disk, we have shown the classical approximation of free-slip forcing at an internal
wave generator to apply only for extremely large S2, and consideration of no-slip forcing to be required otherwise.
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