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Abstract

We aim to present mathematical models of smart materials and smart structures.
Smart materials are materials which present significant multiphysical couplings. They are
integrated in smart structures which take technological advantages of some multiphysical
effects. We establish a classification of piezoelectric crystalline materials and propose
simplified but accurate models of thin plates or slender rods made of piezoelectric or
electromagneto-elastic materials. In the first part algebraic tools from group theory are
used, whereas in the second one some tools of variational and functional analysis are
suitable to solve some convergence questions for boundary value problems depending on
small parameters.

Keywords: Group theory, singular perturbations methods, asymptotic analysis, plates
and rods models.

1 Introduction

Smart materials present significant multiphysical couplings, one of the fields of interac-
tion being mechanics. For instance, the application of an electric field on a piezoelectric
material generates a deformation and conversely, a deformation generates polarization.
Piezoelectric materials are widely used in the design of smart structures. They are inte-
grated in these structures which take technological advantages of the piezoelectric effect.
We may distinguish two classes: sensors and actuators. Sensors transform a mechanical
loading into an electric signal and the systems they enter convey these signals according to
the needs: design of micro weighing machine, airbags, Hi-Fi equipments... The actuators
convert an electric signal into a displacement, which can be monitored with precision, of
say mirrors, lenses, machine tools... This twofold behavior is known and used for a long
time and several derivations of models of smart structures can be found in the engineer-
ing literature. Due to the various proceedings, discrepancies and controversies may occur
(see [2], [6] and [9] for example). Here we aim to present mathematical models of both
smart materials and smart structures.

First we establish a classification of piezoelectric crystalline materials by a suitable
description of crystal lattices and a careful study of the symmetries of the piezoelectric
tensors which account for the piezoelectric phenomenon. We used mainly algebraic tools
from representation theory.
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In a second part we intend to propose simplified but accurate models of structures
made of piezoelectric or elecromagneto-elastic materials, these structures (thin plates,
slender rods) presenting one or two small dimensions. The models are obtained by a
rigorous study of the asymptotic behavior of a three dimensional body when some of its
dimensions, considered as parameters, tend to zero. We used various tools of variational
and functional analysis, the point being to consider boundary value problems depending
on small parameters. This study has been carried out in the steady-state and transient
cases.

2 To begin with: classifying crystals

From an historical point of view, the word ’crystal’ can be seen as a synonym of order
and symmetry. And indeed, crystals are the manifestation of order and symmetries taking
places inside matter. The first scientific treatises dealing with crystals appeared at the
end of the 18th century. They were written by mineralogists who tried to understand the
reasons for which certain kinds of mineral species had so regular forms. At this time, the
french scientist René-Just Haüy made the hypothesis that the exterior form of these species
was the consequence of a periodical juxtaposition of microscopic elementary blocks inside
theses bodies. That led to the notion of crystalline state. Theoretical studies then began
and, from the geometric point of view, the architecture of this crystalline state imaginated
by Haüy was described well before the development of modern measure devices. In fact, it
is only after the discovery of X-ray diffraction in 1912 that the Bragg brothers together with
Von Laue showed experimentaly that crystalline state is linked to a periodical ordering of
matter at microscopic or molecular scale.

In the last two decades, the use of new mathematical tools coming from calculus of
variations gave a new impulse at the mathematical modeling of crystals. An important
part of this impulse originates in [1], who showed that mesoscale arrangements of matter
can be seen as minimizers of an energy linked to the macroscopic behavior of solids. The
need of an up to date and rigourous modeling of microscopic structures then appeared.
The history and the results of this modeling can be found in [8].

The very question that arises in mathematical modeling of crystals is the following:
which are the tools that allows us to translate the notions of ’order’ and ’symmetry’ in
mathematical terms ? The answer is twofold. First, the need of a classification clearly ap-
pears. We have to range crystals in different families depending on their ’forms’. Secondly,
we have to give a precise meaning to this term of ’form’.

The basic tools then appear. Because we want to classify, we will build equivalence
classes. And because we want to classify forms, we will pick our tools in the orthogonal
transformations, that is, transformations that preserve angles (and therefore shapes). This
will allow us to say when two bodies are basically two different images of a same form.

We denote by Lin the space of second-order tensors, I the unit element in Lin and Lt the
transpose of the element L ∈ Lin. We recall that the space of orthogonal transformations
is O(3) = {L ∈ Lin : LLt = Lt L = I} and that the subgroup of all elements of O(3)
with determinant equal to 1 (i.e. the subgroup of rotations) is denoted by SO(3).

Let R
3 be the three-dimensional Euclidean vector space with a basis {ea} = (e1, e2, e3).

Using the convention of summation over repeated indexes, we define the lattice R({ea})
by:

R({ea}) := {x ∈ R
3 : x = Maea, a = 1, 2, 3, Ma ∈ Z}. (1)
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In a way R({ea}) is the skeleton of the crystal to model and we say that the 3 linearly
independent vectors ea (a = 1, 2, 3) are the basis vectors of R({ea}). The parallelepiped
P({ea}) spanned by ea (a = 1, 2, 3) is called the unit cell of R({ea}). It is the elementary
block that we introduce supra.

It is well known that lattices can be ranged in 7 crystal systems or 14 Bravais lat-
tices. But it is not so easy to understand that these two types of classification correspond
to two types of equivalence classes: ”geometrical” equivalence classes and ”arithmetic”
equivalence classes. These two kinds of equivalence classes arise on the one hand from
geometrical actions (namely: elements Q of O(3)) and on the other hand from arithmetic
actions (elements m of GL(3,Z), the space of 3 × 3 invertible unimodular matrices with
integral entries). The reader interested in the details of the process can refer to [8]. Here,
let’s just say that an element Q ∈ O(3) acts on {ea} in the following way:

Q{ea} := (Qe1,Qe2,Qe3) = {Qea}. (2)

As to arithmetic actions m = (mb
a) ∈ GL(3,Z), they are defined by:

m{ea} := (mb
1 eb,m

b
2 eb,m

b
3 eb) = {mb

a eb}. (3)

These actions are quite different: notice that elements Q ∈ O(3) act on each basis vector
independently, while it is not the case of elements m of GL(3,Z).

Up to these two actions, two kinds of equivalence classes arise. We shall not detail
their definitions. It is enough to know that crystal lattices can be either geometrically or
arithmetically equivalent. The geometrical equivalence classes lead to the 7 crystal sys-
tems (also called geometrical holoedries), widely known under the following denomination:
triclinic, monoclinic, orthorhombic, tetragonal, trigonal, hexagonal and cubic. As to the
arithmetical equivalence classes, they lead to the 14 Bravais lattices. It is however not
possible to justify here the existence of the 32 crystallographic point groups because it
would need the introduction of affine symmetries and of multilattices which are far from
our purposes.

3 Towards tensors symmetry classes

3.1 A bridge: the Cauchy-Born hypothesis

The Cauchy-Born hypothesis is, roughly speaking, the statement that lattices vectors
behave as material vectors. It simply means that when a crystal with lattice R({e0

a}) in
the reference configuration experiences a homogeneous deformation whose gradient is F,
we have:

ea = Fe0
a, (4)

where ea are the lattice vectors of the crystal in the deformed configuration.
This quite simple hypothesis allows us to transfer symmetry properties studied up to

now to the macroscopic level, then passing from geometrical to constitutive symmetry.
To this aim we first take for granted that the structure of crystals can be described by

means of a simple lattice in all their allowed configurations. Second, we assume that the
free energy w per unit cell of a deformable crystalline body whose current configuration is
a simple lattice R({ea}) can be written as:

w = w(ea). (5)
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In the piezoelectric case, the energy is a function of the strain tensor E and of the
electric displacement vector d:

w = w(E,d), (6)

while the piezoelectric tensor P is given by:

P =
∂2w

∂E∂d
. (7)

In the linear case these expressions lead to:

QP[d]Qt = P[Qd],

Qt P[E] = P[Qt EQ], (8)

as soon as Q is an element of the geometrical holoedry of R({e0
a}).

This process clearly shows how some of the symmetry elements present in a crystal can
be brought across the microscopic level to the macroscopic one, where others equivalence
classes can be built. In fact, (8) says that each element of the geometrical holoedry of a
crystal is an element of the symmetry group of the piezoelectric tensor of this crystal. This
has to be compared to the Neumann’s Principle, which states that ”the symmetry group
of any property of a crystal must include the point group of this last”. We emphasize on
the fact that all hypothesis that have been made since we introduced the Cauchy-Born
hypothesis concern the crystal viewed as a lattice. The point groups therefore cannot
appear in this approach.The important fact, anyway, is how the ⋆ action that will be
introduced in the next section, and which is of fundamental use in the tensors symmetries
study, naturally arises from the crystal structure via the Cauchy-Born hypothesis.

3.2 The piezoelectric tensors symmetries

We consider a tensor of any order noted T. Its components in a given basisR = (O;u,v,w)
are denoted T···ijk···. Let Q ∈ O(3) be an orthogonal transformation. In the new basis
R′ = (O;Qu,Qv,Qw) = QR, the components of T are mapped into

(Q ⋆T)···ijk··· := · · ·QipQjqQkr · · ·T···pqr···. (9)

Now, let Piez be the space of all third-order tensors, symmetric according to their first
two indexes:

Piez := {P : Pijk = Pjik}. (10)

A tensor P ∈ Piez is called a piezoelectric tensor.
In a piezoelectric material, the electric displacement vector d is connected to the stress

tensor σ via the relation

dk = Pijk σij , (11)

where P ∈ Piez.
We define the symmetry group g(P) of an element P ∈ Piez by:

g(P) := {Q ∈ O(3) : Q ⋆P = P}, (12)
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and we will say that two piezoelectric tensors P1 and P2 in Piez are equivalent if there
is an element Q of O(3) such that g(P1) = g(Q ⋆ P2). In other words, P1 and P2 are
equivalent when their symmetry groups are conjugate:

P1
⋆
∼ P2 ⇐⇒ {∃Q ∈ O(3) : g(P1) = Q g(P2)Q

t}. (13)

This relation translates the physical intuition that whenever two material bodies can be
rigidly rotated so that their symmetry groups become identical, they share the same
”symmetry”. Therefore, the equivalence classes of Piez which result from

⋆
∼ are called

symmetry classes. The question we ask now is: how many symmetry classes are there
in Piez and which are there? Quite recently in [4], it has been introduced a well-suited
technique that gives an answer to this question in the elasticity framework. But the
tools they used are powerfull enough to be extended to any tensors translating physical
properties. The core of the method lies in the fact that it is not so easy to see how
orthogonal transformations act on tensors. Therefore, we have to find another space on
which the action ⋆ will become elementary. Indeed, this space does exist and is linked
to the set of harmonic polynomials. The path from tensors to harmonic polynomials has
however to be explained, and we now focus on this point.

3.2.1 Harmonic decomposition

Any second-order tensor E can be seen as the sum of a symmetric tensor S = 1

2
(E + Et)

and of an antisymmetric tensor W = 1

2
(E − Et) associated with an axial vector ǫw such

that Wij = ǫijk
ǫwk, where ǫijk are the components of the alternating tensor. We note tr

for the trace operator. The relation S = SD + 1

3
(trS)I = SD + 1

3
(trE)I, where SD is the

deviatoric part of S, points out an isomorphism between Lin and Dev×R
3×R where Dev

is the space of second-order traceless and symmetric tensors. We therefore write:

Lin ∋ E ≈ (SD, ǫw,
1

3
(tr E)) ∈ Dev × R

3 × R. (14)

It is easy to check that:

Q ⋆E ≈ (Q ⋆ SD, det(Q) (Q ⋆ ǫw),
1

3
(trE)), (15)

so that the symmetry class of E verifies:

g(E) = g(SD) ∩ ǫg(ǫw), (16)

where

ǫg(ǫw) = {Q ∈ O(3) : Q ⋆ ǫw = det(Q) ǫw}. (17)

The generalization of the correspondence (14) to tensors of any order (cf. [12]) is called
harmonic decomposition. This decomposition is the bridge between tensors and harmonic
polynomials. We say that a tensor is harmonic when it is totally symmetric (its components
are unchanged under any permutations of indexes) and traceless (the trace with respect
to any pair of indexes is null). Applied to Piez, this decomposition makes it possible to
write:

Piez ∋ M ≈ (H, ǫC, ν,v) ∈ Hrm × ǫDev × R
3 × R

3, (18)
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where Hrm is the space of third-order harmonic tensors and ǫDev the space of harmonic
and axial second-order tensors. We then have:

∀Q ∈ O(3), Q ⋆M ≈ (Q ⋆H, det(Q) (Q ⋆ ǫC),Q ⋆ ν,Q ⋆ v), (19)

and thus:

g(M) = g(H) ∩ ǫg(ǫC) ∩ g(ν) ∩ g(v), ∀ M ∈ Piez, (20)

where ǫg(ǫC) follows from (17).

3.2.2 Cartan decomposition

Let r = xi+yj+zk be a vector of R
3 and let Pn be the space of homogeneous polynomials

of degree n in the three variables x, y and z. There is a classical isomorphism ψ between
Pn and Symn, the space of totally symmetric tensors of order n (cf. [4]):

Symn ∋ T 7→ ψ(T) := T[r, r, · · · , r] = Ti1i2···in
ri1ri2 · · · rin

∈ Pn, (21)

where the convention of summation over repeated indexes is understood. Thus, the second-
order symmetric tensor S = (Sij) defined in the preceding paragraph is mapped into

ψ(S) = S11 x
2 + 2S12 xy + 2S13 xz + S22 y

2 + 2S23 yz + S33 z
2. (22)

A polynomial h ∈ Pn is harmonic when ∆h = 0, where ∆ is the Laplacian operator.
We write h ∈ Hn. It is easy to check that the space of harmonic tensors of order n is
isomorphic via ψ to Hn. The isomorphism (21) enables us to extend the action ⋆ defined
in (9) to Pn: for p = ψ(T) ∈ Pn and Q ∈ O(3), we define

(Q ⋆ p)(x, y, z) := T[Qtr,Qtr, · · · ,Qtr] = Ti1i2···in
rj1rj2 · · · rjn

Qj1i1Qj2i2 · · ·Qjnin
. (23)

Moreover, the linear mapping ψ is O(3)-invariant in the following sense

∀Q ∈ O(3), Q ⋆ ψ(T) = ψ(Q ⋆T). (24)

The goal is now to map harmonic polynomials (and consequently harmonic tensors)
into spaces where the action ⋆ will become elementary. This purpose is achieved by the
Cartan decomposition, which is an SO(2)-invariant decomposition of Hn. To give just a
preliminary idea of it, let us consider a second-order harmonic polynomial f in the three
variables x, y and z. We then have f ∈ H2. It is clear that f can be expressed on the
following ”basis”:

u := z2 −
1

3
(x2 + y2 + z2), (s1, t1) := (xz, yz), (s2, t2) := (x2 − y2, 2xy). (25)

This decomposition can also be viewed as the decomposition of second-order deviatoric
tensors on the following basis (up to constants):

U =




1 0 0
0 1 0
0 0 −2


 ,S1 =




0 0 1
0 0 0
1 0 0


 ,T1 =




0 0 0
0 0 1
0 1 0


 ,

S2 =




1 0 0
0 −1 0
0 0 0


 ,T2 =




0 1 0
1 0 0
0 0 0


 ,
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All these tensors are traceless, symmetric and translate very simply the action of orthog-
onal transformations which operate on them:

Q(k, θ) ⋆ sl = sl cos(lθ) + tl sin(lθ), Q(k, θ) ⋆ tl = −sl sin(lθ) + tl cos(lθ), (26)

and

Q(i, π) ⋆ u = (−1)nu, Q(i, π) ⋆ sl = (−1)n−lsl, Q(i, π) ⋆ tl = (−1)n−l+1tl. (27)

Arguments which amount to the above results and extensions to higher order situations
are described in [5] p.109-111.

3.2.3 Symmetry classes of piezoelectric tensors

In the preceding sections, we chosed to focus on tools that allows to understand how
symmetry can be modeled at different scales. Obtaining results with the help of these
tools is a question of technique, and we prefer to let the technique aside in this paper.
Harmonic and Cartan decompositions then lead to the fact that there are 15 equivalence
classes of piezoelectric tensors. When we look at a crystallographic table (as the one in [10]
for example), we can see that it appears 16 different forms of piezoelectric tensors. It’s
important to focus on the fact that tools presented here lead to informations that can
be considered as deeper as the one we can get with the help of crystallographic tables.
Indeed, we can proove that 6 and 6m2 crystal classes materials have the same piezoelectric
behavior even if their piezoelectric tensors appear to be different in the crystallographic
tables. Invisible informations thus appear when dealing with appropriate mathematical
tools.

4 Static behavior of smart plates or rods

As usual we make no difference between the physical space and R
3 and, for all ξ =

(ξ1, ξ2, ξ3) in R
3, we denote (ξ1, ξ2) by ξ̂. Greek indices for coordinates take their values

in {1, 2} whereas latin indices run from 1 to 3.
Let H = S3 × R

3, where S3 denotes the set of all 3 × 3 real and symmetric matrices.
The set of all linear mappings from a space V into a space W is denoted L(V,W ) and by
L(V ) if V = W .

In the sequel, for every domain G in R
N , the subset of the Sobolev space H1(G) whose

elements vanish on Γ, included in the boundary ∂G of G, will be denoted by H1
Γ(G).

4.1 Piezoelectric thin plates

Finding the equilibrium of a thin linearly piezoelectric plate can be formulated as follows.
The reference configuration of a linearly piezoelectric thin plate is the closure in R

3 of the
set Ωε := ω × (−ε, ε), where ω is a bounded domain of R

2 with Lipschitz boundary ∂ω
and ε a small positive number. Let Γε

lat
:= ∂ω× (−ε, ε), Γε

± := ω×{±ε} and two suitable
partitions of ∂Ωε: (Γε

mD,Γ
ε
mN ) and (Γε

eD,Γ
ε
eN ) with Γε

mD and Γε
eD of strictly positive

surface measures. The plate is clamped along Γε
mD and at an electrical potential ϕε

0 on
Γε

eD. It is subjected to body forces fε in Ωε and to surface forces gε in Γε
mN . Furthermore,

we will consider an electrical loading dε on Γε
eN . We note nε the outward unit normal to

∂Ωε and assume that Γε
mD = γ0 × (−ε, ε), with γ0 ⊂ ∂ω. The equations determining the

piezoelectric state sε := (uε, ϕε) at equilibrium are:
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P(Ωε)





div σε + fε = 0 in Ωε, σεnε = gε on Γε
mN , u

ε = 0 on Γε
mD,

div Dε = 0 in Ωε, Dε · nε = dε on Γε
eN , ϕ

ε = ϕε
0 on Γε

eD,

(σε, Dε) = M ε(x)(e(uε),∇ϕε) in Ωε,

where uε, ϕε, σε, e(uε) and Dε respectively stand for the displacement, the electrical po-
tential, the stress tensor, the tensor of small strains (i.e. the symmetrized gradient) and
the electric induction. The operator M ε is an element of L(H) such that:

σε = a
ε e(uε) − b

ε ∇ϕε

Dε = b
εT

e(uε) + d
ε ∇ϕε (28)

with bε
T

the transpose of the piezoelectric tensor bε, the elastic tensor aε and the dielectric
one cε being symmetric and positive. Note that because of the piezoelectric coupling, M ε

is not symmetric.
It is easy to give a weak (or variational) formulation of the previous linear boundary

problem and to conclude to the existence and the uniqueness of a solution in suitable
Sobolev spaces through the Stampacchia theorem.

Nevertheless, due to the very low thickness of the plate, this classical model may be
difficult to tackle numerically. The essence of our proposal of simplified but accurate
modeling is to consider ε as a small parameter and to study the asymptotic behavior of sε

when ε goes to 0. In fact, two different limit behaviors indexed by p ∈ {1, 2} will occur,
according to the type of boundary condition in P(Ωε).

From the mathematical point of view it is convenient to proceed to a change of coor-
dinates Πε and of unknows sp(ε) = Sp(ε)s

ε in order to consider functional spaces defined
on a fixed domain Ω = ω × (−1, 1).

x = (x1, x2, x3) ∈ Ω 7→ Πεx = (x1, x2, εx3) ∈ Ω
ε

sp(ε) := (u(ε)(x), ϕp(ε)(x)) = ((ε−1ûε(Πεx), uε
3(Π

εx)), ε−pϕε(Πεx)).
(29)

The formulae defining Sp(ε) stem from the assumptions on the magnitude of the elec-
tromechanical loading and are justified by the convergence results they lead to. If we
consider forces and displacements, these hypotheses are the ones of [3] and supply a math-
ematical justification of the Kirchhoff-Love theory of thin linearly elastic plates. In addi-
tion, we assume that ϕε

0 has an extension into Ωε still denoted by ϕε
0 and that ϕ0 ∈ H1(Ω)

is such that ϕε
0(Π

εx) = εpϕ0(x) with:





if p = 1 : ϕ0 does not depend on x3.

if p = 2 : the closure of the projection of Γε
eD on ω coincides with ω,

moreover, either dε = 0 on Γε
eN ∩ Γε

lat or Γε
eN ∩ Γε

lat = ∅.

(30)

Thus s(ε) is the solution of the variational problem:

{
Find sp(ε) ∈ (0, ϕ0) + V = {r = (v, ψ) ∈ H1

ΓmD
(Ω)3 ×H1

ΓeD
(Ω)} such that∫

Ω
M(x) kp(ε, s) · kp(ε, r) dx = L(r), ∀r ∈ V

where the linear form L does not depend on ε and
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kp(ε, r) = kp(ε, (v, ψ)) = (e(ε, v),∇p(ε, ψ)),

e(ε, v)αβ = e(v)αβ , e(ε, v)α3 = ε−1e(v)α3, e(ε, v)33 = ε−2e(v)33,

∇̂p(ε, ψ) = εp−1∇̂ψ, ∇p(ε, ψ)3 = εp−2∂3ψ.

(31)

The signs of the various powers of ε in the components of kp(ε, r) induce an orthogonal
decomposition of H in subspaces H⋆

p, with ⋆ ∈ {−, 0,+}, which is crucial to fully describe
plates models in all admissible crystal classes. We denote by h⋆

p the projection on H⋆
p of

any element h of H so that M can then be decomposed in nine elements M⋆⋄
p ∈ L(H⋄

p,H
⋆
p),

with ⋆, ⋄ ∈ {−, 0,+}. Because M00
p and M−−

p are positive operators on H0
p and H−

p , the

Schur complement M̃p := M00
p −M0−

p (M−−
p )−1M−0

p is an element of L(H0
p). The key

point of the asymptotic study is to show that if kp is the limit (in a suitable topology) of

kp(ε, sp(ε)), then (M kp)
−
p = (kp)

+
p = 0. This will enable us to exhibit M̃p as the operator

governing the limit constitutive equations due to the fundamental relation:

(M h)−p = h+
p = 0 ⇒ M̃p h

0
p = (M h)0p and M̃p h

0
p · h0

p = M h · h. (32)

The limit space of displacements will be the space of Kirchhoff-Love displacements
defined by VKL := {v ∈ H1

ΓmD
(Ω)3; ei3(v) = 0} while the limit electrical spaces will

be Φe,1 := {ψ ∈ H1
ΓeD

(Ω); ∂3ψ = 0} and Φe,2 := {ψ ∈ H1
∂3

(Ω);ψ|ΓeD∩Γ± = 0}, where
H1

∂3
(Ω) := {ψ ∈ L2(Ω); ∂3ψ ∈ L2(Ω)}. Finally, we have the following convergence result:

Let K1 := H1(Ω) and K2 := H1
∂3

(Ω). When ε → 0, the familly (sp(ε))ε>0 of the
unique solutions of P(ε,Ω)p strongly converges in Xp := H1

ΓmD
(Ω)3 × Kp to the unique

solution sp of

P(Ω)p

{
Find s ∈ (0, ϕ0) + Sp such that∫
Ω
M̃p k(s)

0
p · k(r)0p dx = L(r), ∀ r ∈ Sp := VKL × Φe,p.

To get physically meaningful results, we define an electromechanical state sε
p over the

real plate Ωε by the descaling sε
p = Sp(ε)

−1sp: it is the unique solution of a problem

P(Ωε)p posed over Ωε which is the transportation by Πε of the (limit scaled) problem
P(Ω)p. This transported problem is our proposal to model the thin linearly piezoelectric
plate of thickness 2ε. Our model in fact involves two dimensional problems set on ω, which
is very attractive and favourable from the numerical point of view. It is also accurate in
the sense that the convergence result on the scaled states implies that sε is asymptotically
equivalent to sε

p.

Thus the main mathematical ingredient of our modeling is a technique of singular per-
turbation in variational equations in Hilbert spaces. The model involves ”reduced” state
variables, the sole component k0

p of the couple strain/gradient of the electrical potential,
and the constitutive equation are supplied by the Schur complement (or the ”conden-
sation” of the initial operator M ε) with respect to the maintained components. This
identification is the keypoint for obtaining some decoupling and symmetry properties very
important in practice (see [15] and [16]) by due account of the influence of the crystalline

symmetries on the coefficients of M̃p. The first model (p = 1) with ϕ0 = 0 deals with the
physical situation when the plate is used as a sensor, the second model corresponds to an
actuator.
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4.2 Electromagneto-elastic thin plates

Besides the piezoelectric coupling, some materials are sensitive to magnetic effects, thus
in [18] we extended the previous modeling to linearly electromagneto-elastic thin plates.
Now the state is described by sε = (uε, ϕε, φε) where the additional variable φε denotes
the magnetic potential and the constitutive equations read as:

σε = a
ε e(uε) − b

ε ∇ϕε − c
ε ∇φε,

Dε = b
εT

e(uε) + d
ε ∇ϕε + e

ε ∇φε,

Bε = c
εT

e(uε) + e
εT

∇ϕε + f
ε ∇φε.

(33)

In these constitutive equations, c
ε, e

ε and f
ε respectively stand for the piezomagnetic, elec-

tromagnetic coupling and magnetic permeability tensors, while Bε denotes the magnetic
induction.

A similar mathematical analysis of the asymptotic behavior of sε can be done to derive
a simplified but accurate model of thin electromagneto-elastic plate. It involves reduced
state variable and constitutive equations supplied by the condensation M̃ ε of M ε with
respect to the maintained components of (e(uε),∇ϕε,∇φε).

But the novelty here is that four limit behaviors may appear according to the type of
boundary conditions and the magnitude of the data on the electric and magnetic fields.
These cases can be described as previously but by a couple of indices (p, q) ∈ {1, 2}2

in place of the sole indice p. The physical situation when the thin plate is used as an
electrical (resp. magnetic) sensor corresponds to p = 1 (resp. q = 1) while the actuator
case corresponds to p, q = 2. It therefore appears two original mixed behaviors when p 6= q.
In these situations, the plate is at the same time a sensor and an actuator excepted for the
classes for which the plate is no more electromagneto-elastic (i.e. the electromechanical

and magnetomechanical coefficients in M̃ ε vanishes). The two cases p 6= q allow the
modeling of electrically commanded magnetic devices and of magnetically commanded
electric ones, which is of considerable interest in the development of non-volatile magnetic
random access memories. We emphasize on the point that this behavior is here fully
described for any admissible crystal class.

4.3 Piezoelectric slender rods

From a technological point of view, piezoelectric materials can also be used in wires or
slender rods. Now, the reference configuration of the piezoelectric structure is Ωε =
ε× (0, L) with L a fixed positive real number. The equations describing the equilibrium of
the structure are the same as in the section 4.1 but of course the geometry of the various
boundaries is different: we assume that Γε

mD = εω × {0, L}.

To get our simplified models, we proceed as in the case of plates. Due to classical
assumptions on the mechanical loading (which permits the justification of Bernoulli-Navier
theory of elastic slender rods (see [7] and [13]) and on electrical loading:

{
if p = 1 the extension of ϕε

0 into Ωε does not depend on x̂ and Γε
eD ⊂ εω × {0, L},

if p = 2 there exists γe ⊂ ∂ω such that Γε
eD ⊂ ε× (0, L).

(34)
the scaling is defined by:
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x = (x̂, x3) ∈ Ω = ω × (0, L) 7→ Πεx = (εx̂, x3) ∈ Ω
ε

sp(ε) = Sp(ε)s
ε

(û(ε)(x), u3(ε)(x), ϕ(ε)(x)) = (ûε(Πεx), ε−1uε
3(Π

εx), ε−pϕε(Πεx))

(35)

so that sp(ε) is the unique solution of the variational problem

Find sp(ε) ∈ (0, ϕ0) + V such that

∫

Ω

M(x)kp(ε, s(ε)) · kp(ε, r) = L(r), ∀ r ∈ V,

with now:

kp(ε, (v, ψ)) = ((ε2eαβ(v), εeα3(v), e33(v)), (ε
p−2∇̂ψ, εp−1∂3ψ)).

As in the case of purely elastic slender rods (cf. [7]), finding the limit is a little bit
more difficult and the limit problems are as follows:

R(Ω)1

{
Find (u, v, w, φ, ψ) ∈ V1 such that∫
Ω
M(x) k1(u, v, w, φ, ψ) · k1(u

′, v′, w′, φ′, ψ′) dx = L(u′), ∀ (u′, v′, w′, φ′, ψ′) ∈ V1,

with





V1 = VBN (Ω) ×Rb(Ω) ×RD⊥
2 × Φ × Ψ,

VBN (Ω) = {v ∈ H1
ΓmD

(Ω)3; eαβ(v) = eα3(v) = 0},

Rb(Ω) = {v; ∃c ∈ H1
0 (0, L); v̂(x) = c(x3)(−x2, x1), v3 ∈ L2(0, L;H1

m(ω))},

H1
m(ω) = {v ∈ H1(ω);

∫
ω
ψ(x̂) dx̂ = 0},

RD⊥
2 (Ω) = {ω; ŵ ∈ L2(0, L;H1

m(ω)2), w3 = 0 and∫
ω
(−x2w1(x̂, x3) + x1w2(x̂, x3)) dx̂ = 0, ae x3 ∈ (0, L)},

Φ = {φ ∈ H1
0 (0, L);φ(x) = φ(x3)},

Ψ = L2(0, L;H1
m(ω)),

k1(u, v, w, φ, ψ) = (ê(w), eα3(v), e33(u), ∇̂ψ,
dφ
dx3

)

(36)

and

R(Ω)2

{
Find (u, v, w, φ) ∈ V2 such that∫
Ω
M(x) k2(u, v, w, φ) · k2(u

′, v′, w′, φ′) dx = L(u′), ∀ (u′, v′, w′, φ′) ∈ V2,

with

{
V2 = VBN (Ω) ×Rb(Ω) ×RD⊥

2 × L2(0, L;H1
γe

(ω)),

k2(u, v, w, φ) = (ê(w), eα3(v), e33(u), ∇̂φ).
(37)

The space VBN (Ω) is the Bernoulli-Navier displacements space.
Of course, our proposal of model is obtained by taking the inverse scaling, that is

to say a transported problem R(Ωε)p posed over Ωε. On the contrary to the case of
plates, the state variables of the model do not reduce to the couple displacement/electrical
potential but involve additional variables: two fields of displacements (easy to interpret
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mechanically) and a scalar field of electrical nature. Nevertheless,the kinematics of the
state variables is simpler than the one of the genuine three-dimensional model which is very
favourable from a numerical point of view. As in the purely elastic case it is worthwhile to
note that for particular classes of monoclinic materials the additional variables v, w and
ψ disappear [14]. Anyway, in the case p = 1, the additional variables can be eliminated
but it leads to non standard equations involving non local terms!

5 Dynamical response of piezoelectric plates

The interest of an efficient modeling of the dynamic response of piezoelectric plates lies
in the fact that a major technological application of piezoelectric effects is the control of
vibrations of structures through very thin plates or patches. We present two modelings
depending on the various extents to which the magnetic effects are taken into account.
Actually, because of the large discrepancy between the celerities of the mechanical and
electromechanical waves, magnetic effects can be disregarded. That is why first we propose
a modeling in the appropriate framework of the quasi-electrostatic approximation which
claims that the electrical field still derives from an electrical potential.

5.1 Quasi-electrostatic case

Now a new parameter appears: the density ρ of the plate. In the framework of the realistic
quasi-electrostatic approximation, the electrical equilibrium equation remains true but the
mechanical equilibrium equation is replaced by

div σε + fε = ρüε in Ωε

where the upper dot denotes the differentiation with respect to time. Under mild assump-
tions on the initial state and the essential assumption

∫ +1

−1

x3M̃1(x1, x2, x3) dx3, M̃2 independent of x3 (38)

it is possible to proceed to the study of the convergence of sε
p when ε goes to zero ([15],

[17]), the result depends strongly on the relative behaviour of ε and ρ. A unified accurate
and simplified modeling is then obtained by simply adding

∫
Ωε ρü

ε

p dx to the left hand side

of the equation defining the descaled limit problem P(Ωε)p. Thus the relationship between
the reduced stress, electric displacement, strain and gradient of electrical potential remains
the same as in the static case: M̃ ε

p really describes the constitutive equations of the plate!
The displacement fields involved in our simplified modeling being of Kirchoff-Love type,
clearly four cases, indexed by q, of relative behaviours of the parameters determine the
essential nature of the limit response of the plate to the electromechanical loading:

q = 1 : ρ→ ρ ∈ (0,+∞) , q = 2 : ρ→ 0 and ρ/ε2 → ∞
q = 3 : ρ/ε2 → ρ ∈ (0,+∞) , q = 4 : ρ = o(ε2).

(39)

In the cases q = 2 and q = 4, the limit response of the plate to the electromechanical
loading is essentially quasi-static, while the cases q = 1 and q = 3 involve the acceleration
of the displacement. Moreover, because of the assumption (38), appears a decoupling
between the membrane motion and the flexural one. If q = 1, 2, the flexion is neglectible
and the membrane response is dynamic if q = 1, quasi-static if q = 2. When q = 3, 4,
the membrane response is quasi-static whereas the flexural response is dynamic if q = 3
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and quasi-static if q = 4. In these last two cases, the equation giving the flexion does not
involve the limit electric potential if p = 1. The uncoupled elliptic and hyperbolic involved
problems are two-dimensional and set on ω.

The steps of the derivation of our model are the following. Firts we proceed to the
same scaling as in section 4.1 and to a decomposition s(ε) = s(ε)e + s(ε)r, where s(ε)e

solves a problem like P(ε,Ω)p and consequently whose asymptotic behavior is provided by
section 4.1. Hence s(ε)r = (u(ε)r, ϕ(ε)r) satisfies an homogeneous variational evolution
equation. Because the time derivatives do not act on ϕ(ε)r, it is possible to exhibit a
linear evolution equation for u(ε)r governed by a maximal monotone operator in a suit-
able Hilbert space whose norm depends on (ε, ρ). Since the Trotter results of convergence
of semi-goups of linear operators acting on variables spaces claim that the study of con-
vergence of the transient problems reduces to the static case, the asymptotic behavior of
u(ε)r, and consequently of s(ε)r is easily determined by straightforward variants of the
convergence results of the section 4.1.

5.2 The fully dynamic case

In the previous case, the electrical field Eε was assumed to be curl-free and, consequently,
equal to the gradient of the so-called electrical potential ϕε. If we want to take into account
the magnetic effects, the state of the plate is now described by a triplet zε = (uε, Eε, Hε)
where Hε is the magnetic field and the equations of the problem read as:





div σε + fε = ρüε in Ωε

Ḋε = c curlHε in Ωε

µḢε = −c curlEε in Ωε

(σε, Dε) = M ε(e(uε), Eε) in Ωε

with two kind of boundary conditions intimately linked to those of the previous cases (and,
then, still indexed by p!):

p = 1 : Hε ∧ nε = jε on ∂Ωε, p = 2 : Eε ∧ nε = Eε
0 ∧ nε on ∂Ωε

Here c, µ, jε, Eε
0 stand for the light celerity, the magnetic permeability, the surface current

density and the exterior electrical field respectively. We will assume that there exist
sufficiently smooth fields E0, j such that:

{
Eε

0(Πε) = ε2E0(x), ∀x ∈ ∂Ω, jε(Πε) = ε2j(x), ∀x ∈ Γ±

jε
α(Πεx) = εjα(x), jε

3(Πε) = ε2j3(x), ∀x ∈ Γlat.
(40)

Let





E
ε

1 = {E ∈ L2(Ωε)3;E3 = 0, ∂3Eα = 0},

E
ε

2 = {E;E3 ∈ L2(Ωε); ∂3(∂αE3 − ∂3Eα) = 0, Eα = 0 on Γε
±},

H
ε

1 = {H ∈ L2(Ωε)3;Hα = 0, ∂3H3 = 0},

H
ε

2 = {H ∈ L2(Ωε)3;H3 = 0, ∂3Hα = 0},

Z
ε

p = V
ε
× E

ε

p ×H
ε

p, k1(v, E) = (eαβ(v), Eα), k2(v, E) = (eαβ(v), E3), 1 6 α, β 6 3.

(41)
Under (38), (40) and mild assumptions on the smoothness of the initial state, it can be
shown that the state zε

p is asymptotically equivalent to zε
p = (uε

p, E
ε

p, H
ε

p) which satisfies:
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∫
Ωε ρü

ε

p · v dx +
∫
Ωε M̃

ε
pkp(u

ε
p, E

ε

p) · kp(v, 0) dx = Lε
p(v, 0), ∀v ∈ VKL(Ωε)

(Ḋ
ε

1)1(x̂) = −c ∂2(H
ε

1)3(x̂) + jε
1(x̂, ε) + jε

1(x̂,−ε), ∀x̂ ∈ ω

(Ḋ
ε

1)2(x̂) = c ∂1(H
ε

1)3(x̂) + jε
2(x̂, ε) + jε

2(x̂,−ε), ∀x̂ ∈ ω

Ḋ
ε

2)2(x̂) = c (∂1(H
ε

2)2 − ∂2(H
ε

2)1)(x̂), ∀x̂ ∈ ω

µ(Ḣ
ε

1)3(x̂) = −c (∂1(E
ε

1)2 − ∂2(E
ε

1)1)(x̂), ∀x̂ ∈ ω

µ(Ḣ
ε

2)1(x̂) = −c (∂2(E
ε

2)3 − ∂3(E
ε

2)2)(x̂), ∀x̂ ∈ ω

µ(Ḣ
ε

2)2(x̂) = −c (∂3(E
ε

2)1 − ∂1(E
ε

2)3)(x̂), ∀x̂ ∈ ω

(σε
p, D

ε

p) = M̃ ε
pkp(u

ε
p, E

ε

p)

(42)

with the boundary conditions:

H
ε

1 ∧ n
ε =

1

2ε

∫ +ε

−ε

jε(·, x3) dx3 on Γε
lat, E

ε

2 ∧ n
ε = E

ε

0 ∧ n
ε on Γε

±. (43)

The structure of the equations of our model is the same that those of the genuine model,
but the problems are two-dimensional and with a lesser number of degrees of freedom for
the state fields!

Again, the key-point is to formulate a suitable scaling of the problems in terms of
an evolution equation governed by a maximal monotone operator in an Hilbert space of
possible states with finite scaled energy. By using Trotter theory we only have to consider
the limit behavior of a perturbation of the variational equation which defines P(ε,Ω)p.
This perturbation taking into account a scaling of the curl operator, the limit behavior
is obtained by using weak continuity and integration by parts in the terms involving the
curl operator.
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