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ABSTRACT. 

We demonstrate here the formation of compartmentalized polymersomes with an internal « gelly » 

cavity using an original and versatile process. Nanosize polymersomes of poly(trimethylene carbonate)-

b-poly(L-glutamic acid) PTMC-b-PGA, formed by a solvent displacement method are encapsulated with 

a rough “cytoplasm mimic” in giant polymersomes of poly(butadiene)-b-poly(ethylene oxide) PB-b-

PEO by emulsion-centrifugation. Such a system constitutes a first step towards the challenge of 

structural cell mimicry with both “organelles” and “cytoplasm mimics”. The structure is demonstrated 

with fluorescence labeling and confocal microscopy imaging with movies featuring the motion of the 

inner nanosize polymersomes in larger vesicles. Without “cytoplasm mimic”, the motion was confirmed 

to be Brownian by particle tracking analysis. The inner nanosize polymersomes motion was blocked in 

the presence of alginate, but only hindered in the presence of dextran. With the use of such high 

molecular weight and concentrated polysaccharides, the crowded internal volume of cells, responsible 

for the so-called ”macromolecular crowding” effect influencing every intracellular macromolecular 

association, seems to be efficiently mimicked. This study constitutes major progress in the field of 

structural biomimicry and will certainly enable the rise of new, highly interesting properties in the field 

of high-added value soft matter. 
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1. Introduction 

Polymer vesicles or polymersomes are resulting from the self-assembly of amphiphilic block 

copolymers in aqueous media, and are often presented as the structural analogues of liposomes.
1, 2

 They 

can load both hydrophilic (in their internal aqueous reservoir) and hydrophobic components (in their 

membrane). Their similarity to liposomes is however limited to this closed bilayer structure. Indeed, due 

to their polymeric nature, polymersomes present an intrinsically thicker membrane, therefore with 

higher hydrophobic component loading capacity, which confers them a larger mechanical stability and 

lower permeability compared to liposomes.
3
 These properties, in addition with the inherent chemical 

versatility of polymer building blocks, are responsible for their considerable interest and development
4
 

as drug delivery systems
5
, more particularly stimuli-sensitive carriers,

6-8
 as sensors and nanoreactors

9-13
. 

While liposomes mimic the semi-permeable living cell membrane with their intrinsic phospholipid 

nature, polymersomes’ structure and properties are much closer to those of viral capsids.
14

  However, 

neither liposomes nor polymersomes can be described as cell mimics as an essential key towards cell 

mimicry lies in compartmentalization. Yet, one could question the relevance of biomimicry and an 

elegant answer by Feynman was “what I cannot create, I cannot understand”.
15, 16

 From the most evident 

and fundamental point of view, artificial mimics as model systems enable to complement biological 

studies as they allow to dissociate parameters closely correlated in nature.
15

 Moreover, the first step that 

consists in mimicking the multicompartmentalized structure of a cell is already very challenging. It is 

only once their formation is controlled and optimized that it becomes possible to take advantage of these 

mimics to gain new properties with innovative soft materials. As a matter of fact, Nature evolved with 

compartmentalization because such a structure offers multiple advantages. For artificial 

compartmentalized cell mimics, one of the most foreseeable benefits obviously lies in a better 

protection
17, 18

 of inner encapsulated actives, often very fragile in the field of drug delivery. 

Furthermore, several compartments that each contains a different active in the same structure open a 

path to combinatory drug delivery.
17-19

 Such an approach is of particular interest in oncology as it 
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enables to load and potentially deliver incompatible drug cocktails together.
20, 21

 Going further, while a 

certain permeability is necessary for drug delivery systems, compartmentalization can also circumvent 

undesirable prematurely drug leakage especially in liposomes, as demonstrated by Zasadzinski and 

coworkers.
22

 Indeed, compartmentalized systems can be used to finely tune permeability.
17, 18, 23

 Such 

complex structure can also impact the way we design a chemical reaction or induce a reaction only 

when different components are mixed.
24-26

 Caruso and coworkers in particular pointed out the great 

level of possibilities arising from microencapsulated reactors, one example being their promising 

capsosomes.
27-29

 

In a perspective of compartmentalization, some very interesting work has already been achieved with 

liposomes but this field is only in its early stages regarding polymersomes. In the most recent approach, 

solvent displacement method was used, with the aqueous solution being a suspension of smaller 

polymersomes previously generated by a film rehydration of a lamellar forming amphiphilic block 

copolymer.
30

 The main drawback of this method is essentially based on the poor encapsulation yield 

during the solvent displacement process. To overcome this limitation, the most promising alternative 

lies in methods based on emulsions or double emulsions. Chiu et al.
31

 were the first to tackle this 

challenge with polymersomes; however, even though their method consisting of using two successive 

double emulsions was very original, it may not yield the most reproducible and homogeneous systems 

while being difficult to use on a daily basis. In order to gain in reproducibility and homogeneity of the 

preparation, Weitz and coworkers developed highly sophisticated microfluidics devices. In a first step, 

they were able to control the formation of polymersome aggregates or multicompartment 

polymersomes
20

 before yielding fully multicompartmentalized polymersomes.
21

 The size of the internal 

polymersomes is however limited to quite larger dimensions (≈ 100 µm), depending on the capillary 

size. In addition, this method is rather tricky since several issues need to be solved before achieving the 

high throughput production of polymersomes by microfluidics: possible coalescence of the internal and 

external aqueous phases, dewetting instability of the organic phase from the copolymer bilayer usually 
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leading to excess polymer patched to the vesicles,
32

 and unequal evaporation rate of solvents from the 

organic phase during the rather long drying step of the copolymer membranes with dramatic 

consequences on contact angles.
33

 

Regarding cell biomimicry, in addition to compartmentalized vesicles that can mimic the organelles, 

cytoplasm also plays an important role in cellular activity and regulation. In this respect, vesicles with 

gelly or gelified cavity, also names “hydrosomes”, have been investigated for approximately a decade. 

Of course, there are again many interesting properties arising when mimicking a viscoelastic cytoplasm 

like a slower diffusion of actives towards the outside environment and above all a better protection and 

thus stability and shape integrity, by absorption of mechanical stress. An approach that is often used, in 

particular by A. Viallat and coworkers, consists in encapsulating a poly(N-isopropylacrylamide) 

PNIPAAm based solution, which will in situ photopolymerize into covalently cross-linked gels upon 

UV irradiation.
34-41

 However, in cells, the cytoskeleton is composed of the protein filaments actin, 

microtubules and intermediate filaments, formed by nucleation-elongation processes. The growth of the 

protein filaments of this cytoskeleton is driven by non-covalent interactions, making them very dynamic 

with constant association/dissociation processes.
15

 For that reason, non-covalent or physical gels 

constitute in our opinion a better alternative. Limozin and Sackmann
42

 were impressively able to form 

liposomes with dynamic actin networks cross-linked by the natural cross-linkers α-actinin and filamin. 

Other approaches were developed using the LCST character of non-crosslinked PNIPAAm,
43,44

 

electrostatic complexation,
45-47

 pH-dependent solubility and thus gelling,
48

 polysaccharide based 

systems,
49,

 
50,

 
46, 47, 51

 or more recently peptide amphiphiles
52

 to gelify the inside reservoir of liposomes . 

To the best of our knowledge Feijen and coworkers were the first to tackle this aim with polymersomes 

using PNIPAAm as a gelator.
53, 54

  

The aim of this work is to go on step further towards structural cell mimicry and to combine both 

compartmentalized structures (to mimic organelles) and a “gelly” cavity (as cytoplasm mimic) in 

polymersomes. Such a realization requires an exquisite control of the physical parameters and 
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interaction components, together with an efficient process. The achievement of this original and 

innovative biomimetic structure constitutes a first necessary step before taking advantage of it to address 

other challenges in controlled catalysis and chemical (bio)reactions. 

 

2. Experimental Section  

2.1. Materials and reagents: Poly(butadiene)30-b-poly(ethylene oxide)46 (PB30-b-PEO46) (P9095-BdEO, 

Mn PB=2500 g/mol and Mn PEO=1300 g/mol, I=1.04) and amino-terminated poly(butadiene)20 (PB20) (for 

polymersome membrane labeling) (P3977-BdNH2, Mn=1700 g/mol, I=1.11, f>0,98%) were purchased 

from Polymer Source. Alexa Fluor 568-carboxylic acid, succinimidyl ester (A20003-1mg, mixed 

isomers, 791.8 g/mol) and Alexa Fluor 488 carboxylic acid, succinimidyl ester (A20000-1mg, mixed 

isomers, 643.41 g/mol) were purchased from Invitrogen. Alginic acid sodium salt from brown algae 

(Fluka 71238, 50g) and Dextran from leuconostoc ssp. (Fluka 31389, Mr=40.000 g/mol, 100g) were 

from Fluka Biochemika. Sucrose 99% was from Alfa Aesar (A15583 L 13300, 2.5g) and D-(+)-glucose 

from Sigma Aldrich (G5767-500g). Solvents from Sigma Aldrich for fluorophore labeling (DMSO and 

DMF) were anhydrous. All products were used as received unless otherwise specified.  

Poly(trimethylene carbonate)30-b-poly(L-glutamic acid)19 PTMC30-b-PGA19 diblock copolymer was 

synthesized by ring-opening polymerization (ROP) of δ-benzyl-L-glutamate N-carboxyanhydride 

(NCA) initiated by a primary amine end-functionalized PTMC macroinitiator according to a previously 

described method.
55

 All the experiments described were performed on PTMC30-b-PGA19 diblock 

copolymer (Mn=5492 g/mol, I=2). 

 

2.2. Fluorescent dye labeling.  

- Alexa Fluor 568 labeled PTMC30-b-PGA19: After flame-drying of a round-bottom flask under 

vacuum, the following reagents were introduced under inert nitrogen atmosphere: primary end-
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functionalized amine PTMC30-b-PGA19 (99.9 mg, 18.2 µmol), anhydrous DMSO (2 mL), DIPEA (140 

µL, 804 µmol) and reactive Alexa Fluor 568-carboxylic acid, succinimidyl ester (1 mg, 1.26 µmol) in 

DMSO (120 µL). The reaction was then allowed to proceed for one night under static nitrogen 

atmosphere. The conjugate PTMC30-b-PGA19-Alexa Fluor 568 was purified by dialysis (5 L, 3 h, 

MWCO : 3500 g/mol) after dilution in the flask by DMSO for a better recovery. External medium was 

renewed six times in course of dialysis. After lyophilization, the conjugate was recovered in a 97 % 

yield (determined by gravimetry).  

- Alexa Fluor 488 labeled poly(butadiene): After flame-drying under vacuum of a round-bottom flask, 

the following reagents were introduced under inert nitrogen atmosphere: primary end-functionalized 

amine PB20 (84.1 mg, 49.5 µmol), anhydrous DMF (2 mL), DIPEA (8 µL, 45.9 µmol) and reactive 

Alexa Fluor 488-carboxylic acid, succinimidyl ester (1 mg, 1.55 µmol) in DMF (120 µL). The reaction 

was then allowed to proceed for overnight under static nitrogen atmosphere. After concentrating the 

mixture by evaporation of DMF under vacuum, the polymer was precipitated and washed with water. 

Finally, it was dissolved in THF and recovered after drying under dynamic vacuum.  

 

2.3. Nanoprecipitation yielding nanosize polymersomes of PTMC30-b-PGA19 for encapsulation inside 

giant polymersomes.  

For the preparation of fluorescently labeled nanosize polymersomes to be tracked by confocal 

microscopy, we followed a nanoprecipitation method described previously. 
55

 Briefly, 4.5 mL Tris 

Buffer, 50 mM, pH 7.4 was added slowly at a controlled rate of 2.25 mL/h on a DMSO solution 

containing 5 mg of PTMC-b-PGA-Alexa Fluor 568 (0.5 mL) under stirring at 500 rpm at 25 °C. The 

sample was then dialyzed with a 50,000 g/mol cut-off in 5 L Milli Q water with 3 renewals. Size and 

polydispersity were characterized by dynamic light scattering (DLS).  

 

2.4. Emulsion-centrifugation yielding giant PB-b-PEO encapsulating a PTMC-b-PGA nanosize vesicle 
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suspension (Scheme 1). 

In a typical procedure inspired from Li and col.,
56, 57

 5 µL of a nanosize vesicle suspension in 380 

mOsm sucrose solution was first poured in 500 µL toluene containing 3 mg/mL PB-b-PEO (including, 

depending on the experiment, 0 or 10 wt% of Alexa Fluor 488 labeled PB) in a Eppendorf tube (step 1, 

Scheme 1). The PB-b-PEO solution in toluene was previously stirred for at least 2 hours to ensure a 

complete dissolution of the copolymer, as verified by DLS (no intensity scattered). In another tube (step 

2, Scheme 1), 30 µL of the same organic solution was poured over 30 µL of a 380 mOsm aqueous 

glucose solution and allowed to stabilize for 30 min. Finally (step 3, Scheme 1), the first tube was 

emulsified with vigorous agitation by hand yielding quite homogeneous (see Figure 1) inverted 

emulsion droplets (alternatively, repeated pipetting works as well). Then 50 µL of this emulsion was 

poured slowly over the second interface tube. The sample was then immediately centrifuged at 20 °C at 

500g for 4 min and the aqueous polymer vesosome suspension was recovered in the lower phase (Figure 

2).  
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Scheme 1. Scheme of the emulsion-centrifugation process yielding either giant polymersomes (Figure 

2) or polymersomes in polymersomes (when, like here a suspension of nanosize polymersomes (in red) 

is used as inner aqueous phase of the w/o emulsion). 

 

 

 

Figure 1. Optical microscopy acquisitions of the w/o emulsion stabilized by poly(butadiene)-b-

poly(ethylene oxide). From left to right: bright field, epifluorescence (green channel), epifluorescence 

(red channel) and overlay of red and green channels. The green channel features the encapsulated FITC-
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dextran (1 mg/mL), the red channel the Nile Red (0.05 mg/mL) solubilized in toluene. 

 

 

 

Figure 2. Microscopy acquisitions of a giant polymersome of poly(butadiene)-b-poly(ethylene oxide). 

From left to right, bright field microscopy, red channel epifluorescence with Nile Red membrane 

labeling (0.05 mg/mL), green channel with 10.000 g/mol FITC-dextran (1 mg/mL), and overlay of red 

and green. 

 

The process has been described to quantitatively encapsulate hydrophilic solutions,
58

 such as FITC-

dextran as shown in Figure 2. Of course, any aqueous solution can be encapsulated using this method. 

For experiments regarding “cytoplasm mimic”, the appropriate amount of respectively alginate/dextran 

was added to the nanosize polymersome suspension (at 380mOsm sucrose) to a final concentration of 

respectively 10/300 mg/mL. In both cases, the centrifugation time was reduced to 3 min. 

 

2.5. Methods 

Dynamic Light Scattering (DLS). DLS measurements were conducted on a Malvern Zeta Sizer Nano 

ZS instrument with 90° angle analysis. The mean hydrodynamic diameter and its distribution were 

determined using Cumulant and CONTIN methods. For particle tracking, viscosity and refractive index 

were determined for each solution using a rheometer (AR2000) and an Abbe refractometer.  

Spinning disk confocal microscopy. The spinning disk microscope was a Leica DMI6000 (Leica 

Microsystems, Wetzlar, Germany) equipped with a confocal Scanner Unit CSU-X1 (Yokogawa) using 

for this experiment objective HCX PL Apo 100X oil NA 1.4 and an Evolve EMCCD camera (Roper 
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Scientific, Evry, France). Z-stack analysis was performed with a galvanometric stage (Leica 

Microsystems, Wetzlar, Germany). The diode laser excitation wavelengths used were 491 nm and 561 

nm and a Semrock emission filter with narrow bandpass windows in the blue (420 to 460 nm), green 

(506 to 536 nm) red (587 to 627 nm) and near infrared (670 to 730nm) spectral regions was used. 

Microscopy chambers were fabricated by sealing a slide against a coverslip with two layers of 

Parafilm™ featuring the three sides of the chamber. The sample was then injected by capillarity through 

the last open side. Finally, the last aperture was sealed with molten paraffin wax. Experiments were 

carried out in the Bordeaux Imaging Center of the University of Bordeaux Segalen. The help of 

Sébastien Marais is gratefully acknowledged, particularly for 3D reconstruction of z-stacks with the 

Imaris software. 

Epifluorescence and optical microscopy. Bright field and fluorescence microscopy images of giant 

polymersomes (Figure 1 and 2) were taken on a Zeiss Axiovert 40 CFL inverted microscope with a EC 

Plan-NEOFLUAR 40x DIC Na 0.75 objective captured with a 2Mbytes digital Gigabit Ethernet CCD 

camera (Viewvorks VG-2M, South Korea). For epifluorescence microscopy, a mercury lamp was used 

as source with excitation and emission filters of narrow bandpass windows in the green (464.5 to 499.5 

nm for excitation and 516 to 556 nm for emission) and red (532 to 544 nm for excitation and 573 to 637 

nm for emission) spectral regions (provided by Semrock). The samples were placed between a glass 

slide and a coverslip separated by a Parafilm™ spacer as mentioned above for confocal microscopy 

imaging. 

Particle tracking The 2D Brownian motion of inner polymersomes labeled in red and encapsulated in a 

giant polymersome (Movie S1 in ESI) was tracked down. The 2D position (xM,yM) for each frame and 

each nanosize vesicle of the 50s movie (500 frames and τ=100ms) was reported. By linking the 

trajectories (79 in total) for each nanosize vesicle frame by frame, we have access to displacements ∆x, 

∆y (788 in total) versus time. For the polymer vesosome with the “cytoplasm mimick” Dextran, 187 

frames of a longer movie (Movie S2 in ESI) were tracked yielding 810 displacements (56 trajectories). 
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2.6. Instrumentation and Measurements. 

1
H (400 MHz) Nuclear Magnetic Resonance NMR spectra were recorded on a Bruker Avance DPX400 

instrument at 23 °C and were referenced internally using the residual 
1
H solvent resonance relative to 

tetramethylsilane (δ=0). Mn SEC and (Mw/Mn) values for copolymers PTMC-b-PBLG (3 mg/mL) were 

determined by Size Exclusion Chromatography SEC at 60 °C, using dimethylformamide (DMF) with 

LiBr (1 g/L) as eluent (0.8 mL/min), on a Jasco apparatus equipped with both Varian refractive index 

and UV detectors and two PL gel 5 µm mixed-C columns.  

 

3. Results and Discussion 

3.1. Formation of biomimetic compartmentalized polymersomes. 

Thanks to the emulsion-centrifugation process
56, 57

 and its quantitative loading efficiency
58

 (see Scheme 

1, Experimental section), a suspension of red fluorescent Alexa 568 labeled polymersomes (or nanosize 

vesicles) was encapsulated in a green fluorescent Alexa 488 labeled giant polymersome, as shown in 

Figure 3 where inner red PTMC-b-PGA polymersomes can clearly be seen in a green giant PB-b-PEO 

polymersome. Movie S1 in ESI shows the Brownian motion of these inner nanosize polymersomes. The 

3D reconstruction of the z-stack observation by spinning disk confocal microscopy of this polymer 

vesosome, evidences the localization of each nanosize polymersome inside the internal volume of the 

larger vesicle (Figure 3, Movie S2 ESI). 

Figure 3. Spinning disk confocal microscopy acquisitions of a polymer vesosome. From left to right, 

green channel (membrane of the giant polymersome), red channel (nanosize inner polymersomes), 
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overlay, and 3D reconstruction of z stack in red channel. 

 

Such compartmentalized structures can be named polymer vesosomes
18, 19, 22, 59

, polymersomes in 

polymersomes or double polymersomes
21, 60

. Only three groups
21, 30, 31

 have tackled the challenge of 

compartmentalized polymersomes so far. We present here an original, facile, versatile, reproducible and 

low-product consuming technique. Only the microfluidic method recently developed by Weitz and 

coworkers
21

 presents in our opinion a better process control. However, the internal polymersome size is 

limited in that case to micrometric one by the process itself and the capillary diameters. The obtained 

morphology roughly resembles to organelles in a cell which are lipid bilayer compartments (endosomes, 

lysosomes, mitochondria...) encapsulated themselves in the plasmic membrane.  

One step further to challenge cellular biomimicry consists in adding another component with a relevant 

structure and function, the cytoplasm. In addition to the obvious mechanical properties given by the 

cytoskeleton, the high macromolecular concentrations found intracellularly are also responsible for the 

so-called macromolecular crowding effect.
45, 51, 61

 In 2001, R. John Ellis and col.
61

 launched a call to 

biochemists to stop neglecting this “macromolecular crowding” in their studies, which is known in 

polymer science as the “excluded volume effect”. All together, macromolecules in the cytoplasm, 

cytoskeleton and internal compartments occupy 20-30 vol.% of a cell, generating a strong steric 

repulsion between them. The consequences on the cell machinery have been rarely considered: for 

instance, most biochemical reactions are studies in dilute (ideal) solutions, while in real cells one should 

consider the activity coefficients for both thermodynamic and kinetic studies. He thus advises to use 

crowding agents under the following criterions: a molecular weight ranging from 50,000 to 200,000 

g/mol, a high water solubility, not being prone to self-aggregation, and last but not least, no interaction 

with the tested system other than steric repulsion. 

In a first attempt, the nanosize polymersome suspension was thus mixed with a highly water-soluble 
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alginate at a final concentration of 10 mg/mL (Figure 4). For this strongly charged natural polymer, the 

molar mass distribution was reported in the literature: Mn=107700 gmol
-1

 and Mw=231500 gmol
-1

,
62

 so 

that the molar concentration of Alginate is 0.1 mM in our case. A 2 wt.% solution of this product has a 

viscosity of 1.07 Pa.s,
63

 therefore the viscosity is around 0.5 Pa.s at 10 mg/mL. Thus we can predict a 

350-fold reduction of the diffusion coefficient compared to the pure sucrose solution (0.00144 Pa.s). 

Actually, as observed in Movie S3 (ESI), the motion of inner nanosize polymersomes is not only 

hampered but in fact completely blocked. One can assume that the high alginate concentration provokes 

a phase separation phenomenon induced by depletion layers around the PTMC-b-PGA vesicles 

excluding the alginate chains (Figure 4). The diffusion of spherical particles inside a concentrated 

macromolecular solution with a depletion layer of the chains around the spheres has been considered in 

theory, predicting anomalous diffusion with mean square displacements not linear versus time.
64

 The 

case of our giant vesicles containing nanosize vesicles mixed with rather stiff alginate polyelectrolyte 

chains is even more dreadful since the diffusion is totally arrested. The fact that both alginate and the 

PGA chains (present on the outer shell of the nanosize polymersomes) are negatively charged must also 

play an important role in this segregation process, due to additional electrostatic repulsion forces. The 

3D reconstruction of this vesosome (Figure 4 and Movie S4 in ESI) clearly evidences different clusters 

of inner PTMC-b-PGA polymersomes in the volume that always seem pushed against the “plasmic 

membrane” mimic; this is presumably due to the alginate chains exerting an osmotic pressure Π on 

them estimated around 260 Pa from the molar concentration of chains. The potential between two 

vesicles brought at contact by depletion attraction can be estimated by TkRR Bav  2202
2
≈⋅⋅Π⋅π ,

65
 

which explains why it overcomes thermal motion.   
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Figure 4. Spinning disk confocal microscopy acquisitions of a polymer vesosome with “cytoplasm 

mimic” alginate in the cavity of the giant polymersome. From left to right, green channel (membrane of 

the giant polymersome), red channel (nanosize inner polymersomes), overlay and 3D reconstruction in 

red channel. 

 

In another set of experiments, a 40.000 g/mol neutral dextran was used as cytoplasm mimic at a 

concentration of 300 mg/mL. This concentration roughly corresponds to an intracellular 

macromolecular concentration of 20-30 vol.% and can be considered realistic to mimic the intracellular 

crowding.
61

 For example, the total concentration of protein and RNA inside a cell of Escherichia coli 

lies between 300-400 mg/mL, in good correlation with our simplified synthetic model.
66

 Finally, the 

choice of dextran is also motivated by the fact that its use is accepted in hard particle excluded volume 

models at high concentration for crowding effect.
61

 The resulting polymer vesosomes obtained in these 

conditions are reported in Figure 5. As observed on Movie S5 (ESI), motion of the inner polymersomes 

is now considerably decreased and hindered, but not blocked, clearly illustrating this crowding effect at 

high volume fractions of macromolecules in a confined volume. 

 

 

Figure 5. Spinning disk confocal microscopy acquisitions of a polymer vesosome with “cytoplasm 

mimic” dextran in the cavity of the giant polymersome. Red channel (nanosize inner polymersomes), 
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and 3D reconstruction in red channel. 

 

3.2. Quantitative analysis of the dynamics of internal vesicles 

The observation of the stochastic motion of the nanosize polymersomes alone seems to be in agreement 

with a Brownian motion, showing that their loading into a giant polymersome does not affect their 

dynamic properties. In order to quantitatively analyze this parameter, the 2D positions of each distinct 

nanosize vesicle in Movie S1 were tracked (τ=100 ms) and their displacement from frame to frame 

calculated. 788 ∆x and ∆y displacements or in other words 79 full trajectories could be obtained. The 

frequency of these displacements versus ∆x and ∆y is plotted in Figure 6.  

In statistical physics, the normal (or Gaussian) distribution (Equation 1) is usually associated to random 

walks like particles in Brownian motion. In the case of pure diffusion (no translation), the mean position 

<x>=µ  is zero, while the mean square displacement <x
2
> is linear in time with a slope equal to 2σ2

 (in 

one dimension).  

2

2

2

)(

22

1
)( σ

µ

πσ

−

⋅=

x

exf      Equation 1  

The presented data can be well fitted with a Gaussian distribution (Figure 6a), attesting that the motion 

of nanosize polymersomes is not affected by their encapsulation in a polymersome of an approximately 

20 µm diameter. However, the outer membrane could have restricted the diffusion of the small vesicles 

in some limiting volume (as a cage). This is not the case because the diameter of the giant vesicle is 

much larger (20 µm) than the mean square displacement of the small internal ones and is also prone to a 

slight translational diffusion itself. Another way to analyze the data consists in representing the mean 

square displacements of some of the longest lasting trajectories in a log-log representation (Figure 6b).  
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Figure 6. (a) Statistics of displacements (µm) in x (red circles) and y (blue squares) directions of 

nanosize inner polymersomes in vesosome corresponding to Figure 3 (Movie S1 ESI). (b) Mean square 

displacement ∆x
2
 and ∆y

2
 (µm

2
) plotted versus time (s). Blue lines represent the experimental 

trajectories. The red line features the model trajectory with the mean calculated diffusion coefficient. 

 

The trajectories represented here have the same slope in log-log representation than a model trajectory 

r
2

=∆x
2
 + ∆y

2
 = 4D

diff
×t   estimated with the mean Diffusion coefficient (see Equation 2) calculated for 

these nanosize vesicles, again in agreement with purely diffusive (Brownian) motion. The scattering of 

the prefactor (4D
diff

) for the shown trajectories in blue is ascribed to the inherent size-dispersity of the 

internal vesicles (see Table 1). 

With the 788 ∆x and ∆y elementary steps, an average diffusion coefficient DDiff can then be estimated 

following equation 2, and be converted into a hydrodynamic diameter RH using the well-known Stokes 

Einstein relation (Equation 3). 

)(2

)(
)(

222

s

µm

s

µm
Ddiff

τ

σ
=      Equation 2  
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  ηπ ⋅⋅⋅

⋅
=

diff

B

H
D

Tk
R

6            Equation 3 

The obtained DDiff and RH values can now be quantitatively compared to data resulting from the 

nanosize polymersomes initially prepared (Table 1). The values measured in solution by DLS are in 

excellent correlation with the ones determined inside giant polymersomes by video tracking, attesting 

the validity of the method and confirming quantitatively the randomness of the vesicles motion. 

Table 1. Characteristics of nanosize polymersome suspension before and after encapsulation in a giant 
polymersome 

Without cytoplasm mimic 
(380 mM sucrose, η=0.00144 Pa.s 

a,d
) 

With cytoplasm mimic 
(dextran 300 mg/mL, 380 

mM sucrose, 
η=0.0367 Pa.s 

a,e
) 

Mean RH 
(nm)

a
 

PDI
b
 Mean Ddiff

b
 

(µm
2
/s) 

Mean RH
c
 

(nm) 
Mean Ddiff

c
 

(µm
2
/s) 

Ddiff
c
 (µm

2
/s) 

257±9 
(Contin)

d
 

0.1±0.02 0.718±0.004
 d

 271±21
 e
 0.55±0.042 

e
 0.082±0.011

 d
 

 

For each value, error represents the standard error σ/√n where n represents the numbers of trajectories 
or measurements 

a
 Determined by rheometry 

b
Determined by Dynamic Light Scattering in 380mM 

sucrose. PDI means Polydispersity Index.  
 c

 Determined by particle tracking in 380mM sucrose with 
and without dextran 300 mg/mL. 

d
 determined at 21°C.  

e
 determined at 25°C. 

 

It seems visible in Movie S5, that the presence of 300 mg/mL dextran considerably and efficiently 

hinders the motion of the nanosize vesicles. Once again, their 2D positions was tracked from Movie S5, 

yielding to 810 ∆x and ∆y displacements or in other words 56 full trajectories. The frequency of the 

displacements versus ∆x and ∆y is plotted in Figure 7a and data properly fitted with a Gaussian 

distribution. 
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(a) (b) 

Figure 7. (a) Displacement ∆x (red circles) and ∆y (blue squares) frequency of nanosize inner 

polymersomes in 300 mg/mL dextran in giant polymersome, corresponding to Figure 5 and Movie S5 

(ESI). (b) Comparison of displacement frequency without and with Dextran: overlay of Figures 6a and 

7a. 

 

The value of the diffusion coefficient of the nanosize polymersomes calculated in these “cytoplasm 

mimic” conditions is nearly 6.6 times slower than in low viscosity conditions (Table 1, Figure 7b). This 

significant decrease is however lower than the approximately 30-fold increase of viscosity for this 

solution of dextran compared to the initial aqueous solution. For this dextran T40 (Mr=40000 gmol
-1

), 

M. Prouty and R. Podgornik derived a power law of osmotic pressure versus weight concentration,
67, 68

 

from which we calculate 5.3×10
5
 Pa for a 300 mg/mL concentration. Prepared initially in pure water, 

the nanosize PTMC-b-PGA vesicles are submitted to hypertonic conditions inside the giant PB-b-PEO 

vesicle: the osmotic pressure exerted both by dextran and by 380 mM sucrose is estimated around 

1.5×10
6 

Pa. Therefore the hydrodynamic size of the PTMC-b-PGA vesicles might decrease by osmotic 

deflation through water permeability across their membrane. Another explanation going in the same 

direction is the increase of the Brownian diffusion constant of vesicles due to the crowding effect (the 
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volume taken by dextran chains being excluded to them). S. Longeville and coworkers have indeed 

evidenced by SANS a two-fold compaction of coil chains such as PEG in a 30 vol.% solution of a 

crowding agent such as the Ficoll 70 polysaccharide, exerting an osmotic pressure around 3×10
5
 Pa.

69, 70
 

Therefore we can suspect a similar effect on the hydrophilic blocks of the polymersomes’ membranes 

(PGA for the small vesicles, PEG for the giant vesicles). The two effects combined (osmotic deflation 

and hydrophilic chains compaction by the crowding agent) are explaining why particle tracking yielded 

a 6.6-fold decrease of the diffusion constant of the internal vesicles, while the ratio of viscosities with 

and without dextran is larger (about 30-fold). Finally, the viscosity of the dextran system (Table 1) is of 

the order of magnitude of the usual cytoplasm viscosity reported for red blood cells (0.01 Pa.s),
35

 

thereby confirming that is was a good choice for mimicking the interior of cells on a physical point of 

view. 

 

4. Conclusion 

In this work, we demonstrated the formation of artificial structural cell mimics with organelles and a 

“model cytoplasm” with a facile, versatile, reproducible and low product and time-consuming 

technique. To the best of our knowledge, this is the first report where both these aspects have been 

combined, especially with polymersomes. A suspension of nanosize inner polymersomes of PTMC-b-

PGA (formed by nanoprecipitation) is encapsulated in giant polymersomes of PB-b-POE together with 

highly viscous alginate or dextran solutions, thanks to the emulsion-centrifugation process. The 

formation of this biomimetic structure was evidenced by fluorescence confocal microscopy. Moreover, 

the 2D motion of these artificial organelles was tracked down and confirmed as still being Brownian 

inside the volume of an approximately 20 µm giant polymersome. This analysis was repeated in 

presence of “cytoplasm mimic dextran”, their motion being efficiency hindered as confirmed by a 6.6 

times smaller diffusion coefficient. Furthermore, the concentration of 300 mg/mL of polysaccharide 

(dextran T40) brings a viscosity above 0.01 Pa.s, in the range of red blood cell cytoplasm viscosity, a 
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volume fraction near 30% and an osmotic pressure above 1 MPa resembling the intra-cellular conditions 

caused by global cellular proteins. By reproducing the intracellular “macromolecular crowding effect” 

which plays a crucial role in the cell machinery, we believe that this synthetic and simplified approach 

constitutes an appropriate cytoplasm mimic. Even with such simplified cell mimics, soft materials with 

innovative properties can arise and extend the domain of possibilities in the fields of cosmetics, 

fragrance encapsulation, drug delivery and fine chemical additives. 

 

ACKNOWLEDGMENT 

This work was financially supported by the French Ministère de l’Enseignement Supérieur et de la 

Recherche. The confocal microscopy acquistions were done in the Bordeaux Imaging Center of the 

University Bordeaux Segalen. The help of Sébastien Marais is acknowledged, particularly for 3D 

reconstruction. The authors are grateful to Dr. Julie Thévenot for PTMC-b-PGA synthesis and to 

Laurent Bui for work art contributions. P2M program from the European Science Foundation is also 

gratefully acknowledged. 

Supporting Information Available 

Movie S1 acquired with a spinning disk confocal microscopy featuring the polymer vesosome in Figure 

3, where the loaded red inner polymersomes can be clearly observed in Brownian motion as they are 

labeled with Alexa Fluor 568. Movie S2 with the vesosome of Movie S1 reconstructed in three 

dimensions showing the localization of the inner polymersomes in the giant one. Movie S3 featuring 

inner red-labeled polymersomes blocked in alginate loaded in the giant polymersome of Figure 5. 

Movie S4 featuring the 3D reconstruction of the vesosome with alginate (“cytoplasm mimick”) in 

Movie S3. Movie S5 featuring inner red-labeled polymersomes in hindered motion in dextran 

(“cytoplasm mimick”) loaded in a giant polymersome. Movie S6 featuring the 3D reconstruction of the 
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vesosome with Dextran in Movie S5. 
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