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Summary: A mathematical analysis, based on the theory of semi-groups of operators on
Hilbert space, of linearized problems involving Saint-Venant equations governing
shallow water flows is carried out. The first problem concerns the classical linearized
Saint-Venant problem, while the second deals with a water quality problem: the evolution
of a concentration of products in a flow solution of the first problem. The method seems
capable to take into account thermal and multi-phase effects
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operators.

1. Introduction

Many works are devoted to the study of shallow wétmvs especially by numerical
methods. Here, we proceed to a mathematical asalygithe theory of evolution
equations in Hilbert spaces of two linearized peaid involving the Saint-Venant
equations system. The first one concerns the clsknearized Saint-Venant problem.
The second deals with a water quality problem: elelution of a concentration of
products in a flow solution of the first problem.

2. Formulation of the linearized Saint-Venant problem

The linearized Saint-Venant equations which molaelfilow of a viscous fluid in shallow
water ([1], [2]) read as:
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Here, Q is a bounded domain of?Rwith a Lipschitz-continuous boundary, T is a
positive real numbet,denotes the time ang, V stand for the free surface elevation and
the velocity field. The positive constants u, h are connected with the gravity
acceleration, the viscosity and average heighteffluid, whileR is a positive relaxation
parameter and® a non negative2x2 matrix accounting for the Coriolis effect and
numerical relaxation. Letr denote the “stress tensor”:

g ==gnly +uv
where } is the 2x2 identity matrix.
We assume thdt is the union of disjoint partg ;, i=1,...,5, andn being the unit normal
alongl" outward toQ, consider the boundary conditions:

V =V given onl,x[0,T] (2.2)
on=y given onl,x[0,T] (2.3)
Vy =V, 0; =¥, V. s given onl;x[0,T] (2.4)

with V :=V.n, o; =on-oyn, g, =onlh,
V; =V -Vyn=V,, g, = p,V; andp given onl,x[0,T] (2.5)
on+KV =6 given onl;x[0,T], (2.6)

whereK is a given 2x2 non-negative matrix.
The condition o, is an adhesion condition whereas the conditior grexpresses that

the stress vector is given. an,I", the normal and the tangential component of either
the velocity or the stress vector are imposed., laaiction condition is involved ofi .

3. A result of existence and uniqueness.
Let J :{V OHNQ)% V), =0V, =0 Vo, = O}, the subspace of the Sobolev

spaceH*(Q)?, made of the kinematically admissible velocityidie Then, introducing

the Hilbert spaceH :={u = (7,v)0L2(Q)xL*(Q)°} of possible statesi = (7,V)with
finite mechanical energy equipped with the norm ianer product:

|“|2H = (u,u), =gI/72dx+ h“\/|2dx Ou=(p,V)OH
Q Q

(uu)y =g[mpdx+hfvividx  Ou=(7.V)OH,0u'=(7,v)0H
Q Q
and the unbounded linear operator with donfixiA) defined by:
u=(n,v)OH; @ Jard Ow Z( ) such that:
D(A)= [ (o7 diw-uDvm g) & [W¢ & [Kvg dsOB I (31
Q Q
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Au = (-hdiw - Rg,w-PV),

it is possible to formulate the problem in termsofevolution irH:



U -y +E
dt
u, 0) =u?

where u, is the difference betweem and a suitable liftingu, of the inhomogeneous
Dirichlet boundary conditions, ariistems from the data andg. It is easy to show that

is mrdissipative and then generates a continuous sesapgf contractions oH. Hence,
if the data are smooth enough the problem hasguarsolution. Indeed, the semi group
being analytic, the conditions on the data areerathild.

Remark: It is possible to include a dissipativaaidn condition o a part of the boundary
which may be useful for numerical approximationsthyncated domains whef is
unbounded. The trick for the formulation of the rf§arenant problem in terms of an
evolution equation consists in introducing a neatestariable: the trace of the velocity
on the involved part of the boundary!

4. A water quality problem

Many problems dealing with water quality (salinitgrusion, transport of sediments or
pollution, etc...) lead to finding a fiel@ of concentration which satisfies:

‘2—?: K AC-V.OC+ f, in Qx(0T)

C,,=C and C(x0)=C°x) in Q

here K, is a positive diffusion coefficient ardis the previous velocity field solution of

Saint-Venant equations 2, which, from now on, is assumed to hav€ aboundary.
It can be established th&} , the difference between the true concentrati@haasuitable

lifting C, of C, satisfies the evolution equationlii(Q):

dcC,
dt
C, (0)=C°-C,(0

where B is the realization of-A in L*(Q) with homogeneous Dirichlet boundary

conditions ondQ, F, :—ddie + f,+MOOC,, and @®(t) is the operator defined in

=-BC, +®(t)C, +F_(t) (4.1)

D(B*'?), for all s01[1,2)], by:
¢ OD(B*?) > d(t)g :=-V.0gp OL*(Q)
The existence and unigueness of a mild solution



C (1) =S;(1)(C° -C.(0) + j Se (t —1)(F.(7) + ®(7)C, (r)d7

of (4.1) is obtained by a fixed point method ([8])[using the analycity of the semi group
S.(t) generated byB-and the fact thatb(t) JC°([0,T], Lin(D(B*'?),L*(Q ))a mere
consequence of the Sobolev embeddings.
Remark 1: The regularity assumption énmay be dropped and various other mixed
boundary conditions may be considered in the extémtre the induced operat@&
satisfiesD(B*?) 0 H*(Q).
Remark 2: Because, the water thermal convectioateqs read as:

oT

'OE = YAT — pv.OT in Qx(0,T)

T, =T and T(x,0)=T°x) in Q

whereT, x, p denote the temperature, the coefficient of heatiaotivity and the density
of the water, our previous method works for theaw#thermal convection problem.
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