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Summary: A mathematical analysis, based on the theory of semi-groups of operators on 
Hilbert space, of linearized problems involving Saint-Venant equations governing 
shallow water flows is carried out. The first problem concerns the classical linearized 
Saint-Venant problem, while the second deals with a water quality problem: the evolution 
of a concentration of products in a flow solution of the first problem. The method seems 
capable to take into account thermal and multi-phase effects  
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1. Introduction 
 
Many works are devoted to the study of shallow water flows especially by numerical 
methods. Here, we proceed to a mathematical analysis by the theory of evolution 
equations in Hilbert spaces of two linearized problems involving the Saint-Venant 
equations system. The first one concerns the classical linearized Saint-Venant problem. 
The second deals with a water quality problem: the evolution of a concentration of 
products in a flow solution of the first problem. 
 
2. Formulation of the linearized Saint-Venant problem 
 
The linearized Saint-Venant equations which model the flow of a viscous fluid in shallow 
water ([1], [2]) read as:  
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Here, � is a bounded domain of R2 with a Lipschitz-continuous boundary Γ , T is a 
positive real number, t denotes the time and η , V stand for the free surface elevation and 
the velocity field. The positive constants g, µ , h are connected with the gravity 
acceleration, the viscosity and average height of the fluid, while R is a positive relaxation 
parameter and P a non negative 22×  matrix accounting for the Coriolis effect and 
numerical relaxation. Let σ denote the “stress tensor”:  

vIg d ∇+−= µησ  

where Id is the 2x2 identity matrix. 
We assume that Γ  is the union of disjoint parts Γ i, i=1,…,5, and, n being the unit normal 
along Γ  outward to �, consider the boundary conditions: 

VV =  given on [ ]1 0,TΓ ×      (2.2) 

γσ =n  given on [ ]2 0,TΓ ×      (2.3) 

NN VV = , TT γσ = , TNV γ,  given on [ ]3 0,TΓ ×   (2.4) 

with nVVN .:= , :T Nn nσ σ σ= − , nnN ⋅= σσ : , 

TNT VnVVV =−=: , ,pN =σ TV and p given on [ ]4 0,TΓ ×  (2.5) 

δσ =+ KVn  given on [ ]5 0,TΓ × ,    (2.6) 

where K is a given 2x2 non-negative matrix. 
The condition on 1Γ  is an adhesion condition whereas the condition on 2Γ  expresses that 

the stress vector is given. On 3 4,Γ Γ , the normal and the tangential component of either 

the velocity or the stress vector are imposed. Last, a friction condition is involved on 5Γ . 

 
3. A result of existence and uniqueness. 
Let { }0,0,0;)(

4331

21 ===Ω∈= ΓΓΓ TN VVVHVJ , the subspace of the Sobolev 

space 21 )(ΩH , made of the kinematically admissible velocity fields. Then, introducing 

the Hilbert space ( ) ( ) ( ){ }222,: Ω×Ω∈== LLvuH η  of possible states ( )Vu ,η= with 
finite mechanical energy equipped with the norm and inner product: 
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and the unbounded linear operator with domain D(A) defined by: 

( )
( ) ( )

5

2, v ;  v  and !w L  such that:

( v ) v.    J    (3.1)

u H J
D A g div dx w dx K ds

η

η ϕ µ ϕ ϕ ϕ ϕ
Ω Ω Γ

� �= ∈ ∈ ∃ ∈ Ω
� �= � �− ∇ ⋅ ∇ = ⋅ + ∀ ∈
� �
� �
� � �

 

( )PVwRdivVhAu −−−= ,η , 
 

it is possible to formulate the problem in terms of an evolution in H:  



 3 

�
�

�

�
�

�

�

=

+=

0)0( rr

r
r

uu

FAu
dt

du

 

 
where ru  is the difference between u and a suitable lifting eu  of the inhomogeneous 

Dirichlet boundary conditions, and F stems from the data and eu . It is easy to show that A 

is m-dissipative and then generates a continuous semi-group of contractions on H. Hence, 
if the data are smooth enough the problem has a unique solution. Indeed, the semi group 
being analytic, the conditions on the data are rather mild. 
 
Remark: It is possible to include a dissipative radiation condition o a part of the boundary 
which may be useful for numerical approximations by truncated domains when Ω  is 
unbounded. The trick for the formulation of the Saint-Venant problem in terms of an 
evolution equation consists in introducing a new state variable: the trace of the velocity 
on the involved part of the boundary!  
 
4. A water quality problem 
 
Many problems dealing with water quality (salinity intrusion, transport of sediments or 
pollution, etc…) lead to finding a field C of concentration which satisfies: 
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here cK  is a positive diffusion coefficient and V is the previous velocity field solution of 

Saint-Venant equations in Ω , which, from now on, is assumed to have a 2C  boundary.  
It can be established that rC  , the difference between the true concentration and a suitable 

lifting eC  of C , satisfies the evolution equation in )(2 ΩL : 
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where B is the realization of ∆−  in )(2 ΩL  with homogeneous Dirichlet boundary 

conditions on Ω∂ , ec
e

c CVf
dt

dC
F ∇⋅++−= , and )(tΦ  is the operator defined in 

)( 2/sBD , for all [ ])2,1∈s , by: 

)(.:)()( 22/ Ω∈∇−=Φ∈ LVtBD s ϕϕϕ �  
The existence and uniqueness of a mild solution  
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of (4.1) is obtained by a fixed point method ([3],[4]) using the analycity of the semi group 

)(tSB  generated by –B and the fact that ))(),((],,0([)( 22/0 Ω∈Φ LBDLinTCt s , a mere 
consequence of the Sobolev embeddings. 
Remark 1: The regularity assumption on Γ  may be dropped and various other mixed 
boundary conditions may be considered in the extent where the induced operator B 
satisfies ( ) ( )Ω⊂ ss HBD 2/ . 
Remark 2: Because, the water thermal convection equations read as: 
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where ρχ ,,T  denote the temperature, the coefficient of heat conductivity and the density 
of the water, our previous method works for the water thermal convection problem. 
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