
A Document Frequency Constraint for
Pseudo-Relevance Feedback Models

Stephane Clinchant∗†, Eric Gaussier†

∗Xerox Research Center Europe
†Laboratoire d’Informatique de Grenoble, Université de Grenoble
stephane.clinchant@xrce.xerox.com, eric.gaussier@imag.fr

RÉSUMÉ. Nous étudions dans cet article le comportement de plusieursmodèles de rétro-
pertinence en mettant en avant leurs principales caractéristiques. Ceci nous conduit à intro-
duire une nouvelle contrainte pour les modèles de rétro-pertinence, contrainte liée à la fré-
quence documentaire (DF) des mots. Nous analysons ensuite,d’un point de vue théorique,
différents modèles de rétro-pertinence par rapport à cettecontrainte. Cette analyse montre
que le modèle de mélange utilisé en rétro-pertinence pour les modèles de langue ne satisfait
pas cette contrainte. Nous réalisons ensuite une série d’expériences qui permettent de valider
la contrainte DF. Pour cela, nous utilisons tout d’abord un oracle sur la base de documents
pertinents, puis utilisons une famile de fonctons de type tf-idf, mais paramétrée de telle sorte
que des individus différents de la famille auront des comportements différents par rapport à la
contrainte DF. Ces expériences montrent la validité et l’importance de la contrainte DF.

ABSTRACT.We study in this paper the behavior of several PRF models, anddisplay their main
characteristics. This will lead us to introduce a new heuristic constraint for PRF models, re-
ferred to as the Document Frequency (DF) constraint. We thenanalyze, from a theoretical point
of view, state-of-the-art PRF models according to their relation with this constraint. This anal-
ysis reveals that the standard mixture model for PRF in the language modeling family does not
satisfy the DF constraint. We then conduct a series of experiments in order to see whether the
DF constraint is valid or not. To do so, we performed tests with an oracle and a simple family of
tf-idf functions based on a prameterk controlling the convexity/concavity of the function. Both
the oracle and the results obtained with this family of functions validate the DF constraint.

MOTS-CLÉS :Modèles de RI, boucle de rétropertinence

KEYWORDS:IR theoretical models, pseudo-relevance feedback
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1. Introduction

In the language modelling approach to IR, the mixture model for pseudo-relevance
feedback is a state of the art algorithm. Numerous studies use it as a baseline, and
it has been shown to be one of the most effective models in terms of performance
and stability wrt parameter values in (Lvet al.,2009). However, several recently pro-
posed models outperform this model, as models based on bagging, models based on
a mixture of EDCM distributions and information models (Collins-Thompsonet al.,
2007, Xuet al.,2008, Clinchantet al.,2010). We try here to highlight what these new
models have in common. This leads us to formulate a heuristicconstraint for pseudo-
relevance feedback, which we will refer to as the Document Frequency constraint.
Our analysis shows that most proposed models meet this heuristic contraint. Finally,
we run experiments to assess the validity of this cnstraint.The notations we use throu-
ghout the paper are summarized in table 1, wherew represents a term. We noten the
number of pseudo relevant document used,F the feedback set andtc the number of
term for pseudo relevance feedback. An important change of notations concernsTF
andDF which are in this paperrelated to the feedback setF .

Notation Description

General
c(w, d) Number of occurrences ofw in documentd

ld Length of documentd
N Number of documents in the collection
fw Number of occurrences ofw in the collection
nw Number of documents containingw

IDF (w) − log(nw/N)

PRF specific
n Number of (top) documents retained for PRF
F Set of documents retained for PRF ;F = (d1, . . . , dn)
tc TermCount: number of terms inF to be added to the query

TF (w) =
∑

d∈F c(w, d)
DF (w) =

∑

d∈F I(c(w, d) > 0)

Tableau 1.Notations

2. Pseudo-Relevance Feedback Statistics

We begin this paper by analyzing the terms chosen and the performance obtained by
three different, state-of-the-art, pseudo-relevance feedback (PRF hereafter) methods,
namely the mixture model and the divergence minimization method in the language
modeling family (Zhaiet al., 2001), and the mean log-logistic information model
in the information-based family (Clinchantet al.,2010). These models are reviewed
later in section 4, and their exact formulation is not necessary here. In order to have
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Tableau 2.Statistics of the size of the Intersection
Collection n tc Mean Median Std

robust 10 10 5.58 6.0 1.60
trec-12 10 10 5.29 5.0 1.74
robust 20 20 12 12 3.05
trec-12 20 20 11.8 13 3.14

an unbiased comparison, we use the same IR engine for the retrieval step. Thus, all
PRF algorithms are computed on thesameset of documents. Once new queries are
constructed, we use either the Dirichlet language model (for the new queries obtained
with the mixture model and the divergence minimization method) or the log-logistic
model (for the new queries obtained with the mean log-logistic information model) for
the second retrieval step, thus allowing one to compare the performance obtained by
different methods on the same initial set of PRF documents. Two collections are used
throughout this study : the ROBUST collection, with 250 queries, and the TREC 1&2
collection, with topics 51 to 200. Only query titles were used, which is a common
setting when studying PRF (Dillonet al., 2010). All documents were preprocessed
with standard Porter stemming.

2.1. Term Statistics

We first focus on a direct comparison between the mixture model and the mean log-
logistic information model, by comparing the terms common to both feedback me-
thods, i.e. the terms in the intersection of the two selectedsets. Table 2 displays the
mean, median and standard deviation of the size of the intersection, over all queries,
for the collections considered. As one can note, the two methods agree on a little more
than half of the terms (ratio mean bytc), showing that the two models select different
terms. To have a closer look at the terms selected by both methods, we first compute,
for each query, the total frequency of a word in the feedback set (i.e.TF (w)) and the
document frequency of this word in the feedback set (i.e.DF (w)). Then, for each
query we can compute the mean frequency of the selected termsin the feedback set as
well as its mean document frequency, i.e.q(tf) andq(df) :

q(TF ) =

tc∑

i=1

TF (wi)

tc
andq(DF ) =

tc∑

i=1

DF (wi)

tc

We then compute the mean of the quantities over all queries.

µ(TF ) =
∑

q

q(TF )

|Q|
andµ(DF ) =

∑

q

q(DF )

|Q|

An averageIDF can be computed in exactly the same way. Table 3 displays the
above statistics for the three feedback methods : mixture model (MIX), mean log-
logistic(LL) information model and divergence minimization model (DIV). Regarding
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Tableau 3.Statistics of terms extracted by
Settings Statistics MIX LL DIV

robust-A
µ(tf) 62.9 46.7 57.9
µ(df) 6.4 7.21 8.41

Mean IDF 4.33 5.095 2.36

trec-1&2-A
µ(tf) 114 .0 79.12 98.76
µ(df) 7.1 7.8 8.49

Mean IDF 3.84 4.82 2.5

robust-B
µ(tf) 68.6 59.9 68.2
µ(df) 9.9 11.9 14.4

Mean IDF 4.36 4.37 1.7

trec-1&2-B
µ(tf) 137.8 100.0 118.45
µ(df) 12.0 13.43 14.33

Mean IDF 3.82 4.29 2.0

the mixture and log-logistic models, on all collections, the mixture model chooses
in average words that have ahigher TF, and a smallerDF. The mixture model also
chooses words that aremore frequent in the collectionsince the mean IDF values are
smaller. On the other hand, the satistics of the divergence model shows that this model
extracts very common terms, with low IDF and high DF, which, as we will see later,
is one of the main drawback of this model.

2.2. Performance Statistics

In addition to the term statistics, the performance of each PRF algorithm can also be
assessed. To do so, we first examine the performance of the feedback termswithout
mixing them with the original queries- we call this settingraw. Then, for each query
we keep only terms that belong to the intersection of the mixture (respectively the
divergence minimization) and log-logistic models , but keep their weight predicted
by each feedback method. We call this settinginterse. A third setting,diff, consists
in keeping terms which do not belong to the intersection. Finally, the last setting,in-
terpofor interpolation, measures the performance when new termsare mixed with the
original query. This corresponds to the standard setting ofpseudo-relevance feedback.
Table 4 displays the results obtained. As one can note, the log-logistic model performs
better than the mixture model, as found in (Clinchantet al.,2010). What our analysis
reveals is that it does so because it chooses better feedbackterms, as shown by the
performance of thediff setting. For the terms in the intersection, methodinterse, the
weights assigned by the log-logistic model seem more appropriate than the weights
assigned by the other feedback models.

Let’s summarize our finding here. (a) The log-logistic modelperforms better thant
the mixture and divergence models for PRF. (b) The mixture and divergence models
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Tableau 4.Mean Average Precision for
Settings FB Model MIX LL DIV

robust-A

raw 23.8 26.9 24.3
interse 24.6 25.7 24.1

diff 3 11.0 0.9
interpo 28.0 29.2 26.3

trec-1&2-A

raw 23.6 25.7 24.1
interse 24.2 24.5 23.4

diff 3 9 0.9
interpo 26.3 28.4 25.4

robust-B

raw 23.7 25.7 22.8
interse 25.3 26.2 22.6

diff 3.0 10.0 0.15
interpo 28.2 28.5 25.9

trec-1&2-B

raw 25.1 27.0 24.9
interse 26.1 26.5 24.7

diff 2.1 11.2 0.5
interpo 27.3 29.4 25.7

choose terms with ahigher TF and a smallerDF than the log-logistic one. A first
explanation of the better behavior of the log-logistic model can be that the IDF effect
is dealt with more efficiently in this model, as shown by the statistics reported in
table 3. We also postulate that the log-logistic model tendsto favor terms with ahigh
DF, while the other models favor terms with a lowDF. This leads us now to propose
a new heuristic constraint for pseudo-relevance feedback.

3. Heuristic Constraints

Axiomatic methods were pioneered by Fang et al (Fanget al., 2004) and followed
by many works including (Fanget al.,2006, Cumminset al.,2007, Clinchantet al.,
2010). In a nutshell, axiomatic methods describe IR functions by properties. Accor-
ding to (Clinchantet al.,2010), the four main conditions for an IR function to be valid
are : the weighting function should (a) be increasing and (b)be concave wrt docu-
ment term frequencies, (c) have an IDF effect and (d) penalize long documents. In the
context of pseudo-relevance feedback, Lv (Lvet al.,2009) mentions a document score
heuristic constraint implemented in relevance models (Lavrenkoet al.,2001) and in
the Rocchio algorithm (Hoashiet al.,2001). The document score heuristic constraint
can be formulated as follows :
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PRF Heuristic Constraint 1. [Document Score]Document with higher score should
be given more weight in the feedback weight function.

Another heuristic is related to the term proximity constraint, that is feedback terms
should be close to query terms in documents (Lvet al.,2010).

The development made in the previous section however suggests that an additional
constraint seems to regulate the good behavior of PRF models. Indeed, as we have
seen, the best PRF model we have studied favors feedback terms with a high document
frequency in the feedback set, whereas the ohter models we studied fail to do so. This
constraint can be formalized as follows :

PRF Heuristic Constraint 2. [Document Frequency]Let ǫ > 0, anda and b two
words such that :

1) IDF (a) = IDF (b)

2) The distribution of the frequencies ofa (c(a, d)) in the feedback set is given by :

T (a) =

n
︷ ︸︸ ︷

(x1, x2, ..., xj , 0, ..., 0)

3) The distribution forb is given by :T (b) = (x1, x2, ..., xj − ǫ, ǫ, ..., 0)

4) ∀i, xi > 0 andxj − ǫ > 0

Hence,TF (a) = TF (b) andDF (b) = DF (a) + 1. Then, the feedback weight func-
tion FW (.) is such thatFW (a) < FW (b)

In other words,FW (.) is locally growing with DF (w). It is possible to define
a constraint based on a globally growing function, but this complicates the matter.
Furthermore, the above constraints directly captures the intuition put forward for the
document frequency behavior. The following theorem allowsone to decide whether
a given PRF model agrees or not with the document frequency (DF) constraint for a
large class of models (as we will see below) :

Theorem 1. SupposeFW can be written as :

FW (w) =

n∑

d=1

f(c(w, d)) [1]

with f(0) = 0. The we have :

1) If the functionf is strictly concave, thenFW meets the DF constraint.

2) If the functionf is strictly convex, thenFW does not meet the DF constraint.

Proof If f is strictly concave, then the functionf is subadditive (f(a + b) <
f(a)+ f(b)). Let a andb be two words satisfying the conditions of the DF constraint.
We have :

FW (a) = FW (x1, ..., xj

︸ ︷︷ ︸

DF (a)

, 0, ..., 0
︸ ︷︷ ︸

n−DF (a)

)
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and :
FW (b) − FW (a) = f(xj − ǫ) + f(ǫ) − f(xj)

As the functionf is subadditive, we have :FW (b) − FW (a) > 0. If f is strictly
convex, thenf is superadditive asf(0) = 0, and a comparable reasoning leads to
FW (b) − FW (a) < 0. �

As we will see in the next section, many recently proposed PRFmodels follow equa-
tion 1, and can be analyzed with the above theorem.

4. Review of PRF Models

4.1. PRF for Language Models

Traditional methods, such as Rocchio’s algorithm, extractterms from feedback docu-
ments and add them to the query. The language modeling (LM) approach to informa-
tion retrieval follows this approach as it extracts a multinomial probability distribution
over words from the feedback document set, parametrized byθF . AssumingθF has
been estimated, the LM approach proceeds by interpolating the query language model
with θF :

θq
′ = αθq + (1 − α)θF [2]

In practice, one restrictsθF to the toptc words, setting all other values to 0. The
different feedback models then differ in the wayθF is estimated. We review the main
LM based feedback models below.

4.1.1. Mixture Model

Zhai and Lafferty (Zhaiet al., 2001) propose a generative model for the setF . All
documents are i.i.d and each document comes from a mixture ofthe relevant topic
model and the corpus langague model :

P (F|θF , β, λ) =

V∏

w=1

(λθFw + (1 − λ)P (w|C))TF (w) [3]

whereλ is a fixed parameter, which can be understood as a noise parameter for the
distribution of terms. FinallyθF is learned by optimising the data loglikelihood with
an Expectation-Maximization (EM) algorithm. It is trivialto show that this mixture
model does not meet the DF constraint, since it is DF agnostic.

4.1.2. Divergence Minimization

Zhai (Zhaiet al.,2001) also propose the divergence minimization model :

D(θq|RF ) =
1

|n|

n∑

i=1

D(θF ‖ θdi
) − λD(θF ||p(. ‖ C))
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whereθdi
denotes the empirical distribution of words in documentdi. Miminizing this

divergence gives the following solution :

θFw ∝ exp
( 1

1 − λ

n∑

i=1

log(p(w|θdi
)) −

λ

1 − λ
log(p(w|C)

)

This models amounts to the geometric mean of the smoothed document models with a
regularization term. Our previous experiments and those ofLv (Lv et al.,2009) show
that this model does not perform well. Although it meets the DF constraint (by using
a geometric mean leading to a concave function), the IDF effect is not sufficiently
enforced, and the model fails to downweight common words, asshown in Table 3.
In other words, this model chooses common words which do havea high document
frequency, but are not interesting for retrieval.

4.1.3. Other Models

A regularized version of the mixture model, known as the regularized mixture model
(RMM) and making use of latent topics, is proposed in (Taoet al.,2006) to correct
some of the deficiencies of the simple mixture model. RMM has the advantage of pro-
viding a joint estimation of the document relevance weightsand the topic conditional
word probabilities, yielding a robust setting of the feedback parameters. However, the
experiments reported in (Lvet al., 2009) show that this model is less effective than
the simple mixture model in terms of retrieval performance,for precision and recall.
We will thus not study it further here, but want to mention, nevertheless, an interes-
ting re-interpretation of this model in the context of the concave-convex procedure
framework (Dillonet al.,2010).

Another PRF model proposed in the framework of the language modeling ap-
proach is the so-called relevance model, proposed by Lavrenko et al. (Lavrenkoet
al., 2001), and defined by :

FW (w) ∝
∑

d∈F

PLM(w|θd)P (d|q) [4]

wherePLM denotes the standard language model. Because of its reliance on the lan-
guage model, the above formulation is compliant with all theclassical IR constraints.
Furthermore, it corresponds to the form of equation 1 of Theorem 1, with a linear
function, which is neither strictly concave nor strictly convex. This model is neutral
wrt the DF constraint. As we have mentioned before, it satifies the DS constraint.

The relevance model has recently been refined in the study presented in (Seoet al.,
2010) through a geometric variant, referred to as GRM, and defined by :

FW (w) ∝
∏

d∈F

PLM(w|θd)P (d|q)

Let us first consider the standard language model with Jelinek-Mercer smothing (Zhai
et al., 2004) :PLM(w|θd) = (1 − λ) c(w,d)

ld
+ λ c(w,C)

lC
, wherec(w, C) denotes the



Analysis of Pseudo-Relevance Feedback

number of occurrences ofw in the collectionC and lC the length of the collection.
Let wa andwb be two words as defined in constraint DF, and let us further assume
that feedback documents are of the same lengthl and equiprobable givenq. Then
FW (wa) andFW (wb) respectiveley differ on the two quantities :

(i) (

α
︷ ︸︸ ︷

(1 − λ)
c(wa, dj)

l
+ λ

c(wa, C)

lC
)(

β
︷ ︸︸ ︷

λ
c(w, C)

lC
)

(ii) ((1 − λ)
c(wa,dj)−ǫ

l
+ λ c(wa,C)

lC
)((1 − λ)

ǫ

l
︸ ︷︷ ︸

ǫ′

+λ c(w,C)
lC

)

The second quantity amounts to :

(α − ǫ′)(β + ǫ′) = αβ + ǫ′(α − β) − (ǫ′)2

But α−β = (1−λ)
c(wa,dj)

l
, a quantity which is strictly greater than(1−λ) ǫ

l
= ǫ′ by

the assumptions of the DF constraint. Thus the GRM model satisfies the DF constraint
when Jelinek-Mercer is used. For the Dirichlet smoothing, setting :

α =
c(w, d) + µp(w|C)

l + µ
, β =

µp(w|C)

l + µ
, andǫ′ =

ǫ

l + µ

leads to exactly the same development as above. The GRM modelthus satisfies the DF
constraint for both Jelinek-Mercer and Dirichlet smoothing. The use of the exponent
P (d|q) also shows that it satisfies the DS constraint.

4.2. PRF under the Probability Ranking Principle

Xu and Akella (Xuet al.,2008) propose an instanciation of the Probability Ranking
Principle (PRP) when documents are modelled with a Dirichlet Compound distribu-
tion. Instead of relying on the PRP to extract new terms, theypropose a generative
model of documents. In their PRP framework, relevant documents are assumed to
come from a Dirichlet Compound Multinomial (DCM) distribution, the parameters of
which will be denotedθw. In the feedback process, documents arise from aa mixture
of Extended DCM distributions. Contrary to the mixture model, the mixing parameter
for each document is not fixed. Furthermore, several modifications of the EM algo-
rithm to moderate the biais of the generative approach are used. Those modifications
are similar to the regularized mixture model studied in (Taoet al., 2006). One can
show that maximizing the EDCM likelihood leads to forgetTF information. Only
DF matters for the EDCM model. Lets =

∑M

w=1 θw, thens verifies the following
fixed-point equation :

s =

∑

w DF (w)
∑

d Ψ(s + ld) − nΨ(s)
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Onces is known, theθw can be obtained directly by :

θw =
DF (w)

∑

d Ψ(s + ld) − nΨ(s)

It is then easy to show that maximizing the likelihood of an EDCM model entails the
DF constraint.

4.3. PRF in Divergence from Randomness (DFR) and Information Models

In DFR and information models, the original query is modified, following standard
approaches to PRF, to take into account the words appearing in F according to the
following scheme :

xq′

w =
xq

w

maxw xq
w

+ β
InfoF (w)

maxw InfoF (w)
[5]

whereβ is a parameter controlling the modification brought byF to the original query
(xq′

w denotes the updated weight ofw in the feedback query, whereasxq
w corresponds

to the weight in the original query).

4.3.1. Bo2

The standard PRF model in the DFR family is the Bo2 model (Amati et al., 2003),
which is defined by :

gw = (
∑

d∈F

ld)p(w|C)

InfoBo2(w) = log2(1 + gw) + TF (w) log2(
1 + gw

gw

)

In other words, documents in F are merged together. A Geometric probability model
measures the informative content of a word. As this model is DF agnostic, it does not
entail the DF constraint.

4.3.2. Log-logistic Model

For information models (Clinchantet al., 2010), the average information this set
brings on a given termw is used as a criterion to rank terms, which amounts to :

InfoF (w) =
1

n

∑

d∈F

− log(P (Xw > tdw|λw))

The log-logistic model for pseudo relevance feedback is defined by :

t(w, d) = c(w, d) log(1 + c
avg_l

ld
) [6]

FW (w) =
∑

d∈F

[log(
nw

N
+ t(w, d)) + IDF (w)] [7]
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As the log is a concave function, the log-logistic model satisfies the DF constraint by
theorem 1. Similarly, the SPL model proposed in (Clinchantet al.,2010) satisfies the
DF constraint.

Having reviewed several state-of-the-art PRF models wrt totheir behavior accor-
ding to the DF constraint, we now turn to an experimental validation of this constraint.

5. Validation of the DF Constraint

We present here a series of experiments conducted in order toassess whether the
DF constraint is a valid constraint in pseudo-relevance feedback. To do so, we first
describe the oracle used to escape away from (and thus not being biased by) any given
model.

5.1. Oracle

Suppose an oracle could tell the performance of each individual word in a pseudo-
relevance feedback setting. Then, one could look at the oracle word statistics (mean
TF, mean DF) in order to further validate the DF constraint. However, if we use such
an oracle on pseudo-relevance feedback sets, there will likely be a significant variation
of these statistics, since there is a significant variation in the precision at 10. Indeed, it
is difficult to compare the TF statistics for a query withP@10 = 0.1 and for a query
such thatP@10 = 0.9. It is difficult to observe a global tendency in such a case. Itis
however possible to overcome the query variation performance by using true relevance
feedback. The experimental setting we follow is thus definedas :

– Start with a first retrieval with a Dirichlet language model;

– Select the first 10 relevant documents if possible, else select the topRq(Rq <
10) relevant documents ;

– Construct a new query (50 words) with the mixture model ;

– Construct a new query (50 words) with the log-logistic model ;

– Compute statistics for each word in the new queries.

Statistics include a normalizedDF , equal toDF (w)/Rq , and a normalizedTF statis-
tics (theTF is divided by the actual number of document used for relevance feedback,
Rq). Each wordw is added independently with weights predicted by the retained PRF
model. For each wordw, we measure the MAP of the initial query augmented with
this word. The difference in performance with the intial query can be computed as :
∆(MAP ) = MAP (q +w)−MAP (q). We thus obtain, for each term, the following
statistics :

– ∆(MAP )

– log(1 + TF (w))/Rq

– DF (w)/Rq
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Figure 1. (log(TF),DF) vs∆ MAP on ROBUST ; true releevant documents are used
with n = 10, tc = 50 and exponential (left) and Gaussian (right) kernel grids (15 ×
15). Top row : log-logistic ; bottom row : language model

Figures 1 and 2 display a 3D view of these statistics for all queries, using Gnuplot
with gaussian and exponential kernel estimators. On all plots, the best performing
regions in the (TF,DF) space correspond to large DFs, thus showing the validity of
the DF constraint. It has to be noted that the TF statistics was normalized to account
for different lengths. In the figures, the DFR normalizationwas used, but the shape
of the plot remains consistent without any normalization orwhen a language model
normalization is used.

5.2. Experimental Validation

Theorem 1 can help us further validate the DF constraints. Indeed, let us use the family
of feedback functions defined by :

FW =
∑

d∈F

t(w, d)kIDF (w) [8]
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Figure 2. (log(TF),DF) vs∆ MAP on TREC-12 ; true releevant documents are used
with n = 10, tc = 50 and exponential (left) and Gaussian (right) kernel grids (15 ×
15). Top row : log-logistic ; bottom row : language model

with t(w, d) = c(w, d) log(1 + cavg_l

ld
), which corresponds to the second DFR nor-

malization. Equation 8 amounts to a standard dtf-idf weighting, with an exponentk
which allows one to control the convexity/concavity of the feedback model. Accor-
ding to Theore 1, ifk > 1 then the function is strictly convex and does not satisfy
the DF constraint. Ifk < 1, then the function is strictly concave and satisfies the DF
constraint, while the linear case, being both concave and convex, is in-between. We
can then build PRF models from equation 8 with varyingk, and see whether the re-
sults agree with the theoretical findings implied by Theorem1. We used these PRF
models with equation 5 and a log-logistic model to assess their performance (as the
log-logistic model was the best performing model in our preliminary experiments).
Table 5 displays the term statistics (µ(tf),µ(df), mean IDF) for different values ofk.
As one can note, the smallerk, the biggerµ(df) is. In other words, the slowlier the
function grows, the more terms with large DF are preferred. Table 6 displays the MAP
for different values ofk. At least two important points arise from the results obtained.
First, convex functions (k>1) have lower performance than concave functions for all
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Tableau 5.Statistics on TREC-12-A
Powerk µ(tf) µ(df) Mean IDF

0.2 70.46 7.4 5.21
0.5 85.70 7.1 5.09
0.8 88.56 6.82 5.14
1 89.7 6.6 5.1

1.2 91.0 6.35 5.1
1.5 90.3 6.1 5.0
2 89.2 5.8 4.9

Tableau 6.MAP for different power function. Suffix A meansn = 10 and tctc = 10
while suffix B meansn = 20 and tctc = 20

Powerk robust-A trec-12-A robust-B trec-12-B
0.2 29.3 28.7 28.7 30.0
0.5 30.1 29.5 29.4 30.5
0.8 29.6 29.3 29.4 30.3
1 29.2 28.9 29.1 29.9

1.2 28.9 28.6 28.6 29.6
1.5 28.6 28.1 28.3 28.9
2 28.1 27.2 27.4 28.0

log-logistic 29.4 28.7 28.5 29.9

datasets, as predicted by the DF cosntraint and Theorem 1. Asconvex functions do not
entail the DF constraint, this suggests that the DF constraint is valid and leads to better
performance. Second, the square root function (k = 0.5) has the best performances on
all collections : it also outperforms the stadard log-logistic model. When the function
grows slowly (k equals to0.2), the DF statistics is somehow preferred compared to
TF. The square root function achieves a different (and better) trade-off between the TF
and DF information. This is an interesting finding as it showsthat the TF information
is still useful and should not be too downweighted wrt the DF one.

6. Conclusion

We have studied in this paper the behavior of several PRF models, and have displayed
their main characteristics through a first series of experiments. This led us (a) to show
that the divergence minimization PRF model was deficient wrtthe IDF effect (i.e. this
model selects terms with large IDF), and (b) to introduce a new heuristic constraint
for PRF models, referred to as theDocument Frequency (DF) constraint. We have
then analyzed, from a theoretical point of view, state-of-the-art PRF models according
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to their relation with this constraint. This analysis revealed that the standard mixture
model for PRF in the language modeling family does not satisfy the DF constraint.

We have then conducted a series of experiments in order to seewhether the DF
constraint is valid or not. To do so, we performed tests with an oracle and a simple
family of tf-idf functions based on a prameterk controlling the convexity/concavity
of the function. Both the oracle and the results obtained with this family of functions
validate the DF constraint. Furthermore, our experiments suggest that the square root
function should be preferred over the mean log-logistic information model introduced
in (Clinchantet al.,2010) for pseudo-relevance feedback, as the square root funciton
achieves a better tradeoff between the DF and TF statistics.
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