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ABSTRACT

Many computer vision applications such as image filter-

ing, segmentation and stereo-vision can be formulated as opti-

mization problems.Whereas in previous decades continuous-

domain, iterative procedures were common, recently discrete,

convex, globally optimal methods such as graph cuts have

received a lot of attention. However not all problems in com-

puter vision are convex, for instance L0 norm optimization

such as seen in compressive sensing. Recently, a novel dis-

crete framework encompassing many known segmentation

methods was proposed : power watershed. We are interested

to explore the possibilities of this minimizer to solve other

problems than segmentation, in particular with respect to un-

usual norms optimization. In this article we reformulate the

problem of anisotropic diffusion as an L0 optimization prob-

lem, and we show that power watersheds are able to optimize

this energy quickly and effectively. This study paves the way

for using the power watershed as a useful general-purpose

minimizer in many different computer vision contexts.

Index Terms— Combinatorial optimization, image pro-

cessing, denoising, mathematical morphology, watersheds.

1. INTRODUCTION

The most common assumption about image noise is that

the noise is high frequency. Therefore, a natural choice of

image filter is a lowpass filter which dampens power in the

high-frequency range. Unfortunately, a lowpass filter has

the undesirable effect of blurring object boundaries, since

these boundaries have a high-frequency. This dilemma was

recognized early in the image processing literature and var-

ious approaches were proposed to solve it, with the goal

of smoothing the image content internal to an object, but

preserving image discontinuities across boundaries.

An approach to discontinuity-preserving filtering was pro-

posed by Perona and Malik (PM) [1] who modeled image fil-

tering as an anisotropic diffusion process that smoothed im-

age intensities inside an object while preserving the intensity

discontinuity between objects. Later, the anisotropic diffusion

approach was shown by Black et al. [2] to be interpreted as

a gradient descent method for optimizing a robust error func-

tion model which had been proposed previously. Anisotropic

diffusion has been a very successful filtering algorithm, in

part because it is easy to implement. However, this algorithm

does have the problem of setting two parameters, the robust

estimator parameter and the diffusion time. Practical usage of

anisotropic diffusion requires a choice between long compu-

tation times or blurry boundaries.

Recently, Couprie et al. introduced the power watershed

(PW) method [3]. Although this technique was introduced in

the context of image segmentation, the method can be used

as an optimization method for some functionals. In this paper

we show that PW is well-suited to address the robust esti-

mator filtering model and therefore provide an alternative to

anisotropic diffusion for the optimization of this model. There

are several advantages of PW as compared to anisotropic dif-

fusion in the context of optimizing the robust estimator filter-

ing model. First, we remove the robust estimator parameter.

Second, we preserve discontinuities without blurring while

also allowing for a fast optimization based on PW. Third, no

time step needs to be determined (i.e., no risk of a divergent

solution). Therefore, our optimization via PW removes the

false choice presented by anisotropic diffusion between fast

optimization and sharp object boundaries.

Other models for discontinuity-preserving filtering are

also well-known, including total variation [4], the Mumford-

Shah functional [5] and the piecewise constant Mumford-

Shah (Chan-Vese) model [6]. The total variation model is

convex, allowing for a relatively efficient solution [7, 8] while

the Mumford-Shah and Chan-Vese models are more difficult

to optimize. However, recent work [9, 10] has provided more

efficient optimization methods. Despite this progress in the

optimization of other discontinuity-preserving filtering meth-

ods, very little work has been done to improve the speed/blur

tradeoff that is necessary in the anisotropic diffusion algo-

rithm. Rather than promoting one discontinuity-preserving

model over another, we simply show here how the PW may be

used to very efficiently optimize the robust estimator model

underlying anisotropic diffusion such that we no longer have

to choose between fast optimization and blurred boundaries.

Our optimization will be achieved at the cost of a few itera-

tions of the efficient PW, which is simple to implement.



2. FORMULATION

Black et al. showed that anisotropic diffusion could be

viewed as the minimization of a robust estimator. We em-

ploy this same robust estimator formulation of anisotropic

diffusion, but show that the power watershed may be used to

iteratively optimize the formulation.

Since the power watershed is defined on a graph, we be-

gin by casting the anisotropic diffusion algorithm in discrete

terms. A graph consists of a pair G = (V,E) with vertices

v ∈ V and edges e ∈ E ⊆ V × V . An edge, e, spanning

two vertices, vi and vj , is denoted by eij . A weighted graph

assigns a (typically non-negative and real) value to each edge

called a weight. The weight of an edge eij is denoted by wij .

We define the edge-node incidence matrix A of a graph G as

Aeijvk
=







+1 if the node i = k,

−1 if the node j = k,

0 otherwise.

The incidence matrix A is used here as the combinatorial ana-

logue of the continuous gradient operator.

Given these definitions, the anisotropic diffusion algo-

rithm is defined as

dx

dt
= AT g(Ax)Ax, (1)

where x is the image intensities of a filtered image, and x

at time 0 equals the input, unfiltered image. The function

g(x) is used to prevent blurring over edges and may be of any

decreasing form. One possibility for g(x) suggested in [1] is

g(x) = exp
(

−αx2
)

, (2)

where α is a free parameter.

The typical method for solving the anisotropic diffusion

equation in (1) is via a forward Euler method in which the

iteration

xk+1 = xk + dtAT g(Axk)Axk,

is applied, using a time step dt which is designed to obey the

CFL conditions and ensure stability of the solution. In prac-

tice, the number of iterations applied to produce the filtered

image is a free parameter which is set to define the desired

level of smoothing.

Black et al. [2] showed that the anisotropic diffusion

equation given by (1) could be viewed as the gradient of the

energy

E(x) = σ(Ax), (3)

where σ(x) is a robust estimator or an M-estimator. A gradi-

ent of the Black et al. energy in (3) is given by

dE

dx
= AT σ′(Ax)Ax. (4)

Therefore, when σ′(Ax) = g(Ax), then the gradient of the

Black et al. energy, (4) is the same as the anisotropic diffu-

sion equation in (1). In other words, anisotropic diffusion is

gradient descent minimization of (3). Further, the σ(z) corre-

sponding to the PM weighting function in (2) is given by the

Welsch function σ(z) = 1 − exp
(

−αz2
)

.

Black et al. explored the effect of different robust esti-

mator forms of σ(z). However, a common characteristic of

all robust estimators is that they exhibit linear or quadratic

growth near z = 0, but provide a nearly constant output as

z → ∞. The transition between quadratic growth and con-

stant growth is controlled by the parameter α. If α → ∞, then

the robust estimator ultimately achieves its constant growth

phase for any z 6= 0. In this way, the σ(z) function may be

viewed as a differentiable approximation to the || · ||0 norm

in which ||0||0 = 0 and ||z||0 = 1 for any z 6= 0. Conse-

quently, the anisotropic diffusion filtering algorithm may be

viewed as gradient descent on an energy functional which is

an approximation to the || · ||0 norm.

Previous filtering algorithms that explicitly formulated fil-

tering from the standpoint of optimizing the || · ||0 norm took

the form

E(x) = σ(Ax) + λh(x, f), (5)

in which f represents the intensities of the input unfiltered

image, h(x, f) represents a loss function and λ is a free pa-

rameter. When h(x, f) = ||x − f ||22, the gradient of (5) be-

comes dE
dx

= AT σ′(Ax)Ax + λ (f − x), which achieves a

stable point when
(

AT σ′(Ax)A + λI
)

x = λf. (6)

Since (6) may be viewed as a backward Euler solution for

the anisotropic diffusion equation (1) when λ = 1

dt
, then

the anisotropic diffusion algorithm may be seen as the opti-

mization of a robust estimator of the image gradient balanced

against a loss function of the form ||x−f ||22 where the tradeoff

between gradient smoothness and data fidelity is governed by

λ = 1

dt
. Therefore, by setting a fixed time for the anisotropic

diffusion, we may view the solution obtained for this time as a

steady-state optimization of our second energy functional (5)

with a corresponding λ parameter. Viewing the time parame-

ter as a loss function for the fidelity of the filtered image with

the original, we may freely alter the loss function.

2.1. Anisotropic diffusion and L0 norm

As said in the previous section, it is possible to alter the loss

function. For example, we could optimize the fully robust

energy

E(x) = σ(Ax) + λσ (x − f) ,

with gradient given by

dE

dx
= 2αAT σ′(Ax)Ax + 2αλσ′(x − f)x.

If, at any iteration, we fix the values of x inside the robust

error function, then we have

dE

dxk+1
= AT σ′(Axk)Axk+1 + λσ′(xk − f)xk+1. (7)



This energy may be written as the steady-state optimization

of the energy functional

Ek+1 = xk+1T
AT σ′(Axk)Axk+1 + λxk+1T

σ′(xk − f)xk+1,

that may also possibly be written

Ek+1 =
∑

eij

σ′(Axk)
(

xk+1

i − xk+1

j

)2

+λ
∑

vi

σ′(xk − f)
(

xk+1 − f
)2

. (8)

This expression for the energy to compute a minimum

step is of a form that may be optimized by the power wa-

tershed (PW) [3] if the parameter α → ∞ for g(x).
The generalized PW energy is given by

min
x

∑

eij∈E

wij
p|xi − xj |

q +
∑

vi∈V

wi
p|xi − yi|

q (9)

where y represents a measured configuration and x represents

the target configuration. In this equation, the first term es-

sentially forces x to vary smoothly within an object, and the

second term enforces data fidelity. We can see that Eq. 8 is of

the same form as Eq. 9, with q = 2, p = α.

Therefore, we suggest the following filtering algorithm :

Algorithm 1: Anisotropic diffusion using PW

Data: An image f , an initial solution x0, λ ∈ R
∗
+

Result: A filtered image xk

Set k = 0. Build the graph described in Fig. 1.

repeat

Generate the pairwise weights exp−(Axk)2, and

unary weights exp−(xk − f)2.

Use PW with y = f to optimize (8) to obtain xk+1.

k = k + 1;
until ||xk+1 − xk||2 < ǫ

This technique can be initialized by the image f , or, in the

case of very noisy images by a smoother version of the image,

for instance by the application of a Gaussian or a median filter.

In the initialization step of the algorithm, we need to build

a graph in linking each pixel node with its neighbors, for ex-

ample its 4 neighbors for 4-connectivity. The values of those

nodes will be the xk. Noting N the number of pixels in the

image, we add N nodes to this graph in linking each pixel

node vi by an edge to the new node vi+N . Those additional

nodes are set to constant values of f . A description of the

graph on a example is shown in Fig. 1. The algorithm using

power watershed for anisotropic diffusion is summarized in

Alg. 1.

3. RESULTS

We now demonstrate the performance of the power watershed

algorithm for anisotropic diffusion in presenting results on

f

xk

Fig. 1. Graph necessary to build for applying the power water-

shed diffusion algorithm to a 3× 3 image. The unary weights

in blue and pairwise weights in red are updated at each step.

(a) Noisy image,

PSNR = 24.24dB

(b) PM, PSNR =

34.03dB

(c) PM, PSNR =

30.46dB

(d) PW, PSNR =

31.54dB

Fig. 2. Comparison of Perona-Malik(PM), and power water-

shed(PW) algorithms for denoising a synthetic image. (b) PM

used with 80 iterations α = 0.0015, leading to a good PSNR

but with remaining isolated noisy pixels. (c) PM, best com-

promise found for this image to remove the isolated pixels

with 50 iterations and α = 0.0005. (d) A median filtered im-

age as initialization and λ = 0.975 allows to obtain a better

PSNR while removing isolated noisy pixels.

synthetic and real images. A first, the test in Fig. 2 is per-

formed on a synthetic image corrupted with a Gaussian noise

of standard deviation σ = 16. For each result, we may com-

pute the peak signal-to-noise ratio (PSNR) relatively to the

original image. Typical values for the PSNR in denoising lie

between 20 and 40 dB where higher is better. In compari-

son with PM algorithm, the power watershed algorithm tends

to produce piecewise constant results. The result obtained at

Fig. 2(d) shows a good compromise between noise removing

and edge preservation. However there is a choice to make

for PM algorithm (Fig. 2(b) and Fig. 2(c)) between complete

denoising and good contrast edge restoration.

Examples on real images in Fig. 3 and Fig. 4 show that the

power watershed algorithm may be useful as a filtering step

Perona-Malik PW

Fig. 2, 104 × 100
Nb iter. 50 80 5

Time (s) 0.19 0.30 0.17

Fig. 4, 250 × 300
Nb iter. 50 80 6

Time (s) 1.38 2.14 1.78

Fig. 3, 299 × 364
Nb iter. 50 80 6

Time (s) 1.95 3.08 2.43

Table 1. Number of iterations of Perona-Malik, and power

watershed algorithms on the image of Fig. 2, Fig. 4, and Fig. 3



(a) Original image (b) PW result

Fig. 3. Filtering of a liver image by power watershed. Here

noise and small vessels are both removed, leading to a result

which may be used as a first step before segmentation.

(a) Original image (b) PW result (6 iter.) (c) Segmentation

Fig. 4. The segmentation of concrete images in three classes

(bubbles in black, stones in light grey) is useful for the study

of the material’s mechanical properties. The segmentation is

obtained by two thresholds of the filtered image by PW.

before segmentation. In terms of computation time, each it-

eration of the power watershed algorithm for anisotropic dif-

fusion operates in quasi-linear time in practice. We noticed

empirically that the convergence is very fast (fewer than 10

iterations). The result obtained at the first iteration is gener-

ally close to the final result as shown in Fig. 4. We give some

timing with necessary number of iterations to reach conver-

gence at Table 1.

4. CONCLUSION

The power watershed (PW) algorithm was originally pre-

sented as a technique applied to image segmentation. In this

work, we showed that PW provides an optimization proce-

dure that allows us to optimize robust error measures which

are operated in a particular parameter range.

Black et al. showed how the anisotropic diffusion method

could be viewed as optimization of a robust error filtering

model. We showed that PW could be used to optimize the

same robust error filtering model, leading to an alternative

optimization procedure.

An aspect of the PW optimization in this context is that it

applies to the optimization of the robust error filtering model

when operated in a particular parameter range which effec-

tively models the image as being piecewise constant. For

cases in which this model was reasonable (such as the syn-

thetic images), the algorithm exhibited a strong denoising ca-

pability. When this denoising algorithm was applied to real

images, the effect of imposing a piecewise constant model

was to effectively quantize images into a small number of

grayscale levels (Fig. 3 and 4). This transformation of an

image into a piecewise constant form may be helpful as a pre-

processing step for segmentation or recognition.

We used the energy minimization aspect of PW to expand

the traditional use of watersheds from a segmentation algo-

rithm to an image filtering algorithm. Although our algorithm

optimizes the filtering objective as a real-valued optimization

problem, we showed that we still retain the fast speed of the

watershed algorithm. However, the limit of PW as an energy

optimization strategy remains unclear — What energy func-

tions can be minimized via power watersheds? Future work

will address this issue and continue to demonstrate applica-

tions which can benefit from the speed of power watershed.
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