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ABSTRACT

Algorithms based on the minimization of the Total Variation

are prevalent in computer vision. They are used in a variety

of applications such as image denoising, compressive sensing

and inverse problems in general. In this work, we extend the

TV dual framework that includes Chambolle’s and Gilboa-

Osher’s projection algorithms for TV minimization in a flex-

ible graph data representation by generalizing the constraint

on the projection variable. We show how this new formulation

of the TV problem may be solved by means of a fast parallel

proximal algorithm, which performs better than the classical

TV approach for denoising, and is also applicable to inverse

problems such as image deblurring.

Index Terms— Proximal algorithm, inverse problems, image

denoising, convex optimization, image restoration

1. INTRODUCTION

The Total Variation (TV) model was introduced as a regu-

larizing criterion for image denoising by Rudin, Osher and

Fatemi [9], and has been shown to be quite efficient for

smoothing images while preserving contours. Moreover, a

major advantage is that TV minimization is a convex problem,

although coping with the non-differentiability of the involved

objective function required the development of specific op-

timization techniques, particularly with respect to speed and

efficiency. Much progress has been achieved by employing

primal-dual approaches [4, 2], and more recently by the dual

approach of Chambolle [3]. Qualitative improvements have

also been obtained by introducing a weighted model [1, 7]. In

this model, the discretization of the TV energy is performed

by the use of an edge-weighted graph. Gilboa and Osher

provided an efficient dual algorithm in [7], based on Cham-

bolle’s [3] method to address this problem. Currently, one of

the fastest method for optimizing weighted TV is proposed

by Zhang et. al [11].

The projection algorithms in [3, 7] are based on a relatively

simple local constraint on the norm of the projection variable.

In this work, we extend the constraint on this variable, as

this allows us to better adapt the optimization procedure to

the local information. We name this new approach “Dual-

Constrained Total Variation” (DCTV) regularization.

The paper is organized as follows: in Section 2, we generalize

TV models on a graph by extending the dual formulation un-

der a constrained form. In Section 3, we demonstrate how our

constrained TV-based optimization problem can be efficiently

solved by using a parallel proximal algorithm. Finally, results

obtained with the proposed approach are presented in three

applications and compared to classical weighted TV.

2. GRAPH EXTENSION OF TV MODELS

Given an original corrupted image f , the purpose of varia-
tional methods for image restoration is to deduce a restored
image u close to the observed image f under the assumption
of smooth variations of intensity values inside objects. Let
λ ∈]0, +∞[ be a real positive value representing a regulariza-
tion parameter. In a continuous setting, given a plane domain
Ω, and denoting by x and y two arbitrary points of Ω, the
weighted anisotropic TV model [7] is given by

min
u

Z
Ω

“ Z
Ω

wx,y(uy − ux)2dy
”1/2

dx +
1

2λ

Z
Ω

(ux − fx)2dx,

(1)

where w is a nonnegative valued function defined on Ω2. As
shown by Chan et al in [4] the TV minimization problem (1)
is equivalent to the min-max problem

min
u

max
||p||∞≤1

Z
Ω2

w1/2
x,y (uy − ux)px,ydxdy+

1

2λ

Z
Ω

(ux − fx)2dx,

(2)

with p a projection vector field, ‖p‖∞ = supx∈Ω

“ R
Ω

p2
x,ydy

”1/2

.

Let us now establish the formulation of the DCTV energy

within a discrete framework, by first specifying our notation.

A graph consists of a pair G = (V, E) with vertices v ∈ V
and edges e ∈ E ⊆ V × V , with cardinalities n = |V | and

m = |E|. An edge, e, spanning two vertices, vi and vj , is

denoted by ei,j . In this paper we deal with weighted graphs
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that include weights on both the edges and nodes. An edge

weight is a value assigned to each edge ei,j , and is denoted

by wi,j . We assume that wi,j ∈]0, +∞[. The weight of a

node vi is denoted by gi. We also assume that gi ∈ R
∗
+. We

note A the incidence matrix of the graph which is known to

define the discrete calculus analogue of the gradient, while

A� similarly defines the discrete calculus analogue of the di-

vergence (see [8] and the references therein). The incidence

matrix A ∈ R
m×n is defined, for every vertex vk and edge

eij , as Aeij ,vk
= 1 if i = k, Aeij ,vk

= −1 if j = k, and

Aeij ,vk
= 0 otherwise. For any matrix M , we use |M | for the

matrix composed of the absolute value of each entry individ-

ually, and denote · the Hadamard product. As the step size of

the graph tends toward zero, the discrete version of (1) and its

dual (2) approximate the continuous versions. Now, f and u
are vectors in R

n. The discrete TV model as defined by [1, 7]

is

min
u

n∑
i=1

( ∑
j∈Ni

wi,j(uj − ui)2
)1/2

+
1
2λ

n∑
i=1

(ui − fi)2

(3)

where Ni = {j ∈ {1, . . . , n} | ei,j ∈ E} and the dual for-

mulation optimized by a projection algorithm [7] is given by

min
u

max
‖p‖∞≤1

p�((Au) · √w) +
1
2λ

‖u − f‖2 (4)

where ‖ · ‖ denotes the Euclidean norm, w ∈ R
m is a vector

with components (wi,j)i,j and denoting by (pi,j)i,j the com-

ponents of p ∈ R
m, ‖p‖∞ = maxi∈{1,...,n}

( ∑
j∈Ni

p2
i,j

)1/2

.

By introducing a vector F = (Fi,j)i,j ∈ R
m such that, for

every i ∈ {1, . . . , n} and j ∈ Ni, Fi,j = pi,j
√

wi,j , the

problem can be reformulated as

min
u

max
F∈C

F�Au +
1
2λ

‖u − f‖2, (5)

C = {(Fi,j)i,j | (∀i ∈ {1, . . . , n})
∑
j∈Ni

F 2
i,j

wi,j
≤ 1}. (6)

The objective of this work is to extend the discrete weighted

TV variational formulation in (5) by investigating the follow-

ing optimization problem

min
u

max
F∈C

F�Au +
1
2
(Hu − f)�Λ−1(Hu − f) (7)

where f ∈ R
q is an observed vector of data, H ∈ R

q×n and Λ
is weighting symmetric definite-positive matrix in R

q×q. H
may simply be the identity matrix for image denoising; a con-

volution operator in restoration tasks; or a projection matrix

in reconstruction problems. Λ may be a matrix proportional

to the covariance matrix of the noise corrupting the data as

commonly used in weighted least squares approaches. In ad-

dition, the main contribution of this work is to consider more

general convex sets C than those given by (6). More pre-

cisely, the proposed optimization approach allows us to ad-

dress nonempty convex sets C which can be decomposed as

an intersection of closed convex subsets (Cr)1≤r≤s of R
m,

the projections onto which take closed forms. An example of

a set C of interest is

C = {F | (∀i ∈ {1, . . . , n}) ‖θi · F‖α ≤ gi} (8)

where ‖ · ‖α is the �α norm of R
m with α ∈ [1, +∞] and, for

every i ∈ {1, . . . , n}, θi ∈]0, +∞[m is a vector of multiplica-

tive constants. The form of C in (8) obviously includes (6) as

a particular case while offering much more flexibility. In this

paper, we are mostly interested in the case when θi is the i-th
line vector of |A�| and the i-th node weight gi is a decreasing

function of the image gradient. Given positive reals ε and β,

we suggest using

gi = exp(−β‖∇ui‖2) + ε, (9)

where u is some reference image (wich corresponds to some

rough estimate of u) and ‖∇ui‖2 is the Euclidean norm of its

discrete gradient ∇ui at node i. In addition to intensity infor-

mation, gi may be used to penalize changes in other relevant

image quantities such as color or texture. In the absence of

a contour, gi takes large values, so are the components of F
corresponding to nonzero values of θi, preventing large local

variations of u in the minimization (7). Conversely, in the

presence of a contour, gi 
 ε, and the components of F cor-

responding to nonzero values of θi are small, thus allowing

large local variations of u.

3. PROPOSED ALGORITHM

We show in this section that it is possible to efficiently solve

Problem (7) by proximal methods [6]. To do so, define the

support function σC of the closed convex constraint set C as

σC : R
m →] −∞, +∞] : a �→ sup

F∈C
F�a. (10)

This is a proper lower-semicontinuous convex function, the

conjuguate of which is the indicator function of C,

ıC : F �→
{

0 if F ∈ C,

+∞ otherwise.
(11)

This leads us to consider the following optimization problem:

min
u

σC(Au) +
1
2
(Hu − f)�Λ−1(Hu − f) +

η

2
‖Ku‖2

(12)

where η ∈]0, +∞[ and K ∈ R
n×n is the projection matrix

onto the nullspace of H . When H is injective (rankH = n),

the last term vanishes and (12) is strictly equivalent to (7).

The term u �→ η‖Ku‖2/2 thus aims at introducing an addi-

tional regularization when H is not injective, so that the ob-

jective function remains strictly convex. The following holds:
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Proposition 3.1 Problem (12) admits a unique solution û.
The dual Fenchel-Rockafellar form of the problem is

min
F

ϕ(F ) + ıC(F ), (13)

where ϕ : F �→ 1
2F�AΓA�F − F�AΓH�Λ−1f and

Γ = (H�Λ−1H + ηK)−1. The optimal solution to the
primal problem (12) is deduced from any optimal solution F̂
of the dual problem by the relation

û = Γ
(
H�Λ−1f − A�F̂

)
. (14)

Note that the dual forward-backward algorithm proposed in

[5] is not applicable here since the projection onto C is not

explicit. In order to numerically solve (13), recall that C =
∩s

r=1Cr, so that ıC can be decomposed into the sum of the

indicator functions of the convex subsets (Cr)1≤r≤s. Hence,

the problem is equivalent to solving

min
F

s∑
r=1

ıCr
(F ) + ϕ(F ). (15)

The above sum of (s + 1) convex functions can be efficiently

optimized by resorting to a parallel proximal algorithm [6].

As shown in Algorithm 1, this requires to compute in paral-

lel projections onto each set Cr with r ∈ {1, . . . , s}, which

are defined ∀F ∈ R
m as PCr

(F ) = arg minΦ∈Cr
‖Φ − F‖.

Note that the convergence of the sequence (Fk)k generated

by this algorithm to a solution F̂ of (13) is guaranteed, which

allows us to deduce a solution to (12) by using Relation (14).

Algorithm 1: Parallel proximal algorithm solving (15)

Fix γ > 0 and ν ∈]0, 2[. Set k = 0.

Choose y1,0 = y2,0 = . . . = ys+1,0 ∈ R
m and F0.

repeat
for r = 1, . . . , s + 1 do in parallel

πr,k =

8><
>:

PCr (yr,k) if r ≤ s

(γAΓA� + I)−1(γAΓH�Λ−1f + ys+1,k)

otherwise

zk = 2
s+1 (π1,k + · · · + πs+1,k) − Fk

for r = 1, . . . , s + 1 do in parallel
yr,k+1 = yr,k + ν(zk − pr,k)

Fk+1 = Fk + ν
2 (zk − Fk)

until convergence

For a 4-connected lattice, when using (8) where, for every

i ∈ {1, . . . , n}, θi is the i-th line of matrix |A�|, the projec-

tion onto C is not explicit. However, a decomposition of C
can be performed by setting s = 2 and, for every r ∈ {1, 2},

Cr = {F | (∀i ∈ Sr) ‖θi · F‖α ≤ gi}. The partition

(Sr)1≤r≤2 corresponds to two spatial disjoint sets each with

a checkered pattern. The projection onto Cr for α = 2 (resp.

α = 1 or α = ∞) reduces to simple projections onto hyper-

spheres (resp. hypercubes [10]). Note that the computation

of πs+1,k requires a matrix inversion which can be efficiently

performed by Fast Fourier Transform when H and Λ are (or

can be approximated by) circulant-block circulant matrices.

4. RESULTS

We now demonstrate the performance of DCTV with respect

to weighted TV. In our experiments, we compare solutions to

the TV problem (3) given by the state-of-the-art augmented

Lagrangian algorithm (a.k.a. split Bregman) of [11], to solu-

tions optimizing DCTV with our parallel proximal algorithm.

(a) Original image (b) Noisy SNR=10.1dB

(c) weighted TV SNR=13.4dB (d) DCTV SNR=13.8dB

Fig. 1. Denoising ‘Barbara’ image corrupted with Gaussian

noise of variance σ2 = 15

We used four standard test images that we corrupted with

synthetic Gaussian noise of variance σ2. The weights have

been set according to (9) with β = 0.04 for DCTV. The value

of the image fidelity parameter λ was set according to an em-

pirical rule depending of the variance of the noise. The

value of ε was set to λ, and the stopping criteria for both algo-

rithms is
||uk−uk−1||

||uk|| < 5.10−3. Signal to Noise Ratio (SNR)

is used as performance measure in our quantitative evalua-

tion. Table 1 reports SNR values for DCTV and weighted

TV results obtained on each image corrupted with different

values of noise variance. Examples of results are shown in

Figure 1. Those experiments show that DCTV leads to im-

proved results when the variance of the noise is lower than 50.

Visually, DCTV are sharper and feature better contrast than

the weighted TV results. This also explains the slight degra-

dation of performance in presence of heavy noise (variances

50-100). Geometrically, the improvement of DCTV over the

weighted TV can be interpreted in the following way: the
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σ2 5 10 15 20 25 50 100

SNR values obtained by optimizing weighted TV with Split Bregman

house 22.7 18.9 17.1 15.8 15.1 11.8 7.8

man 23.3 19.6 17.8 16.5 15.5 12.3 8.3

lena 22.7 18.9 17.2 16.2 15.4 12.5 8.3

barbara 20.3 16.0 13.4 11.7 10.5 8.5 6.2

mean 22.3 18.4 16.4 15.1 14.1 11.3 7.6
SNR values obtained by optimizing DCTV

house 22.7 19.3 17.4 15.8 15.2 11.8 7.4

man 23.7 20.3 18.2 16.7 15.6 12.1 8.1

lena 23.2 19.7 17.7 16.3 15.5 12.4 8.0

barbara 20.3 16.2 13.8 12.2 10.9 8.4 6.0

mean 22.5 18.9 16.8 15.3 14.3 11.2 7.4

Table 1. Quantitative denoising experiment on standard im-

ages corrupted with additive Gaussian noise of variance σ2.

convex we use for projection adapts itself to the local neigh-

borhood, and this is reducing blur as a result.

(a) Original image (b) Noisy image SNR=7.2dB

(c) Blurry image SNR=11.6dB (d) DCTV SNR=16.3dB

Fig. 2. Image fusion from a an image corrupted with Gaussian

noise of variance σ2 = 20 (b) and a blurry image (c).

In terms of computation time, DCTV is competitive with the

most efficient weighted TV algorithm. Denoising the 512 ×
512 Lena image corrupted with Gaussian noise (σ2 = 15) re-

quires 0.38 seconds for split Bregman, versus 0.7 seconds for

PPXA to converge on an Intel Xeon 2.5GHz 8-core system.

Figures 2 and 3 show the ability of DCTV to easily generalize

to applications beyond denoising.

5. CONCLUSION
In this paper we have extended existing TV models by gener-

alizing the constraint on the projection variable of the dual TV

formulation. This new approach yields improved results com-

pared with the weighted TV approach in image restoration

(a) Original image (b) Corrupt SNR=12.3dB (c) DCTV SNR=17.2dB

Fig. 3. Denoising and deblurring an MRI image corrupted

with synthetic uniform 7×7 blur and Gaussian noise (σ2 = 10)

applications. More generally, the proposed algorithm makes

it possible to efficiently solve convex minimization problems

involving the support function of an intersection of convex

sets as a penalty term. It is also worth emphasizing that this

approach can be applied on graph data structures such as those

frequently employed in 3D modelling. Future work will fur-

ther improve our results by using image patches in the weight

computation before applying DCTV, and applications on em-

bedded manifolds such as triangulated surfaces.
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