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Mass loss of Larsen B tributary glaciers (Antarctic Peninsula) unabated since 2002

Ice mass loss continues at a high rate among the large glacier tributaries of the Larsen B Ice Shelf following its disintegration in 2002. We evaluate recent mass loss by mapping elevation changes between 2006 and 2010/11 using differencing of digital elevation models (DEMs). The measurement accuracy of these elevation changes is confirmed by a 'null test', subtracting DEMs acquired within a few weeks. The overall 2006-2010/11 mass loss rate (9.0±2.1 Gt a -1 ) is similar to the 2001/02-2006 rate (8.8±1.6 Gt a -1 ), derived using DEM differencing and laser altimetry. This unchanged overall loss masks a varying pattern of thinning and ice loss for individual glacier basins. On Crane Glacier, the thinning pulse, initially greatest near the calving front, is now broadening and migrating upstream. The largest losses are now observed for the Hektoria/Green glacier basin, having increased by 33% since 2006. Our method has enabled us to resolve large residual uncertainties in the Larsen B sector and confirm its state of ongoing rapid mass loss.

Introduction

It is now well-demonstrated that the larger, deeper tributary glaciers of the Larsen A and B ice shelves have dramatically accelerated, retreated and thinned in response to the disintegration events of 1995[START_REF] Rott | Northern Larsen Ice Shelf, Antarctica: further retreat after collapse[END_REF][START_REF] De Angelis | Glacier Surge After Ice Shelf Collapse[END_REF][START_REF] Pritchard | Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets[END_REF][START_REF] Rignot | Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf[END_REF][START_REF] Rott | Northern Larsen Ice Shelf, Antarctica: further retreat after collapse[END_REF][START_REF] Rott | The imbalance of glaciers after disintegration of Larsen B ice shelf, Antarctic Peninsula[END_REF][START_REF] Scambos | Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica[END_REF][START_REF] Shuman | 2001-2009 elevation and mass losses in the Larsen A and B embayments, Antarctic Peninsula[END_REF]. Although the collapse of a floating ice shelf has no direct impact on sea level, the increased ice discharge from grounded tributary glaciers does contribute significant mass to the ocean. However, there are still large and unexplained discrepancies (range: 4-22 Gt a -1 ) between the ice losses inferred for the larger tributary glaciers that fed the Larsen B ice shelf (hereafter referred to as the northern Larsen B tributary glaciers, NLBTG, comprising the Hektoria-Green-Evans glacier system, Jorum and Punchbowl glaciers, Crane Glacier, and Mapple, Melville, and Pequod glaciers; see Figure 1) using different assessment methods [START_REF] Rignot | Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf[END_REF][START_REF] Rott | The imbalance of glaciers after disintegration of Larsen B ice shelf, Antarctic Peninsula[END_REF][START_REF] Shuman | 2001-2009 elevation and mass losses in the Larsen A and B embayments, Antarctic Peninsula[END_REF].

Nearly a decade after the ice shelf collapsed, reconciling estimates of the NLBTG mass imbalance contribution is essential.

Three methods are presently available to measure the changes in the mass of an ice sheet, or a portion of it: space gravimetry; the mass budget method (MBM); and the geodetic method (GM).

Space gravimetry from the Gravity Recovery and Climate Experiment (GRACE) is currently not able to resolve mass losses occurring at a length scale of a few tens of kilometers, the typical size of the NLBTG basins, and thus has been applied broadly to the Antarctic Peninsula north of 70°S (Graham Land) where a steady decrease in mass is observed since 2002 (-32±6 Gt a -1 [START_REF] Ivins | On-land ice loss and glacial isostatic adjustment at the Drake Passage: 2003-2009[END_REF]; -28.6 Gt a -1 [START_REF] Chen | Accelerated Antarctic ice loss from satellite gravity measurements[END_REF]). The MBM consists of comparing the input (net accumulation) to the output (ice flux through a cross-sectional gate at, or close to, the grounding line). One determination using MBM for all basins between Hektoria and Crane glaciers (Figure 1), indicated mass losses of 21.9±6.6 Gt a -1 in 2003 [START_REF] Rignot | Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf[END_REF] (30% uncertainty from [START_REF] Rignot | Changes in ice dynamics and mass balance of the Antarctic ice sheet[END_REF]). Recently, the same technique was applied to the same glaciers by another group using velocity fields measured in 2008/2009 in comparison with velocities from 1995-1999 [START_REF] Rott | The imbalance of glaciers after disintegration of Larsen B ice shelf, Antarctic Peninsula[END_REF]. Despite small changes in surface velocities since 2003 overall, they reported mass losses of 4.1±1.6 Gt a -1 , a factor of 5 lower than the previous MBM study.

A geodetic estimate of the regional mass loss can be obtained by the differencing of digital elevation models (DEMs) acquired a few years apart. Differencing of DEMs acquired prior to the Larsen B ice shelf disintegration in November 2001 (extended to the upper part of Crane Glacier with a DEM acquired in November 2002) with one acquired in November 2006, yields a distinctly different estimate of the NLBTG mass loss, 8.8±1.6 Gt a -1 [START_REF] Shuman | 2001-2009 elevation and mass losses in the Larsen A and B embayments, Antarctic Peninsula[END_REF].

The causes of the differences between the three published NLBTG loss estimates are not understood yet. Likely factors are (i) different time periods surveyed combined with non-steady mass loss response, (ii) uncertainties in net accumulation for the MBM, (iii) unknown bed topography close to the grounding line for most glaciers, (iv) unaccounted surface drawdown at MBM flux gates, (v) errors in the DEMs for the GM; and (vi) grounding line migration for the GM and the MBM. Both the MBM estimates discussed above and our GM study use 900 kg/m 3 as density for converting volume to mass. Using this density (instead of that for pure ice, 917 kg/m 3 ) in the Larsen B sector is justified by the fact that the elevation changes are nearly entirely dynamically-driven, and that the entire column of ice (pure ice, firn, and snow) is being lost by calving at the ice fronts. By our estimate about 80% of the losses occur on fast flowing glacier trunks below 500 m a.s.l.

In this study, we use new 2010 and 2011 satellite DEMs to infer the mass loss of NLBTG between 2006 and 2010/11. These updated mass losses are then compared to 2001/02-2006 losses to determine how NLBTG losses have evolved over time since the break up and, thus, to partly address issue (i). In addition, satellite DEMs acquired within a few weeks in late 2006 are compared to better constrain the uncertainties associated with the GM (issue v). A basin-by-basin comparison is also performed to identify the glaciers for which the discrepancies between MBM and GM estimates are largest and help to target future data acquisition to reconcile estimates of the NLBTG mass imbalance (issue iii). Our elevation changes time series from DEMs (augmented with airborne and satellite laser altimetry) helps to address issue (iv). Grounding line migration since 2002 has probably been rapid, with the ice fronts quickly retreating past its 1990s position [START_REF] Shuman | 2001-2009 elevation and mass losses in the Larsen A and B embayments, Antarctic Peninsula[END_REF]. Satellite imagery suggests the present ice fronts are partially floating, complicating flux gate assessments [START_REF] Zgur | Geophysical survey of the thick, expanded sedimentary fill of the new-born Crane fjord (former Larsen B Ice Shelf, Antarctica)[END_REF][START_REF] Rott | The imbalance of glaciers after disintegration of Larsen B ice shelf, Antarctic Peninsula[END_REF].

Data Sets and Methods

Our analysis is based on seven DEMs of the NLBTG derived from ASTER [START_REF] Fujisada | ASTER DEM performance[END_REF] and SPOT5 [START_REF] Korona | SPIRIT. SPOT 5 stereoscopic survey of Polar Ice: Reference Images and Topographies during the fourth International Polar Year (2007-2009[END_REF] optical stereo-imagery (Table S1, Figure S1 andS2). The processing steps followed to horizontally/vertically adjust the DEMs have been described in detail previously [e.g., [START_REF] Shuman | 2001-2009 elevation and mass losses in the Larsen A and B embayments, Antarctic Peninsula[END_REF] and are briefly summarized here. Cloudy and unreliable pixels are masked. All DEMs are first horizontally co-registered to the reference DEM (the 25 November 2006 SPOT5 DEM) by minimizing the standard deviation of the elevation differences.

Then, all DEMs are vertically adjusted to the 25 November 2006 DEM using the (assumed) stable regions outside of the fast changing outlet glaciers. Only a constant vertical offset is corrected for each DEM around each major basin (the average of the vertical bias within each basin, typically less than 5 m), neglecting any spatial variations in the vertical bias within each basin.

Null tests: accuracy of the mass loss from sequential DEMs

We analyze three DEMs acquired within a short time span in late 2006 (Table S1) to assess the accuracy of the ASTER/SPOT5 and SPOT5/SPOT5 basin-wide elevation changes. The assumption of insignificant elevation change is valid between the SPOT5 and ASTER DEMs as they were acquired only 16 minutes apart on 25 November 2006. This assumption is not as appropriate between the 25 November 2006 and the 31 December 2006 SPOT5 DEMs, with 36 days elapsed.

The rates of elevation changes measured during 2001/02-2006 [Shuman et al., 2011, their Table 2] are used to estimate 36-day elevation changes within each major basin. Based on this, the maximum change is -0.7 m for Evans Glacier and the smallest is for Jorum Glacier at -0.2 m.

Basin-wide mean DEM differences (Table 1) provide null test errors for the GM applied to the NLBTG.

For individual drainage basins, the errors are larger for ASTER/SPOT5 than for SPOT5/SPOT5. This is expected given the higher image resolution and the better orbit knowledge for the SPOT5 sensor so that SPOT5 DEMs are about a factor of two more precise than ASTER DEMs [Berthier et al., 2010, their Table S5]. The basin-wide elevation difference in the ASTER/SPOT5 comparison reaches 5.0 m for Crane Glacier. This result confirms the ±5 m elevation error used previously [START_REF] Shuman | 2001-2009 elevation and mass losses in the Larsen A and B embayments, Antarctic Peninsula[END_REF]. In contrast, the basin-wide elevation difference is always less than 2 m for SPOT5/SPOT5 differences. When the mean elevation difference is computed for all NLBTG basins, errors are 2.4 m for ASTER/SPOT5 and 1.0 m for SPOT5/SPOT5.

In the following assessments of volume and mass change, a ±2 m (respectively, ±5 m) uncertainty is used when two SPOT5 (respectively, ASTER and SPOT5) DEMs are subtracted.

Our null tests indicate that these uncertainties are reasonable at the individual basin scale, and are conservative for elevation differences averaged over all NLBTG. 2).

Elevation changes and mass loss in

Between the two epochs, the maximum mean annual thinning rate considerably diminished for Crane Glacier from over 35 m a -1 to 18 m a -1 . We note that the peak elevation loss during 2001/02-2006 was likely influenced by a sub-glacial lake drainage event that occurred between September 2004 and September 2005 in the lower Crane Glacier [START_REF] Scambos | The triggering of sub-glacial lake drainage during the rapid glacier drawdown: Crane Glacier, Antarctic Peninsula[END_REF], but a region of >20 m a -1 loss extended over a far larger area than the inferred lake extent in the lower glacier trunk.

During 2006-2010/11, thinning has propagated further upstream, and the 10 m a -1 thinning rate contour has moved from 500 m a.s.l. to 700 m a.s.l between the two assessments. An upstream migration of thinning is also observed for Hektoria and Green glaciers with the upper extent of the 10 m a -1 thinning contour moving from 350 to 500 m a.s.l. between the two epochs. For the latter two glaciers, the peak thinning rates are higher during 2006-2010/11 (35 m a -1 ) than during 2001/02-2006 (23 m a -1 ). For the main trunks of Hektoria, Green and Crane glaciers, the horizontal speed of inland propagation of the 10 m a -1 thinning contour is similar, at about 2 km a -1 .

Total mass losses from Hektoria and Green glaciers have increased by one third since the earlier period (from 4.2 to 5.6 Gt a -1 ). Their ice front positions have also varied considerably since 2002, with both retreats and advances [START_REF] Shuman | 2001-2009 elevation and mass losses in the Larsen A and B embayments, Antarctic Peninsula[END_REF]. This makes these glaciers the main contributors to the regional losses (Table 2), ahead of Crane Glacier where net mass loss and ice front position (since ~2006) have remained nearly unchanged.

South of the major NLBTG glaciers, elevation changes of Mapple, Melville and Pequod glaciers are small despite the fact that they have been less constrained since the Larsen B ice shelf disintegration. In our earlier study, we noted that these glaciers have shallower seabed bathymetric troughs in front of them, and likely had less of their longitudinal resistive stresses derived from the former ice shelf [START_REF] Shuman | 2001-2009 elevation and mass losses in the Larsen A and B embayments, Antarctic Peninsula[END_REF][START_REF] Zgur | Geophysical survey of the thick, expanded sedimentary fill of the new-born Crane fjord (former Larsen B Ice Shelf, Antarctica)[END_REF].

Discussion

The null test in Section 3 demonstrates that for all NLBTG (~3000 km²), area-average elevation changes can be measured with an accuracy of ±1 m (using two SPOT5 DEMs) and ±2.5 m (using one ASTER and one SPOT5 DEM). These null test errors can be compared to the standard errors, often applied in differential DEMs studies [e.g., [START_REF] Nuth | Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change[END_REF]. The standard errors are computed from the standard deviation of the DEMs (typically ±10 m for SPOT5 and ±15 m for ASTER) after accounting for the number of independent samples. For all NLBTG basins, and assuming autocorrelation lengths of 200 m [START_REF] Howat | Rates of southeast Greenland ice volume loss from combined ICESat and ASTER observations[END_REF] / 500 m [START_REF] Berthier | Contribution of Alaskan glaciers to sea-level rise derived from satellite imagery[END_REF] / 1000 m [START_REF] Nuth | Glacier geometry and elevation changes on Svalbard (1936-90): a baseline dataset[END_REF], standard error of, respectively ±0.7 m / ±1 m / ±1.5 m are derived for the ASTER/SPOT5 comparison. Those standard errors are all lower than our null test error (±2.5 m), probably due to spatially-varying vertical biases in the DEMs [START_REF] Nuth | Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change[END_REF] that cannot be accounted for by a single shift measured on (assumed) stable regions. Modeling these complex vertical biases in the DEMs using ICESat laser altimetry data was attempted. This is not discussed here because ICESat data are too scarce in our study region to further refine the error bars calculated in the null test. Such a strategy of DEM adjustment using precise external data would be certainly useful in glaciated areas where stable ground is effectively absent, where the density of altimetry data is higher (e.g., closer to 86° latitude for ICESat) and where the altimetry surveys are performed close-in-time to the DEMs.

Geodetic mass losses upstream of the pre-collapse grounding line [START_REF] Rack | Pattern of retreat and disintegration of the Larsen B ice shelf, Antarctic Peninsula[END_REF] 2). This finding is in agreement with limited changes in velocities for most glaciers between [START_REF] De Angelis | Glacier Surge After Ice Shelf Collapse[END_REF]and 2008/2009[START_REF] Rott | The imbalance of glaciers after disintegration of Larsen B ice shelf, Antarctic Peninsula[END_REF], despite some shorter term flow variability for Crane [START_REF] Rignot | Changes in ice dynamics and mass balance of the Antarctic ice sheet[END_REF][START_REF] Scambos | The triggering of sub-glacial lake drainage during the rapid glacier drawdown: Crane Glacier, Antarctic Peninsula[END_REF] and Hektoria [START_REF] Rignot | Changes in ice dynamics and mass balance of the Antarctic ice sheet[END_REF][START_REF] Rott | The imbalance of glaciers after disintegration of Larsen B ice shelf, Antarctic Peninsula[END_REF] glaciers. The consistency of the mass loss through time between 2002 and 2010/11 is also independently supported by the regional GRACE time series [START_REF] Ivins | On-land ice loss and glacial isostatic adjustment at the Drake Passage: 2003-2009[END_REF] and by a continuous elastic uplift of the solid earth since 2002 at the Palmer GPS station, ~100 km west of NLBTG [START_REF] Thomas | Widespread low rates of Antarctic glacial isostatic adjustment revealed by GPS observations[END_REF]. Our analyses reveal an evolving pattern of elevation changes, with a wave of glacier thinning that has broadened and migrated rapidly upstream over time.

Our GM mass loss estimates for NLBTG lie between the losses inferred by the two earlier studies using the MBM, suggesting that losses are overestimated by 12.9±6.9 Gt a -1 in Rignot et al.

[2004] and underestimated by 4.7±2.6 Gt a -1 in [START_REF] Rott | The imbalance of glaciers after disintegration of Larsen B ice shelf, Antarctic Peninsula[END_REF]. Quantifying and understanding these large discrepancies is important because these methods (MBM and GM) are employed to determine the mass balance of glaciers in the Peninsula, a region which alone contribute about one fourth of the continent-wide mass imbalance [e.g., [START_REF] Rignot | Recent Antarctic ice mass loss from radar interferometry and regional climate modelling[END_REF]. It is also crucial to provide realistic scenarios of mass losses following ice shelf collapse to test the ability of ice flow models to simulate them. We note that the GM method requires far fewer assumptions than the MBM in the Larsen B region, with well-constrained differential DEM errors (section 3). Both bed topography and surface mass balance are poorly known for the NLBTG. For Crane Glacier only, bed topography at the present grounding line can be inferred by extrapolating upstream bathymetry data collected in 2006 [START_REF] Rott | The imbalance of glaciers after disintegration of Larsen B ice shelf, Antarctic Peninsula[END_REF][START_REF] Zgur | Geophysical survey of the thick, expanded sedimentary fill of the new-born Crane fjord (former Larsen B Ice Shelf, Antarctica)[END_REF]. The authors of the preceding MBMbased studies had, by necessity, to assume the glaciers to be in equilibrium before the Larsen B ice shelf collapse and computed the pre-collapse ice discharge from a model estimate of net accumulation over the catchment basins. However, recent assessments of surface mass balance (net accumulation) for Antarctica [START_REF] Lenaerts | A new, high-resolution surface mass balance map of Antarctica (1979-2010) based on regional atmospheric climate modeling[END_REF], and a review of some field measurements for the region reported in [START_REF] Rott | The imbalance of glaciers after disintegration of Larsen B ice shelf, Antarctic Peninsula[END_REF], as well as field evidence from ongoing monitoring by one of us (TAS) indicate that the effective net accumulation (~1900 kg m -2 a -1 ) used by [START_REF] Rignot | Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf[END_REF] was too large. A strong accumulation gradient exists across the NLBTG area, with progressively decreasing snow input east of the Antarctic Peninsula divide. Measured accumulation rates as part of an ongoing study (LARISSA: Larsen Ice Shelf System Antarctica) reach 2000 to 3000 kg m -2 a -1 at the divide [Zagorodnov et al., in press], but are < 300 kg m -2 a -1 near 450 m a.s.l. on the nearby Flask and Leppard glacier outlets. Applying the basin-wide mean net accumulation value indicated by [START_REF] Rott | The imbalance of glaciers after disintegration of Larsen B ice shelf, Antarctic Peninsula[END_REF], 1087 kg m a -1 , would adjust the mass imbalance reported by [START_REF] Rignot | Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf[END_REF] to 57% of the value reported, or ~12.2 Gt a -1 for the NLBTG region (if the accumulation correction ratio holds for the entire area).

We partially reconcile our net imbalance estimate on Crane Glacier with the value reported by [START_REF] Rott | The imbalance of glaciers after disintegration of Larsen B ice shelf, Antarctic Peninsula[END_REF] by considering the velocity variations observed over the past decade [Scambos et al., 2011]. A sequence of visible and near-infrared satellite images shows more than one acceleration period, and in particular ice flow speed in late 2006 was 1.3 times the level in late 2008 (the time of the Rott et al. measurement). Further slowing occurred on Crane Glacier between 2008 and 2009 [START_REF] Rott | The imbalance of glaciers after disintegration of Larsen B ice shelf, Antarctic Peninsula[END_REF][START_REF] Scambos | The triggering of sub-glacial lake drainage during the rapid glacier drawdown: Crane Glacier, Antarctic Peninsula[END_REF]. Thus, our geodetic method, which integrates over a 5-year period, may be expected to show a higher value than a shorter-term assessment during a single period of slower flow speed.

During the two epochs studied here, Hektoria and Green glaciers have been the major contributors to the regional mass loss (over 60% of total loss during 2006-2010/11). This is also where the largest discrepancies in the MBM estimates are observed in our study area. The data most needed to reconcile estimates of the mass loss in the Larsen B embayment are bed topography profiles from ice-penetrating radars for the Hektoria and Green glaciers.

Conclusion

At 8.9 Gt a -1 , our 2002-2011 NLBTG mass loss estimate represents about one third of the overall loss observed with GRACE in the Graham Land of the Antarctic Peninsula [START_REF] Chen | Accelerated Antarctic ice loss from satellite gravity measurements[END_REF][START_REF] Ivins | On-land ice loss and glacial isostatic adjustment at the Drake Passage: 2003-2009[END_REF]]. An implication is that rapid ice loss and surface lowering are occurring elsewhere in the northern Antarctic Peninsula as indicated by other studies [START_REF] Glasser | From ice-shelf tributary to tidewater glacier: continued rapid recession, acceleration and thinning of Rohss Glacier following the 1995 collapse of the Prince Gustav Ice Shelf, Antarctic Peninsula[END_REF][START_REF] Pritchard | Widespread acceleration of tidewater glaciers on the Antarctic Peninsula[END_REF][START_REF] Pritchard | Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets[END_REF]. Our results suggest that differential DEM analysis would provide similar insights on the mass balance for all of Graham Land and similar glaciated regions with mostly unknown ice thickness and spatially varying surface mass balance.

We have re-assessed the glaciers of the Larsen B embayment where variations in published mass balance assessments are largest (up to 300%) and suggest that poorly constrained bedrock topography and net accumulation are the reasons for this range, primarily affecting the MBM method. Our differential DEM analysis shows continuing steady net losses from the Larsen B embayment glaciers overall but with accelerating losses for the northern Hektoria/Green basin. Table 1. Basin-wide mean elevation differences (m) between DEMs acquired the same day (25 Nov. 2006, ASTER/SPOT5) and 36-days apart (SPOT5 25 Nov./SPOT5 31 Dec.). In bold, the maximum absolute error for each method. The last row shows the mean differences for the entire study region. MMP stands for the Mapple, Melville, and Pequod glaciers. 
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  2006-2010/11 Recent elevation changes for NLBTG are measured by subtracting two SPOT5 DEMs (31 December 2006 and 14 March 2011) for a 2633 km² area in the west and a SPOT5 (25 November 2006) DEM and an ASTER (15 December 2010) DEM for a 906 km² area in the east (Figure 1). The rates of elevation changes during 2006-2010/11 are compared to those reported in Shuman et al. [2011] during 2001/02-2006 (Figures 2 and 3, Table

  are virtually unchanged since 2002 for the grounded NLBTG (8.8±1.6 Gt a -1 for 2001/02-2006 and 9.0±2.1 Gt a -1 for 2006-2010/11, Table
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 1 Figures

  Figure 1. Study area and the main drainage basins of the northern Larsen B embayment. All glaciers studied here flowed into the Larsen B ice shelf before its collapse in 2002. Southern tributaries (e.g., Flask and Leppard glaciers) still constrained by a remnant of the Larsen B ice shelf are not considered. The area shaded in light blue is where elevation changes are measured during 2006-2011; the area shaded in yellow has difference measurements during 2006-2010. Background: Mosaic of 25 November 2006 and 31 December 2006 SPOT5 images (© CNES 2006, Spot Image). Inset: location of the study area in the north of the Antarctic Peninsula.

Figure 2 .

 2 Figure 2. Rate of ice elevation changes (m a -1 ) between 2001/02-2006 (left) and 2006-2010/11(right). The 10 m a -1 thinning contour is shown with a gray dotted line, the 20 m a -1 with a dark dotted line.

Figure 3 .

 3 Figure 3. Rate of elevation change averaged for 50-m altitude bands for Crane (a) and Hektoria/Green (b) during 2001/02-2006 (filled symbols) and 2006-2010/11 (unfilled symbols). For clarity, errors bars are only shown in the legends. Insets are 3D surface views showing the glaciers in 25 November 2006 (Copyright CNES 2006, Spot Image).
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