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Abstract

This work deals with a scalar nonlinear neutral delay differential equation
issued from the study of wave propagation. A critical value of the coefficients
is considered, where only few results are known. The difficulty follows from
the fact that the spectrum of the linear operator is asymptotically closed
to the imaginary axis. An analysis based on the energy method provides
new results about the asymptotic stability of the constant and periodic solu-
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of periodic solutions is discussed, involving a Diophantine condition on the
period.

Keywords: neutral delay differential equations, energy method, stability
diagram, periodic solutions, small divisors, no exponential stability
2000 MSC: 34K03, 34K40

∗Corresponding author
Email addresses: junca@unice.fr (S. Junca), lombard@lma.cnrs-mrs.fr (B.

Lombard)

Preprint submitted to Journal of Differential Equations October 22, 2012



1. Introduction

In this work, we consider the following nonlinear neutral delay differential
equation (NDDE) and we look for the solution y ∈ H1

loc((−1, +∞),R),

{

y
′

(t) + c y
′

(t− 1) + f(y(t)) + g(y(t− 1)) = s(t), t > 0,

y(t) = y0(t) ∈ H1((−1, 0),R), −1 < t < 0,
(1)

under the following assumptions:







































c = ±1, (2a)

f ∈ C1(R, R), f
′

> 0, f(0) = 0, (2b)

|g| ≤ γ |f |, with 0 ≤ γ < 1, (2c)

s(t+ T ) = s(t), T =
2 π

ω
> 0. (2d)

In some cases, additional assumptions will be required:







|g′| ≤ γ |f ′|, with 0 ≤ γ < 1, (3a)

lim
y→±∞

f(y) = ±∞. (3b)

Equation (1) is typically issued from hyperbolic partial differential equations
with nonlinear boundary conditions [11, 7]. A closely related system of neu-
tral equations has been derived, for instance, in the case of elastic wave
propagation across two nonlinear cracks [14]: y is then the dilatation of the
crack, the shift 1 is the normalized travel time between the cracks, f and g
denote the nonlinear contact law, and s is the T -periodic excitation.

A natural issue when dealing with (1) is to prove existence, uniqueness
and stability of periodic solutions. Articles and reference books [18, 6, 4,
19, 10, 8, 16] usually address this question by considering a linear version of
(1) with |c| < 1. The critical value |c| = 1 raises technical difficulties: the
spectrum of the linearized operator is asymptotically closed to the left of the
imaginary axis, hence exponential stability is lost and small divisors may be
encountered.

An old contribution to the case |c| = 1 is done in [9]. In the linear case,
algebraic rate of convergence is proven. In the nonlinear case with c = −1,
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algebraic convergence is also proven in this reference, but assuming small C1

data. In both cases, the main tools involved are asymptotic expansions of
characteristic roots, Laplace transforms and function series. Another recent
contribution for linear degenerate retarded differential systems is given in
[21].

The aim of our article is to push forwards the analysis of (1) in this
critical case, especially to remove (when possible) the assumption of small
solutions, and also to consider less regular initial data. A strategy based on
energy analysis is followed. In the linear case, a stability analysis shows that
the energy method is optimal. When the stability condition is violated, the
existence of an essential instability is proven [11, 17].

The paper is organized as follows. Section 2 treats the full nonlinear
NDDE. The stability of the zero solution in the homogeneous case is proven.
Generalization to the non-homogeneous case with constant forcing is done.
Non-constant periodic forcing is investigated in the case of small solutions.
In section 3, new results are given in the linear case, concerning the stability
diagram and the asymptotic rate of convergence. In section 4, the existence of
periodic solutions is addressed. For particular values of the period, existence
is proven whatever the amplitude of the source. More generally, existence is
obtained under a Diophantine condition. This latter condition is satisfied if
the period of the forcing is rational: T = p / q; if p is odd, we also exhibit a
smoothing effect. Lastly, conclusion is drawn in section 5, and some future
lines of research are proposed.

2. Nonlinear NDDE

2.1. Stability in the homogeneous case

Let us introduce basic functions and inequalities useful to state a main
result:

F (y) =

∫ y

0

f(z) dz, G(y) =

∫ y

0

g(z) dz, H(y) = 2 (F (y)− cG(y)) , (4)

with f , g, γ and c defined in (1)-(2).

Lemma 1. For all y, F and H satisfy the inequality

0 ≤ 2 (1− γ)F (y) ≤ H(y) ≤ 2 (1 + γ)F (y). (5)

3



Proof. Let assume y > 0. From (2) and (4), it follows

|G(y)| ≤
∫ y

0

|g(z)| dz ≤
∫ y

0

γ |f(z)| dz =

∫ y

0

γ f(z) dz = γ F (y).

Similarly, if y < z < 0 then |f(z)| = −f(z) and

|G(y)| ≤
∫ 0

y

|g(z)| dz ≤
∫ 0

y

γ |f(z)| dz = −
∫ y

0

(−γ f(z)) dz = γ F (y).

Consequently, one gets 0 ≤ |G| ≤ γ F for all y. Using (4) and c = ±1
concludes the proof.

Theorem 1 (Asymptotic stability of the zero solution). Let y be the solution
of (1) without source term: s = 0. For all t > 0, one defines

E(t) =

∫ t

t−1

(

y
′

(τ) + f(y(τ))
)2

dτ ≥ 0. (6)

Then one obtains

sup
t>0

E(t) + sup
t>0

F (y(t)) +

∫ +∞

0

f(y(t))2 dt < +∞, (7)

where F is defined in (4). It follows the asymptotic stability of the origin:

lim
t→+∞

y(t) = 0. (8)

The stability is proven by an energy method. Notice that the inequality
(7) allows convergence towards zero with an algebraic rate. Indeed there is
not exponential stability of the equilibrium y = 0, as we will see for instance
in the linear case in section 3.

Proof. When s = 0, the NDDE (1) writes

y
′

(t) + f(y(t)) = −c
(

y
′

(t− 1) + c g(y(t− 1))
)

, (9)

where c = ±1. Taking the square yields

(

y
′

(t) + f(y(t))
)2

=
(

y
′

(t− 1) + c g(y(t− 1))
)2

. (10)
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Based on (4), the right-hand side of (10) at t− 1 is rewritten

(

y
′

+ c g
)2

=
((

y
′

+ f
)

− (f − c g)
)2

,

=
(

y
′

+ f
)2

+ (f − c g)2 − 2
(

y
′

+ f
)

(f − c g) ,

=
(

y
′

+ f
)2

+ (f − c g)2 − 2 y
′

(f − c g)− 2 f (f − c g) ,

=
(

y
′

+ f
)2

+ (f − c g)2 − d

dt
H(y)− 2 f (f − c g) ,

=
(

y
′

+ f
)2

+ (f − c g) (f − c g − 2 f)− d

dt
H(y),

=
(

y
′

+ f
)2

−
(

f 2 − g2
)

− d

dt
H(y).

(11)
The latter equation is injected into (10), which yields

(

y
′

(t) + f(y(t))
)2

+
(

f 2(y(t− 1))− g2(y(t− 1))
)2

+
d

dt
H(y(t− 1)) =

(

y
′

(t− 1) + f(y(t− 1))
)2

.
(12)

Integrating (12) over [0, t], we get for all t > 1

∫ t

0

(

y
′

(τ) + f(y(τ))
)2

dτ +

∫ t−1

−1

(

f 2(y(τ))− g2(y(τ))
)

dτ

+H(y(t− 1))−H(y(−1)) =

∫ t−1

−1

(

y
′

(τ) + f(y(τ))
)2

dτ.

(13)

Equation (13) is simplified into the energy equality

∫ t

t−1

(

y
′

(τ) + f(y(τ))
)2

dτ +

∫ t−1

0

(

f 2(y(τ))− g2(y(τ))
)

dτ +H(y(t− 1))

=

∫ 0

−1

(

y
′

0(τ) + f(y0(τ))
)2

dτ +H(y0(−1))−
∫ 0

−1

(

f 2(y0(τ))− g2(y0(τ))
)

dτ.

(14)
From lemma 1 and equation (14), one deduces the energy inequality for all
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τ > 1

∫ t

t−1

(

y
′

(τ) + f(y(τ))
)2

dτ + (1− γ2)

∫ t−1

0

f 2(y(τ)) dτ + 2 (1− γ)F (y(t− 1))

≤
∫ 0

−1

(

y
′

0(τ) + f(y0(τ))
)2

dτ + 2 (1 + γ)F (y0(−1))− (1− γ2)

∫ 0

−1

f 2(y0(τ)) dτ

= C0.
(15)

For all t > 1, it follows three inequalities:

F (y(t)) ≤ C0

2 (1− γ)
,

∫ +∞

0

f 2(y(t)) dt ≤ C0

1− γ2 , E(t) ≤ C0. (16)

The first inequality in (16) implies y ∈ L∞(0, +∞). On any bounded set K,
there exists d > 0 such that d |y| ≤ |f(y)| ≤ |y| / d onK. Using the second in-
equality in (16) and the boundedness of y, one obtains y ∈ L2(0,+∞). Lastly,
the third inequality ensures that E is bounded; since f(y) ∈ L2(0, +∞), one
deduces that y

′

is uniformly bounded in L2(T−1, T ), and hence y is bounded
in the Hölder space C0,1/2(0, +∞). It proves that y tends towards 0.

Four remarks are raised by theorem 1:

• if c = 0 and γ = 0, then the NDDE is a simple ODE. Our computation
provides for all T > 0: 2F (y(T )) +

∫ T

0
(y′(t))2 + f 2(y(t))dt = 2F (y(0))

which implies the global stability of y = 0. Moreover the stability of
y = 0 is exponential since f ′(0) > 0;

• in the usual case |c| < 1, then a stronger energy estimate can be ob-
tained by our proof: y ∈ H1(0, +∞), and the stability is exponential;

• in the present case |c| = 1, then y ∈ L2 ∩ L∞ and y is uniformly
bounded in H1(τ − 1, τ) for all τ . As we will see in section 3 for the
linear critical NDDE, the stability is not exponential;

• if |c| = 1 and γ = 1, then the stability is obtained, but the asymptotic
stability can be lost.
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2.2. Stability with constant source term

In this subsection, we consider a non-homogeneous NDDE (1) with con-
stant source term D:

{

y
′

(t) + c y
′

(t− 1) + f(y(t)) + g(y(t− 1)) = D, t > 0, t /∈ N,

y(t) = y0(t) ∈ H1(−1, 0), −1 < t < 0,
(17)

with assumptions (2). For the sake of clarity, we analyze successively g = 0
and g 6= 0.

Corollary 1 (case g = 0). Let y be the solution of (17). Three cases occur:

1. if D = f(d), then d is the unique globally attractive solution;

2. if D > sup f (or D < inf f), then lim
t→+∞

y(t) = +∞ (or −∞);

3. if D = sup f (or D = inf f), then there is no convergence towards a
constant solution.

Proof. We consider successively the three cases.
Case 1: D = f(d). This case occurs if lim

y→±∞
f(y) = ±∞. Injecting

z = y − d, fd(z) = f(d+ z)− f(d)

into (17) yields the homogeneous NDDE

z
′

(t) + c z
′

(t− 1) + f
′

d(z(t)) = 0.

Since fd(0) = 0 and f
′

d > 0, the assumptions of theorem 1 are satisfied:
lim

t→+∞
z(t) = 0, and thus y tends asymptotically towards d.

Case 2: D > sup f (or D < inf f). To fix the minds, let us assume sup f <
D < +∞, and introduce δ = D − sup f > 0.

• If c = −1, then y
′

(t) − y
′

(t − 1) = D − f(y) ≥ δ, so that y
′

(n + τ) ≥
y

′

0(τ)+n δ, with τ ∈ [−1, 0]. As a consequence, lim
t→+∞

y
′

(t) = +∞, and

hence lim
t→+∞

y(t) = +∞.

• If c = +1, then y
′

(t) + y
′

(t − 1) ≥ δ. Integration on [τ − 1, τ ] yields
y(τ)− y(τ − 2) ≥ δ, and once again lim

t→+∞
y(t) = +∞.
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Case 3: D = sup f (or D = inf f). Let us assume y(t) → d when t → +∞.
Let yn(s) be y(n + s) for s ∈ [0, 1]. We have yn(.) → d in L∞([0, 1]) and
y′n → 0 in the sens of distribution. The NDDE can be rewritten as follows:
y′n + c y′n−1 + f(yn) = D. Taking the weak limit, we get f(d) = D which
is impossible since f < D. Consequently, y(.) cannot converge towards a
constant.

Using the same argument, we can state that y(.) cannot converge towards
a periodic continuous solution. More precisely, let us assume that yn(s) →
d(s) where d(.) is continuous. Writing yn(0) = y(n) = y((n−1)+1) = yn−1(1)
yields d(0) = d(1) i.e. d is a 1-periodic continuous function. Taking the weak
limit in the NDDE yields a differential equation for d(.): (1 + c) d′(t) +
f(d(t)) = D.

• If c = −1 then f(d(t)) = D, which is impossible.

• If c = 1 then d ∈ C1([0, 1]) by the equation. Let s0 be a maximizer of
d(.) on the compact set [0, 1], then d′(s0) = 0 and, by the differential
equation, f(d(s0)) = D which is again impossible.

As a consequence, y(.) cannot converge towards a periodic continuous solu-
tion.

Now, let us examine the NDDE (17) with all the terms.

Corollary 2 (case g 6= 0). Under the assumptions (3), the unique d such as
f(d) + g(d) = D is the unique globally attractive solution of (17).

Proof. Assumptions (3) easily imply that there exists a unique d satisfying
f(d) + g(d) = D. Injecting

z = y − d, fd(z) = f(d+ z)− f(d), gd(z) = g(d+ z)− g(d)

into (17) yields the homogeneous NDDE

z
′

(t) + c z
′

(t− 1) + f
′

d(z(t)) + g
′

d(z(t− 1)) = 0.

Inequality (3a) implies that γ |fd| ≥ |gd|. Since fd(0) = 0 and f
′

d > 0, all the
assumptions of theorem 1 are satisfied, and hence z → 0 asymptotically.

Without assumptions (3) in corollary 2, one may encounter more complex
situations, with 2 or more solutions. Note that these assumptions are satisfied
in the physically-relevant situation examined in [14].
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2.3. Stability with periodic source

In this section, we consider the non-homogeneous NDDE (1) with the
periodic source term s, but in the particular case g = 0. Existence of pe-
riodic solutions to (1)-(2) is examined in section 4. Here, we assume that
a periodic solution P (t) exists and the difference with another solution y(t)
is bounded for all time . We focus on the convergence of y(.) towards P (.).
The convergence is obtained under the condition (18).

Proposition 1 (Conditional asymptotic stability of a periodic solution). Let
y be the solution of (1) with f ∈ C2 and g = 0, and P be a periodic solution.
Let I = conv (y[−1, +∞[, P (R)) be the convex hull of the two sets. If Iis
bounded and the condition

2 sup |P ′| < inf
w∈ I, d∈P (R)

(f(w)− f(d))2
∣

∣f(w)− f(d)− (w − d) f
′

(d)
∣

∣

(18)

is satisfied, then lim
t→+∞

(y(t)− P (t)) = 0.

We try to extend the proof of Theorem 1 to more complex case, but the
extension is very limited. It means that if P is a small C1 periodic solution
and y(.) is a small stable perturbation, then y(.) converges towards P . In
other words, stability and condition (18) imply asymptotic stability. The
difficulty follows from the occurrence of small divisors; see section 3.

Proof. Injecting z(t) = y(t)− P (t) in (1) yields

z
′

(t) + c z
′

(t− 1) + ∆(t, z(t)) = 0, (19)

with

∆(t, z) = f(z+P (t))−f(P (t)) =

∫ z

0

f
′

(u+P (t)) du = z

∫ 1

0

f
′

(s z+P (t)) ds.

(20)
Let us introduce

K(t, z) =

∫ z

0

∆(t, u) du.
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K is non-negative and convex with respect to z, and it satisfies

d

dt
K(t, z) = z

′

∆(t, z) + P
′

(t)

∫ z

0

(

f
′

(u+ P (t))− f
′

(P (t))
)

du,

= z
′

∆(t, z) + P
′

(t)
(

f(z + P (t))− f(P (t))− z f
′

(P (t))
)

,

= z
′

∆(t, z) + P
′

(t) z2
∫ 1

0

f
′′

(z u+ P (t)) (1− u) du,

= z
′

∆(t, z) + P
′

(t) z2 R(t, z).
(21)

Now, we mimic the proof of theorem 1. Based on (19) and (21), one deduces

z
′2(t) + ∆2(t, z) + 2

d

dt
K(t, z)− 2P

′

(t) z2(t)R(t, z)) = z
′2(t− 1). (22)

Since P is periodic and non constant, the term P
′

(t) z2(t)R(t, z)) has no
fixed sign and there is no hope to control (22). It motivates the condition
(18) for small derivative. Based on (20) and (21), this condition is equivalent
to say that there exists 0 ≤ τ < 1 such that

2 |P ′

(t)|
∣

∣

∣
f(z + P )− f(P )− z f

′

(P )
∣

∣

∣
≤ τ (f(z + P )− f(P ))2 ,

⇔ 2 |P ′

(t)|
∣

∣

∣

∣

∫ 1

0

f
′′

(u z + P (t)) (1− u) du

∣

∣

∣

∣

≤ τ

(

z

∫ 1

0

f
′

(z u+ P (t)) du

)2

,

⇔ 2P
′

(t) z2(t)R(t, z)) ≤ τ ∆2(t, z).
(23)

Integrating (22) over [0, τ ] and using the inequality (23) yields

∫ τ

τ−1

z
′2(t) dt+ (1− τ)

∫ τ

0

∆2(t, z) dt + 2K(τ, z(τ)) (24)

≤
∫ 0

−1

z
′2
0 (t) dt+ 2K(0, z0(0)). (25)

The first term in the left-hand side of (24) implies that z is uniformly con-
tinuous, whereas the third term implies that z is bounded. As in the proof
of theorem 1, the second term allows to conclude.

The stability of the solution to (1) with a non-constant source term re-
mains an open question. Such a L∞ bound would imply that the interval I
in proposition 1 is bounded.
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3. Linear NDDE

In this section, we consider the linear homogeneous NDDE issued from
(1)

y
′

(t) + c y
′

(t− 1) + a y(t) + b y(t− 1) = 0. (26)

3.1. Stability diagram

The stability of 0 in (26) is analyzed in terms of a = f
′

and b = g
′

.
The cases |c| < 1 and |c| > 1 are well known in the literature, yielding
to asymptotic stability and instability, respectively [11]. We focus therefore
on the critical case |c| = 1 for linear scalar differential-difference equations
discussed in [1], p. 191. In this book, it is said that the stability is too much
intricate, so the model would never be used by engineers !

This analysis has two interests. First, it highlights the optimality of the
energy analysis performed in theorem 1: as in the nonlinear case, where
|g| < f and f

′

> 0, asymptotic stability is proven iff |b| < a. Second, the
lost of exponential stability is explicitly exhibited.

The stability analysis will involve the roots λ of the characteristic equation

h(λ) ≡ h(λ; a, b) = λ
(

eλ + c
)

+ a eλ + b = 0 (27)

obtained by injecting a particular solution y(t) = eλ t into (26).

Proposition 2. The characteristic roots of (27) satisfy the following prop-
erties:

1. the roots are located in a vertical strip λinf < ℜ(λ) < λsup, where λinf

and λsup are real constants depending on (a, b, c);

2. the set of roots is countable infinite, yielding a sequence λn;

3. for large values of |λ|, one gets the asymptotic value λn ∼ iΩ(n), where

Ω(n) = (2n+ (1 + c) / 2) π; (28)

4. the sign of ℜ(λn) is constant on each quarter plans separated by a = ±b;

5. the sign of ℜ(λn) changes when performing a symmetry relative to the
line a+ c b = 0.

11



Proof. We prove successively the properties.
Properties 1 and 2. These are classical results [11, 14], not repeated here.
Property 3. If λ is a root of (27) and |λ| → +∞, then

eλ = −c λ+ b

λ+ a
∼ −c, (29)

and hence λ ≡ λn ∼ iΩ(n) in (28).
Property 4. Let us consider a imaginary characteristic root λ = i w. Injecting
this root into (27) leads to

{

b+ a cosw − w sinw = 0, (30a)

a sinw + w (c+ cosw) = 0. (30b)

If sinw = 0, then w = nπ and the following alternative occurs: if n = 0
then a + b = 0, else a − c b = 0. If sinw 6= 0, then one injects a sinw =
−w (c+ cosw) into (30), which yields

b sinw = −a sinw cosw + w sin2w = c w cosw + w cos2w + w sin2w,

= w (1 + c cosw) ,

= −a c sinw,
(31)

and hence a + c b = 0. By Rouché’s theorem, the roots of (27) depend
continuously on a and b. Consequently, the sign of ℜ(λn) is constant on each
quarter plans separated by the lines a = ±b.
Property 5. From the characteristic equation (27), one deduces

h(λ; a, b) = eλ
(

c λ
(

e−λ + c
)

+ c2
(

b e−λ + a
))

,

= −c eλ
(

−λ
(

e−λ + c
)

− c b e−λ − c a
)

,

= −c eλ h(−λ; −c b, −c a),

(32)

which concludes the proof.

For the sake of clarity, we will distinguish the cases c = +1 and c = −1
in (26). The case c = +1 is examined in detail in the next theorem, whereas
the modifications induced by c = −1 are given further with a short proof.
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Theorem 2 (Stability diagram for c = +1). We determine the stability of
y = 0 in (26) in terms of (a, b). Only one open quadrant is asymptotically
stable, the other three being unstable:

• a > |b|: asymptotic stability (∀n, ℜ(λn) < 0);

• b < −|a|: instability (∀n, ℜ(λn) > 0);

• b > |a|: instability (ℜ(λn) > 0, except one root ℜ(λ) < 0);

• a < −|b|: instability (ℜ(λn) < 0, except one root ℜ(λ) > 0).

On the four edges, one has:

• a = |b|: stability (ℜ(λn) = 0, except one root λ = −a < 0 if b > 0);

• −a = b > 0: stability (the spectrum belongs to iR, ∀n, ℜ(λn) = 0);

• a = b < 0: instability: ℜ(λn) = 0, except one positive root λ = a > 0.

Finally a = 0, b = 0 is a stable case.

Proof. Based on property 4 of Proposition 2, we analyze successively the
signs of ℜ(λ) on each quarter plan.
Quadrant 1: a ≥ |b|. The proof of theorem 1 is adapted to the case of com-

plex solutions y(t) = eλ t, λ ∈ C. Instead of (14), one obtains

∫ t

t−1

∣

∣

∣
y

′

(τ) + a y(τ)
∣

∣

∣

2

dτ + (a− b) |y(t− 1)|2 + (a2 − b2)

∫ t−1

0

|y(τ)|2 dτ

=

∫ 0

−1

∣

∣

∣
y

′

0(τ) + a y0(τ)
∣

∣

∣

2

dτ +

∫ 0

−1

|y0(τ)|2 dτ + (a− b) |y0(−1)|2.
(33)

This equality yields stability results when a − b ≥ 0 and a2 − b2 ≥ 0, ie
a ≥ |b|. If a > |b|, then asymptotic stability follows directly from (33), as in
the proof of theorem 1. If a = |b|, the energy equality (33) becomes

∫ t

t−1

∣

∣

∣
y

′

(τ) + |b| y(τ)
∣

∣

∣

2

dτ + (|b| − b) |y(t− 1)|2 = C0. (34)

Three cases are distinguished:
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1. a = b = 0. The NDDE becomes y′(t) + y′(t − 1) = 0 and h(s) = 0 iff
s(eλ+1) = 0. The solutions of the characteristic equation (27) are also
known explicitly: λ = 0 and λ = i (2 k + 1) π, k ∈ Z with multiplicity
1, which proves the stability. Notice that the energy equality (34) only
means that all λn ∈ iR.

2. a = b > 0. The NDDE becomes z′(t)+az(t) = 0 with z(t) = y(t)+y(t−
1). One therefore obtains z(t) = Ce−at and y(t) = D−at+w(t), where w
is a solution of the homogeneous difference equation w(t)+w(t−1) = 0.
The spectrum is given by λ = −a andλ = i (2 k + 1) π, k ∈ Z. All the
roots have multiplicity 1, which proves the stability.

3. 0 < a = −b, energy yields
∫ t

t−1

∣

∣

∣
y

′

(τ))
∣

∣

∣

2

+ a2 |y(τ)|2 dτ + a |y(t)|2 + a |y(t− 1)|2 = C0,

which allows to conclude since y(t) is bounded. Furthermore, this
equality also means that each characteristic root is simple and is an
imaginary number.

Quadrant 2: b ≤ −|a|. Based on property 5 of proposition 2, the inner quad-
rant and its two edges are successively analyzed:

1. b < −|a|. From the case 1 of quadrant a > |b|, one deduces that
ℜ(λ) > 0 when b < −|a|.

2. b = a < 0. This line is obtained by symmetry of b = a > 0. From the
case 3 of quadrant a > |b|, it follows that all the roots are imaginary,
except one root λ = −a > 0: this edge is therefore unstable.

3. b = −a < 0. Symmetry of roots relative to a + b = 0 yields ℜ(λ) = 0:
this edge is therefore stable.

Quadrant 3: b ≥ |a|. When a = b = 0, the spectrum of (27) is known: λ = 0
and λ = λm = im = i (2 k + 1) π. In the case λ = 0, the implicit function
theorem yields λ

′

(b) = −1/2 and hence λ(b) = −b/2 +O(b2). Consequently,
one obtains ℜ(λ) < 0 since b > 0.

In the cases λ = λm, the implicit function theorem yields λ
′

m(b) = −im
and hence

λm(b) = im− i

m
b+ Ab2 +O(b3). (35)

To determine A, we inject (35) into (27):

h(λm(b), 0, b) =

(

im

(

1

2m2 − A

)

+
1

m2

)

b2 +O(b3) = 0, (36)
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which leads to A = 1/(2m2)− i/m3. Injecting A into (35) yields

λm(b) = im− i

m
b+

(

1

2m2 − i

m3

)

b2 +O(b3), (37)

which therefore proves ℜ(λm) > 0.
This analysis of spectrum is valid only on a neighborhood of (a = 0, b = 0)

with b > 0. The property 4 of proposition 2 allows to extend the result to
the whole quadrant.
Quadrant 4: a ≤ −|b|. This case is obtained by performing a symmetry of
roots on quadrant 3 relative to the line a + b = 0. It follows that there
exists a single root with ℜ(λ) > 0 and an infinite sequence of roots such that
ℜ(λm) < 0.
Edge b = −a > 0. Symmetry relative to a+b = 0 implies that if λ is a root of
(27), then −λ is also a root. Moreover, 0 is a simple root if b 6= 2; otherwise,
h

′

(0, −b, b) = 2− b = 0 and 0 is of multiplicity 2.
Now, let us consider the points M(a, b) with −b < a < 0 and O the

origin. The segment OM is outside the half-line (−b, b) and belongs to the
quadrant b > |a|. At M , h(0, a, b) = b− |a| > 0 and lim

x→−∞
h(x, a, b) = −∞:

there exists a negative real root λ0(a, b) at M . Since there is only one root
with negative real part on quadrant b > |a| (see quadrant 3), λ0 is unique.
By symmetry, there exists also a unique positive real root in the quadrant
a < −|b|. Consequently, the only root with negative real part on quadrant
b > |a| connects the only root with positive real part on quadrant a < −|b|
at λ0(−b, b) = 0.

On the other hand, the other roots on quadrants b > |a| and a < −|b|
satisfy ℜ(λn) > 0 and ℜ(λn) < 0, respectively. By Rouché’s theorem, they
depend continuously on (a, b). Consequently, ℜ(λn) = 0 on (−b, b).

Four remarks are raised by theorem 2:

1. The asymptotically stable region a > |b| in the plane of parameters
(a, b) is exactly the region given by theorem 1, i.e. the energy method
is optimal for the linear case to get the asymptotically stable region;

2. a = |b|: the stability follows from the same arguments as in the case
a > |b|: energy method: theorem 1, and a study of the characteristic
roots as in [14]. Moreover, crossing this edge, all real parts become
positive in b < −|a|. This kind of dramatic transition, where all real
parts are negative on a > |b| becomes positive on b < −|a|, is an
essential instability [11, 7, 17];
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3. −a = b > 0: this is a stable case if and only if all roots are simple. But
it is not always the case. For instance, the root s = 0 is simple on this
edge except (a = −2, b = 2). In this last case, s = 0 is of multiplicity
2 and the unbounded solution y(t) = t occurs;

4. the central case a = b = 0, at the boundary of all previous subdomains,
is stable.

We treat briefly in a similar way the case c = −1. Stability of y = 0 in
(26) is studied in terms of (a, b).

Theorem 3 (Stability diagram for c = −1).
Only one open quadrant is asymptotically stable, the other are unstable:

• a > |b|: asymptotic stability (∀n, ℜ(λn) < 0);

• b > |a|: instability (∀n, ℜ(λn) > 0);

• b < −|a|: instability (ℜ(λn) > 0, except one root ℜ(λ) < 0);

• −a > |b|: instability (ℜ(λn) < 0, except one root ℜ(λ) > 0).

On the four edges, one has:

• a = |b|: stability (ℜ(λn) = 0, except one root λ = −a < 0 if b < 0);

• a = b > 0: stability (ℜ(λn) = 0);

• a = −b < 0: instability (ℜ(λn) = 0, except one positive root λ = −a).

At the origin, one has

• a = b = 0: weak instability (ℜ(λn) = 0, except 0 with multiplicity 2).

Proof. The proofs of the various cases are shortly sketched:

1. We begin by the energy equality for c = −1:

∫ t

t−1

∣

∣

∣
y

′

(τ) + a y(τ)
∣

∣

∣

2

dτ + (a+ b) |y(t− 1)|2 + (a2 − b2)

∫ t−1

0

|y(τ)|2 dτ

=

∫ 0

−1

∣

∣

∣
y

′

0(τ) + a y0(τ)
∣

∣

∣

2

dτ +

∫ 0

−1

|y0(τ)|2 dτ + (a + b) |y0(−1)|2.
.

(38)
This energy equality yields the asymptotic stability when a > |b|.
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2. When a = −b, the NDDE becomes z′(t) + a z(t) = 0 with z(t) =
y(t) − y(t − 1). The spectrum is therefore −a and on the imaginary
axis. When a = 0, 0 is a root with multiplicity 2; when a 6= 0, the
roots are simple.

3. The stability on a = b > 0 is given by the energy equality.

4. The symmetry induced by property 5 of proposition 2 concludes the
case b > |a| and b = −a > 0.

5. Passing trough a = 1, b = −1, we obtain the sign of the real part of
roots in b < −|a| for instance, and by symmetry in −a > |b|.

6. On a = b < 0, the real part of roots are null, as in the proof of theorem
3.

3.2. Small divisors

Now, we consider the linearized non-homogeneous NDDE issued from (1)

L y = y
′

(t) + c y
′

(t− 1) + a y(t) + b y(t− 1) = s(t), (39)

where s is a T -periodic function or an almost periodic function [3], and
c = ±1. We assume a > |b|: as stated in theorems 2 and 3, this is the only
asymptotically stable case. Based on (27), we introduce H = e−λ h(λ) which
satisfies

L(exp(λt)) = H(λ) exp(λt),

H(λ) = λ (1 + c exp(−λ)) + a + b exp(−λ)),
(40)

and |H(i ω)| = |h(i ω)|. Lastly, we denote by S and Y the mean values of s
and y over one period: for instance, Y (t) = 1

T

∫ t

t−T
y(τ) dτ .

If S = 0, then elementary calculations yield L Y = 0. In this case,
theorem 1 ensures that lim

t→+∞
Y (t) = 0. The mean value of the periodic

solution - if it exists - is therefore asymptotically stable.
If the source is monochromatic s(t) ≡ ei ω t, then y(t) = yp(t) + z(t),

where the unique periodic solution is yp(t) = ei ω t /H(i ω), and z satisfies the
homogeneous equation (26): L z = 0. Theorem 1 ensures that lim

t→+∞
z(t) = 0.

In other words, a monochromatic source provides a unique periodic solution
which is globally asymptotically stable.

Now, we consider a source with an infinite spectrum:

s(t) =
∑

k∈Z

sk e
i ωk t. (41)
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A formal solution of (39) is

yp(t) =
∑

k∈Z

sk
H(i ωk)

ei ωk t. (42)

The denominator in (42) never vanishes on the imaginary axis (H(i ω) 6= 0),
but

lim inf
|ω|→∞

|H(i ω)| = 0, lim sup
|ω|→∞

|H(i ω)| = +∞,

and hence various cases can occur. We illustrate some situations on particular
values of the period of the forcing T :

• c = +1

– if T = 1, then H(i ωk) = H(i 2 k π) = 4 i k π + a + b, and hence
|H(i ωk)| → +∞ as k → +∞. Consequently, a smoothing effect
occurs: s ∈ L2 leads to yp ∈ H1;

– if T = 2, then H(i ωk) = H(i k π) = i k π
(

1 + (−1)k
)

+a+(−1)k b
and hence H(i ωk) = a− b if k is odd: no smoothing effect.

• c = −1

– if T = 1, then H(i ωk) = a+ b: no smoothing effect;

– if T = 2, then H(i ωk) = i k π
(

1− (−1)k
)

+a+(−1)k b and hence
H(i ωk) = a+ b if k is even: no smoothing effect.

A worst behavior is expected if lim
|k|→+∞

H(i ωk) = 0, where small divisors

may occur. The goal of the next theorem is to determine the sequence of
frequencies ωk leading to this situation.

Theorem 4. We assume |c| = 1 and a > |b| in (27). If lim
|k|→+∞

h(i ωk) = 0,

then there exists a function φ : Z → Z and a real sequence sk such that

lim
|k|→+∞

|φ(k)| = +∞, lim
|k|→+∞

sk = 0,

ωk = Ω(φ(k)) +
d

Ω(φ(k))
+

sk
Ω(φ(k))

(43)

where Ω(k) = (2k + (1 + c)/2)π is defined in (28), and

d = a− c b > 0. (44)
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Moreover, the small divisor has the same modulus than

h(i ωk) = −sk + i
a2 − b2

2Ω(φ(k))
+O

(

|sk|+
1

|Ω(φ(k))|

)2

. (45)

Proof. Two steps are involved:
Step 1: h(i ωk) 6= 0. Under the hypothesis a > |b|, the property 1 of propo-
sition 2 can be made more precise. The characteristic roots (27) satisfy

(λ+ a) eλ = −(c λ+ b). (46)

The equality λ + a = 0 implies b = c a which is impossible when |b| < a. As
a consequence, one obtains

eλ = −c λ+ b

λ+ a
⇒

∣

∣eλ
∣

∣ = < 1, (47)

which proves that ℜ(λ) < 0. The characteristic function h therefore never
vanishes on the imaginary axis.
Step 2: asymptotic expansion of ωk. From (27), it follows

h(i ωk)

i ωk
= 1 + c e−i ωk +O

(

1

ωk

)

. (48)

By hypothesis, h(i ωk) → 0 when |ωk| → +∞. It results that 1+c e−i ωk → 0,
and hence there exists zk = Ω(φ(k)) and rk → 0 so that

ωk = zk + rk, (49)

with Ωk defined in (28). Injecting (49) into (27) and using e±i zk = −c, we
obtain

h(i ωk) = i (zk + rk)
(

1− e−i rk
)

+ a− c b e−i rk ,

= i (zk + rk)

(

i rk +
r2k
2

+O(r3k)

)

+ a− c b
(

1− i rk +O(r2k)
)

,

= −zk rk + i c b rk + a− c b+O
(

zk r
2
k

)

+O
(

r2k
)

.
(50)

Since h(i ωk) → 0, there exists sk → 0 such that

rk =
d

zk
+

sk
zk
, (51)
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with d defined in (44). Putting (51) into the second line of (50) gives

h(i ωk) = −sk +
i

zk

(

d2

2
+ c b d

)

+O
(

1

z2k

)

+O
(

sk
zk

)

+O(s2k).

Notice that d2/2+ c b d = d (d/2+ c b) = d ((a− c b)/2+ c b) = d (a+ c b)/2 =
(a− c b) (a+ c b)/2 = (a2 − c2 b2)/2 > 0, which concludes the proof.

Theorem 4 states that the small divisors problem occurs when the spec-
trum of the source s approaches the asymptotic values of the characteristic
roots in the way (43). If s is T -periodic, then the solution of (39) looses
accordingly at most one derivative.

4. Existence of periodic solutions

We consider again the full nonlinear non autonomous NDDE (1): indeed,
some results for the nonlinear case are based on the linear analysis performed
along section 3. We denote by H1

♯ the Sobolev space of T-periodic functions
with derivatives in L2.

Two cases are distinguished, depending on the period T of the source. If
1 / T ∈ N, then general results can be proved whatever the amplitude of the
solution. For a much larger set of periods and for small sources, results can
be obtained under a condition on the pulsation ω = 2π

T
. This condition is

equivalent to a Diophantine condition on T . We finish the section by some
remarks and open problems about this Diophantine condition.

4.1. Periods T = 1 / n

Theorem 5. Properties (2) and (3) are assumed. If nT = 1, n ∈ N, and
the source s(.) belongs to H1

♯ , then there exists a unique T -periodic solution
y ∈ H1

♯ to (1), which satisfies the non autonomous ODE

(1 + c) y
′

(t) + f(y(t)) + g(y(t)) = s(t). (52)

Furthermore, if c = 1, we can take the source s(.) ∈ L2
♯ .

In other words, if the delay 1 is a period of the source, there exists only
one periodic solution for the (NDDE) with the same period as the source.
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Proof. Considering a 1-periodic solution y to (1) gives (52). If c = +1, then

y
′

(t) + h(y(t)) =
s(t)

2
, (53)

with h = (f + g) / 2. Under the assumptions (3), h satisfies h(0) = 0 and
h

′

(0) > 0. The existence, uniqueness and asymptotic stability of a periodic
solution to (53) follows accordingly; see for instance the proof of theorem 5-1
in [14]. If c = −1, then (3) ensures that s belongs to the range of h, and
hence y(t) = h−1(s(t)).

Theorem 5 does not ensure the asymptotic stability of the solution to
the NDDE (1). For this purpose, an hypothesis of stability of small solution
must be added, as in proposition 1.

4.2. General periods

Unlike the special cases investigated in section 4.1, the results obtained
in this section involve a much larger set of periods T but for small sources.
The next theorem is also valid for almost periodic sources: it suffices to
replace the periodic spectrum {k ω, k ∈ Z} by the almost periodic spectrum
{ωk, k ∈ Z} in (54), (55) below. Quasi-periodicity can occur, for instance,
when the source is made of multiple incommensurable periods. Now, we state
the main result of existence.

Theorem 6. Let us consider the nonlinear non autonomous NDDE (1) with
assumptions (2)-(3a). Based on the integer Ωk (28), the subsequence φ is
chosen such that

|k ω − Ω(φ(k))| = min
n

|k ω − Ω(n)| . (54)

The source is T -periodic, small and belongs to H1
♯ . If the condition

lim inf
k

|d− Ω(φ(k))× (k ω − Ω(φ(k)))| > 0 (55)

is satisfied, then there exists a unique periodic solution y ∈ H1
♯ .

Proof. Theorem 4 and condition (55) imply that infk |h(i ωk)| > 0. The
operator s(t) → y(t) in the linearized NDDE (26) is thus continuous. The
implicit function theorem can therefore be applied, ensuring the existence of
a unique solution in a neighborhood of the origin as in [14].
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Note that φ(k) ∼ k
T
→ ±∞. The condition (55) means that there are no

small divisors in the linearized NDDE (39). Now, the key issue is to know
when (56) or (55) are fulfilled. An important case is obtained for rational
values of the period, as stated in the next theorem.

Theorem 7 (Rational period). The same notations and assumptions are
used as in theorem 6. If T ∈ Q, then the condition (55) is fulfilled and the
conclusion of theorem 6 holds.

Furthermore, if c = 1, let us write T = p / q with gcd(p, q) = 1. If p is
odd, then a small source in L2

♯ yields a unique periodic solution y ∈ H1
♯ .

In other words, no small divisors occur when the period of the source is
rational. Moreover, when c = +1, periods in the form T = 2m+1

q
(m, q ∈

Z, q 6= 0) provide a smoothing effect.

Proof. Let vk be min
n∈Z

|k ω − Ω(n)| = |k ω − Ω(φ(k))|. The condition (55) is

fulfilled if there exists δ > 0 such that Zk = |d− Ω(φ(k)) vk| ≥ δ > 0 for |k|
large enough. Before examining the existence of δ, we recall that d > 0 and
Ω(φ(k)) ∼ k ω.

The distance to a real subset A ⊂ R is denoted: dist(x, A) = inf
a∈A

|x− a|.
From the definitions of ω (2d) and Ω (28), it follows:

vk = 2 π min
n∈Z

∣

∣

∣

∣

k

T
− 1 + c

4
− n

∣

∣

∣

∣

,

= 2 π dist

(

k

T
− 1 + c

4
, Z

)

,

= 2 π dist

(

k
q

p
− 1 + c

4
, Z

)

.

Since dist(xZ) ≤ 1
2
for all x, it follows 0 ≤ vk ≤ π. Moreover, periodicity

of (vk) implies that the sequence (vk) takes at most p values. Let 0 ≤ v =
inf
k∈Z

vk = min
0≤k<p

vk. If v = 0, then we take δ = d. If v > 0, then any positive δ

works since Zk → +∞. Consequently, the condition (55) is always satisfied
when T is rational, ensuring the existence of a unique periodic solution.

Let us now examine deeply the cases where v = 0. This equality occurs
in two cases:

• If c = −1, then v = 0. It follows from vk×p = 2 π dist (k q, Z) = 0.
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• If c = +1, then v = 0 if and only if p ∈ 2Z. This necessary and

sufficient condition follows from vk = 2 π dist
(

k q
p
− 1

2
, Z

)

= 0 for

some k 6= 0. It amounts to say that k q
p
− 1

2
= m for some m ∈ Z, i.e.

q / p = (2m+ 1) / (2 k), and hence p has to be even.

It proves that v = 0 iff c = +1 and p is odd. In this case, the characteristic
function H(λ) in (40) satisfies H(λ) ≡ λ (1+c e−λ)+(a+b e−λ) ∼ λ (1+e−λ)
when |k| → +∞. Since the linearized operator is a Fourier multiplier by the
characteristic function, |H(λk)| ∼ |k| ensures that the linearized equation is
smoothing from L2

♯ into H1
♯ .

4.3. About the Diophantine condition

Up to now, we have proven that rational periods satisfy the condition
(56), ensuring the validity of theorem 6. Are there other sets of periods in
a similar case ? We have not resolved this question. Here, we only propose
few results on this topic. More precisely, we study the complementary of this
set, when the small divisors problem occurs. To estimate this complementary
set, the following definition is introduced.

Definition 1 (Diophantine condition D). Let D = d / (4 π2) > 0, with d =
f

′

(0)− c g
′

(0) > 0. The real number θ ∈ R+ satisfies the condition D if and
only if there exists an infinite number of integers (n, k) such that

θ =
n

k
+

1 + c

4 k
+

D

θ

1

k2
+ o

(

1

k2

)

. (56)

The next lemma states that the condition (56) is exactly the converse of
the condition (55).

Lemma 2. The period T satisfies (55) if and only if θ = 1
T
does not satisfy

(56).

Proof. To prove the equivalence, let us rewrite the condition in theorem 4
to have a small divisors problem. In this case, ω is such that there exists
φ : Z 7→ Z satisfying

|φ(k)| → ∞,

k ω − Ω(φ(k)) → 0,

Ω(φ(k)) (k ω − Ω(φ(k)) → d,
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when |k| → ∞. This is equivalent to say that there exists an infinite number
of (k, n) ∈ Z× Z such that

1

T
=

n

k
+

1 + c

4 k
+

DT

k2
+ o

(

1

k2

)

, (57)

with D = d
4π2 : consequently, 1 / T does not satisfy the Diophantine condition

(56).

The size of the set of numbers satisfying the Diophantine condition (56)
is unknown. To advance on this question, we consider C ∈ R, and we define
the set E(C) as follows: θ ∈ E(C) if there exists an infinite number of
(k, n) ∈ Z× Z such that

θ =
n

k
+

C

k2
+ o

(

1

k2

)

. (58)

E(C) is close to the set of reals satisfying (57). Indeed, n
k
+1+c

4 k
= 4n+(1+c)

4 k
∈ Q

and DT is replaced by C in (57). Moreover, E(C) is bigger than the set of
numbers satisfying D, since the condition (56) is more restrictive than (58).

Proposition 3. Depending on the value of C, we get the following alterna-
tive:

• if C = 0, then Q ⊂ E(C). Moreover, almost all real numbers belong to
E(C), but E(C) 6= R;

• if C 6= 0, then Q ∩ E(C) = ∅.

Proof. We examine successively the two cases:

• Case C = 0. Clearly all rational numbers are in E(0).

We recall a Khintchine’s theorem on Diophantine approximation [15, 5].
If φ is a non-increasing function, φ : N∗ 7→]0,+∞[ and if

∑

n>0 φ(n) =
+∞ then, for almost all real numbers, there are infinitely many rational
p / q such that |x− p / q| < φ(q) / q.

It suffices to take φ(n − 1) = 1 / (n ln(n)) to conclude that almost all
real numbers are in E(0). Indeed, we have

φ(q)

q
∼ 1

q2 ln q
= o

(

1

q2

)

.
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Notice that E(0) 6= R. For instance, the golden ratio (1 +
√
5) / 2 does

not belong to E(0), see [15].

• Case C 6= 0: let θ = p / q be in E(C). From (58), it follows that
k p − n q = C q

k
+ o(k−1), and hence k p− n q is a convergent sequence

of integers towards 0. Such a sequence of integers is equal to 0 for
k large enough. But this is impossible since C 6= 0. Consequently,
Q ∩ E(C) = ∅.

5. Conclusion

The main results of this article are summed up as follows.

• theorem 1, corollary 1 and corollary 2: asymptotic stability of constant
solutions in the nonlinear case is proven for a constant forcing. The
results are valid whatever the amplitude of the source;

• proposition 1: asymptotic stability of a periodic source under a periodic
non-constant forcing and in the nonlinear case is obtained under two
assumptions (stability and small amplitude of the source);

• theorems 2 and 3: stability diagram is analyzed whatever the coeffi-
cients of the linearized NDDE;

• theorem 5: existence of a periodic solution to the nonlinear NDDE is
proven whatever the amplitude of the source but for particular values
of the period. Theorem 6 considers a much larger set of periods, but
under the assumption of small source and a Diophantine condition.
Theorem 7 states that rational periods satisfy this condition.

Deeper analysis is required about the set of real numbers not satisfying (56).
Proposition 3 is a first step in this direction, but the measure of the set
involved remains an open question.
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