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DUAL CONSTRAINED TV-BASED REGULARIZATION ON
GRAPHS

CAMILLE COUPRIE ∗, LEO GRADY † , LAURENT NAJMAN ‡ , JEAN-CHRISTOPHE

PESQUET § , AND HUGUES TALBOT ‡

Abstract. Algorithms based on Total Variation (TV) minimization are prevalent in image
processing. They play a key role in a variety of applications such as image denoising, compressive
sensing and inverse problems in general. In this work, we extend the TV dual framework that includes
Chambolle’s and Gilboa-Osher’s projection algorithms for TV minimization. We use a flexible graph
data representation that allows us to generalize the constraint on the projection variable. We show
how this new formulation of the TV problem may be solved by means of fast parallel proximal
algorithms. On denoising and deblurring examples, the proposed approach is shown not only to
perform better than recent TV-based approaches, but also to perform well on arbitrary graphs
instead of regular grids. The proposed method consequently applies to a variety of other inverse
problems including image fusion and mesh filtering.

Key words. Proximal methods, inverse problems, image denoising, convex optimization, par-
allel algorithms, image restoration, bounded variation, mesh smoothing, discrete calculus.

1. Introduction.

1.1. Problem statement. In this paper, we consider a weighted graph G =
(V,E) with vertices v ∈ V and edges e ∈ E ⊆ V × V , with cardinalities n = card (V )
and m = card (E).

Let H ∈ Rq×n, for some q ∈ N∗, be the matrix associated with a linear observation
process. A data vector f = (fi)1≤i≤q ∈ Rq is assumed to be obtained from x̄ =
(x̄i)1≤i≤n ∈ Rn through the model

f = Hx̄+ b, (1.1)

where b ∈ Rq is a realization of a random noise. Our purpose is to reconstruct a vector
close to x̄ from f . In order to do so, we propose to solve an optimization problem
taking the form

minimize
x∈Rn

(
sup
F∈C

F>Dx︸ ︷︷ ︸
regularization

+
1

2
(Hx− f)>Λ−1(Hx− f)︸ ︷︷ ︸

data fidelity

)
(1.2)

where Λ is a symmetric positive-definite weighting matrix, D is the so-called weighted
incidence matrix of the graph G (see below), and C is the intersection of closed balls
defined with weighted semi-norms. The regularization term corresponds to a gener-
alization of the combinatorial formulation of the TV dual problem, as we are going to
detail shortly. We name (1.2) the Dual Constrained Total Variation (DCTV) prob-
lem1. We note that any solution x̂ to (1.2) is parameterized by the weighted graph G
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and that the components of x̂ can be viewed as optimal values which are attached to
each node of the graph. In Section 2, we show how Problem (1.2) can be efficiently
solved thanks to proximal methods.

A typical applicative context of such a model is image recovery. In this case,
the nodes of the graph usually represent the pixels of an image and the edges a
neighborhood relationship between pixels. However, there is no reason to restrict the
model to this particular framework, as there is no limitation on the type of graph
our model can deal with. The matrix H may simply be the identity matrix for
image denoising, a convolution operator in restoration tasks, or a projection matrix
in reconstruction problems. The matrix Λ may be proportional to the covariance
matrix of the noise corrupting the data, as is commonly used in weighted least squares
approaches.

1.2. Discrete calculus interpretation of Problem (1.2). Discrete calcu-
lus [2, 3] has been employed in recent years to produce a combinatorial reformulation
of continuous problems onto a graph in such a manner that the solution behaves
analogously to the continuous formulation (e.g., [4, 5]). Additionally, it has been
shown that the combinatorial reformulation of classical energies is able to provide
new avenues for performing efficient combinatorial optimization [6, 4, 5, 7].

An edge spanning two vertices, vi and vj , with 1 ≤ i ≤ n and 1 ≤ j ≤ n, is
denoted by ei,j . We deal with weighted graphs that include weights on both the
edges and nodes. An edge weight is a value assigned to each edge ei,j , and it is
denoted by wi,j . We assume that wi,j ∈]0,+∞[. The weight of a node vi is denoted
by gi. We also assume that gi ∈]0,+∞[.

The incidence matrix of a graph is a fundamental operator for defining combinato-
rial formulations of variational problems. Specifically, the edge-node incidence matrix
A ∈ Rm×n defines the discrete calculus analogue of the gradient, while −A> is known
to define the discrete calculus analogue of the divergence (see [3] and the references
therein). The incidence matrix can be viewed as an operator mapping functions on
nodes (analogue to a scalar field) to functions on edges (analogue to a vector field)
and its elements are defined as

Aei,jvk =


−1 if i = k,

+1 if j = k,

0 otherwise,

(1.3)

for every vertex vk (k ∈ {1, . . . , n}) and edge ei,j . An example of a graph represented
with its incidence matrix is given in Fig. 1.1.

v1 v2 v3

v4 v5 v6

e1,2 e2,3

e4,5 e5,6

e1,4 e2,5 e3,6
A =

v1 v2 v3 v4 v5 v6
e1,2 −1 1 0 0 0 0
e2,3 0 −1 1 0 0 0
e4,5 0 0 0 −1 1 0
e5,6 0 0 0 0 −1 1
e1,4 −1 0 0 1 0 0
e2,5 0 −1 0 0 1 0
e3,6 0 0 −1 0 0 1

Fig. 1.1. A graph and its incidence matrix A ∈ Rm×n with m = 7 and n = 6.
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We introduce the weighted incidence matrix D = diag(
√
w)A, where diag(

√
w)

is a diagonal matrix whose diagonal elements correspond to the square roots of the
components of edge weight vector w.

In the context of discrete calculus, the vector F ∈ Rm in (1.2) is a vector associ-
ated with the edges of G, that we name “flow variable”. Indeed, as in the context of
graph cuts, F represents the amount of flow that is allowed to pass through an edge.

In this work we propose to address nonempty convex sets C defined as

C = {F ∈ Rm | (∀i ∈ {1, . . . , n}) ‖θ(i) · F‖α ≤ gi}, (1.4)

where g = (gi)1≤i≤n is a vector of Rn, ‖ · ‖α is the `α norm of Rm with α ∈ [1,+∞]

and θ(i) ∈]0,+∞[m is a vector of multiplicative constants θ
(i)
i′,j associated with every

couple of nodes (i′, j) with i′ ∈ J and j ∈ Ni′ . Here, for every i′ ∈ {1, . . . , n},
Ni′ = {j ∈ {1, . . . , n} | ei′,j ∈ E} and J = {i′ ∈ {1, . . . , n} | Ni′ 6= ∅}. The flow
variable is thus constrained by edge weights through the weighted incidence matrix
D and by node weights through g.

1.3. Particular cases of interest. We now give three examples of how our
formulation may be used to improve recovery results, by considering various convex
sets and various graphs. The first example justifies the link with usual TV and hence
the name DCTV. In the second example, we provide a convex set that can serve to
define a useful local constraint on the flow in many practical situations. The third
example illustrates one of the benefits of a combinatorial graph-based approach to
regularization problems, in this instance non-local image denoising. In these three
preliminary examples, H is always the identity matrix.

For an arbitrary matrix M , |M | designates the matrix composed of the absolute
values of each entry individually, we denote by · the Hadamard product and by M .2

the product M ·M .
Example 1.1. Assume that J = {1, . . . , n}, consider as convex set,

C = {(Fi,j)i,j | (∀i ∈ {1, . . . , n})
∑
j∈Ni

F 2
i,j ≤ 1}, (1.5)

and set Λ = λI with λ ∈]0,+∞[. Problem. (1.2) then reads

minimize
x

max
F∈C

F>Dx+
1

2λ
‖x− f‖2. (1.6)

The problem can be reformulated as

minimize
x

max
‖F‖∞≤1

F>((Ax) ·
√
w) +

1

2λ
‖x− f‖2 (1.7)

where ‖F‖∞ = maxi∈{1,...,n}

(∑
j∈Ni

F 2
i,j

)1/2

.

We recognize in (1.7), the combinatorial dual formulation [8] of the discrete
weighted TV model as defined in [9, 8]:

minimize
x

n∑
i=1

( ∑
j∈Ni

wi,j(xj − xi)2
)1/2

+
1

2λ

n∑
i=1

(xi − fi)2. (1.8)

The weighted TV problem appeared previously as a primal-dual formulation in
the continuous setting. In a functional framework, given a planar domain Ω, and
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(a) Two constraints at nodes i and j in
a local graph

(b) Nonlocal graph (figure
P. Coupé, [11])

Fig. 1.2. (a) Illustration of the flow bottleneck created in a contour area (at node i) in a 4-
connected lattice. Circles sizes are proportional to the value of g in each node (e.g. small in the
presence of contour, large otherwise). The flow is represented by the red pipes. (b) Illustration of
some connections in a non-local graph – a node is connected to node centers of similar patches.

denoting by u and u′ two arbitrary points of Ω, the weighted TV model [8] is given by

minimize
x

∫
Ω

(∫
Ω

w(u, u′)
(
x(u′)−x(u)

)2
du′
)1/2

du+
1

2λ

∫
Ω

(
x(u)− f(u)

)2
du, (1.9)

where w is now a non-negative valued function defined on Ω2. As shown by Chan et
al. in [10] the TV minimization problem (1.9) is equivalent to the min-max problem

minimize
x

(
max
||F ||∞≤1

∫
Ω2

w(u, u′)1/2
(
x(u′)− x(u)

)
F (u, u′)du du′+

1

2λ

∫
Ω

(
x(u)− f(u)

)2
du
)
, (1.10)

where F is a two-variable function and

‖F‖∞ = sup
u∈Ω

(∫
Ω

F (u, u′)2du′
)1/2

.

We note two essential differences betweeen this previous approach and the proposed
model: our ability to use extended constraints on F and the combinatorial formulation,
which allows our model to be valid on arbitrary graphs.

Example 1.2. The main idea of this second case of interest is to create flow
bottlenecks in controlled areas. For example, bounding the flow in high gradient areas
of an image will help us to preserve contours. The flow constraints are defined on
vertices through the form of g, while the flow itself is defined on edges. We can
use the operator |A>| to average the flow exiting a vertex in order to link the two.
Specifically, C may be defined as

C = {F ∈ Rm | g·2 − |A>|F ·2 ∈ [0,+∞[n}, (1.11)

where g = (gi)1≤i≤n. We note that this particular case corresponds in (1.4) to the
case when α = 2, and (∀i ∈ {1, . . . , n}) θ(i) is the i-th line of matrix |A>|. For image
filtering applications, in addition to intensity information, g may be used to penalize
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changes in other relevant image quantities such as color or texture. The graph may
be in this case locally 4-connected, as illustrated in Fig. 1.2(a).

The constraint given in the convex set of (1.11) also appears in the Combinatorial
Continuous Maximum Flow (CCMF) problem [6]. The problem studied in the present
work may thus be seen as an extension of the CCMF problem (applied to clustering
problems in graphs, such as image segmentation) to multi-label problems.

Example 1.3. Instead of using only locally neighboring nodes in the regulariza-
tion, we can also consider non-local connections to improve recovery results. This
idea was originally developed in the non-local means denoising framework [12], and
expressed as a total variation regularization in [13]. The DCTV model is adapted to
this particular case, by building a graph where each node is connected to center nodes
of its most similar patches. An illustration is given in Fig. 1.2(b). The main differ-
ence with the work of [13] is the definition of a discrete energy which is then optimized
without any approximation.

1.4. Related work. The Total Variation (TV) model was introduced as a reg-
ularization criterion for image denoising in the seminal work by Rudin, Osher and
Fatemi (ROF) [14], and has been shown to be quite efficient for smoothing images
while preserving contours. Total variation minimization has been used for solving
a large number of inverse problems, including deconvolution [15], inpainting, MRI
reconstruction [16], optical flow estimation [17], stereo vision [18], among others. A
major advantage of the ROF-TV minimization problem is that it is convex. However,
the non-differentiability of the objective function requires the use of specific optimiza-
tion techniques, particularly with respect to speed and efficiency. Much progress has
been achieved by employing primal-dual approaches [10, 19], the dual approach of
Chambolle [20], and fast first order methods [21]. Other investigations have been
pursued to develop anisotropic TV models, e.g. [22].

Chan et al. expressed the TV problem on graphs in [23]. Improvements in
the quality of the recovery were later obtained by introducing a weighted model
[24, 9, 4, 8]. In this model, a discrete TV energy is optimized on edge-weighted
graphs. The methods described in [24] and [8] employ a non-local weighting strategy
following the non-local means concept [12]. Furthermore, Gilboa and Osher provided
an efficient dual algorithm in [8], based on the method in [20] to address this prob-
lem. Currently, one of the fastest methods for optimizing classical and weighted TV
is an alternating direction of multipliers method [25, 26, 27], belonging to the class
of augmented Lagrangian approaches [28, 29, 30], and also called the split-Bregman
algorithm. Another (node) weighting strategy and a fast primal-dual algorithm were
proposed in [31].

Recently, several approaches were proposed to reduce the staircaising effect of
total variation methods. The Total Generalized Variation (TGV) method of Bredies
et al. [32, 33], following [34] which introduced the inf-convolution idea in TV, employs
higher order derivatives of the function to regularize. The benefit of TGV is to replace
the staircase effect by smoothed variations, while still preserving contours. The work
by Jalalzai and Chambolle aims at achieving the same goal [35]. In the hybrid TV
approach of Combettes and Pesquet [15] (see [36] for further investigations) an energy
combining wavelets and TV is optimized to jointly reduce the staircase effect of both
TV and wavelet artifacts. In addition to the staircase effect, the various TV models
typically result in some loss of contrast even when solving the model exactly [37]. A
few methods have been proposed [38, 39] for contrast preservation.

By formulating our restoration problem as in (1.2), we improve on the state-of-the
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art. More specifically, our main contributions are the following:

(i). By using an appropriate reformulation and decomposition of our energy func-
tional in (1.2), we are able to optimize it efficiently, owing to the use of fast
parallel proximal algorithms.

(ii). By taking into account both weights on nodes and edges of the graph, we
obtain a more flexible and accurate regularization, particularly for thin struc-
tures.

(iii). These improvements lead to better results, in particular a better contrast
preservation and a more detailed recovery in image processing examples.

(iv). By considering a graph formulation of the primal-dual total variation prob-
lem, we are able to use our regularization method on graphs that are not
uniformly sampled, for example on a graph representation of the fovea or
actually any arbitrary mesh.

TV-based schemes are often optimized using one of the many proximal methods.
Proximal methods provide efficient solutions to convex optimization problems where
the objective function can be split into a sum of convex functions [40, 41]. This core
of methods is applicable to large size problems, as well as to non-smooth and non-
finite functions. The projection algorithms in [20, 8] are based on a relatively simple
local constraint on the norm of the projection variable. Problem (1.2) extends the
constraint on this variable while making the optimization problem more challenging.
This extension allows us to better capture the local information on a graph.

Recently, other proposals for different constrained formulations have been sug-
gested in the litterature. Combettes and Pesquet [42] introduced a total variation
bound in a contrained convex energy minimization problem. Malgouyres [43] de-
fined a constraint in order to combine the ROF-TV model with wavelet-based soft
thresholding methods. Closer to what we propose is a work by Lenzen et al. [44, 45]
where the idea of introducing a convex set constraining the dual variable in a total
variation formulation is proposed. However in [44, 45], no linear operator is allowed
in the degradation model, and more importantly, the formulation being given in a
purely continuous setting, it does not benefit from the versatility of the graph-based
framework.

2. Proposed algorithms. We show in this section that it is possible to effi-
ciently solve Problem (1.2) by using recent proximal algorithms.

The choice of proximal methods [40] is motivated by the non-differentiability of
our objective function. Contrary to many other proximal algorithms that could be
used, such as the forward-backward algorithm (and its variants e.g. [46]), the Alter-
nating Direction Method of Multipliers, and the inexact Uzawa method [47, 48], the
algorithms we propose in Sections 2.3 and 2.4 avoid inner iterations. Furthermore, the
proximity operators necessary for solving our problem can be computed in parallel,
offering additional speed gains.

2.1. Convex analysis tools. We introduce in this section some convex analysis
tools used in the core of this work. For a detailed overview of the main results of
convex analysis, we refer to the self-contained book of Bauschke and Combettes [49].
Let Γ0(Rn) be the class of convex functions ϕ from Rn to ]−∞,+∞] that are proper
(such that domϕ =

{
z ∈ Rn

∣∣ ϕ(z) < +∞
}
6= ∅) and lower semi-continuous. The

proximity operator of a convex function is defined as follows:
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Definition 2.1. For every y ∈ Rn, the function z 7→ ϕ(z) + ‖z − y‖2/2, where
ϕ ∈ Γ0(Rn), achieves its infimum at a unique point denoted by proxϕy, i.e.,

(∀y ∈ Rn) proxϕy = argmin
z∈Rn

ϕ(z) +
1

2
‖z − y‖2 . (2.1)

The proximity operator of a convex function is a natural extension of the notion
of projection onto a convex set.

Definition 2.2. Let C be a nonempty closed convex set of Rn, the indicator
function of C is

ıC : z 7→

{
0 if z ∈ C,
+∞ otherwise.

(2.2)

The projection PCy of y ∈ Rn onto C is the unique minimizer of

z 7→ ıC(z) +
1

2
‖z − y‖2. (2.3)

We have thus proxıC = PC where PC denotes the projection onto C.
The relative interior of a convex set C will be denoted by riC. We also need to

introduce the conjugate of a convex function:
Definition 2.3. Let ϕ be a convex function from Rn to ]−∞,+∞]. Its conjugate

function is the convex function ϕ∗ defined as

(∀y ∈ Rn) ϕ∗(y) = sup
z∈Rn

(y>z − ϕ(z)).

Note that, if ϕ ∈ Γ0(Rn), then ϕ∗∗ = ϕ and ϕ∗ ∈ Γ0(Rn). The conjugate function of
ıC where C is a nonempty closed convex subset of Rn is the support function σC of
C which is expressed as

σC : Rn →]−∞,+∞] : y 7→ sup
z∈C

y>z. (2.4)

The infimal convolution of two convex functions ϕ and ψ from Rn to ] −∞,+∞] is
the convex function defined as

(∀y ∈ Rn) (ϕ�ψ)(y) = inf
z∈Rm

ϕ(z) + ψ(y − z). (2.5)

We have then (ϕ�ψ)∗ = ϕ∗ + ψ∗.
Let ϕ ∈ Γ0(Rn). The subdifferential of ϕ at x ∈ Rn is denoted by ∂ϕ(x). For

every (x, y) ∈ (Rn)2, the following equivalence holds:

y ∈ ∂ϕ(x)⇔ x ∈ ∂ϕ∗(y). (2.6)

2.2. Alternative formulation. In order to address Problem (1.2) where H is
not necessarily injective, we consider the following optimization problem:

minimize
x∈Rn

σC(Dx) +
1

2
(Hx− f)>Λ−1(Hx− f) +

η

2
‖Kx‖2 (2.7)
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where η ∈]0,+∞[ and K ∈ Rn×n is the projection matrix onto the nullspace of H,
specifically, K = I −H†H where H† is the pseudo-inverse of H. When H is injective
(rankH = n), the last term vanishes and (2.7) is strictly equivalent to (1.2). The
term x 7→ η‖Kx‖2/2 thus aims at introducing an additional regularization when H
is not injective, so that the objective function remains strictly convex. The following
holds:

Proposition 2.4. Assume that C is a closed convex set such that 0 ∈ riC.
Then, Problem (2.7) admits a unique solution. The dual Fenchel-Rockafellar form of
the problem is

minimize
F∈Rm

ϕ(F ) + ıC(F ), (2.8)

where ϕ : F 7→ 1
2F
>DΓD>F − F>DΓH>Λ−1f and Γ = (H>Λ−1H + ηK)−1. The

optimal solution x̂ to the primal problem (2.7) is deduced from any optimal solution

F̂ to the dual problem by the relation

x̂ = Γ
(
H>Λ−1f −D>F̂

)
. (2.9)

Proof. As the support function σC is lower semi-continuous, proper and convex,
it possesses an affine minorant. In addition, x 7→ 1

2 (Hx− f)>Λ−1(Hx− f) + η
2‖Kx‖

2

is a strictly convex quadratic function. We deduce that

x 7→ σC(Dx) +
1

2
(Hx− f)>Λ−1(Hx− f) +

η

2
‖Kx‖2 (2.10)

is a function in Γ0(Rn) which is coercive (i.e. its limit is +∞ as ‖x‖ → +∞). This
secures the existence of a solution to Problem (2.7). The uniqueness of the minimizer
follows from the strict convexity of the objective function.

According to Fenchel-Rockafellar’s duality theorem, we have that if h ∈ Γ0(Rm)
and ψ ∈ Γ0(Rn) are such that

ri(domh) ∩D
(

ri(domψ)
)
6= ∅, (2.11)

then

inf
x∈Rn

(h(Dx) + ψ(x)) = − min
F∈Rm

(ψ∗(−D>F ) + h∗(F )). (2.12)

Let us set h = σC and

(∀x ∈ Rn) ψ(x) =
1

2
(Hx− f)>Λ−1(Hx− f) +

η

2
‖Kx‖2. (2.13)

As domψ = Rn and 0 ∈ ri(C) ∩D(Rn), Condition (2.11) holds. The conjugate of h
is h∗ = ıC and the conjugate of ψ is

(∀a ∈ Rn) ψ∗(a) = sup
x∈Rn

(a>x− ψ(x)). (2.14)

Note that

(∀x ∈ Rn) ψ(x) =
1

2
x>Γ−1x− f>Λ−1Hx+

1

2
f>Λ−1f (2.15)
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where Γ = (H>Λ−1H + ηK>K)−1 = (H>Λ−1H + ηK)−1 (since K is a projection
operator). Function x 7→ a>x − ψ(x) is strictly concave and its maximizer x̃ is such
that ∇ψ(x̃) = a. So,

x̃ = Γ(a+H>Λ−1f) (2.16)

and

ψ∗(a) = a>x̃− ψ(x̃). (2.17)

Eq. (2.15) then yields the following expression of the conjugate:

ψ∗(a) =
1

2
(a+H>Λ−1f)>Γ(a+H>Λ−1f)− 1

2
f>Λ−1f. (2.18)

Using (2.12), we deduce that the dual form of the primal problem is given by (2.8).

Let F̂ be an optimal solution to the dual problem. According to Fermat’s rule,

0 ∈ ∂(ϕ+ ıC)(F̂ ). (2.19)

Since domϕ = Rm, this is equivalent to

0 ∈ ∇ϕ(F̂ ) + ∂ıC(F̂ )

⇔ DΓ(H>Λ−1f −D>F̂ ) ∈ ∂ıC(F̂ )

⇔ F̂ ∈ ∂ı∗C
(
DΓ(H>Λ−1f −D>F̂ )

)
⇒ D>F̂ ∈ D>∂σC(Dx̂)

⇔ H>Λ−1f − Γ−1x̂ ∈ D>∂σC(Dx̂)

⇔ 0 ∈ ∇ψ(x̂) +D>∂h(Dx̂) = ∂(ψ + h ◦D)(x̂). (2.20)

This shows that x̂ is the optimal solution to Problem (2.7).

In order to efficiently optimize the DCTV problem, the convex set C in (1.4) can
generally be decomposed as an intersection of closed convex subsets (Cr)1≤r≤s of Rm,
the projections onto which take closed forms. More specifically,

C =

s⋂
r=1

Cr

(∀r ∈ {1, . . . , s}) Cr = {F ∈ Rm | (∀i ∈ Sr) ‖θ(i) · F‖α ≤ gi}. (2.21)

where (Sr)1≤r≤s is a partition of {1, . . . , n}. In order to numerically solve (2.8),
as C =

⋂s
r=1 Cr, the indicator function ıC can be decomposed into the sum of the

indicator functions of the convex sets (Cr)1≤r≤s. Hence, the dual problem is equivalent
to

minimize
F∈Rm

s∑
r=1

ıCr
(F ) + ϕ(F ). (2.22)
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2.3. Parallel proximal algorithm (PPXA). The above sum of (s+1) convex
functions can be efficiently optimized by resorting to the Parallel ProXimal Algorithm
(PPXA) proposed in [15]. The choice of this particular algorithm is motivated by its
flexibility in parallelizing the computation of the involved proximity operators. PPXA
was generalized in [50], where links with augmented Lagrangian methods [29] were
established.

Note that the dual forward-backward algorithm proposed in [51] is not directly
applicable to Problem (2.8) since the projection onto C is not explicit in general.
Dykstra’s algorithm [52] to compute the projection onto an intersection of convex
sets would not be applicable either, as the matrix DΓD> is usually singular.

Algorithm 1: Parallel ProXimal Algorithm solving (2.22)

Fix γ > 0 and ν ∈]0, 2[. Set k = 0.

Choose y
(0)
1 = y

(0)
2 = . . . = y

(0)
s+1 ∈ Rm and F (0) ∈ Rm.

repeat
(Computation of the proximity operators in parallel)
for r = 1, . . . , s+ 1 do in parallel

π(k)
r =

{
PCr (y

(k)
r ) if r ≤ s

(γDΓD> + I)−1(γDΓH>Λ−1f + y
(k)
s+1) otherwise.

(2.23)

(Averaging step)

z(k) = 2
s+1 (π

(k)
1 + · · ·+ π

(k)
s+1)− F (k)

(Updating variables in parallel)
for r = 1, . . . , s+ 1 do in parallel

y
(k+1)
r = y

(k)
r + ν(z(k) − π(k)

r )

(Updating the dual variable)
F (k+1) = F (k) + ν

2 (z(k) − F (k))
k ← k + 1

until convergence

We have then the following convergence result:
Proposition 2.5. Let C =

⋂s
r=1 Cr where, for every r ∈ {1, . . . , s}, Cr is a

closed convex set of Rm such that 0 ∈ riCr. Then, any sequence (F (k))k∈N generated
by Algorithm 1 is such that

x(k) = Γ
(
H>Λ−1f −D>F (k)

)
→ x̂ (2.24)

where x̂ is the solution to Problem (2.7).
Proof. We have : 0 ∈

⋂s
r=1 riCr = ri

(⋂s
r=1 Cr

)
= riC. According to Proposi-

tion 2.4, there thus exists a unique solution x̂ to Problem (2.7). In addition, since
domϕ = Rn,

0 ∈
( s⋂
r=1

riCr

)
∩ domϕ.

According to [15, Theorem 3.4&Proposition 3.6], the convergence of a sequence (F (k))k∈N
generated by this algorithm to a solution F̂ of (2.8) is guaranteed. Using now Rela-
tion (2.9) allows us to deduce (2.24).
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Note that the robustness of PPXA w.r.t. summable numerical errors is guaranteed
[15]. A potential numerical problem could however arise in (2.24), when Γ is ill-
conditioned. Although this behavior was not observed in our experiments, it could be
avoided by redefining K as the projection matrix onto the subspace spanned by the
eigenvectors of H>Λ−1H corresponding to eigenvalues which are close to zero.

As shown in Algorithm 1, the optimization in (2.22) requires computing projec-
tions in parallel onto each set Cr with r ∈ {1, . . . , s} (see Definition 2.2). The convex
sets as described in (2.21) obviously satisfy the assumptions made in Proposition 2.5.
The main difficulty for applying PPXA is to find a partition (Sr)1≤r≤s for which the
projections (PCr )1≤r≤s can be computed easily. To ensure this property, the partition
can be defined in such a way that

(∀r ∈ {1, . . . , s})(∀(i, i′) ∈ S2
r ) i 6= i′ ⇒ #(θ(i) · θ(i′)) = 0, (2.25)

where #(a) denotes the number of nonzero components in a vector a. Then, it is easy
to see that the projection onto Cr with r ∈ {1, . . . , s} of a vector F can be decomposed
as a finite number of projections of subvectors of dimensions

(
#(θ(i))

)
i∈Sr

extracted
from F onto weighted `α balls.

For a 4-connected lattice, when (∀i ∈ {1, . . . , n}) θ(i) is the i-th line of matrix |A>|
(case of Example 1.2), a decomposition of C can be performed by setting s = 2. The
partition (Sr)1≤r≤2 corresponds to two spatial disjoint sets each with a checkered
pattern (also called red black checkerboard pattern). The projection onto Cr with
r ∈ {1, 2} for α = 2 (resp. α = 1 or α = +∞) reduces to simple projections onto
hyperspheres (resp. hypercubes [53]). For example, the decomposition on a small
lattice when α = 2 is illustrated by Fig. 2.1.

g1 g2 g3

g4 g5 g6

F1,2 F2,3

F4,5 F5,6

F1,4 F2,5 F3,6

g1 g2 g3

g4 g5 g6

C1 ={F |

F
2
1,2 + F

2
2,3 + F

2
2,5 ≤ g

2
2,

F
2
1,4 + F

2
4,5 ≤ g

2
4,

F
2
3,6 + F

2
5,6 ≤ g

2
6

}

C2 ={F |

F
2
1,2 + F

2
1,4 ≤ g

2
1,

F
2
2,3 + F

2
3,6 ≤ g

2
3,

F
2
2,5 + F

2
4,5 + F

2
5,6 ≤ g

2
5

}

Fig. 2.1. Decomposition of C = C1 ∩ C2

Note also that, at each iteration k ∈ N, the computation of the proximity operator

π
(k)
s+1 (computed in the first step of Algorithm 1, Eq. (2.23)) requires a matrix inver-

sion. In cases when H and Λ are (or can be well approximated by) circulant-block
circulant matrices, and the graph is regular, this step can be performed efficiently [54].
For this purpose, the inverse of matrix γDΓD> + I is expressed by using the matrix
inversion lemma, also known as Sherman-Morrison-Woodbury matrix identity. The
resulting linear system then involves a circulant-block circulant matrix and is solvable
efficiently using a Fast Fourier Transform.

Decomposing arbitrary graphs
In arbitrary graphs, the graph decomposition in a checkerboard pattern (Fig. 2.1) is
no longer valid. So, we use a graph coloring algorithm for the decomposition. Coloring
a graph with a minimum number of colors for the nodes is an NP-complete problem.
However, there exist heuristic algorithms that find a non-optimal, but feasible solution



12

in polynomial time. In our experiments, we employed the DSAT (Degree SATuration)
algorithm [55], which is guaranteed to color triangulated graphs in linear time. An
illustration is provided in Fig. 2.2. Experimentally, this greedy algorithm typically
decomposes the convex set C in ten sets or fewer.

(a) (b) (c) (d) (e) (f)

Fig. 2.2. Coloring a graph using the DSAT algorithm [55]. (a) Sort nodes by decreasing degree.
Initial labeling DSAT equal to node degrees. (b) Choose a node with maximum DSAT. Assign color
number 1. Update DSAT: For each non-colored node v, if at least one neighbor of v is colored,
DSAT(v) equals the number of different colors used in the neighborhood of v. (c) Choose a non-
colored node of maximum DSAT. In case of conflict, choose a node of maximum degree. Assign the
smallest possible color. Update DSAT. (d,e,f) Repeat the procedure in (c) until all nodes are colored.

2.4. M+SFBF algorithm. Starting from Problem (2.7), we deduce an alterna-
tive formulation of the energy to minimize. The formulation we obtain shall allow us
to employ another parallel proximal algorithm, the Monotone + Skew Forward Back-
ward Forward (M+SFBF) algorithm [56], which differs from PPXA. Interestingly,
when H is the identity matrix and Λ is diagonal, M+SFBF does not require us to
solve numerically a linear system at each iteration of the algorithm. M+SFBF belongs
to the rich class of primal-dual proximal methods which also include the methods by
Chen and Teboulle [57], Chambolle and Pock [31] Esser et al. [58], and Combettes
and Pesquet [59].

Proposition 2.6. Let C =
⋂s
r=1 Cr where, for every r ∈ {1, . . . , s}, Cr is a

closed convex set of Rm such that 0 ∈ riCr. Then, the problem

minimize
a1∈Rm,...,as∈Rm,x∈Rn

a1+···+as=Dx

s∑
r=1

σCr
(ar) +

1

2
(Hx− f)>Λ−1(Hx− f) +

η

2
‖Kx‖2 (2.26)

has a solution. In addition, there exists (â1, . . . , âs) ∈ (Rm)s such that (â1, . . . , âs, x̂)
is a solution to (2.26) if and only if x̂ is the solution to (2.7).

Proof. Noticing that

σ∗C = ıC =

s∑
r=1

ıCr =

s∑
r=1

σ∗Cr
= (σC1� · · ·�σCs)∗, (2.27)

where � denotes the infimal convolution (see (2.5)), we deduce that

σC = (σ∗C)∗ = σC1� · · ·�σCs . (2.28)

We have then

(∀a ∈ Rm) σC(a) = inf
a1∈Rm,...as∈Rm

a1+···+as=a

σC1
(a1) + · · ·+ σCs

(as). (2.29)

In addition, since
⋂s
r=1 riCr 6= ∅, the above infimum is attained (see [60, Theo-

rem 16.4]). From this, we deduce that (2.7) can be reformulated as in (2.26). The
existence of a solution to (2.26) results from Proposition 2.4.
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We see that the proposed approach amounts to decomposing the gradient Dx
of a candidate solution x in a sum of components (ar)1≤r≤s onto which a simpler
regularization is performed. In particular, as in the previous section, we choose the
decomposition of C in such a way that each Cr is the product of convex sets in a
lower-dimensional space, i.e. ×i∈Sr

Cir (for example, Cir is a hypersphere of R4). In
this case, σCi

r
with i ∈ Sr is a “local” sparsity measure, in the sense that the proximity

operator of each σCi
r

is a proximal thresholder [61]:

proxσCi
r

air = 0⇔ air ∈ Cir. (2.30)

This interpretation provides more insight in the choice for C.
Another positive point of the formulation in (2.26) is that it allows us to propose

an alternative parallel algorithm to solve the problem. More precisely, we propose to
employ Algorithm 2 which is derived from the M+SFBF algorithm in [56].

We have then the following convergence result:
Proposition 2.7. Under the same assumption as in Proposition 2.6, any se-

quence (a
(k)
1 , . . . , a

(k)
s , x(k))k∈N generated by Algorithm 2 converges to a solution to

Problem (2.26).
Proof. Problem (2.26) takes the form of the dual problem in [56, Proposition 4.4]

minimize
a1∈Rm,...,as∈Rmas+1∈Rn

(s+1)−1 ∑s+1
r=1 L

>
r ar=0

s+1∑
r=1

ϕ∗r(ar) (2.31)

where we have set as+1 = x, L1 = . . . = Ls = (s + 1)I, Ls+1 = −(s + 1)D>,
(∀r ∈ {1, . . . , s}) ϕr = ıCr , ϕs+1 = ψ∗. In a finite dimensional space, the qualification
condition in [56, Remark 4.5] is satisfied if

(∃a ∈ Rm)(∀r ∈ {1, . . . , s+ 1}) Lra ∈ ri(domϕr). (2.32)

The latter condition holds since 0 ∈ ∩sr=1 riCr and domψ = Rn. The convergence

of the sequence (a
(k)
1 , . . . , a

(k)
s , x(k))k∈N to a solution to (2.31) then follows from [56,

Proposition 4.4].
One additional advantage of this primal-dual algorithm is that the convergence

of (a
(k)
1 , . . . , a

(k)
s , x(k))k∈N to a solution to Problem (2.26) is guaranteed even in the

limit case when η = 0.

3. Results. Our validation intends to demonstrate the improvements of DCTV
over state-of-the-art approaches in image denoising in terms of signal-to-noise ratio
and contrast preservation, while keeping low computation times and suitability to
a variety of problems. To the best of the our knowledge, [13] represents the state-
of-the-art in variational image restoration. Our experiments are organized in three
parts.

(i). First we evaluate the DCTV denoising performance in comparison with the
state-of-the-art. The first experiment compares TV, weighted TV, and DCTV
results using different norms for the convex set that constrains the flow vari-
able. A second experiment confirms the SNR improvements of DCTV over
weighted TV for the recovery of several images corrupted with different noise
variances. We repeat the second experiment in non-local graphs to gain ad-
ditional SNR improvements.
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Algorithm 2: The M+S Forward-Backward-Forward algorithm solving (2.26)

Fix ε ∈]0,
(
(s+ 1)β + 1

)−1
[ where β = max{1, ‖D‖}. Set k = 0.

Choose (F
(0)
r )1≤r≤s+1 and (a

(0)
r )1≤r≤s in Rm and x(0) ∈ Rn.

repeat

F (k) = 1
s+1

∑s+1
r=1 F

(k)
r

γ(k) ∈ [ε(s+ 1), (1− ε)/β]
Updating steps in parallel
for r = 1, . . . , s+ 1 do in parallel

G
(k)
r =

{
F

(k)
r − γ(k)a

(k)
r if r ≤ s

F
(k)
s+1 + γ(k)Dx(k) otherwise.

b
(k)
r =

{
a

(k)
r + γ(k)F

(k)
r if r ≤ s

x(k) − γ(k)D>F
(k)
s+1 otherwise.

Averaging step

Π(k) = 1
s+1

∑s+1
r=1G

(k)
r

for r = 1, . . . , s+ 1 do in parallel
Computation of proximity operators in parallel

π
(k)
r ={
b
(k)
r − γ(k)PCr (γ(k)−1

b
(k)
r ) if r ≤ s(

γ(k)(H>Λ−1H + ηK) + I
)−1

(γ(k)H>Λ−1f + b
(k)
s+1) otherwise.

Updating steps in parallel

G
(k)
r

′
=

{
Π(k) − γ(k)π

(k)
r if r ≤ s

Π(k) + γ(k)Dπ
(k)
s+1 otherwise.

b
(k)
r

′
=

{
π

(k)
r + γ(k)Π(k) if r ≤ s
π

(k)
s+1 − γ(k)D>Π(k) otherwise.

F
(k+1)
r = F

(k)
r −G(k)

r +G
(k)
r

′{
a

(k+1)
r = a

(k)
r − b(k)

r + b
(k)
r

′
if r ≤ s

x(k+1) = x(k) − b(k)
s+1 + b

(k)
s+1

′
otherwise.

k ← k + 1
until convergence

(ii). Secondly, we evaluate computation times for the differents algorithms we
employed.

(iii). We finally show that the scope of DCTV is not limited to restoration problems
and it also leads to improved results in tasks such as image fusion and mesh
filtering.

3.1. Image denoising performance.

3.1.1. Local denoising. In our first application, we demonstrate the perfor-
mance of DCTV with respect to weighted TV [4] for image denoising. In Section 3.1.1,
the considered graph connects each node corresponding to an image value to its neigh-
bors in a 4-connected local neighborhood.

Concerning the choice of the node weight gi at the i-th node, a simple strategy
consists of considering a monotonically decreasing function of the data gradient. More
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(a) Original image (b) Noisy image (c) TV (d) Weighted TV
SNR = 19.1 dB SNR =29.2 dB SNR = 29.7 dB

(e) DCTV, α = 1 (f) DCTV, α = +∞ (g) DCTV, α = 2
SNR=28.5 dB SNR = 31.2 dB SNR = 29.9 dB

Fig. 3.1. Denoising an image for constant levels of additive Gaussian noise. (a) Original
image, (b) Noisy image, (c) TV [20] λ = 0.06, (d) Weighted TV on a 4-connected graph , weights
given by the gradients of the image (λ = 0.06, ε = 0.2) , (e) PPXA with norm `1 (λ = 0.8, ε = 0.35,
projections onto an `1 hypercube performed using the software of [53]), (f) PPXA with norm `∞
(λ = 0.4, ε = 0.3), (g) PPXA with norm `2 (λ = 0.33, ε = 0.16).

specifically, given positive reals ε and χ, we suggest using g defined as

(∀i ∈ {1, . . . , n}) gi = exp(−χ‖∇x̃i‖2) + ε, (3.1)

where x̃ is some reference data defined on a graph, for instance noisy measurements
f or image data which corresponds to some rough estimate of the original image x̄.
The Euclidean norm of its discrete gradient ∇x̃i at node i can be computed as

‖∇x̃i‖2 =

{
(
∑
j∈Ni

(x̃i − x̃j)2)
1
2 if i ∈ J

0 otherwise.
(3.2)

In the absence of a contour, gi takes large values, so are the components of F corre-
sponding to nonzero components of θ(i), preventing large local variations of x in the
minimization (1.2). Conversely, in the presence of a contour, gi ' ε, and the compo-
nents of F corresponding to nonzero components of θ(i) are small, thus allowing large
local variations of x. An illustration is given in Fig. 1.2(a).

In Fig. 3.1, we compare denoising results on a synthetic image, using different
TV-based formulations for a denoising task where the noise is assumed to be zero-
mean Gaussian and white. The general problem (2.7) is solved using η = 0, H = I,
Λ = λI with λ ∈]0,+∞[. The node weights are set according to (3.1) with χ =
0.04 and edge weights are set to one. The stopping criterion for the algorithms is
‖x(k) − x(k−1)‖ < 5.10−3‖x(k)‖. The results obtained with weighted TV [4] look
slightly better than using the classical, unweighted TV model [20]. Performing the
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σ2 5 10 15 20 25 50

SNR values obtained by optimizing weighted TV
house 32.5 28.8 27.0 25.7 25.0 21.6
man 27.4 23.8 22.0 20.7 19.6 17.2
lena 31.5 27.7 25.9 25.0 24.2 21.2

barbara 27.1 22.8 20.2 18.5 17.3 15.2
mean 29.9 26.0 24.0 22.7 21.8 18.8

SNR values obtained by optimizing DCTV
house 32.6 29.2 27.3 25.7 25.1 21.6
man 27.9 24.5 22.4 20.9 19.8 17.0
lena 31.9 28.5 26.5 25.1 24.3 21.1

barbara 27.1 23.0 20.7 19.0 17.7 15.1
mean 30.1 26.6 24.5 22.9 22.0 18.7

σ2 5 10 15 20 25 50
SNR values obtained by optimizing NonLocal DCTV

The same SNR values are obtained by optimizing NLTV
house 33.7 30.3 28.5 26.9 25.9 21.4
man 28.7 24.3 21.6 19.7 18.6 14.9
lena 31.7 28.9 26.7 25.0 23.9 20.1

barbara 28.4 24.8 22.6 20.8 19.5 15.5
mean 30.6 27.1 24.8 23.1 22.0 18.0

Table 3.1
Quantitative denoising experiment on standard images corrupted with additive Gaussian noise

with variance σ2. The regularization parameter λ was chosen empirically to give the best results for
each method.

DCTV optimization with PPXA using the convex set defined in (1.11) (α = 2) further
improves the results. The choice of the `∞ norm allows us to achieve better results
than all the other variational approaches we tried on this synthetic image. Contrary
to the `2 norm that has a smoothing effect, the `∞ norm allows us to retrieve sharper
contours. However, this effect is no longer present in non-synthetic images, where the
`2 norm is the best choice.

(a) Original (b) Noisy (c) Weighted TV (d) DCTV
image SNR= 17.0 dB SNR= 20.2 dB SNR= 20.7 dB

std. dev. = 49.5 std. dev. = 47.2 std. dev. = 45.2 std. dev. = 45.8

Fig. 3.2. Denoising the ‘barbara’ image (zoom) corrupted with Gaussian noise with variance
σ2 = 15.

In a second experiment, we compare quantitatively DCTV – using the Euclidean
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(a) Original image (b) Noisy SNR=14.47dB

(c) Nonlocal TV SNR=20.76dB (d) Nonlocal DCTV SNR=20.78dB

Original Noisy NonLocal TV NonLocal DCTV

Fig. 3.3. Local and nonlocal denoising (Gaussian noise of variance σ2 = 20 ). The nonlocal
weights are computed using [13]. Regularization parameters used to obtain the best results: (e)
λ = 0.048 (f) λ = 0.093.

norm (α = 2) – with weighted TV. We used four standard test images that we
corrupted with zero-mean white Gaussian noise with variance σ2. The value of
the image fidelity parameter λ was set according to a grid search depending on the
variance of the noise, and ε was set to λ. Signal-to-Noise Ratio (SNR) is used as the
performance measure in our quantitative evaluation. Table 3.1 reports SNR values
for DCTV and weighted TV results obtained on each image corrupted with different
values of noise variance. Result examples are shown in Fig. 3.2. Those experiments
show that DCTV leads to improved results when the variance of the noise is lower than
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50. Visually, DCTV results are sharper and feature better contrast than the weighted
TV results. The better contrast preservation can be quantified by computing the
standard deviation of the pixel values, as shown in Fig. 3.4.

3.1.2. Nonlocal denoising. Rather than using locally connected graphs, non-
local strategies [12, 13] can be employed which have been shown to achieve denoising
improvements. A nonlocal strategy may naturally be employed in the DCTV frame-
work. The weights between non-neighbor nodes are computed following the main idea
of [12, 13]: for each pixel i of the image, edges are added between i and the nodes
corresponding to most similar patches, as depicted in Fig. 1.2(b). We build edge
weights as proposed in [13],

wi,j = exp

(
− 1

h2

∑
z

Ga(z)(x̃i+z − x̃j+z)2

)
, (3.3)

where
∑
z Ga(z)(x̃i+z − x̃j+z)2 represents the distance between patches of center i

and j, Ga is a Gaussian function with standard deviation a, and h is a real number
which acts as a scale parameter.

As a result of the graph construction, the Laplacian related to the matrix to
be inverted (at each iteration of PPXA) of this nonlocal graph may be no longer
circulant block circulant, resulting in loss of speed efficiency. We propose to employ
the M+SFBF algorithm (Algorithm 2) in this case.

We provide some quantitative – in Table 3.1– and qualitative – in Fig. 3.3 –
results. We observe similar results obtained with our dual model in comparison with
the state-of-the-art weighted TV optimized using the split-Bregman algorithm [13].
We note that our model produces offers stronger convergence guaranties than the split-
Bregman approach. We also give quantitative measurements in terms of contrast
preservation in Fig. 3.4, showing that the local DCTV approach always improves
contrast over the weighted TV in local or non-local graphs.

Fig. 3.4. Left hand side: Standard deviation of each test image compared with the standard
deviation of the denoising results. We computed the mean of the standard deviation over the six dif-
ferent results given by DCTV and weighted TV for various noise variances (σ2 = 5, 10, 15, 20, 25, 50).
Right hand side: mean over the experiments (4 images corrupted with 6 different noise intensity)
for the different denoising strategies.

3.2. Computation times. In terms of computation time, DCTV using PPXA
is competitive with the most efficient weighted TV algorithm. Denoising the 512×512
Lena image corrupted with Gaussian noise (σ2 = 15) requires 0.4 seconds for split-
Bregman, versus 0.7 seconds for PPXA to converge on an Intel Xeon 2.5GHz 8-core
system. Note that as explained in [13], the energy optimized by the split-Bregman
method only corresponds to an approximation of the weighted TV energy.
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3.2.1. Comparison of applicability of M+SFBF and PPXA. The proxim-
ity operator associated with the data fidelity term in PPXA requires solving a linear
system. In the case of an image recovery task using a local, regular graph (for ex-
ample a 4-connected grid) as in the first part of Section 3.1, the special configuration
of the matrix in the system may be taken into account. As this resulting matrix is
circulant block-circulant, the system is efficiently solved using a Fast Fourier Trans-
form. However, in the case of an arbitrary graph, for example a nonlocal graph as in
Section 3.1.2, the matrix of the linear system is no longer circulant, so the system can
instead be solved using a conjugate gradient method, for instance.
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(a) regular graph
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(b) non-regular graph

Fig. 3.5. Comparison of convergence speed of the PPXA (blue) and M+SFBF (red) algorithms
for denoising an image.(a) using a regular, 4-connected lattice, (b) using a non-regular graph. In
regular graphs, PPXA is the fastest algorithm thanks to the use of FFT. However, another linear
solver has to be employed in PPXA in non-regular graphs. As a result, the M+SFBF algorithm is
faster in this case.

When using the M+SFBF algorithm, the proximity operator of the function en-
forcing the data fidelity does not require us to solve a linear system provided that H
is the identity matrix. Instead, four matrix multiplications by the weighted incidence
matrix are performed per iteration. The speed of convergence using M+SFBF and
PPXA are compared in Fig. 3.5, for denoising an image using a local, and a nonlocal
graph. In the figure, only computation times are presented because the required num-
ber of iterations to reach convergence is about the same for either algorithms. In a
local graph, the matrix multiplications in M+SFBF make the algorithm slower than
PPXA. Conversely, in a nonlocal graph, where the linear system of PPXA is solved
using a conjugate gradient, M+SFBF converges much faster.

3.2.2. Fast image deconvolution. We now give some quantitative comparison
results for joint denoising and deblurring tasks.

We compare the DCTV results to Wiener based deconvolution using the Matlab
function ‘‘deconvwrn’’. The comparison also includes the hybrid TV/wavelet reg-
ularization method of Combettes and Pesquet [15]. We report in Table 3.2 the SNR
values for restoration of images corrupted with additive zero-mean white Gaussian
noise with variances σ2 = 5, and σ2 = 10, and convolved with uniform blur kernels of
sizes 5×5 and 7×7. We observe that DCTV unsurprisingly outperforms the standard
Wiener filter. More significantly, DCTV is competitive with the recent method in [15]
both quantitatively in terms of SNR, and qualitatively. Its results are free of the
checkerboard artifacts observed for the Hybrid TV method in Fig. 3.6. Furthermore,
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(a) Original image (b) Degraded SNR=24.3dB (c) Wiener SNR=21.2dB

(d) Hybrid TV SNR=26.8dB (e) DCTV SNR=27.7dB

Original

Hybrid TV

DCTV

Fig. 3.6. Denoising and deblurring an MRI image corrupted with synthetic Gaussian 5×5 blur
and Gaussian noise (σ2 = 10). We observe in the hybrid TV result the presence of checkerboard
artifacts due to the use of discrete filters for approximating the gradient. DCTV reduces the staircase
effect of TV while preserving more details. Parameter used: Hybrid TV [15] with regularization
parameters α = 0 and β = 0.025, and DCTV with λ = 0.005 and η = 0.04.

the results were obtained twice as fast, for the same number of iterations, using a
Matlab implementations for both methods.

3.3. Generality of the framework: beyond image restoration.

3.3.1. Image fusion. We show here how to apply our Dual Constrained TV
approach to image fusion. From N degraded images f1, . . . , fN , the problem is to find
a restored image x̂. The degradation model is the following:

 f1

...
fN

 =

H1

...
HN

 x̄+

 b1...
bN

 , (3.4)

where H1, ...,HN are degradation matrices (e.g. generating blur), and b1, ..., bN rep-
resent zero-mean white Gaussian noises, possibly with different variances, assumed to
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(σ2, b) (5,5) (5,7) (10,5) (10,7)

SNR values obtained using Wiener deconvolution
house 19.2 19.8 18.8 19.2
lena 18.2 18.9 18.1 18.8

barbara 14.7 14.5 14.2 14.0
man 15.0 15.6 15.2 15.9

mean 16.8 17.2 16.5 17.2

SNR values obtained using Hybrid TV [15]
house 26.2 25.3 24.9 23.8
lena 24.9 23.8 23.9 22.9

barbara 16.4 15.7 15.8 15.4
man 21.6 20.6 20.6 19.6

mean 22.3 21.4 21.3 20.4

SNR values obtained by optimizing DCTV
house 26.3 24.7 24.6 23.3
lena 25.5 23.9 24.0 22.8

barbara 16.9 15.8 16.0 15.5
man 22.1 20.6 20.8 19.6

mean 22.7 21.3 21.4 20.3
Table 3.2

Quantitative deconvolution experiment on standard images corrupted with additive white Gaus-
sian noise with variance σ2, and a Gaussian blur of kernel size b× b. The DCTV weights have been
set according to (3.1), where the estimate of the image x has been precomputed using DCTV with
the corrupted image f . This trick allows us to obtain an SNR improvement of about 0.5 dB, while
computation times are still twice as fast than the hybrid TV method [15].

be uncorrelated. The problem can be formulated as in (1.2) by setting

f =

 f1

...
fN

 , H =

H1

...
HN

 , Λ =


λ1I 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 λNI

 (3.5)

with (λ1, . . . , λN ) ∈]0,+∞[N . We present in Fig. 3.7 an example of fusion between a
blurry image and a noisy image in a 4-connected lattice (N = 2 and H2 = I).

On a rectangular grid, where the convex C is decomposed as described in Fig. 2.1,
the parallel proximal algorithm given in Algorithm 1 can be employed efficiently for
this task.

3.3.2. 3D mesh filtering. Since the dual-constrained TV-based formulation is
defined on arbitrary graphs, x is not limited to represent only image pixel values. In
Fig. 3.8, we present an example of mesh denoising, where x̄ is a vector composed of the
spatial coordinates x̄X , x̄Y and x̄Z of the mesh nodes. In this experiment, we added
a randomly oriented noise vector with zero-mean white Gaussian magnitudes to the
original node coordinates of a mesh. This results in noisy mesh nodes of coordinates
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(a) Original image (b) Noisy image SNR=17.3dB (c) Blurry image SNR=23.9dB

(d) DCTV from (b) SNR=25.7dB (e) DCTV from (c) SNR=26.5dB (f) DCTV fusion SNR=26.5dB

Fig. 3.7. Image fusion from an image corrupted with Gaussian noise with variance σ2
2 = 20

(b) and a blurry image (c) (uniform blur kernel of size 5 × 5, with additive Gaussian noise with
variance σ2

1 = 1). (d) DCTV result obtained using only the noisy image. (e) DCTV result obtained
using only the blurry image. (f) DCTV fusion result with λ1 = 0.16 and λ2 = 0.21. SNR values are
identical for (e) and (f), however the fusion result is visibly sharper.

fX , fY and fZ . The degradation model is the following:

f =

fXfY
fZ

 =

x̄Xx̄Y
x̄Z

+ σ2

bXbY
bZ

 , (3.6)

where bX , bY , bZ represent uncorrelated vectors of additive noises with unit magnitude
variance.

For this application, we used the M+SFBF algorithm, which is more efficient than
PPXA as the graph is not regular. This application shows that the DCTV framework
is also well suited for regularizing this type of data. We compare our denoising result
to a typical mesh smoothing technique, and show that DCTV outperforms Laplacian
smoothing.

3.3.3. Biologically sampled image filtering. This final example demonstrates
the ability of DCTV to efficiently filter data on arbitrary graphs. In some situations,
images are acquired from nonuniform samples. Specifically, most biological systems
are known to acquire light nonuniformly. Following the work of [62], in Fig. 3.9,
we used the Graph Analysis Toolbox [63] that contains implementations of several
filtering techniques in arbitrary graphs. From a graph representing the spatial res-
olution of the Bottlenosed dolphin visual system, the image (c) represents an image
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(a) Original mesh (b) Noisy mesh (c) Laplacian regu-
larization

(d) DCTV regular-
ization

RSME = 0.161 RSME = 0.142 RSME = 0.139

Fig. 3.8. Example of mesh denoising using DCTV on the spatial coordinates of the nodes. We
use the Root Square Mean Error to measure an average distance to the original mesh. (c) Laplacian
smoothing (d) The M+SFBF algorithm was used to optimize DCTV with λ = 0.25. The Root Square
Mean Error measures a distance between the result and the original mesh.

resampled with the dolphin’s mesh, corresponding to the input f of our method. It
is then straightforward to run the M+SFBF algorithm, using the incidence matrix of
the graph represented in (b).

(a) Original (b) Bottlenosed (c) Sampled
image dolphin structure image

(d) Noisy sampled (e) Taubin filtered (f) DCTV result
SNR = 22.1 dB result [64] SNR = 19.4 dB (λ = 0.5) SNR = 23.3 dB

Fig. 3.9. Filtering image data on a biologically sampled image [63]. Noise with variance
σ2 = 10 was added to the resampled values of the image (c) to produce (d).

Results obtained with DCTV are compared with results obtained using the low-
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pass filtering method of Taubin et al. [64]. We note that DCTV improves contrast
preservation and thin objects rendering compared with Taubin’s method.

4. Conclusion. In this work we have extended existing TV models by gener-
alizing the constraint on the projection variable of the dual TV formulation. This
new approach shows improved results compared with the weighted TV approach in
image restoration applications. The advantage of our DCTV formulation over uncon-
strained formulations is that it allows us to take into account both edges and node
weights, as well as more general constraints on the flow variable. For local image
denoising, the induced bottleneck that arises in the nodes in the presence of a contour
helps in blocking the diffusion present in classical TV approaches. As shown in our
experiments, this behaviour results in better contrast preservation in addition to SNR
improvements. Secondly, our dual formulation allows us to employ fast optimization
strategies without requiring approximations. Finally, the versatility of DCTV allows
us to exploit extra information, and may be used in different contexts.

More generally, the proposed proximal algorithms make it possible to efficiently
solve convex minimization problems involving the support function of an intersection
of convex sets as a penalty term. It is also worth emphasizing that this approach can
be applied to any graph data structures, in particular those frequently employed in
3D modeling.

Future work will address choices of convex sets that are appropriate to the type
of data present in graphs that need to be regularized.
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