Equations of the phytoplankton growth model. The phytoplankton growth is given by the five following equations, where A stands for pp, np or mp. $$\mu_{A} = \mu_{max} \text{A} \lim_{IA} \lim_{TA} (\lim_{NO_{3}A} + \lim_{NH_{4}A})$$ $$\lim_{NO_{3}A} = \left(\frac{NO_{3}}{NO_{3} + K_{NO_{3}A}}\right) \exp(-\Psi NH_{4})$$ $$\lim_{NH_{4}A} = \left(\frac{NH_{4}}{NH_{4} + K_{NH_{4}A}}\right)$$ $$\lim_{IA} = \frac{2(1 + \beta_{IA})\frac{PAR}{I_{optA}}}{\left(\frac{PAR}{I_{optA}}\right)^{2} + 2\beta_{IA}\frac{PAR}{I_{optA}} + 1}$$ $$\lim_{TA} = \max \left(\frac{2(1 + \beta_{TA})\frac{T - T_{letA}}{T_{optA} - T_{letA}}}{\left(\frac{T - T_{letA}}{T_{optA} - T_{letA}}\right)^{2} + 2\beta_{IA}\frac{T - T_{letA}}{T_{optA} - T_{letA}} + 1}, 0\right)$$ where the parameters are defined in the following table | | 1.0 ::: | |-------------------------|---| | _parameter | definition | | μ_A | growth rate of A | | μ_{maxA} | maximum growth rate of A | | $\lim_{\mathrm{NO_3A}}$ | limitation by NO_3 for A | | $\lim_{\mathrm{NH_4A}}$ | limitation by NH_4 for A | | K_{NO_3A} | half-saturation coefficient of NO_3 for A | | $K_{ m NH_4A}$ | half-saturation coefficient of NH_4 for A | | Ψ^{-1} | inhibition coefficient by NH ₄ | | NO_3 | NO_3 concentration | | NH_4 | NH ₄ concentration | | \lim_{IA} | limitation by light for A | | $eta_{ ext{IA}}$ | shape factor for photoinhibition curve | | I_{optA} | optimum insolation for A | | PAR | photosynthetic active radiation | | \lim_{TA} | \hat{l} limitation by temperature for A | | $eta_{ ext{TA}}$ | shape factor for thermoinhibition curve | | T_{optA} | optimum temperature for A | | $T_{let A}$ | lower lethal temperature for A | | T^{iour} | temperature | | | - | Table 1: Parameters of the phytoplankton growth model