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In variance-based sensitivity analysis, the method of Sobol’ [1] allows one to compute Sobol’ indices
using Monte Carlo integration. One of the main drawbacks of this approach is that estimating Sobol’
indices requires a number of simulations which is dependent on the dimension of the model of inter-
est. For example, estimating all the first- or second-order Sobol’ indices of a d-dimensional function
basically requires d+ 1 or (d+ 1)d/2 independent input vectors, respectively. Some interesting com-
binatorial results have been introduced to weaken this defect, in particular by Saltelli [2] and more
recently by Owen [3], but the quantities they estimate still depend linearly on the dimension d. In
this paper, we introduce a new approach to estimate all the first- and second-order Sobol’ indices by
using only 2 input vectors. We establish theoretical properties of such a method for the estimation
of first-order Sobol’ indices and discuss the generalization to higher-order indices. In particular, we
prove on numerical examples that this procedure is tractable and competitive for the estimation of
all first- and second-order Sobol’ indices. As an illustration, we propose to apply this new approach
to a marine ecosystem model of the Ligurian sea (northwestern Mediterranean) in order to study
the relative importance of its several parameters. The calibration process of this kind of chemical
simulators is well-known to be quite intricate, and a rigorous and robust — i.e. valid without strong
regularity assumptions — sensitivity analysis, as the method of Sobol’ provides, could be of great
help. This article has supplementary material online.

Keywords: global sensitivity analysis; variance-based sensitivity indices; numerical integration;
orthogonal arrays

1. Introduction and notation

Sobol’ indices (SI) [1] are quantities defined by normalizing variance components in an
ANOVA decomposition [1, 4, 5]. They are an important tool to study the sensitivity
of a model output subject to the input parameters since they allow to quantify the
relative importance of input factors of a function over their entire range of values. As
Sobol’ indices essentially consist of integrals, their computation can become rapidly ex-
pensive when the number of factors increases. In addition to the method of Sobol’, many
techniques have been proposed to estimate these indices. They include Fast Amplitude
Sensitivity Test (FAST) [6], Random Balance Design (RBD) [7], Bayesian techniques [8],
spectral methods based on polynomial chaos expansion [9], or other metamodel-based
techniques [10]. A recent review of these methods can be found in Saltelli et al. [11], and
more specifically a new introduction to FAST and RBD has been recently provided by
Tissot et al. [12].

Spectral methods — such as FAST, RBD or polynomial chaos expansion-based meth-
ods — which exploit the spectral decomposition of the model with respect to a particular
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multivariate basis, can improve the rate of convergence for the estimation of SIs. How-
ever, it is only true under strong assumptions on the spectral decomposition of the model
itself such as a decay of the spectrum sufficiently fast, the negligibility of high-order spec-
tral coefficients, etc. As a result, these methods are not robust to complex phenomena
such as high-frequency variations or discontinuities, and so the method of Sobol’ appears
as the main method one can trust when no strong a priori knowledge on the model of
interest is available.

Let f be a real square integrable function defined on Rd and X = (X1, . . . , Xd) a
random vector with independent components arbitrarily distributed on R. Then let us
consider the real random variable Y = f(X) and for any u ⊆ {1, . . . , d}, denote by Xu

the random vector with components Xi, i ∈ u. The ANOVA decomposition states that
Y can be uniquely decomposed into summands of increasing dimensions

Y =
∑

u⊆{1,...,d}

fu(Xu) (1)

where the summands in Equation (1) are orthogonal that is, E (fu(Xu)fv(Xv)) = 0, for
any u 6= v ⊆ {1, . . . , d}. In particular, the sum of functions

f∅ + f1(X1) + f2(X2) + · · ·+ fd(Xd) (2)

is the so-called additive part of f , where the constant f∅ = E[Y ] and the random variables
fi(Xi) = E[Y |Xi]−E[Y ] are the components of lower complexity. The components fu(Xu)
are explicitely known in terms of conditional expectation. As already mentioned, we have
f∅ = E[Y ] and the other terms are recursively defined by

fu(Xu) = E[Y |Xu]−
∑
v⊂u

fv(Xv).

Then, setting Var[Y ] = σ2 and Var[fu(Xu)] = σ2
u, Eq. (1) gives σ2 =

∑
u⊆{1,...,d} σ

2
u

and the SIs — also known as global sensitivity indices — are defined as

Su =
σ2
u

σ2
, u ⊆ {1, . . . , d}.

If u = {i}, Su quantifies the main effect due to the factor Xi, and if |u| = Card(u) > 1,
Su quantifies the interaction effect between the factors Xi, i ∈ u. Note that S∅ is trivially
equal to zero. Similarly one can define τ2

u = Var
[
E[Y |Xu]

]
and consider the quantities

Su =
τ2
u

σ2
, u ⊆ {1, . . . , d}

known as lower SIs or closed sensitivity indices. If u = {i} then Su = Su, and if Card(u) >
1, Su quantifies the sum of all the main and interaction effects due to any group of
factors v ⊆ u. Note that for any 1 ≤ r ≤ d, the knowledge of {Su, Card(u) ≤ r}
or {Su, Card(u) ≤ r} are strictly equivalent since, on the one hand, we have Su =∑

v⊆u Sv and on the other hand, the Möbius inversion formula [see, e.g., 13] gives Su =∑
v⊆u(−1)|u|−|v|Sv .
In practice global sensitivity analysis focuses on the first- or second-order — i.e.

Card(u) = 1 or 2, respectively — terms. In the present paper, we only focus on the
indices Su which are the quantities estimated by the method of Sobol’.
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The paper proceeds as follows. Section 2 provides a short review of the method of
Sobol’, gives some notation and explains the main idea of the new method we propose in
the present paper. In Section 3, theory is presented including asymptotic properties re-
lated to both Latin hypercube sampling (LHS) and replicated Latin hypercube sampling
(RLHS). In this section, we also discuss potential generalizations to using randomized
orthogonal arrays [see 14, 15]. Numerical illustrations are provided in Section 4, and
Section 5 draws conclusions. Detailed proofs of the technical results are presented in an
online supplementary document.

2. Background

Like any numerical integration technique, the method of Sobol’ can be viewed as the par-
ticular combination of a design of experiments (DOE) — i.e. the location the information
is collected — and an estimator — i.e. the way the collected information is processed. In
this section, we first describe the DOEs of interest and we then come to the definitions
of some currently used estimators in the method of Sobol’. Finally, we introduce the
concept of RLHS and we explain why this kind of DOE is of great importance in the
issue of estimating first-order SIs.

From now on, we assume that X1,. . . , Xd are independent random variables uniformly
distributed on [0, 1]. However thanks to the inversion method [see, e.g., 16] a model
Y = f(X1, . . . Xd) where the Xis are arbitrarily distributed can always be transformed
into a model Y = g(U1, . . . , Ud) where the Uis are random variables uniformly distributed
on [0, 1], defined by Ui = Fi(Xi) with Fi the cumulative distribution function of Xi. Thus
the assumption on the Xis is not restrictive.

2.1 Designs of experiments

In the present paper a design of experiments refers to a finite subset of [0, 1]d. We do not
consider deterministic constructions of DOEs but only random ones, i.e. as in a Monte
Carlo method, DOEs consist of n realizations of a set of random d-dimensional vectors.

Estimating a lower SI using the method of Sobol’ typically requires 2n evaluations of the
model. However there exist more sophisticated estimators that may require 3n or more
evaluations, see e.g. [17]. In the present paper, we focus on the most basic estimators that
only require 2n simulations. In this case, the first of any double evaluation is a realization
of the random variable Y = f(X1, . . . , Xd), and the complementary evaluation is obtained
from the first one by resampling its components indexed by the elements of uc. In other
words, the complementary evaluation is a realization of the random variable denoted by
Yu and defined by

Yu = f(Xu,Zuc) (3)

where Z is a d-dimensional vector uniformly distributed on [0, 1]d, and for all i in
{1, . . . , d}

(Xu,Zuc)i =

{
Xi if i ∈ u
Zi otherwise.

(4)

Hence the definition of the design of experiments of size N = 2n for estimating Su,
denoted by Du(N), proceeds as follows. First let (Xj)j=1..n and (Zj)j=1..n be independent
replications of the random vectors X and Z, respectively, i.e. Monte Carlo sampling. Then
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denote the two halves of the main DOE by

H(n) =
{
Xj , 1 ≤ j ≤ n

}
Hu(n) =

{
(Xj

u,Z
j
uc), 1 ≤ j ≤ n

}
(see the definition in Eq.

(
4)
)
,

and define Du(N) to be the resulting union of both sets. The sampling plans obtained
from this pick-freeze procedure are known as plans based on substituted columns (see e.g.
Morris et al. [18]), and they can be used e.g. with the estimators presented in Section
2.2 (see also Janon et al. [19]). Figure 1 (a) and (b) show illustrations of such DOEs
for estimating first-order SIs in a 2-dimensional space. Note that in this figure D{1}(10)
and D{2}(10) contain two points per level of the first and second axis, respectively; this
consists of the main property — or constraint — of the DOE in the issue of estimating
SIs using the method of Sobol’.
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Figure 1. Designs of experiments of size N = 10: (a) and (b) are plans based on substituted columns D{1}(10)

and D{2}(10) for the respective estimation of S1 and S2, (c) is the composite DOE based on replicated Latin

hypercubes which allows the estimation of both S1 and S2.

2.2 Estimators

Using the previous notation, we now consider, for any j in {1, . . . , n}, the output obser-
vations

Y j = f(Xj) and Y j
u = f(Xj

u,Z
j
uc). (5)

In the method of Sobol’, the estimation of the index Su consists in applying a Monte
Carlo (MC) method to both the numerator and denominator of

Su =
Var
[
E[Y |Xu]

]
Var[Y ]

that can be rewritten (see e.g. [19]), using the notation in Eq. (3), as

Su =
Cov(Y, Yu)

Var[Y ]
=

E[Y Yu]− E[Y ]E[Yu]

Var[Y ]
. (6)

As already mentioned in this section, several estimators have been introduced to perform
this numerical integration. In the present paper, we only consider the natural estimator
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coming from (6), and an other one due to Monod et al. [20]. Using the notation in (5),

they are defined by S̃u,n = τ̃2
u,n/σ̃

2
n where

τ̃2
u,n =

1

n

n∑
j=1

Y jY j
u −

(
1

n

n∑
j=1

Y j

)(
1

n

n∑
j=1

Y j
u

)
and σ̃2

n =
1

n

n∑
j=1

(
Y j
)2 − ( 1

n

n∑
j=1

Y j

)2

(7)

and Ŝu,n = τ̂2
u,n/σ̂

2
n where

τ̂2
u,n =

1

n

n∑
j=1

Y jY j
u −

(
1

2n

n∑
j=1

(
Y j + Y j

u

))2

(8)

and σ̂2
n =

1

2n

n∑
j=1

((
Y j
)2

+
(
Y j
u

)2)− ( 1

2n

n∑
j=1

(
Y j + Y j

u

))2

, (9)

respectively.

2.3 Motivation to use replicated Latin hypercube sampling

Following the previous description of both the DOEs (Section 2.1) and the estimators
(Section 2.2), it is easy to understand that estimating all the first-order SIs using this
technique requires n(d+ 1) evaluations of the model, i.e. d+ 1 DOEs each containing n
points. More generally, for any k in {1, . . . , d}, estimating all the k-th order SIs basically

requires n
((
d
k

)
+ 1
)

evaluations.
Some interesting combinatorial results have been introduced to weaken this defect. For

instance, Saltelli [2] shows how to estimate all the second-order SIs by using only n(2d+2)
evaluations. In a more recent work, Owen [3] deeply studies these combinatorial aspects.
However the quantities of interest estimated in both these papers still require O(d)
evaluations of the model, and this dependency with respect to the dimension d appears
as a major drawback in the sensitivity analysis of high-dimensional models potentially
depending on more than one hundred input parameters.

We propose in this paper a new approach based on replicated Latin hypercube sam-
pling, which overcomes this issue of dimensionality for the estimation of first-order Sobol’
indices. Our approach generalizes to the estimation of higher-order Sobol’ indices. How-
ever, the generalization to the estimation of higher order interactions requires a constraint
linking the dimension d, the strength t of the interactions under study and the number of
model evaluations required. This constraint is stated in Section 3.3 (see Inequality (15)).
We discuss this constraint in the case of second-order interactions in Remark 3.4. In Sec-
tion 4, our approach is numerically compared with the estimation procedure presented
in Saltelli [2] and with quasi-Monte Carlo approaches.

In the following, if H(n) =
{
Xj = (Xj

1 , . . . , X
j
d), 1 ≤ j ≤ n

}
is any DOE, we say

that a DOE H ′(n) is replicated from H(n) if H ′(n) is obtained through a column-

wise random permutation of H(n). More precisely it means that H ′(n) =
{
X′j =

(π1(Xj
1), . . . , πd(X

j
d)), 1 ≤ j ≤ n

}
, where the πis are d independent random permuta-

tions uniformly distributed on the set of the values {Xj
i , 1 ≤ j ≤ n} for any i = 1, . . . , d.

Note that this notion is clearly symmetric, so we can also say that H(n) is replicated
from H ′(n) or even that H(n) and H ′(n) are replicated from each other. As a result, for
any axis k in {1, . . . , d}, the union of H(n) and one of its replicates H ′(n) contains two
points per level of the k-th coordinate, see Figure 1 (c). So for any axis k, this composite
DOE allows one to estimate the index Sk. In other words, we obtain a DOE that allows
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one to estimate all the first-order SIs using only 2n evaluations of the model. These
sampling plans are known as plans based on permuted columns (see e.g. McKay [21] or
Morris et al. [18], PC plans). In MKay [21], or Morris et al. [18, 22], an arbitrary number
r of replications of the initial design H(n) is used to define an estimator of first-order
Sobol’ indices (see e.g. the definition of this estimator in Section 2.2 of the paper by
Morris et al. [22]). This estimator is different in nature from ours. The idea to use the
estimator defined by (7) in Section 2.2 of the present paper with two half-designs H(n)
and H ′(n) which are obtained by PC sampling was first introduced by Mara et al. [23]
for a numerical study on the estimation of first-order Sobol’ indices.

3. Theory

Both estimators S̃u,n and Ŝu,n introduced in the previous section have strong statistical
properties. It is easy to prove that they are strongly consistent — i.e. they converge
almost surely to the theoretical value Su — and that the biases of both their numerator
and denominator are O(n):

E
[
τ̃2
u,n

]
= τ2

u −
1

n
τ2
u and E

[
σ̃2
n

]
= σ2 − 1

n
σ2

and, as shown by Owen [3],

E
[
τ̂2
u,n

]
= τ2

u −
1

2n
(σ2 + τ2

u) and E
[
σ̂2
n

]
= σ2 − 1

2n
(σ2 + τ2

u).

But the most important property, proved by Janon et al. [19], is that they are asymp-
totically normal. In particular this allows one to derive asymptotic confidence intervals
which provide probabilistic bounds on the estimation error.

Now the question that naturally arises is

”Does the new approach based on RLHS we proposed for estimating all the first-order
Sobol’ indices still have these strong statistical properties?”

The answer is affirmative to the three previous points of interest and we prove it in
this section. First we begin by stating important results of convergence on LHS — see
Proposition 3.1 in Section 3.1 — as well as on RLHS — see Proposition 3.2 in Section
3.2 — and we then formulate the main result on the estimation of all the first-order SIs
using only two RLHS in Theorem 3.1 in Section 3.2. In a final subsection, we address
the issue of potential generalizations to randomized OA.

3.1 On Latin hypercube sampling

We now assume that the Xjs and the Zjs are no longer independent replications of X and
Z, but we consider that {Xj , 1 ≤ j ≤ n} and {Zj , 1 ≤ j ≤ n} are two independent Latin

hypercubes of size n. We then prove that both estimators S̃u,n and Ŝu,n introduced in the
previous section still have the statistical properties presented above. We first introduce
the definition of a Latin hypercube:

Definition 3.1 Let d and n in N∗, and consider Πn the set of all the permutations of
{1, . . . , n}. We say that (Xj)j=1..n is a Latin hypercube of size n in [0, 1]d — and we
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denote (Xj)j ∼ LH(n, d) — if for all j ∈ {1, . . . , n},

Xj =

(
π1(j)− U1,π1(j)

n
, . . . ,

πd(j)− Ud,πd(j)

n

)
(10)

where the πi’s and the Ui,j ’s are independent random variables uniformly distributed on
Πn and [0, 1], respectively.

Let now (Xj)j ∼ LH(n, d) and (Zj)j ∼ LH(n, d) be two independent Latin hypercubes

of size n in [0, 1]d, and for any u ⊆ {1, . . . , d} let Y j,LHS = f(Xj) and Y j,LHS
u =

f(Xj
u,Z

j
uc).

The resulting estimators are now denoted S̃
LHS

u,n = τ̃2,LHS
u,n /σ̃2,LHS

n and Ŝ
LHS

u,n =

τ̂2,LHS
u,n /σ̂2,LHS

n , respectively. Their statistical properties are gathered in the following
result:

Proposition 3.1
(i) If f4 is integrable then S̃

LHS

u,n and Ŝ
LHS

u,n are strongly consistent.

(ii) If f6 is integrable then
√
n(S̃

LHS

u,n − Su) and
√
n(Ŝ

LHS

u,n − Su) converge in law to a
zero-mean normal distribution with lower variance than the respective variance given in
the central limit theorem (CLT ) for the basic estimators S̃u,n and Ŝu,n .

(iii) We have

E
[
τ̃2,LHS
u,n

]
= τ2

u +Bn,1 and E
[
σ̃2,LHS
n

]
= σ2 +Bn,2

E
[
τ̂2,LHS
u,n

]
= τ2

u +Bn,3 and E
[
σ̂2,LHS
n

]
= σ2 +Bn,3

where

− 1

n− 1
τ2
u ≤ Bn,1 ≤ 0 , − 1

n− 1
σ2 ≤ Bn,2 ≤ 0 , − 1

2(n− 1)
(σ2 + τ2

u) ≤ Bn,3 ≤ 0 .

Remark 3.1 Due to their intricate structure, the biases of the estimators τ̃2,LHS
u,n , σ̃2,LHS

n ,

τ̂2,LHS
u,n and σ̂2,LHS

n can’t be easily reduced. Nevertheless we can note that these biases

are asymptotically negligible, with a rate of convergence in O(n−1) larger than the rate
of convergence of the estimators — to their theoretical values — themselves, which is in
O(n−1/2).

To conclude, we have proven that the estimation of SIs combining MC estimators
and LHS has strong statistical properties. In particular, estimators in such a method
have similar — and potentially smaller — bias than the classic method based on simple
random sampling and asymptotically smaller variance.

3.2 On replicated Latin hypercube sampling

We now come to alternative estimators based on RLHS. First in Proposition 3.2, we
present a technical result showing that such estimators still have the strong statistical
properties of the former estimators. We then prove that only two RLHS are necessary to
estimate all the first-order Sobol’ indices and that the estimators defined in this efficient
strategy have the same statistical properties as in Proposition 3.2.

We begin with the definition of a replicated Latin hypercube:

7
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Definition 3.2 Let d and n in N∗, and consider Πn the set of all the permutations of
{1, . . . , n}. We say that (Xj)j=1..n and (X

′j)j=1..n are two replicated Latin hypercubes
of size n in [0, 1]d — and we denote (Xj ,X

′j)j ∼ RLH(n, d) — if for all j ∈ {1, . . . , n},

Xj =

(
π1(j)− U1,π1(j)

n
, . . . ,

πd(j)− Ud,πd(j)

n

)

and

X
′j =

(
π′1(j)− U1,π′1(j)

n
, . . . ,

π′d(j)− Ud,π′d(j)

n

)

where the πi’s, the π′i’s and the Ui,j ’s are independent random variables uniformly dis-
tributed on Πn, Πn and [0, 1], respectively.

Let now (Xj)j ∼ LH(n, d) be a Latin hypercube of size n in [0, 1]d and (Zj ,Z
′j)j ∼

RLH(n, d) be two replicated Latin hypercubes of size n in [0, 1]d, and for any u ⊆
{1, . . . , d} define

Y j,RLHS = f(Xj
u,Z

j
uc) and Y j,RLHS

u = f(Xj
u,Z

′j
uc). (11)

Note that Y j,RLHS actually depends on u, but the essential constraint stating that the

random vectors (Xj
u,Z

j
uc) and (Xj

u,Z
′j
uc) have the same components in their i-th coordi-

nate, for all i ∈ u is still checked. However for convenience, we omit u in the notation.

The resulting estimators are now denoted by S̃
RLHS

u,n = τ̃2,RLHS
u,n /σ̃2,RLHS

n and Ŝ
RLHS

u,n =

τ̂2,RLHS
u,n /σ̂2,RLHS

n , respectively. Note that for the estimators of SIs based on r replicated
Latin hypercubes introduced by McKay [21] — see also the summarized presentation by
Saltelli et al. [24] — no rigorous theoretical study has been proposed, except for the issue
of the bias. Morris et al. [22] have indeed proposed a sampling procedure which allows
to construct an unbiased estimator for each first-order Sobol’ index. We imagine that an
asymptotic study for the estimator in McKay [21] would be based on r and n growing to
infinity. However our procedure is different and just involves r = 2 replicated LHS. Thus
the asymptotic is only formulated as n tends to infinity, where n is the size of the initial
half-design.

The statistical properties of S̃
RLHS

u and Ŝ
RLHS

u are gathered in the following result:

Proposition 3.2
(i) If f4 is integrable then S̃

RLHS

u,n and Ŝ
RLHS

u,n are strongly consistent.

(ii) If f6 is integrable then
√
n(S̃

RLHS

u,n − Su) and
√
n(Ŝ

RLHS

u,n − Su) converge in law to
a zero-mean normal distribution with the same respective variance given in CLT for the

estimators S̃
LHS

u,n and S̃
LHS

u,n .

(iii) We have

E
[
τ̃2,RLHS
u,n

]
= τ2

u −
1

n
τ2
u +Bn,1 +B|u|,n and E

[
σ̃2,RLHS
n

]
= σ2 +Bn,3

E
[
τ̂2,RLHS
u,n

]
= τ2

u −
1

2n
τ2
u +Bn,1 +Bn,2 +B|u|,n and E

[
σ̂2,RLHS
n

]
= σ2 − 1

2n
τ2
u +Bn,1 +Bn,2

8
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where

|Bn,1| ≤
(
d+ 1

n
+ 2

)(
d+ 1

n

)
E[Y 2] ,

|Bn,2| ≤
σ2

2n
, − 1

n− 1
σ2 ≤ Bn,3 ≤ 0 ,

|B|u|,n| ≤
(
d− |u|+ 1

n
+ 2

)(
d− |u|+ 1

n− 1

)
E[Y 2] .

Using this technical result, it is possible to estimate all the first-order Sobol’ indices
with only two replicated Latin hypercubes (RLH) and in addition the new estimators
inherit the strong statistical properties stated in Proposition 3.2. The main idea consists
in defining, for any i ∈ {1, . . . , d}, the two samples Y j and Y j

{i} — necessary to estimate

S{i} — by only considering two RLH. To this end, we first consider (Xj ,X
′j)j two

replicated Latin hypercubes of size n in [0, 1]d defined by

Xj =

(
π1(j)− U1,π1(j)

n
, . . . ,

πd(j)− Ud,πd(j)

n

)
,

X
′j =

(
π′1(j)− U1,π′1(j)

n
, . . . ,

π′d(j)− Ud,π′d(j)

n

)
.

Secondly, let π ∈ Πn be a random permutation independent from the πis and the π′is,
and for any i ∈ {1, . . . , d} and j ∈ {1, . . . , n} consider

Y j = f(Xπ−1
i ◦π(j)) and Y j

{i} = f(X
′π
′−1
i ◦π(j)), (12)

where the symbol ◦ denotes the composition of two functions. In this method, the DOE
used to estimate S{i} is

D{i}(2n) = {Xπ−1
i ◦π(j), 1 ≤ j ≤ n} ∪ {X′π

′−1
i ◦π(j), 1 ≤ j ≤ n} (13)

and viewed as non-ordered set, it does not depend on i and is equal to

D(2n) = {Xj , 1 ≤ j ≤ n} ∪ {X′j , 1 ≤ j ≤ n}. (14)

As a result, we can construct all the d estimators
(
S̃i
)
i=1..n

as defined in (7) — resp.(
Ŝi
)
i=1..n

as defined in (9) — by only requiring the 2n evaluations of the model f on the
DOE D(2n). Then we have the following result.

Theorem 3.1 Consider (Xj ,X
′j)j ∼ RLH(n, d) and denote D(2n) the union of both

these replicated Latin hypercubes as defined in (14). For any i ∈ {1, . . . , d}, consider
the evaluations of the function f on the reordered set D{i}(2n) as defined in (13), and

denote them by (Y j)j=1..n and (Y j
{i})j=1..n as presented in (12). Then the estimator S̃{i}

as defined in (7) — resp. Ŝ{i} as defined in (9) — built with Y j and Y j
{i} is strongly

consistent, asymptotically normal and has numerator and denominator with bias as stated
in (iii) of Proposition 3.2.

9
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For the proof see the Appendix A.

3.3 Potential generalization to randomized orthogonal arrays

The main question that arises given the result stated in Theorem 3.1 is: can we estimate
all the k-th order Sobol’ indices with only two RLHS? On the one hand, the most
straightforward answer is clearly negative since RLHS do not have the required strcuture
to handle these higher-order Sobol’ indices. On the other hand, we have to observe that
such a well-suited structure can be built by using orthogonal arrays. So we first begin
with the definition of an orthogonal array (OA):

Definition 3.3 An OA in dimension d, with q levels, strength t ≤ d and index λ is a
matrix with n = λqt rows and d columns such that in every n-by-t submatrix each of the
qt possible rows — i.e. the distinct t-tuples (l1, . . . , lt) where the li’s take their values in
the set of the q levels — occurs exactly the same number λ of times.

We now recall the definition of a randomized OA [see 14, 15] and introduce the general
notion of replicated randomized OA.

Definition 3.4 Let (Aji )i=1..d,j=1..n be an OA in dimension d, with n points and q levels
in {1, . . . , q}, and consider Πq the set of all the permutations of {1, . . . , q}. We say that
(Xj)j=1..n is a randomized OA (Aj)j=1..n — and we denote (Xj)j ∼ LH

(
(Aj)j

)
— if for

all j ∈ {1, . . . , n},

Xj =

(
π1(Aj1)− U1,π1(Aj

1)

q
, . . . ,

πd(A
j
d)− Ud,πd(Aj

d)

q

)
where the πi’s and the Ui,j ’s are independent random variables uniformly distributed on
Πq and [0, 1], respectively.

Definition 3.5 Let (Aji )i=1..d,j=1..n an OA in dimension d, with n points and q levels
in {1, . . . , q}, and consider Πq the set of all the permutations of {1, . . . , q}. We say that
(Xj)j=1..n and (X

′j)j=1..n are two replicated randomized orthogonal array (Aj)j=1..n —
and we denote (Xj ,X

′j)j ∼ ROA
(
(Aj)j

)
— if for all j ∈ {1, . . . , n},

Xj =

(
π1(Aj1)− U1,π1(Aj

1)

q
, . . . ,

πd(A
j
d)− Ud,πd(Aj

d)

q

)
,

X
′j =

(
π′1(Aj1)− U1,π′1(Aj

1)

q
, . . . ,

π′d(A
j
d)− Ud,π′d(Aj

d)

q

)
,

where the πi’s, the π′i’s and the Ui,j ’s are independent random variables uniformly dis-
tributed on Πq, Πq and [0, 1], respectively.

It is interesting to note that in the particular case of the OA (Aj)j=1 with strength 1

and index unity defined by ∀i ∈ {1, . . . d}, ∀j ∈ {1, . . . n}, Aji = j, these definitions are
exactly Definitions 3.1 and 3.2.

10
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Remark 3.2 Let (Aji )1≤i≤d , 1≤j≤n be an orthogonal array in dimension d, with q levels,

strength t ≤ d and index λ on a q-set of elements, then (πi(A
j
i ))1≤i≤d , 1≤j≤n is an OA in

dimension d, with q levels, strength t ≤ d and index λ on the same q-set of elements.

In this section we consider (Xj ,X
′j)j ∼ ROA((Aj)j) where (Aji )i=1..d,j=1..n is an OA

in dimension d, with n points, of strength t and index unity, and denote D(2n) the DOE
defined as the union of both these replicated randomized OA: D(2n) = {Xj , 1 ≤ j ≤
n} ∪ {X′j , 1 ≤ j ≤ n}.

Then thanks to Definition 3.5 and to Remark 3.2, for any t-tuple of indices (i1, . . . it),
there exists a unique permutation πi1,...,it such that columns i1, . . . , it in {Xj , 1 ≤ j ≤ n}
and {X′πi1,...,it (j), 1 ≤ j ≤ n} are identical. We can thus estimate the t-th order Sobol’
index Su, where u = (i1, . . . , it), with the DOE {Xj , 1 ≤ j ≤ n} ∪ {X′πi1,...,it (j), 1 ≤ j ≤
n}. Once more we can remark that this DOE, as a non-ordered set, does not depend on
(i1, . . . , it) and is equal to D(2n). We deduce then that all the t-th order Sobol’ indices
can be estimated by using only the DOE D(2n). However, due to the constraints on the
construction of OAs, this method can not be applied to any values of n. As we note in
Remark 3.4 below, the choice of the number of evaluations n depends on t and d.

Remark 3.3 Theoretical properties of these estimators remain open issues and will con-
sist of a further work. The first step for strong consistency will be to state a strong law
of large numbers for randomized OA with strength t > 1 since, as far as we know, such a
result does not exist. Asymptotic normality has already been proved for randomized OA
with strength t = 2 under smoothness conditions for any dimension d ≥ 3 or without
smoothness conditions but only in dimension d = 3 [see 25, 26].

Remark 3.4 Orthogonal arrays with strength larger than 2 don’t exist for any num-
ber of levels. Following the most famous construction based on Galois fields — Bush’s
construction [see 27] — one can construct any orthogonal array with index unity and
strength t in dimension d provided the number of levels is a prime power larger than t−1
and d− 1. More precisely, the number of points in the orthogonal array has to satisfy:

n ≥
(

max(t− 1, d− 1)
)t
. (15)

Note that n is directly related to the precision in the estimation. Thus it has to be
chosen large enough to attain a reasonable precision. In the following (see Section 4.1.1),
we prove that even with this construction’s constraint, our approach outperforms the
one of Saltelli [2] for the estimation of first- and second-order sensitivity indices. For
higher order sensitivity indices, Bush’s construction can become really restrictive, and
new constructions should be investigated.

4. Numerical illustrations

In this section, we propose a thorough comparison of our approach with the approach
in Saltelli [2] based on Monte Carlo sampling and with approaches based on quasi-
Monte Carlo sampling (see Sections 4.1 and 4.2 below). We also propose in Section 4.3 a
comparison with the approach proposed in Morris et al. [22] for the estimation of first-
order Sobol’ indices. At last, we provide in Section 4.4 an application of our estimation
strategy to a marine ecosystem simulator.

11
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4.1 Comparison with the approach in Saltelli [2]

We first give arguments of the competitivity of our new approach with respect to the
one presented in [2].

4.1.1 Efficiency arguments

Let n be the basic sample size. If one considers the result in Theorem 2 of [2], the number
of model evaluations needed to estimate all first- and second-order sensitivity indices is
equal to (2d+2)×n. Let now p be defined as the smallest prime number such that p2 ≥ n.
Our approach allows to estimate all first- and second-order indices using only 2n + 2p2

model evaluations, as soon as d ≤
√
n+ 1 (see Inequality (15) in Remark 3.4). We know

moreover from Proposition 3.2 in Section 3 that for first order indices, these estimates
are at least as accurate as the ones obtained with Saltelli’s approach. To illustrate the

strength of our approach, we define the efficiency of our approach as e = (2d+2)n
2n+2p2 . We

evaluate in Table 1 below this efficiency for different values of the sample size n.

n 1024 2048 4096 8192 16384 32768 65536 131072

dmax(n) 33 46 65 91 129 182 257 363
e

d+1
= 2×n

2×n+2×p2
0.4280 0.4810 0.4772 0.4654 0.4884 0.4732 0.4980 0.4932

Table 1. Efficiency of our approach as d ≤ dmax(n), with d the dimension and n the sample size.

Results in Table 1 show that in many practical cases, our approach is competitive
(efficiency larger than one).

As in practice n is chosen large enough to attain a reasonable precision, the constraint
due to Bush’s construction is not a limitation. Indeed, (2d+ 2)×n ≤ 2×n+ 2× (d− 1)2

implies n ≤ d − 1, and this choice for n is never done in practice as it would provide a
very bad precision.

4.1.2 Comparison on the Sobol’ g function

The analytical test-case considered in this section is a multiplicative function known as
the Sobol’ g function — see Saltelli and Sobol’ [28]. We consider Y = f1(X1)×· · ·×fd(Xd)
where the Xis are independent random variables uniformly distributed on [0, 1] and for
any i ∈ {1, . . . , d}

fi(Xi) =
|4Xi − 2|+ ai

1 + ai
, ai ≥ 0 . (16)

To allow comparison, we consider the same test-case as in Section 5 in [2], that is d = 6
with a = (0, 0.5, 3, 9, 99, 99), and a sample size n = 1024. We compare our approach
with the one in Theorem 2 of [2], which requires (2d + 2) × n = 14 × 1024 = 14 336
model evaluations. With our approach, we expect to obtain a similar precision with
only 2 × n + 2 × p2 model evaluations, where p is the smallest prime number such that
p2 ≥ max(n, (d − 1)2) = max(1024, 25) = 1024 (see Criterion (15) in Remark 3.4).
We thus take p = 37, and we apply our approach with 2 × 1024 + 2 × 372 = 4 786
model evaluations. The empirical mean and the empirical variance of the estimators are
computed on 10 000 simulations. Concerning Saltelli’s approach, each estimate is the
average of the two estimates provided in Theorem 2 of [2].

The results in Table 2 go beyond the theoretical result of Proposition 3.2 (see Section
3): our estimation procedure is indeed clearly competitive for the estimation of first-order
sensitivity indices, but also for the estimation of second-order sensitivity indices. And
probably because of symmetry in the Sobol’ g function, the estimation error of S{12} is

12
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divides by 100 using our approach. Using the restricted procedure of Theorem 1 in [2]
allows estimating all the first-order Sobol’ indices with a cost of n× (d+ 2) = 1024×8 =
8 192 model evaluations, but it provides less accurate results, probably because it does not
give a double estimate for each first-order index, contrarily to the procedure of Theorem
2 in [2] (see numerical experiments in Saltelli [2, Section 5]. The sample matrices (M1

and M2 in [2]) were obtained from a classical Monte Carlo sampling procedure.

theoretical value mean Ŝ
RLHS

u,n variance Ŝ
RLHS

u,n mean Saltelli 02 variance Saltelli 02

S{1} 0.5868 0.5869 3.9 10−4 0.5867 4.5 10−4

S{2} 0.2608 0.2608 9.7 10−4 0.2605 8.3 10−4

S{3} 0.0367 0.0361 1.0 10−3 0.0364 9.9 10−4

S{4} 0.0059 0.0061 1.0 10−3 0.0058 9.9 10−4

S{5} 0.00005 < 1e− 4 1.0 10−3 < 1e− 4 9.9 10−4

S{6} 0.00005 < 1e− 4 1.0 10−3 < 1e− 4 9.9 10−4

S{12} 0.9345 0.9345 1.1 10−5 0.9348 1.0 10−3

S{13} 0.6357 0.6357 2.3 10−4 0.6358 5.4 10−4

S{14} 0.5946 0.5946 2.6 10−4 0.5945 4.7 10−4

S{15} 0.5869 0.5867 2.6 10−4 0.5867 4.5 10−4

S{16} 0.5869 0.5870 2.6 10−4 0.5867 4.5 10−4

S{23} 0.3029 0.3029 6.4 10−4 0.3021 8.8 10−4

S{24} 0.2675 0.2673 6.4 10−4 0.2666 8.4 10−4

S{25} 0.2609 0.2610 6.4 10−4 0.2599 8.4 10−4

S{26} 0.2609 0.2608 6.3 10−4 0.2599 8.4 10−4

S{34} 0.0427 0.0428 7.5 10−4 0.0423 9.8 10−4

S{35} 0.0367 0.0368 7.7 10−4 0.0364 9.8 10−4

S{36} 0.0367 0.0376 7.7 10−4 0.0364 9.8 10−4

S{45} 0.0059 0.0059 7.5 10−4 0.0055 9.8 10−4

S{46} 0.0059 0.0059 7.6 10−4 0.0055 9.8 10−4

S{56} 0.0001 < 10−4 7.6 10−4 < 10−4 9.6 10−4

Table 2. Comparison with Saltelli’s [2] approach for the estimation of first and second-order indices of the Sobol’

g function in dimension d = 6 with a = (0, 0.5, 3, 9, 99, 99), the empirical mean (resp. empirical variance) are
computed on 104 simulations. The total number of model evaluations for Saltelli’s [2] approach is equal to N =

14 336 and the one with our approach is equal to N = 4 786.

4.1.3 Asymptotic confidence intervals

In the present subsection and in the following one, we apply the new method proposed
in Section 3 to the Ishigami function (see Ishigami and Homma [29]): f(X1, X2, X3) =
sin(X1) + 7 sin2(X2) + 0.1X4

3 sin(X1) where the Xis are independent random variable
uniformly distributed on [−π, π]. Analytical values of SIs of this model are

S1 = 0.3139, S2 = 0.4424, S3 = 0, S12 = 0.7563, S23 = 0.4424, S13 = 0.5575 and S123 = 1.

In the following experiment, we focus on the empirical coverage — i.e. the empirical
proportion of confidence intervals (CI) containing the analytical value of the SI — of both
estimators at different sample sizes between 102 and 105, and for 100 000 simulations.

We first investigate estimators Ŝ{i},n and Ŝ
RLHS

{i},n , i ∈ {1, . . . , d} and in both cases, we
provide asymptotic CI from the estimation of the asymptotic variance given in Janon
et al. [19] (see end of the proof of Prop. 2.2). Indeed, as we know that this asymptotic
variance is:

σ2
IID,u =

Var
[
(Y − E[Y ])(Yu − E[Y ])− Su/2

(
(Y − E[Y ])2

)(
Yu − E[Y ]

)]
Var[Y ]2

≥ σ2
RLHS,u,

(17)
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we can provide an estimator of the asymptotic CI for the classic method

IIID,u,α =
[
Su −

σ2
IID,u uα/2√

n
, Su +

σ2
IID,u uα/2√

n

]
and another one for the new method

IRLHS,u,α =
[
Su −

σ2
RLHS,u uα/2√

n
, Su +

σ2
RLHS,u uα/2√

n

]
where uα/2 is the normal quantile at the significance level α and n is the sample size. By
using the estimator of the asymptotic variance given in (17) in both cases, the CI lengths
of the classic and the new estimators are the same. More specifically, the estimated
length of the new estimator is greater or equal than its optimal value. We thus deal with
a pessimistic estimated length. Thus the asymptotic value of the empirical coverage of
the new method is greater or equal than the expected one. However at the moment, we
do not know how to estimate correctly σ2

RLHS,u because of its singular expression (see

Proof of (ii) in Proposition 3.1). We just say a few words about it in the next subsection
and more fundamentally, it should consist of a further work.

We also investigate estimators Ŝ{i,j},n and Ŝ
replicated randomized OA2

{i,j},n , i 6= j ∈ {1, . . . , d},
where the notation replicated randomized OA2 refers to the generalization to replicated
randomized OA of strength 2 presented in Section 3.2. In this case, we conjecture that
the Central Limit theorem established in (ii) in Proposition 3.2 is also true under some
smoothness assumption — note that, here, Ishigami function is C∞. Results are gathered
in Figures 1–2.
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Figure 1. Comparison of the empirical coverage of 99 % CI for the first- and second-order Sobol’ indices using
the classical estimator based on substituted columns sampling plans and the new estimator based on replicated

randomized OA, the empirical coverage is computed on 100 000 simulations of size 102 to 105.

For the second-order SIs, we can observe that the bivariate stratification has a bad effect
on the new estimator at very low sample size, but we can notice its good properties as
the number of simulations increases.

4.1.4 Remark on the confidence intervals length of the new estimator

Concerning the estimation of the true CI length for the new estimators based on repli-
cated randomized OA, note that if the asymptotic empirical coverage — estimated using
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Figure 2. Comparison of the normalized (×
√
n) length of the 99 % CI for the first- and second-order Sobol’

indices using the classical estimator based on substituted columns sampling plans and the new estimator based
on replicated randomized OA, the averaged length is computed on 100 000 simulations of size 102 to 105.

S1 S2 S12 S13 S23

pessimistic estimated lengths 4.40 4.15 2.19 3.95 6.45

corrected lengths 3.96 3.28 1.53 2.37 5.16

Table 3. Comparison between pessimistic estimated lengths and corrected lengths of the 99 % CI for S1, S2, S12,
S13 and S23, the lengths are averaged on 100 000 simulations of size 102 to 105

Formula (17) — is 1−α′ instead of the expected value 1−α, then it means that the true
asymptotic CI should be uα/2/uα′/2 time as long, where u· denote the normal quantiles.
More specifically in our first application, we obtain in this way the true asymptotic nor-
malized (×

√
n) CI length (corrected length) of S1, S2, S12, S13 and S23; they are gathered

in Table 3. Moreover considering these true normalized CI lengths, we can observe on
Figure 3 that the empirical coverage of the new estimator converges to the expected
level 0.99 as n increases, and so we confirm the reliability of the empirical CI constructed
with the true asymptotic length. Unfortunately, evaluating the true asymptotic CI length
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Figure 3. Comparison of the empirical coverage of corrected 99 % CI for the first- and second-order Sobol’ in-

dices using the classical estimator based on substituted columns sampling plans and the new estimator based on
replicated randomized OA, the empirical coverage is computed on 100 000 simulations of size 102 to 105.
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is infeasible in practice since it requires a lot of replications to estimate the empirical
coverage. So the issue related to the construction of optimal CI remains open.

4.2 Performance comparison between the new method and the
quasi-Monte Carlo estimation

We now come to the comparison between the new method based on RLHS and the method
of Sobol’ performed with Sobol’ sequences, also known as LPτ sequences and that consist
of (t, s)-sequences in base 2 — see, e.g., Niederreiter [30] for (t, s)-sequences and Saltelli
et al. [31] for the application to the method of Sobol’. The numerical application we
propose consists in comparing the estimation error — the mean squared error — in the
computation of all the first-order Sobol’ indices Si between these two approaches using
exactly the same total number of model evaluations. Low discrepancy sequences are
known for their efficiency but keep in mind that the total number of model evaluations
required to estimate all the first-order Sobol’ indices is (d+1)n when using (t, s)-sequences
while only 2n are necessary when using RLHS. The analytical test-case is the one of
Section 4.1.2, that is the g-function defined by (16). The numerical test is divided into
three cases:

Case i) in dimension d = 3 with g-function parameters a = (0, 1, 9)
Case ii) in dimension d = 12 with g-function parameters a = (0, 0, 0, 0, 1, 1, 1, 1, 9, 9, 9, 9)
Case iii) in dimension d = 24 with g-function parameters a = (0, . . . , 0︸ ︷︷ ︸

8 times

, 1, . . . , 1︸ ︷︷ ︸
8 times

, 9, . . . , 9︸ ︷︷ ︸
8 times

).

The theoretical values of the Sobol’ indices are the following:

Case i) S1 = 0.742, S2 = 0.185, S3 = 0.007
Case ii) S1 = · · · = S4 = 0.098, S5 = · · · = S8 = 0.024, S9 = · · · = S12 = 0.001,
Case iii) S1 = · · · = S8 = 0.018, S9 = · · · = S16 = 0.004, S17 = · · · = S24 = 10−4.

The computations are performed at different total numbers of runs:

Case i) N = 64, 512, 4096, 32768, 262144, 2097152
Case ii) N = 208, 1664, 13312, 106496, 851968, 6815744
Case iii) N = 200, 1600, 12800, 102400, 819200, 6553600.

In this numerical experiment, as we measure the error in term of mean squared error,
we consider randomized Sobol’ sequences. More precisely we use both the following well-
known methods of randomization:

1. Cranley-Patterson rotation, that consists in adding a random vector to all the points
of a DOE — where the addition is the componentwise addition modulo 1.

2. Owen’s scrambling, that essentially consists in randomly permuting the levels of a
(t, s)-sequence keeping the low discrepancy structure unchanged — see Owen [32–34].

The results are gathered in Figures (4–6).
First we can observe that the mean squared error (MSE) of all the estimates computed

by using RLHS decreases with a rate of convergence of O(n−1) in the three test-cases,
while the rate of convergence of the low discrepancy method — with scrambling as well
as Cranley-Patterson rotation — is O(n−2) in dimension 3 but only O(n−1) in dimension
24. Second note that MSEs of the estimates computed by using RLHS at the lowest total
number of model evaluations keep in the same range of values, while initial MSEs in low
discrepancy methods become worse as the dimension increases. Consequently, the use of
Sobol’ sequences clearly leads to better results in dimension 3, but appears as a poor
choice in the other cases. Indeed in dimension 12, we can observe that Sobol’ sequences
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Figure 4. Plots of the mean squared error for the estimation of Sobol’ indices of a g-function in dimension 3 with

parameters (0, 1, 9), the total number of model evaluations growing from 102 to 106. NB: CP rotation stands for
Cranley-Patterson rotation.
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(b) Estim. error of S5, . . . , S8
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(c) Estim. error of S9, . . . , S12

Figure 5. Plots of the mean squared error for the estimation of Sobol’ indices of a g-function in dimension 12
with parameters (0, 0, 0, 0, 1, 1, 1, 1, 9, 9, 9, 9), the total number of model evaluations growing from 103 to 106. NB:

CP rotation stands for Cranley-Patterson rotation.

provide better results than RLHS only asymptotically — we can see in Figure 5 that at
least 107 model evaluations are necessary — and in dimension 24, MSEs computed by
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(b) Estim. error of S9, . . . , S16
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Figure 6. Plots of the mean squared error for the estimation of Sobol’ indices of a g-function in dimension 24
with parameters (0, . . . , 0, 1, . . . , 1, 9, . . . , 9), the total number of model evaluations growing from 103 to 106. NB:

CP rotation stands for Cranley-Patterson rotation.

using RLHS are always a factor 10 or 15 better than those of low discrepancy methods.

4.3 Comparison with the approach proposed in Morris et al. [22] for the
estimation of first-order Sobol’ indices

In this section, we propose to compare our approach with the one in Morris et al. [22]
on the example they provide in the Section 4 of their article. Their example is the
Sobol’ g function in dimension d = 8 with a = (0, 1, 1, 2, 3, 5, 8, 13). They compute the
mean and standard error for their estimates over 1000 simulations. For each of these 1000
simulations they use a permuted column (PC) sampling plan composed with 8 replications
of an initial design of size 8. They compare the results for an i.i.d. initial sample with
the results obtained with 8 replicated LHS. They also provide the results for the strategy
based on the UPCS (unbiased permuted column samples) with or without LHS. In Table
4 below we compare our results (random balance strategy, RB strategy) with the ones
they obtain with random arrays, Latin hypercube sampling (Mor1), and with orthogonal
arrays, Latin hypercube sampling (Mor2) by computing the empirical mean (µ) and
standard deviation (σ) on 1000 simulations, each of which is performed at a total cost
of 64 model evaluations.

It is easy to see on these results the bias of their standard approach, based on random
arrays with Latin hypercube sampling. The strategy they propose to remove the bias,
based on the construction of a strength 2 OA is very efficient as we can see. Due to
the construction of the UPCS, they need at least d replications of the initial design.
The bias in our approach is not very important, even with 64 model evaluations, except
for small indices such as S{7} and S{8}. For small indices, it is known that there exist
better strategies proposed e.g. by Owen [17]. We must also achnowledge on this example
that for the estimation procedure proposed in Morris et al. [22] the empirical standard
deviations are smaller. Thus, if we are only interested by first-order Sobol’ indices the
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analytical µ RB strategy σ RB strategy µ Mor1 σ Mor1 µ Mor2 σ Mor2

S{1} 0.4890 0.5032 0.1285 0.5450 0.0838 0.4850 0.0615

S{2} 0.1223 0.1198 0.1413 0.2091 0.0843 0.1183 0.0334

S{3} 0.1223 0.1216 0.1366 0.2061 0.0864 0.1176 0.0346

S{4} 0.0543 0.0556 0.1336 0.1532 0.0780 0.0514 0.0264

S{5} 0.0306 0.0246 0.1322 0.1278 0.0674 0.0293 0.0237

S{6} 0.0136 0.0123 0.1302 0.1150 0.0674 0.0127 0.0190

S{7} 0.0060 0.0005 0.1269 0.1099 0.0614 0.0051 0.0172

S{8} 0.0025 0.0042 0.1300 0.1074 0.0640 0.0022 0.0163

Table 4. Comparison with Morris et al. [22] approach for the estimation of first-order indices of the Sobol’ g

function in dimension d = 8 with a = (0, 1, 1, 2, 3, 5, 8, 13), the empirical mean (µ) and the empirical standard
deviation (σ) are computed on 1000 simulations. The total number of model evaluations for each approach is equal

to N = 64.

approach in Morris et al. [22] should be prefered to the approach in Saltelli [2] or to our
approach. However, we do not propose in this article a systematic comparison on various
examples, and our conclusions remain limited to the example above.

4.4 Application to a marine ecosystem simulator

We now illustrate the new method to a one-dimensional coupled hydrodynamical– bio-
logical model developed and applied on the Ligurian Sea (northwestern Mediterranean).

This ecosystem simulator, MODèle d’ÉCOsystème du GHER et du LOBEPM1 (MOD-
ECOGeL), combines a 1D (vertical) version of the 3D GHER model which takes into
account momentum and heat surface fluxes computed from a real meteorological data
set, and a biogeochemical model defined by a nitrogen cycle of 12 biological state vari-
ables (see Figure 7) controlled by 87 input parameters, see Lacroix et al. [35]. Here we
focus on the chlorophyll-a concentration which is defined as a function of time and depth
chla(t, z) = 1.59 ×

(
pp(t, z) + np(t, z) + mp(t, z)

)
where pp, np and mp are the phyto-,

nano- and microphytoplankton biomasses, respectively. The behavior of these three state

Figure 7. Biogeochemical model (NH4: Ammonium; NH3: nitrate; Pp, Np, Mp: pico-, nano-,
microphytoplankton; Nz, Miz, Mez: nano-, micro-, mesozooplankton; PON1, PON2: type 1 and
2 particulate organic nitrogen; Bac: bacteria; DON: dissolved organic nitrogen).

variables are modeled by the following reaction-diffusion and reaction-advection-diffusion

1GHER: GeoHydrodynamics and Environment Research, Université de Liège, Belgium. LOBEPM: Laboratoire
d’Océanologie Biologique et d’Écologie du Plancton Marin, Université Pierre et Marie Curie, France
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equations

∂ pp

∂t
=

∂

∂z

(
λ
∂ pp

∂z

)
+
(
(1− exudpp)µpp −mortpp

)
pp− ingpp,nznz

∂ np

∂t
=

∂

∂z

(
λ
∂ np

∂z

)
+
(
(1− exudnp)µnp −mortnp

)
np− ingnp,mizmiz

∂ mp

∂t
=

∂

∂z

(
λ
∂ mp

∂z

)
+
(
(1− exudmp)µmp −mortmp

)
mp− ingmp,mezmez− sinmp

∂mp

∂z

where nz, miz and mez are the nano-, micro- and mesozooplankton biomasses, respec-
tively, and the other notations are

λ vertical turbulent diffusivity (m2.s−1)
exudA exudation of A (percentage)
µA growth rate of A (day−1)
mortA mortality rate of A (day−1)
ingA,B ingestion rate of A by predator B (mgChl)
sinmp sinking velocity of microphytoplankton (m.day−1)

In our experiment, we focus on two different outputs: the annual maximum of
chlorophyll-a concentration in surface water Ysurf and the annual maximum of the mean
of cholorphyll-a concentration between 20 and 50 meters in depth Ydepth. These are
practical indicators of biological activity. We are interested in the influence of eight
parameters among the 87 input factors. On the one hand, we consider 6 a priori influent
parameters µmaxpp, µmaxnp, µmaxmp, Ioptpp, Ioptnp and Ioptmp where µmaxA and IoptA
denote the maximum growth rate of A and the optimum insolation for A, respectively.
These input factors are directly related to the growth rate of A, µA (see details in
Supplementary materials). On the other hand, we consider the maximum growth rate
of bacteria µmaxbac and the sinking velocity of particulate organic nitrogen (type 1)
sinpon1 which have a priori a negligible effect on chlorophyll-a concentration since they
do not act directly on pp, np and mp but on the state variables bac and pon1. We take
these eight parameters to be independent gamma distributed random variables with
parameters given in Table 5. We estimate all the first- and second-order SIs of both

outputs Ysurf and Ydepth by using the estimators Ŝ
RLHS

u defined in Sections 3.1 and 3.2
with sample sizes n = 65536 and n = 66049, respectively.

The first-order SIs are estimated by using nested replicated latin hypercubes following
Qian’s construction Qian [36]. They allow to visualize empirical convergence of the es-
timated indices as shown in Figure 8. The estimated indices at the biggest sample size
(n = 65536) are reported in Tables 6 and 7; we can notice that both outputs do not
define an additive model since in both cases, the sum of the first-order SIs are less than
sixty percents. We also notice that µmaxpp is important in both outputs, while three other
a priori important parameters — µmaxnp, Ioptnp and Ioptmp— have actually no effect. At
last, it is surprising to observe that the parameter µmaxbac, which does not act directly
on both outputs, has non-zero values.

The second-order SIs are estimated by using a replicated latin hypercube based on an
orthogonal array with 257 levels, index 1 and strength 2 — i.e. n = 66049 — following
Bush’s construction, see Bose [27]. The results are reported in Tables 8 and 9; they
confirm that µmaxpp has the main role in both outputs since the non-negligible second-
order SIs are all related to the latter. As a conclusion, we can notice that both outputs are
extremely complex and contain, without any doubt, interactions of order more than or
equal to 3. Such an analysis with the MC estimator of SIs would be less efficient without
the new approach we proposed in this paper. More precisely, both order 1 and order 2
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Figure 8. First-order SIs with error bars — 99% CI — for both Ysurf (left) and Ydepth (right).

analysis using the classical MC estimator — i.e. estimating all the first- or second-order
SIs— only could use a sample size equal to 263 170 = 2× 65 536 + 2× 66 049 instead of
1 179 648 = (2× 8 + 2)× 65 536 for a better or equal precision, see Section 4.1.1.

label k θ mean standard deviation

µmaxpp (day−1) 1 9 0.33 3 1

µmaxnp (day−1) 2 9 0.28 2.5 0.83
µmaxmp (day−1) 3 9 0.22 2 0.67

Ioptpp (W.m−2) 4 9 1.11 10 3.33

Ioptnp (W.m−2) 5 9 1.67 15 5
Ioptmp (W.m−2) 6 9 2.22 20 6.67

µmaxbac (day−1) 7 9 0.22 2 0.67
sinpon1 (m.day−1) 8 9 0.17 1.5 0.5

Table 5. Distributions of variables using gamma density f(x; k, θ) = xk−1 exp(−x/θ)/(Γ(θ)θk), where Γ(·) is the
gamma function.

S{1} S{2} S{3} S{4} S{5} S{6} S{7} S{8}
estimated index 0.314 0 0.061 0.060 0 0.003 0.051 0.010
estimated error 0.010 0.011 0.012 0.011 0.010 0.010 0.013 0.012

Table 6. Estimation of first-order SIs for the output Ysurf . The estimated error is the radius of the 99% CI.

S{1} S{2} S{3} S{4} S{5} S{6} S{7} S{8}
estimated index 0.451 0 0.055 0.034 0 0 0.035 0.011
estimated error 0.009 0.010 0.010 0.010 0.010 0.010 0.012 0.010

Table 7. Estimation of first-order SIs for the output Ydepth. The estimated error is the radius of the 99% CI.

S{1,2} S{1,3} S{1,4} S{1,5} S{1,6} S{1,7} S{1,8} S{2,3} S{2,4} S{2,5}
estimated index 0.374 0.479 0.424 0.339 0.324 0.400 0.318 0.069 0.066 0.016

estimated error 0.012 0.011 0.013 0.011 0.011 0.010 0.011 0.011 0.011 0.011

S{2,6} S{2,7} S{2,8} S{3,4} S{3,5} S{3,6} S{3,7} S{3,8} S{4,5} S{4,6}
estimated index 0.015 0.069 0.015 0.125 0.074 0.075 0.128 0.072 0.077 0.070
estimated error 0.010 0.015 0.010 0.011 0.011 0.011 0.013 0.011 0.011 0.011

S{4,7} S{4,8} S{5,6} S{5,7} S{5,8} S{6,7} S{6,8} S{7,8}
estimated index 0.121 0.066 0.017 0.055 0.014 0.056 0.009 0.050
estimated error 0.013 0.011 0.010 0.015 0.010 0.014 0.010 0.015

Table 8. Estimation of second-order SIs for the output Ysurf . The estimated error is the radius of the 99% CI.
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S{1,2} S{1,3} S{1,4} S{1,5} S{1,6} S{1,7} S{1,8} S{2,3} S{2,4} S{2,5}
estimated index 0.506 0.593 0.510 0.455 0.450 0.515 0.447 0.056 0.034 0.005
estimated error 0.010 0.009 0.010 0.009 0.009 0.008 0.009 0.011 0.011 0.011

S{2,6} S{2,7} S{2,8} S{3,4} S{3,5} S{3,6} S{3,7} S{3,8} S{4,5} S{4,6}
estimated index 0.008 0.055 0.009 0.087 0.057 0.064 0.109 0.063 0.041 0.043
estimated error 0.010 0.014 0.010 0.011 0.011 0.011 0.013 0.011 0.010 0.010

S{4,7} S{4,8} S{5,6} S{5,7} S{5,8} S{6,7} S{6,8} S{7,8}
estimated index 0.082 0.041 0.009 0.040 0.007 0.046 0.006 0.041
estimated error 0.013 0.010 0.010 0.014 0.010 0.014 0.010 0.014

Table 9. Estimation of second-order SIs for the output Ydepth. The estimated error is the radius of the 99% CI.

5. Conclusion

We have introduced a new method to estimate all the first-order SIs by using only 2
samples of size n where n does not depend on the dimension anymore. We also explained
how this approach extends to second-order or even k-th order sensitivity indices, with
a sample size n which now depends both on the dimension d and on the strength k
of the interactions. We also explained and illustrated on numerical examples that, at
least when considering the estimation of all the first- and second-order indices, this
approach outperforms the one introduced in Saltelli (2002) in many frameworks. We
derive theoretical results in the particular case of first-order SIs from the work by Janon et
al. [19] on asymptotical properties of SIs and from the work by Loh [37] on asymptotical
properties of LHS. Further works will consist in deriving these theoretical results to
higher-order SIs and in improving the method by studying how we can estimate correctly
the asymptotic variance of the new estimator.
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Appendix A. Proof of Theorem 3.1

We have Xπ−1
i ◦π(j) = (X̃j

{i},Z
j
{i}c) and X

′π
′−1
i ◦π(j) = (X̃j

{i},Z
′j
{i}c) where

X̃j
{i} =

π(j)− Ui,π(j)

n

Zj{i}c =

(
π̆1(j)− U1,π̆1(j)

n
, . . . ,

π̆i−1(j)− Ui−1,π̆i−1(j)

n
,
π̆i+1(j)− Ui+1,π̆i+1(j)

n
, . . . ,

π̆d(j)− Ud,π̆d(j)

n

)
Z
′j
{i}c =

(
π̆′1(j)− U1,π̆′1(j)

n
, . . . ,

π̆′i−1(j)− Ui−1,π̆′i−1(j)

n
,
π̆′i+1(j)− Ui+1,π̆′i+1(j)

n
, . . . ,

π̆′d(j)− Ud,π̆′d(j)

n

)

with π̆k = πk ◦ π−1
i ◦ π and π̆′k = π′k ◦ π

′−1
i ◦ π. Then note that π, the π̆ks and the π̆′ks

are independent random permutations, and deduce that Y j and Y j
{i} given in (12) are

defined as in (11). Thus Proposition 3.2 applies and the conclusion follows.
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