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AbstratIn variane-based sensitivity analysis, the method of Sobol' (Sobol', 1993) allows to ompute Sobol'indies using Monte Carlo integration. One of the main drawbaks of this approah is that the estimationof Sobol' indies requires the use of several distint samples. For example, in a d-dimensional spae, theestimation of all the �rst- or seond-order Sobol' indies basially requires d + 1 or d(d + 1)/2 distintsamples, respetively. Some interesting ombinatorial results have been introdued to weaken this defet,in partiular by Saltelli (2002) and more reently by Owen (2012b), but the quantities they estimate stillrequire O(d) samples. In this paper, we introdue a new approah to estimate for any k all the k-th orderSobol' indies by using only two distint samples. We establish theoretial properties of suh a methodfor the �rst-order Sobol' indies and disuss the generalization to higher-order indies. As an illustration,we propose to apply this new approah to a marine eosystem model of the Ligurian sea (northwesternMediterranean) in order to study the relative importane of its several parameters. The alibration proessof this kind of hemial simulators is well-known to be quite intriate, and a rigorous and robust � i.e.valid without strong regularity assumptions � sensitivity analysis, as the method of Sobol' provides, ouldbe of great help.Keywords: sensitivity analysis, variane-based sensitivity indies, numerial integration, orthogonal arrays
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1 Introdution and notationSobol' indies (SI) (Sobol', 1993) are quantities de�ned by normalizing parts of variane in an ANOVA de-omposition (Hoe�ding, 1948; Efron and Stein, 1981; Sobol', 1993). They are an important tool to study thesensitivity of a model output subjet to the input parameters sine they allow to quantify the relative impor-tane of input fators of a funtion over their entire range of values. As they essentially onsist of integrals,their omputation an beome rapidly expensive when the number of fators inreases. Many tehniques havebeen proposed to estimate these indies inluding Fast Amplitude Sensitivity Test (FAST) due to Cukier et al.(1973) � see also the review paper (Cukier et al., 1978) � and further developed by Saltelli et al. (1999),Random Balane Design (RBD) due to Tarantola et al. (2006), polynomial haos expansion (PCE)-based esti-mators developed by Sudret (2008) and Blatman and Sudret (2010) and the method of Sobol'. A reent reviewof these methods an be found in Saltelli et al. (2008), and more spei�ally a new introdution to FAST andRBD has been reently provided by Tissot and Prieur (2012).Until now, spetral methods � as FAST, RBD or PCE-based methods � whih exploit the spetraldeomposition of the model with respet to a partiular multivariate basis, are generally preferred to themethod of Sobol' beause the latter is too expensive. However, spetral methods provide good estimations ofSIs only under strong assumptions on the spetral deomposition of the model itself suh as a deay of thespetrum su�iently fast, the negligibility of high-order spetral oe�ients, et. As a result, these methodsare not robust to omplex phenomena as high-frequeny variations or disontinuities, and so the method ofSobol' appears as the main method one an trust when no strong a priori knowledge on the model of interestis available.The ANOVA deomposition proeeds as follows. Let f be a real square integrable funtion de�ned on R
dand X = (X1, . . . , Xd) a random vetor with independent omponents arbitrarily distributed on R. Then let usonsider the real random variable Y = f(X) and for any u ⊆ {1, . . . , d}, denote by Xu the random vetor withomponents Xi, i ∈ u. The ANOVA deomposition states that Y an be uniquely deomposed into summandsof inreasing dimensions

Y =
∑

u⊆{1,...,d}

fu(Xu)where f∅ = E[Y ] and the other omponents have mean zero and are mutually unorrelated. In partiular, thesum of funtions
f∅ + f1(X1) + f2(X2) + · · ·+ fd(Xd) (1)is the so-alled additive part of f , where the onstant f∅ and the random variables fi(Xi) are the omponentsof lower omplexity. The omponents fu(Xu) are expliitely known in terms of onditional expetation. Asalready mentioned, we have f∅ = E[Y ] and the other terms are reursively de�ned by
fu(Xu) = E[Y |Xu]−

∑

v⊂u

fv(Xv).3



Then denoting Var[Y ] and any term Var[fu(Xu)] by σ2 and σ2
u
, respetively, the equation in Eq. (1) gives

σ2 =
∑

u⊆{1,...,d}

σ2
uand the SIs � also known as global sensitivity indies � are de�ned as

Su =
σ2
u

σ2
, u ⊆ {1, . . . , d}.If u = {i}, Su quanti�es the main e�et due to the fator Xi, and if Card(u) > 1, Su quanti�es the interatione�et between the fators Xi, i ∈ u. Note that S∅ is trivially equal to zero. Similarly one an onsider thequantities

S
u
=

τ2
u

σ2
=

Var[E[Y |Xu]
]Var[Y ]
=

∑
v⊆u

Var[fv(Xv)]Var[Y ]
, u ⊆ {1, . . . , d}known as lower SIs or losed sensitivity indies. If u = {i} then S

u
= Su, and if Card(u) > 1, S

u
quantify thesum of all the main or interation e�ets due to any group of fators v ⊆ u. Note that for any 1 ≤ r ≤ d, theknowledge of {S

u
, Card(u) ≤ r} or {Su, Card(u) ≤ r} are stritly equivalent sine, on the one hand, we have

S
u
=

∑

v⊆u

Svand on the other hand, the Möbius inversion formula (see, e.g., Stanley, 2012) gives
Su =

∑

v⊆u

(−1)|u|−|v|S
v
.In pratie global sensitivity analysis fouses on the �rst- or seond-order � i.e. Card(u) ≤ 1 or 2, respe-tively � terms. In the present paper, we only fous on the indies S

u
whih are the quantities estimated bythe method of Sobol'.The paper proeeds as follows. Setion 2 provides a short review of the method of Sobol', gives somenotation and explains the main idea of the new method we propose in the present paper. In Setion 3, theoryis presented inluding asymptoti properties related to both Latin hyperube sampling (LHS) and repliatedLatin hyperube sampling (RLHS). In this setion, we also disuss potential generalizations to using orthogonalarray(OA)-based Latin hyperubes (see Owen, 1992; Tang, 1993). Numerial illustrations are provided inSetion 4, and Setion 5 has onlusions. Proofs are given in the appendies.2 BakgroundAs any numerial integration tehnique, the method of Sobol' an be viewed as the partiular ombinationof a design of experiments (DoE) � i.e. the loation the information is olleted � and an estimator � i.e.the way the olleted information is proessed. In this setion, we �rst desribe the designs of experiments ofinterest and we then ome to the de�nitions of some urrently used estimators in the method of Sobol'. Atlast, we introdue the onept of RLHS and we explain why this kind of DoE is of great importane in theissue of estimating �rst-order SIs. 4



From now on, we only onsider uniformly distributed inputs, i.e. X1,. . . , Xd are independent randomvariables uniformly distributed on [0, 1]. It does not onsist of a restritive assumption sine, thanks to theinversion method � see, e.g., Devroye (1986) � a model formulation Y = f(X1, . . . Xd) where the Xis arearbitrarily distributed an always ome down to the formulation Y = f(U1, . . . , Ud) where the Uis are randomvariables uniformly distributed on [0, 1], de�ned by Ui = Fi(Xi) with Fi the umulative distribution funtionof Xi.2.1 Designs of experimentsIn the present paper a design of experiments refer to a �nite subset of [0, 1]d. We do not onsider deterministionstrutions of DoEs but only random ones, i.e. as in a Monte Carlo method, DoEs onsist of realizations ofa set of random d-dimensional vetors.For any non-empty subset u of {1, . . . , d}, there exist several estimators of the lower SI S
u
and they allrequire n double, triple or more evaluations of the model (see Owen (2012a) for a reent survey). In the presentpaper, we fous on the most basi estimators that only require n double evaluations. In this ase, the �rstof any double evaluation is a realization of the random variable Y = f(X1, . . . , Xd), and the omplementaryevaluation is obtained from the �rst one by resampling its omponents indexed by the elements of uc. In otherwords, the omplementary evaluation is a realization of the random variable denoted by Yu and de�ned by

Yu = f(Xu : Zuc) (2)where Z is a d-dimendional vetor uniformly distributed on [0, 1]d, and for all i in {1, . . . , d}

(Xu : Zuc)i =

{
Xi if i ∈ u

Zi otherwise. (3)Hene the de�nition of the design of experiments of size N = 2n for estimating S
u
, denoted by Du(N), proeedsas follows. First let (Xj)j=1..n and (Zj)j=1..n be independent repliations of the random vetors X and Z,respetively. Then denote the two halves of the main DoE by

H(n) =
{
Xj , 1 ≤ j ≤ n

}

Hu(n) =
{
Xj

u
: Zj

u
c , 1 ≤ j ≤ n

}
(see the de�nition in Eq.(3)),and de�neDu(N) to be the resulting union of both sets. Figure 1 shows illustrations of suh DoEs for estimating�rst-order SIs in a 2-dimensional spae. Note that in this �gure D{1}(10) and D{2}(10) ontain two points perlevel of the �rst and seond axis, respetively; this onsists of the main property � or onstraint � of the DoEin the issue of estimating SIs using the method of Sobol'.
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(b) realization of D{2}(10)Figure 1: Designs of experiments of size N = 10 for estimating the �rst-order SIs S1

(sub�gure (a)) and S2

(sub�gure (b)).2.2 EstimatorsUsing the previous notation, we now onsider, for any j in {1, . . . , n}, the output observations
Y j = f(Xj) (4)
Y j
u

= f(Xj
u
: Zuc). (5)In the method of Sobol', the estimation of the index S

u
onsists in applying a Monte Carlo (MC) method toboth the numerator and denominator of

S
u
=

Var[E[Y |Xu]
]Var[Y ]that an be rewritten, using the notation in Eq. (2), as

S
u
=

Cov(Y, Yu)Var[Y ]
=

E[Y Yu]− E[Y ]E[Yu]Var[Y ]
. (6)As already mentioned in this setion, several estimators have been introdued to perform this numerial inte-gration. In the present paper, we only onsider the natural estimator oming from (6), and an other one dueto Monod et al. (2006). Using the notation in (4) and (5), they are de�ned by

S̃
u,n =

τ̃2
u,n

σ̃2
n

=

1

n

n∑

j=1

Y jY j
u
−
(
1

n

n∑

j=1

Y j

)(
1

n

n∑

j=1

Y j
u

)

1

n

n∑

j=1

(
Y j

)2 −
(
1

n

n∑

j=1

Y j

)2 (7)and
Ŝ
u,n =

τ̂2
u,n

σ̂2
n

=

1

n

n∑

j=1

Y jY j
u
−
(

1

2n

n∑

j=1

Y j + Y j
u

)2

1

2n

n∑

j=1

((
Y j

)2
+
(
Y j
u

)2)−
(

1

2n

n∑

j=1

Y j + Y j
u

)2 , (8)respetively. 6



2.3 Motivation to use repliated Latin hyperube samplingFollowing the previous desription of both the designs of experiments and the estimators used in the methodof Sobol', it is easy to understand that estimating all the �rst-order SIs using this tehnique requires n(d+ 1)evaluations of the model, i.e. d + 1 DoEs eah ontaining n points. More generally, for any k in {1, . . . , d},estimating all the k-th-order SIs basially requires n((nk)+ 1
) evaluations.Some interesting ombinatorial results have been introdued to weaken this defet. For instane, Saltelli(2002) shows how to estimate all the seond-order SIs by using only n(2d + 2) evaluations. In a more reentwork, Owen (2012b) deeply studies these ombinatorial aspets in the issue of estimating SIs. However thequantities of interest in both these papers still require O(d) evaluations of the model, and this dependeny withrespet to the dimension d appears as a major drawbak in the sensitivity analysis of high-dimensional modelspotentially depending on more than one hundred input parameters.In order to overome this issue of dimensionality, we propose a new approah based on a non-ommonnotion of repliation. More preisely, for any DoE

D =
{
xj = (xj

1, . . . , x
j
d), 1 ≤ j ≤ d

}
,we say that a DoE D′ is repliated from D if there exist d independent random permutations of {1, . . . , n}� i.e. d independent random variables uniformly distributed on the set of the permutations of {1, . . . , n} �denoted by π1,. . . , πd, suh that

D′ =
{
x′j = (x

π1(j)
1 , . . . , x

πd(j)
d ), 1 ≤ j ≤ n

}
.Note that this notation is learly symmetri, so we an also say that D is repliated from D′ or even that Dand D′ are repliated from eah other. As a result, for any axis k in {1, . . . , d}, the union of a DoE D and oneof its repliate D′ ontains two points per level of the k-th oordinate (see Figure 2(a)). Hene, this ompositeDoE ful�lls the requirement for estimating any �rst-order SI using the method of Sobol', and we thus showsprovide a DoE that allows to estimate all the �rst-order SIs using only 2n evaluations of the model.However, as we an observe on Figure 2(a), repliation an have a bad e�et on the spae-�lling propertyof the omposite DoE D ∪D′, and it ould be desirable to take are to repliate only good spae-�lling DoEs.Then LHS appears as the most natural andidate, and this leads to the notion of RLHS (see Figure 2(b))already used by MKay (1995) in the issue of estimating �rst-order Sobol' indies.3 TheoryBoth the estimators introdued in the previous setion, S̃

u,n and Ŝ
u,n, have strong statistial properties. It iseasy to prove that they are strongly onsistent � i.e. they onverge almost surely to the theoretial value S

u7
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(b) D: Latin hyperubeFigure 2: Composite DoE for estimating all the �rst-order SIs.� and that the biases of both their numerator and denominator are O(n):
E
[
τ̃2
u,n

]
= τ2

u
− 1

n
τ2
u

E
[
σ̃2
n

]
= σ2 − 1

n
σ2and, as shown by Owen (2012b),

E
[
τ̂2
u,n

]
= τ2

u
− 1

2n
(σ2 + τ2

u
)

E
[
σ̂2
n

]
= σ2 − 1

2n
(σ2 + τ2

u
).But the most important property, proved by Janon et al. (2012), is that they are asymptotially normal.In partiular this allows to derive asymptoti on�dene intervals whih provide probabilisti bounds on theestimation error.Now the question that naturally arises is"Does the new approah based on RLHS we proposed for estimating all the �rst-orderSobol' indies still has these strong statistial properties?"The answer is a�rmative to the three previous points of interest and we prove it in this setion. First we beginby stating important results of onvergene on LHS � see Proposition 1 in Setion 3.1 � and on RLHS � seeProposition 2 in Setion 3.2 � and we then formulate the main result on the estimation of all the �rst-order SIsusing RLHS in Theorem 1 in Setion 3.2. In a last subsetion, we address the issue of potential generalizationsto OA-based LHS.3.1 On Latin hyperube samplingWe now assume that the Xjs and the Zjs are no longer independent repliations of X and Z, but we onsiderthat {Xj , 1 ≤ j ≤ n} and {Zj , 1 ≤ j ≤ n} are two independent Latin hyperubes of size n. We then prove8



that both the estimators introdued in the previous setion still have the statistial properties presented above.We �rst introdue the de�nition of a Latin hyperube:De�nition 1. Let d and n in N
∗, and onsider Πn the set of all the permutations of {1, . . . , n}. We saythat (Xj)j=1..n is a Latin hyperube of size n in [0, 1]d � and we denote (Xj)j ∼ LH(n, d) � if for all

j ∈ {1, . . . , n},
Xj =

(
π1(j)− U1,π1(j)

n
, . . . ,

πd(j)− Ud,πd(j)

n

) (9)where the πi's and the Ui,j 's are independent random variables uniformly distributed on Πn and [0, 1], respe-tively.Now let (Ẋj)j ∼ LH(n, d) and (Żj)j ∼ LH(n, d) in plae of the independent repliations Xjs and Zjs, andfor any u in {1, . . . , d} denote
Ẏ j = f(Ẋj)

Ẏ j
u

= f(Ẋj
u
: Żj

uc).The resulting estimators are now denoted S̃
LHS

u,n = τ̃2,LHS
u,n /σ̃2,LHS

n and Ŝ
LHS

u,n = τ̂2,LHS
u,n /σ̂2,LHS

n , respetively.Their statistial properties are gathered in the following result:Proposition 1.(i) If f4 is integrable then S̃
LHS

u,n et ŜLHS

u,n are strongly onsistent.(ii) If f6 is integrable then √
n(S̃

LHS

u,n − S
u
) and √

n(Ŝ
LHS

u,n − S
u
) onverge in law to a zero-mean normaldistribution with lower variane than the respetive variane given in the entral limit theorem (CLT ) for thebasi estimators S̃

u,n and Ŝ
u,n .(iii) We have

E
[
τ̃2,LHS
u,n

]
= τ2

u
+Bn,1

E
[
σ̃2,LHS
n

]
= σ2 +Bn,2

E
[
τ̂2,LHS
u,n

]
= τ2

u
+Bn,3

E
[
σ̂2,LHS
n

]
= σ2 +Bn,3where

− 1

n− 1
τ2
u
≤ Bn,1 ≤ 0

− 1

n− 1
σ2 ≤ Bn,2 ≤ 0

− 1

2(n− 1)
(σ2 + τ2

u
) ≤ Bn,3 ≤ 0 .Proof.(i) This is a onsequene of the strong law of large numbers for LHS given in Theorem 3 in Loh (1996).9



(ii) The proof onsists in translating the original proof, given for simple random sampling � see Proposi-tion 2.2 in Janon et al. (2012) � for LHS. The proof is given in Appendix A.(iii) See Appendix A.Remark 1. Due to their intriate struture, the biases of the estimators τ̃2,LHS
u,n , σ̃2,LHS

n , τ̂2,LHS
u,n and σ̂2,LHS

nan't be easily redued. Nevertheless we an note that these biases are asymptotially negligible, with a rate ofonvergene in O(n−1) larger than the rate of onvergene of the estimators � to their theoretial values �themselves, whih is in O(n−1/2).To onlude, we have proven that the estimation of SIs ombining MC estimators and Latin hyperubesampling has strong statistial properties. In partiular, estimators in suh a method have similar � andpotentially smaller � bias than the lassi method based on simple random sampling and asymptotiallysmaller variane.3.2 On repliated Latin hyperube samplingWe now ome to alternative estimators based on RLHS. First in Proposition 2, we present a tehnial resultshowing that suh estimators still have the strong statistial properties of the former estimators. We then provethat only two RLHS are neessary to estimate all the �rst-order Sobol' indies and that the estimators de�nedin this e�ient strategy have the same statistial properties as in Proposition 2.We begin with the de�nition of a repliated Latin hyperube:De�nition 2. Let d and n in N
∗, and onsider Πn the set of all the permutations of {1, . . . , n}. We say that

(Xj)j=1..n and (X
′j)j=1..n are two repliated Latin hyperubes of size n in [0, 1]d � and we denote (Xj ,X

′j)j ∼

RLH(n, d) � if for all j ∈ {1, . . . , n},
Xj =

(
π1(j)− U1,π1(j)

n
, . . . ,

πd(j)− Ud,πd(j)

n

)and
X

′j =

(
π′
1(j)− U1,π′

1
(j)

n
, . . . ,

π′
d(j)− Ud,π′

d
(j)

n

)where the πi's, the π′
i's and the Ui,j 's are independent random variables uniformly distributed on Πn, Πn and

[0, 1], respetively.Now let (Ẋj)j ∼ LH(n, d) and (Z̈j , Z̈
′j)j ∼ RLH(n, d), and for any u in {1, . . . , d} denote

Ÿ j = f(Ẋj
u
: Z̈j

u
c) (10)

Ÿ j
u

= f(Ẋj
u
: Z̈

′j
uc). (11)10



Note that Ÿ j now depends on u, but the essential onstraint stating that the random vetors Ẋ
j
u : Z̈j

uc and
Ẋ

j
u : Z̈

′j
u
c have the same omponents in their i-th oordinate, for all i ∈ u is still heked. However foronveniene, we keep the notation unhanged.The resulting estimators are now denoted by S̃

RLHS

u,n = τ̃2,RLHS
u,n /σ̃2,RLHS

n and Ŝ
RLHS

u,n = τ̂2,RLHS
u,n /σ̂2,RLHS

n ,respetively. Note that estimators of SIs based on r repliated Latin hyperubes have already been introduedby MKay (1995) � see also the summarized presentation by Saltelli et al. (2000) � but the main drawbakof these estimators is that they onverge to their orresponding analytial values only as r tends to +∞. Thestatistial properties of S̃RLHS

u
and Ŝ

RLHS

u
are gathered in the following result:Proposition 2.(i) If f4 is integrable then S̃

RLHS

u,n and Ŝ
RLHS

u,n are strongly onsistent.(ii) If f6 is integrable then √
n(S̃

RLHS

u,n − S
u
) and √

n(Ŝ
RLHS

u,n − S
u
) onverge in law to a zero-mean normaldistribution with the same respetive variane given in CLT for the estimators S̃

LHS

u,n and S̃
LHS

u,n .(iii) We have
E
[
τ̃2,RLHS
u,n

]
= τ2

u
− 1

n
τ2
u
+Bn,1 +B|u|,n

E
[
σ̃2,RLHS
n

]
= σ2 +Bn,3

E
[
τ̂2,RLHS
u,n

]
= τ2

u
− 1

2n
τ2
u
+Bn,1 +Bn,2 +B|u|,n

E
[
σ̂2,RLHS
n

]
= σ2 − 1

2n
τ2
u
+Bn,1 +Bn,2where

|Bn,1| ≤
(
d+ 1

n
+ 2

)(
d+ 1

n

)
E[Y 2]

|Bn,2| ≤ σ2

2n

− 1

n− 1
σ2 ≤ Bn,3 ≤ 0

|B|u|,n| ≤
(
d− |u|+ 1

n
+ 2

)(
d− |u|+ 1

n− 1

)
E[Y 2] .Proof. See Appendix B.Using this tehnial result, it is possible to estimate all the �rst-order Sobol' indies with only two RLHand in addition the new estimators inherit the strong statistial properties stated in Proposition 2. The mainidea onsists in de�ning, for any i ∈ {1, . . . , d}, the two samples Y j and Y j

{i} � neessary to estimate S{i} �by only onsidering two RLH. To this end, we �rst onsider (Ẅj ,Ẅ
′j)j ∼ RLH(n, d) de�ned by

Ẅj =

(
π1(j)− U1,π1(j)

n
, . . . ,

πd(j)− Ud,πd(j)

n

)and
Ẅ

′j =

(
π′
1(j)− U1,π′

1
(j)

n
, . . . ,

π′
d(j)− Ud,π′

d
(j)

n

)
.11



Seondly, let π ∈ Πn be a random permutation independent from the πis and the π′
is, and for any i ∈ {1, . . . , d}and j ∈ {1, . . . , n} onsider

Y j = f(Ẅπ−1

i ◦π(j)) (12)
Y j
{i} = f(Ẅ

′π
′−1

i
◦π(j)). (13)Then we have the following result.Theorem 1. Consider (Ẅj ,Ẅ

′j)j ∼ RLH(n, d) and denote D(n) the DoE de�ned as the union of both theserepliated Latin hyperubes:
D(n) = {Ẅj, 1 ≤ j ≤ n} ∪ {Ẅ′j , 1 ≤ j ≤ n}.For any i ∈ {1, . . . , d}, onsider the evaluations of the funtion f on D(n) denoted by (Y j)j=1..n and (Y j

{i})j=1..nas de�ned in (12) and (13). Then the estimator S̃{i} as de�ned in (7) � (resp. Ŝ{i} as de�ned in (8)) �built with Y j and Y j
{i} is strongly onsistent, asymptotially normal and has numerator and denominator withbias as stated in (iii) of Proposition 2.Proof. We have Ẅπ−1

i
◦π(j) = Ẋ

j
{i} : Z̈j

{i}c and Ẅ
′π

′−1

i
◦π(j) = Ẋ

j
{i} : Z̈

′j
{i}c where

Ẋ
j
{i} =

π(j)− Ui,π(j)

n

Z̈
j
{i}c =

(
π̆1(j)− U1,π̆1(j)

n
, . . . ,

π̆i−1(j)− Ui−1,π̆i−1(j)

n
,
π̆i+1(j)− Ui+1,π̆i+1(j)

n
, . . . ,

π̆d(j)− Ud,π̆d(j)

n

)

Z̈
′j
{i}c =

(
π̆′
1(j)− U1,π̆′

1
(j)

n
, . . . ,

π̆′
i−1(j)− Ui−1,π̆′

i−1
(j)

n
,
π̆′
i+1(j)− Ui+1,π̆′

i+1
(j)

n
, . . . ,

π̆′
d(j)− Ud,π̆′

d
(j)

n

)with π̆k = πk ◦ π−1
i ◦ π and π̆′

k = π′
k ◦ π

′−1
i ◦ π. Then note that π, the π̆ks and the π̆′

ks are independentrandom permutations, and dedue that Y j and Y j
{i} given in (12) and (13) are de�ned as in (10) and (11).Thus Proposition 2 applies and the onlusion follows.3.3 Potential generalization to orthogonal array-based Latin hyperubesThe main question that arises given the result stated in Theorem 1 is: an we estimate all the k-th order Sobol'indies with only two RLHS? On the one hand, the most straightforward answer is learly negative sine RLHSdo not have the required struture to handle these higher-order Sobol' indies. On the other hand, we have toobserve that suh a well-suited struture an be built by using orthogonal arrays. So we �rst begin with thede�nition of an orthogonal array (OA):De�nition 3. An OA in dimension d, with q levels, strength t ≤ d and index λ is a matrix with n = λqtrows and d olumns suh that in every n-by-t submatrix eah of the qt possible rows � i.e. the distint t-tuples

(l1, . . . , lt) where the li's take their values in the set of the q levels � ours exatly the same number λ oftimes. 12



We now reall the de�nition of OA-based Latin hyperubes � see Owen (1992) � and introdue the generalnotion of repliated OA-based Latin hyperubes.De�nition 4. Let (Aj
i )i=1..d,j=1..n be an OA in dimension d, with n points and q levels in {1, . . . , q}, andonsider Πq the set of all the permutations of {1, . . . , q}. We say that (Xj)j=1..n is a Latin hyperube based onthe OA (Aj)j=1..n � and we denote (Xj)j ∼ LH

(
(Aj)j

) � if for all j ∈ {1, . . . , n},
Xj =

(π1(A
j
1)− U1,π1(A

j
1
)

q
, . . . ,

πd(A
j
d)− Ud,πd(A

j

d
)

q

)where the πi's and the Ui,j 's are independent random variables uniformly distributed on Πq and [0, 1], respe-tively.De�nition 5. Let (Aj
i )i=1..d,j=1..n an OA in dimension d, with n points and q levels in {1, . . . , q}, and onsider

Πq the set of all the permutations of {1, . . . , q}. We say that (Xj)j=1..n and (X
′j)j=1..n are two repliated Latinhyperubes based on the orthogonal array (Aj)j=1..n � and we denote (Xj ,X
′j)j ∼ RLH

(
(Aj)j

) � if for all
j ∈ {1, . . . , n},

Xj =

(π1(A
j
1)− U1,π1(A

j
1
)

q
, . . . ,

πd(A
j
d)− Ud,πd(A

j

d
)

q

)and
X

′j =

(π′
1(A

j
1)− U1,π′

1
(Aj

1
)

q
, . . . ,

π′
d(A

j
d)− Ud,π′

d
(Aj

d
)

q

)where the πi's, the π′
i's and the Ui,j 's are independent random variables uniformly distributed on Πq, Πq and

[0, 1], respetively.It is interesting to note that in the partiular ase of the OA (Aj)j=1 with strength 1 and index unityde�ned by
∀i ∈ {1, . . . d}, ∀j ∈ {1, . . . n}, Aj

i = j,these de�nitions are exatly De�nitions 1 and 2.Now onsider (Z̈j , Z̈
′j)j ∼ RLH((Aj)j) where (Aj

i )i=1..d,j=1..n is an OA in dimension d, with n points, ofstrength t and index unity, and denote D(n) the DoE de�ned as the union of both these OA-based repliatedLatin hyperubes:
D(n) = {Z̈j , 1 ≤ j ≤ n} ∪ {Z̈′j , 1 ≤ j ≤ n}.Then thanks to the de�nition of OA-based RLHS, it is easy to note that for any t indies, 1 ≤ i1 < · · · < it ≤ d,for all W ∈ D(n), there exists a unique element W′ distint from W suh that Wim = W ′

im , 1 ≤ m ≤ t. Thisproperty allows to estimate all the t-th order Sobol' indies by using only two the DoE D(n).Remark 2. Theoretial properties of the estimators for this generalization remain open issues and will onsistof a further work. The �rst step for strong onsisteny will be to state a strong law of large numbers for OA-based Latin hyperubes with strength t > 1 sine, as far as we know, suh a result does not exist. Asymptotinormality has already been proved for OA-based Latin hyperube with strength t = 2 under smoothness onditions13



� see Loh (2008) � but it is not su�ient to onlude in the ase of repliated OA-based Latin hyperubessine formulas as in (105) and (106) are neessary. As for the biases of the estimators, it will be neessary tostudy ovarianes in OA-based Latin hyperubes with strength t > 1 in order to state formulas as in (105) and(106) as well.4 Numerial illustrations4.1 Appliation to the Ishigami funtion4.1.1 Main experimentIn this setion, we apply the new method proposed in Setion 4 to the Ishigami funtion (see Ishigami andHomma (1990)):
f(X1, X2, X3) = sin(X1) + 7 sin2(X2) + 0.1X4

3 sin(X1)where the Xi's are independent random variable uniformly distributed on [−π, π]. Analytial values of SIs ofthis model are
S1 = 0.3139, S2 = 0.4424, S3 = 0, S12 = 0.7563, S23 = 0.4424, S13 = 0.5575 and S123 = 1.We are interested in omparing the new method, with the lassi one based on rude MC method and whihneed d + 1 samples to estimate all the �rst-order SIs, and 2d+ 2 samples to estimate all the seond-order SIs(see Saltelli (2002)). Here, both methods are ompared at the same sample size n in order to investigate theestimators themselves, but keep in mind that the new method is de�nitely more e�ient sine only two samplesare needed to estimate all the �rst-order SIs or all the seond-order Sobol' indies. In the experiment, we fouson the empirial overage � i.e. the empirial proportion of on�dene interval ontaining the analytial valueof the SI � of both estimators at di�erent sample size between 102 and 105, and for r = 100000 repliates.We �rst investigate estimators Ŝ{i},n and Ŝ

RLHS

{i},n , i ∈ {1, . . . , d} and in both ases, we provide asymptotion�dene intervals from the estimation of the asymptoti variane given in Janon et al. (2012) (see end of theproof of Prop. 2.2). Indeed, as we know that this asymptoti variane is:
σ2
IID,u =

Var[(Y − E[Y ])(Yu − E[Y ])− S
u
/2

(
(Y − E[Y ])2

)(
Yu − E[Y ]

)]Var[Y ]2
≥ σ2

RLHS,u, (14)we an provide an estimator of the asymptoti on�dene interval for the lassi method
IIID,u,α =

[
S
u
−

σ2
IID,u uα/2√

n
, S

u
+

σ2
IID,u uα/2√

n

]and an other one for the new method
IRLHS,u,α =

[
S
u
−

σ2
RLHS,u uα/2√

n
, S

u
+

σ2
RLHS,u uα/2√

n

]14



where uα/2 is the normal quantile at the signi�ane level α. By using the estimator of the asymptoti varianegiven in (14) in both ases, the on�dene interval lengths of the lassi and the new estimators are the same.More spei�ally, the estimated length of the new estimator is greater or equal than its optimal value. Thusthe asymptoti value of the empirial overage of the new method is greater or equal than the expeted one.However at the moment, we do not know how to estimate orretly σ2
RLHS,u beause of its singular expression(see Proof of (ii) in Proposition 1 in Setion 3.2). We just say few words about it in the next subsetion andmore fundamentally, it should onsist of a further work.We also investigate estimators Ŝ{i,j},n and Ŝ

OA2-RLHS
{i,j},n , i 6= j ∈ {1, . . . , d}, where the notation OA2-RLHSrefers to the generalization to repliated latin hyperube based on OA of strength 2 presented in Setion 4.4.In this ase, we onjeture that the Central Limit theorem established in (ii) in Proposition 2 is also true undersome smoothness assumption � note that, here, Ishigami funtion is C∞. Results are gathered in Figures 3to 6. For the seond-order SIs, we an observe that the bivariate strati�ation has a bad e�et on the new
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classic estimatorFigure 3: Empirial overage of on�dene intervals for S1 (left), S2 (enter) and S3 (right).
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new estimatorFigure 4: Empirial overage of on�dene intervals for S12 (left), S13 (enter) and S23 (right).
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classic estimatorFigure 5: Normalized (×√

n) length of the empirial interval for S1 (left), S2 (enter) and S3 (right).estimator at very low sample size, but we an notie its good properties as the number of simulations inreases.
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classic estimatorFigure 6: Normalized (×√

n) length of the empirial interval for S12 (left), S13 (enter) and S23 (right).
S1 S2 S12 S13 S23estimated lengths using (14) 4.40 4.15 2.19 3.95 6.45right lengths 3.96 3.28 1.53 2.37 5.16Table 1: Comparison between on�dene interval lengths estimated using (14) and the right lengths for S1,

S2, S12, S13 and S234.1.2 Remark on the on�dene interval length of the new estimatorConerning the estimation of the right on�dene interval length of the new estimators, note that if theasymptoti empirial overage � estimated using Formula (14) � is 1 − α′ instead of the expeted value
1 − α, then it means that the true asymptoti on�dene interval should be uα/2/uα′/2 time as long, where
u· denote the normal quantiles. More spei�ally in our �rst appliation, we obtain in this way the trueasymptoti normalized (×√

n) on�dene interval length of S1, S2, S12, S13 and S23; they are gathered inTable 1. Moreover onsidering these right normalized on�dene interval lengths, we an observe on Figures7 and 8 that the empirial overage of the new estimator onverges to the expeted level 0.99 as n inreases,and so we on�rm the reliability of the empirial on�dene intervals onstruted with the true asymptotilength. Unfortunately, evaluating the true asymptoti on�dene interval length is infeasible in pratie sine
10

2
10

3
10

4
10

5
0.982

0.986

0.99

0.994

0.998

1

sample size (n)

em
pi

ric
al

 c
ov

er
ag

e

 

 

classic estimator
new estimator (right length)

10
2

10
3

10
4

10
5

0.98

0.985

0.99

0.995

1

sample size (n)

em
pi

ric
al

 c
ov

er
ag

e

 

 

new estimator (right length)
classic estimator

Figure 7: Empirial overage of on�dene intervals for S1 (left) and S2 (right).it requires a lot of repliations to estimate the empirial overage. So the issue related to the onstrution ofoptimal on�dene intervals remains open.
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new estimator (right length)Figure 8: Empirial overage of on�dene intervals for S12 (left), S13 (enter) and S23 (right).4.2 Comparison between the new method and the quasi-Monte Carlo estimationWe now ome to the omparison between the new method based on RLHS and the method of Sobol' performedwith Sobol' sequenes, also known as LPτ sequenes and that onsist of (t, s)-sequenes in base 2 � see, e.g.,Niederreiter (1992) for (t, s)-sequenes and Saltelli et al. (2010) for the appliation to the method of Sobol'.The numerial appliation we propose onsists in omparing the estimation error � the mean squared error� in the omputation of all the �rst-order Sobol' indies Si between these two approahes using exatly thesame total number of model evaluations. Low disrepany sequenes are known for their e�ieny but keepin mind that the total number of model evaluations required to estimate all the �rst-order Sobol' indies is

(d+ 1)n when using (t, s)-sequenes while only 2n are neessary when using RLHS. The analytial test-ase isa multipliative funtion known as the g-funtion � see Saltelli and Sobol' (1995). So we onsider the model
Y = f1(X1)× · · · × fd(Xd)where the Xis are independent random variables uniformly distributed on [0, 1] and for any i ∈ {1, . . . , d}

fi(Xi) =
|4Xi − 2|+ ai

1 + ai
, ai ≥ 0.The numerial test is divided into three ases:Case i) in dimension d = 3 with g-funtion parameters a = (0, 1, 9)Case ii) in dimension d = 12 with g-funtion parameters a = (0, 0, 0, 0, 1, 1, 1, 1, 9, 9, 9, 9)Case iii) in dimension d = 24 with g-funtion parameters a = (0, . . . , 0︸ ︷︷ ︸

8 times , 1, . . . , 1︸ ︷︷ ︸
8 times , 9, . . . , 9︸ ︷︷ ︸

8 times ).The theoretial values of the Sobol' indies are the following:Case i) S1 = 0.742, S2 = 0.185, S3 = 0.007Case ii) S1 = · · · = S4 = 0.098, S5 = · · · = S8 = 0.024, S9 = · · · = S12 = 0.001,Case iii) S1 = · · · = S8 = 0.018, S9 = · · · = S16 = 0.004, S17 = · · · = S24 = 10−4.The omputation are performed at di�erent total number of runs:17



Case i) N = 64, 512, 4096, 32768, 262144, 2097152Case ii) N = 208, 1664, 13312, 106496, 851968, 6815744Case iii) N = 200, 1600, 12800, 102400, 819200, 6553600.In this numerial experiment, as we measure the error in term of mean squared error, we onsider randomizedSobol' sequenes. More preisely we use both the following well-known method of randomization:1. Cranley-Patterson rotation, that onsists in adding a random vetor to all the points of a DoE � wherethe addition is the omponentwise addition modulo 1.2. Owen's srambling, that essentially onsists in randomly permuting the levels of a (t, s)-sequene keepingthe low disrepany struture unhanged � see Owen (1995, 1997a,b).The results are gathered in Figures (9�11).
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3Figure 9: Plots of the estimation error of Sobol' indies for a g-funtion in dimension 3 with parameters (0, 1, 9).NB: CP rotation stands for Cranley-Patterson rotation.

10
3

10
4

10
5

10
6

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Total number of model evaluations

M
ea

n 
S

qu
ar

ed
 E

rr
or

 

 
RLHS
Scrambling
CP rotation

(a) Estimation error of S
1
, . . . , S

4

10
3

10
4

10
5

10
6

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Total number of model evaluations

M
ea

n 
S

qu
ar

ed
 E

rr
or

 

 
RLHS
Scrambling
CP rotation

(b) Estimation error of S
5
, . . . , S

8

10
3

10
4

10
5

10
6

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Total number of model evaluations

M
ea

n 
S

qu
ar

ed
 E

rr
or

 

 
RLHS
Scrambling
CP rotation

() Estimation error of S
9
, . . . , S

12Figure 10: Plots of the estimation error of Sobol' indies for a g-funtion in dimension 12 with parameters
(0, 0, 0, 0, 1, 1, 1, 1, 9, 9, 9, 9). NB: CP rotation stands for Cranley-Patterson rotation.First we an observe that the mean squared error (MSE) of all the estimates omputed by using RLHSdereases with a rate of onvergene of O(n−1) in the three test-ases, while the rate of onvergene of the low18



10
3

10
4

10
5

10
6

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Total number of model evaluations

M
ea

n 
S

qu
ar

ed
 E

rr
or

 

 
RLHS
Scrambling
CP rotation

(a) Estimation error of S
1
, . . . , S

8

10
3

10
4

10
5

10
6

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Total number of model evaluations

M
ea

n 
S

qu
ar

ed
 E

rr
or

 

 
RLHS
Scrambling
CP rotation

(b) Estimation error of S
9
, . . . , S

16

10
3

10
4

10
5

10
6

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Total number of model evaluations

M
ea

n 
S

qu
ar

ed
 E

rr
or

 

 
RLHS
Scrambling
CP rotation

() Estimation error of S
17
, . . . , S

24Figure 11: Plots of the estimation error of Sobol' indies for a g-funtion in dimension 24 with parameters
(0, . . . , 0, 1, . . . , 1, 9, . . . , 9). NB: CP rotation stands for Cranley-Patterson rotation.disrepany method � with srambling as well as Cranley-Patterson rotation � is O(n−2) in dimension 3 butonly O(n−1) in dimension 24. Seond note that MSEs of the estimates omputed by using RLHS at the lowesttotal number of model evaluations keep in the same range of values, while initial MSEs in low disrepanymethods beome worse as the dimension inreases. Consequently, the use of Sobol' sequenes learly leads tobetter results in dimension 3, but appears as a poor hoie in the other ases. Indeed in dimension 12, we anobserve that Sobol' sequenes provide better results than RLHS only asymptotially � we an see in Figure10 that at least 107 model evaluations are neessary � and in dimension 24, MSEs omputed by using RLHSare always a fator 10 or 15 better than those of low disrepany methods.4.3 Appliation to a marine eosystem simulatorWe now illustrate the new method to a one-dimensional oupled hydrodynamial� biologial model devel-oped and applied to the Ligurian Sea (northwestern Mediterranean). This eosystem simulator, MODèled'ÉCOsystème du GHER et du LOBEPM1 (MODECOGeL), ombines a 1D (vertial) version of the 3D GHERmodel whih takes into aount momentum and heat surfae �uxes omputed from a real meteorologial dataset, and a biogeohemial model de�ned by a nitrogen yle of 12 biologial state variables (see Figure 12) on-trolled by 87 input parameters, see Laroix and Nival (1998). Here we fous on the hlorophyll-a onentrationwhih is de�ned as a funtion of time and depthhla(t, z) = 1.59 ∗

(pp(t, z) + np(t, z) + mp(t, z))where pp, np and mp are the phyto-, nano- and mirophytoplankton biomasses, respetively. The behaviorof these three state variables are modeled by the following reation-di�usion and reation-advetion-di�usion1GHER: GeoHydrodynamis and Environment Researh, Université de Liège, Belgium. LOBEPM: Laboratoire d'OéanologieBiologique et d'Éologie du Planton Marin, Université Pierre et Marie Curie, Frane
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Figure 12: Biogeohemial model (NH4: Ammonium; NH3: nitrate; Pp, Np, Mp: pio-, nano-, mirophyto-plankton; Nz, Miz, Mez: nano-, miro-, mesozooplankton; PON1, PON2: type 1 and 2 partiulate organinitrogen; Ba: bateria; DON: dissolved organi nitrogen).equation
∂ pp
∂t

=
∂

∂z

(
λ
∂ pp
∂z

)
+
(
(1− exudpp)µpp −mortpp)pp− ingpp,nznz

∂ np
∂t

=
∂

∂z

(
λ
∂ np
∂z

)
+
(
(1− exudnp)µnp −mortnp)np− ingnp,mizmiz

∂ mp
∂t

=
∂

∂z

(
λ
∂ mp
∂z

)
+
(
(1− exudmp)µmp −mortmp)mp− ingmp,mezmez− sinmp∂mp

∂zwhere nz, miz and mez are the nano-, miro- and mesozooplankton biomasses, respetively, and the othernotations are
λ vertial turbulent di�usivity (m2.s−1)
exudA exudation of A (perentage)
µA growth rate of A (day−1)
mortA mortality rate of A (day−1)
ingA,B ingestion rate of A by predator B (mgChl)
sinmp sinking veloity of mirophytoplankton (m.day−1)In our experiment, we fous on two di�erent outputs: the annual maximum of hlorophyll-a onentrationin surfae water Ysurf and the annual maximum of the mean of holorphyll-a onentration between 20 and 50meters in depth Ydepth. These are pratial indiators of biologial ativity. We are interested in the in�ueneof eight parameters among the 87 input fators. On the one hand, we onsider 6 a priori sensitive parameters

µmaxpp, µmaxnp, µmaxmp, Ioptpp, Ioptnp and Ioptmp where µmaxA and IoptA denote the maximum growth rate of
A and the optimum insolation for A, respetively. These input fators are diretly related to the growth rateof A, µA (see details in Appendix C). On the other hand, we onsider the maximum growth rate of bateria
µmaxba and the sinking veloity of partiulate organi nitrogen (type 1) sinpon1 whih have a priori a negligiblee�et on hlorophyll-a onentration sine they do not at diretly on pp, np and mp but on the state variablesba and pon1. We take these eight parameters to be independent gamma distributed random variables withparameters given in Table 2. We estimate all �rst- and seond-order SIs of both outputs Ysurf and Ydepth byusing the estimators de�ned in Setions 4.3 and 4.4 with sample sizes n = 65536 and n = 66049, respetively.20



The �rst-order SIs are estimated by using nested repliated latin hyperubes following Qian's onstrutionQian (2009). They allow to visualize empirial onvergene of the estimated indies as shown in Figure 13.The estimated indies at the biggest sample size (n = 65536) are reported in Tables 3 and 4; we an notie thatboth outputs do not de�ne an additive model sine in both ases, the sum of the �rst-order SIs are less thansixty perents. We also notie that µmaxpp is important in both outputs, while three other a priori importantparameters � µmaxnp, Ioptnp and Ioptmp� have atually no e�et. At last, it is surprising to observe that theparameter µmaxba, whih does not at diretly on both outputs, has non-zero values.
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label k θ mean standard deviation
µmaxpp (day−1) 1 9 0.33 3 1

µmaxnp (day−1) 2 9 0.28 2.5 0.83

µmaxmp (day−1) 3 9 0.22 2 0.67

Ioptpp (W.m−2) 4 9 1.11 10 3.33

Ioptnp (W.m−2) 5 9 1.67 15 5

Ioptmp (W.m−2) 6 9 2.22 20 6.67

µmaxba (day−1) 7 9 0.22 2 0.67

sinpon1 (m.day−1) 8 9 0.17 1.5 0.5Table 2: Distributions of variables using gamma density f(x; k, θ) = xk−1 exp(−x/θ)/(Γ(θ)θk), where Γ(·) isthe gamma funtion.
S{1} S{2} S{3} S{4} S{5} S{6} S{7} S{8}estimated index 0.314 0 0.061 0.060 0 0.003 0.051 0.010estimated error 0.010 0.011 0.012 0.011 0.010 0.010 0.013 0.012Table 3: Estimation of �rst-order SIs for the output Ysurf . The estimated error is the radius of the 99%on�dene interval.
S{1} S{2} S{3} S{4} S{5} S{6} S{7} S{8}estimated index 0.451 0 0.055 0.034 0 0 0.035 0.011estimated error 0.009 0.010 0.010 0.010 0.010 0.010 0.012 0.010Table 4: Estimation of �rst-order SIs for the output Ydepth. The estimated error is the radius of the 99%on�dene interval.
S{1,2} S{1,3} S{1,4} S{1,5} S{1,6} S{1,7} S{1,8} S{2,3} S{2,4} S{2,5}estimated index 0.374 0.479 0.424 0.339 0.324 0.400 0.318 0.069 0.066 0.016estimated error 0.012 0.011 0.013 0.011 0.011 0.010 0.011 0.011 0.011 0.011

S{2,6} S{2,7} S{2,8} S{3,4} S{3,5} S{3,6} S{3,7} S{3,8} S{4,5} S{4,6}estimated index 0.015 0.069 0.015 0.125 0.074 0.075 0.128 0.072 0.077 0.070estimated error 0.010 0.015 0.010 0.011 0.011 0.011 0.013 0.011 0.011 0.011

S{4,7} S{4,8} S{5,6} S{5,7} S{5,8} S{6,7} S{6,8} S{7,8}estimated index 0.121 0.066 0.017 0.055 0.014 0.056 0.009 0.050estimated error 0.013 0.011 0.010 0.015 0.010 0.014 0.010 0.015Table 5: Estimation of seond-order SIs for the output Ysurf . The estimated error is the radius of the 99%on�dene interval. 22



S{1,2} S{1,3} S{1,4} S{1,5} S{1,6} S{1,7} S{1,8} S{2,3} S{2,4} S{2,5}estimated index 0.506 0.593 0.510 0.455 0.450 0.515 0.447 0.056 0.034 0.005estimated error 0.010 0.009 0.010 0.009 0.009 0.008 0.009 0.011 0.011 0.011

S{2,6} S{2,7} S{2,8} S{3,4} S{3,5} S{3,6} S{3,7} S{3,8} S{4,5} S{4,6}estimated index 0.008 0.055 0.009 0.087 0.057 0.064 0.109 0.063 0.041 0.043estimated error 0.010 0.014 0.010 0.011 0.011 0.011 0.013 0.011 0.010 0.010

S{4,7} S{4,8} S{5,6} S{5,7} S{5,8} S{6,7} S{6,8} S{7,8}estimated index 0.082 0.041 0.009 0.040 0.007 0.046 0.006 0.041estimated error 0.013 0.010 0.010 0.014 0.010 0.014 0.010 0.014Table 6: Estimation of seond-order SIs for the output Ydepth. The estimated error is the radius of the 99%on�dene interval.we an estimate orretly the asymptoti variane of the new estimator.AknowledgmentsThe authors are grateful to Eri Blayo, Jean-Mihel Brankart and Pierre Brasseur for valuable disussions onthe simulator MODECOGeL and more generally on marine eosystem models. They also thank Art Owen forhis helpful omments. This work has been partially supported by Frenh National Researh Ageny (ANR)through COSINUS program (projet COSTA-BRAVA n◦ ANR-09-COSI-015).A Proof of Proposition 1NB: the integration set is generally omitted for integrals de�ned over a unit hyperube [0, 1]s with any s ≤ d,A.1 Tehnial lemmasLet Ẋ1 and Ẋ2 two distint points of a Latin hyperube of size n in [0, 1]d. For any funtion f de�ned on
[0, 1]d, onsider Ẏ 1 = f(Ẋ1) et Ẏ 2 = f(Ẋ2). In Theorem 1 in Stein (1987), Stein gives the following resultTheorem 2. If f is a square integrable funtion then as n tends to +∞, we haveCov(Ẏ 1, Ẏ 2) = − 1

n

d∑

i=1

σ2
i + o(n−1) . (15)In this subsetion, we prove an analogous result with more general settings and without the asymptotiassumption on n (see Lemma 4).
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Notation and de�ntions For s and n in N
∗, de�ne the partition of [0, 1)s in elementary hyperubes of side

1/n,
Qs(n) =

{
Q ⊆ [0, 1)s

∣∣ Q =

s∏

i=1

[αi, βi), αi ∈
{
0,

1

n
, . . . ,

n− 1

n

}
, βi = αi +

1

n

}
. (16)For any square integrable funtion g de�ned on [0, 1)s, s ≤ d, de�ne the sequene with general term

un(g) = ns
∑

Q∈Qs(n)

(∫

Q

g(x)dx

)2

, n ∈ N. (17)Outline The �rst lemma is the analogous result for Lebesgue integrability of a result given in Equation (A.4)in Stein (1987) for Riemann integrability. The seond lemma gives an important inequality whih allows towork without asymptoti assumption on n. The last one onsists in simplifying integrals under LHS using theANOVA deomposition. Lemma 4 provides the expeted inequalities.Lemma 1. If g is a square integrable funtion, the sequene (un(g)
) onverges to ∫

g2(x)dx as n tends to +∞.Proof. Noting that
un(g) =

∫
gn(x)dx (18)where

∀x ∈ [0, 1)s, gn(x) =
∑

Q∈Qs(n)

(
ns

∫

Q

g(y)dy

)2

1Q(x) (19)Lemma 1 is a straightforward onsequene of the dominated onvergene theorem. So let us prove that thereexists an integrable funtion h suh that for all n ∈ N
∗, |gn| ≤ h almost surely, and gn onverges pointwise to

g2, and the onlusion will follow.First sine g is a square integrable funtion, we have |g(x)| ≤ M a.s., and by their de�nition, the gn's areas well. Hene their exists an integrable funtion (h : x 7→ M) suh that |gn| ≤ h almost surely. Conerningthe pointwise onvergene, let us prove that for any x ∈ [0, 1)s,
∀ε > 0, ∃ N > 0, ∀n ≥ N,

∣∣∣∣∣

(
ns

∫

Qx

g(y)dy

)2

− g2(x)

∣∣∣∣∣ < ε (20)where Qx is the set Q in Qs(n) ontaining x. This is obvious if g2 is a simple funtion and we easily generalizethe result to any g2 sine any measurable funtion is a pointwise limit of simple funtions.Lemma 2. The sequene (
un(g)

) is dominated by ∫
g2(x)dx.Proof. Let n ∈ N

∗, the result is proved by showing that the sequene of general term vk(g) = u2kn(g) isinreasing. In this ase, by Lemma 1, we have lim vk(g) =
∫
g2(x)dx, and sine vk is inreasing, all the termsof this sequene are dominated by ∫

g2(x)dx, hene v0(g) = un(g) ≤
∫
g2(x)dx. To prove that the sequene

(
vk(g)

) is inreasing, note that
vk+1(g) = (2k+1n)s

∑

Q∈Qs(2k+1n)

(∫

Q

g(x)dx

)2

= (2kn)s
∑

Q∈Qs(2kn)


2s

∑

P∈P(Q,2k+1n)

(∫

P

g(x)dx

)2

 (21)24



where P(Q, 2k+1n) = Q(2k+1n) ∩Q. Then by Jensen inequality, we have
2s

∑

P∈P(Q,2k+1n)

(∫

P

g(x)dx

)2

≥
(∫

Q

g(x)dx

)2 (22)and we onlude that vk+1(g) ≥ vk(g).For 0 ≤ x1, x2 ≤ 1 de�ne
rn(x1, x2) =

{
1 if ⌊nx1⌋ = ⌊nx2⌋
0 otherwise, (23)where ⌊·⌋ is the �oor funtion. We now end with the following resultLemma 3. Let v be a subset of {1, . . . , d}, we have

∫
f(x1)f(x2)

∏

i∈v

rn(x1i, x2i)dx1dx2 =

∫ ∑

w⊆v

fw(x1w)fw(x2w)
∏

i∈v

rn(x1i, x2i)dx1dx2 . (24)Proof. By the ANOVA deomposition � see (1) � we have
∫

f(x1)f(x2)
∏

i∈v

rn(x1i, x2i)dx1dx2 =

∫ ∑

w1⊆{1,..,d}

∑

w2⊆{1,..,d}

fw1
(x1w1

)fw2
(x2w2

)
∏

i∈v

rn(x1i, x2i)dx1dx2 .(25)Then note that a ertain number of terms in the member on the right-hand side vanishe. If (w1∩vc)∪(w2∩vc) 6=

∅ then suppose without loss of generality that there exists k ∈ w1 \ v; we have
∫

fw1
(x1w1

)fw2
(x2w2

)
∏

i∈v

rn(x1i, x2i)dx1dx2 =

∫ (∫
fw1

(x1w1
)dx1k

)

︸ ︷︷ ︸
I1

fw2
(x2w2

)
∏

i∈v

rn(x1i, x2i)dx1{k}cdx2(26)and note that, by a basi property of the ANOVA deomposition, I1 = 0. If (w1 ∩ v
c) ∪ (w2 ∩ v

c) = ∅ and
w1 6= w2, then suppose without loss of generality that there exists k ∈ w1 \w2. In this ase, we have

∫
fw1

(x1w1
)fw2

(x2w2
)
∏

i∈v

rn(x1i, x2i)dx1dx2

=

∫ (∫
fw1

(x1w1
)rn(x1k, x2k)dx1kdx2k

)

︸ ︷︷ ︸
I2

fw2
(x2w2

)

( ∏

i∈v\{k}

rn(x1i, x2i)

)
dx1{k}cdx2{k}c (27)and note that by the de�nition of rn, we have

∫
fw1

(x1w1
)rn(x1k, x2k)dx1kdx2k =

∫
fw1

(x1w1
)dx1k (28)and thus I2 = 0. The onlusion of the lemma follows.Let u be a non-empty subset of {1, . . . d} and onsider (Ẋj)j ∼ LH(n, d) and (Żj)j ∼ LH(n, d). For anyfuntion f de�ned on [0, 1]d, onsideṙ

Y 1 = f(Ẋ1) and Ẏ 2
u
= f(Ẋ2

u
: Ż2

u
c) . (29)We have the following result 25



Lemma 4. If f is a square integrable funtion then we have
−

∑

∅6=w⊆u

|w| odd σ2
w

(n− 1)|w|
≤ Cov(Ẏ 1, Ẏ 2

u
) ≤

∑

∅6=w⊆u

|w| even σ2
w

(n− 1)|w|
. (30)Proof. Reall that for 0 ≤ x1, x2 ≤ 1,

rn(x1, x2) =

{
1 if ⌊nx1⌋ = ⌊nx2⌋
0 otherwise, (31)where ⌊·⌋ is the �oor funtion. For x1 = (x11, . . . , x1d) in [0, 1)d, de�ne x1v = (x1i1 , . . . , x1i|v|

) where v =

{i1, . . . , i|v|}. Due to the joint density of (Ẋ1
u
, Ẋ2

u
) under LHS � see MKay et al. (1979) or Stein (1987) �and by Lemma 3, we haveCov(Ẏ 1, Ẏ 2

u
) +

(∫
f(x)dx

)2

=

∫
f(x1)f(x2)

( n

n− 1

)|u|∏

i∈u

(
1− rn(x1i, x2i)

)
dx1dx2

=
( n

n− 1

)|u| ∑

v⊆u

(−1)|v|
∫

f(x1)f(x2)
∏

i∈v

rn(x1i, x2i)dx1dx2

=
( n

n− 1

)|u| ∑

v⊆u

(−1)|v|
∫ ∑

w⊆v

fw(x1w)fw(x2w)
∏

i∈v

rn(x1i, x2i)dx1dx2

=
( n

n− 1

)|u| ∑

v⊆u

(−1)|v|
∑

w⊆v

( 1

n

)|v|−|w|
∫

fw(x1w)fw(x2w)
∏

i∈w

rn(x1i, x2i)dx1wdx2w (32)Then note that for any funtion of w denoted by A(w), we have
∑

v⊆u

(−1)|v|
∑

w⊆v

( 1

n

)|v|−|w|

A(w) =
∑

v⊆u

(
− 1

n

)|v| ∑

w⊆v

( 1

n

)−|w|

A(w)

=
∑

w⊆u




|u|−|w|∑

k=0

(|u| − |w|
k

)(
− 1

n

)k+|w|




( 1

n

)−|w|

A(w)

=
∑

w⊆u

(n− 1

n

)|u|−|w|

(−1)|w|A(w) (33)Hene, we dedue thatCov(Ẏ 1, Ẏ 2
u
) =

∑

w⊆u

w 6=∅

( n

n− 1

)|w|

(−1)|w|

∫
fw(x1w)fw(x2w)

∏

i∈w

rn(x1i, x2i)dx1wdx2w . (34)Finally by the de�nition of rn, we have
0 ≤

∫
fw(x1w)fw(x2w)

∏

i∈w

rn(x1i, x2i)dx1wdx2w ≤
∑

Q∈Q|w|(n)

(∫

Q

fw(x1w)dx1w

)2 (35)and by Lemma 2, this gives
0 ≤

∫
fw(x1w)fw(x2w)

∏

i∈w

rn(x1i, x2i)dx1wdx2w ≤ σ2
w

n|w|
. (36)The latter inequalities and (34) lead to Lemma 4.Remark 3. Note that if u = {1, . . . , d}, the resulting inequalities are

−
∑

w 6=∅
|w| odd σ2

w

(n− 1)|w|
≤ Cov(Ẏ 1, Ẏ 2) ≤

∑

w 6=∅
|w| even σ2

w

(n− 1)|w|
. (37)This onsists of a non-asymptoti equivalent of the theorem due to Stein presented at the beginning of thissetion. 26



A.2 Proof of Proposition 1Proof.(ii) Conerning S̃
LHS

u,n , it is easy to show that
S̃
LHS

u,n = Φ(Vn) (38)where
Vn =

1

n

n∑

j=1

Vj (39)
Vj =

((
Ẏ j − E[Y ]

)(
Ẏ j
u
− E[Y ]

)
, Ẏ j − E[Y ] , Ẏ j

u
− E[Y ] ,

(
Ẏ j − E[Y ]

)2)T (40)and
Φ(x, y, z, t) =

x− yz

t− y2
. (41)Then we dedue from Theorem 2 in Loh (1996) that

√
n
(
Vn − µ

) L−→
n→∞

N4(0,Γ) (42)where µ = (τ2
u
, 0, 0, σ2)T and Γ is the ovariane matrix of R1 = V1 − A1 � see details in Eq. (3) in Loh(1996) � de�ned by

∀i ∈ {1, . . . , 4}, A1i is the additive part � see (1) � of V1i . (43)Thus the Delta method � see Theorem 3.1 in Van der Vaart (1998) � gives
√
n
(
S̃
LHS

u,n − S
u

) L−→
n→∞

N1(0, g
TΓg) (44)where g = ∇Φ(µ). Developing the term gTΓg does not seem to provide any useful information. However,denoting σ2

LHS this term, and σ2
IID the analogous quantity in the CLT for simple random sampling, we anshow that σ2

LHS ≤ σ2
IID. Indeed we �rst note that, for simple random sampling, the variane given in Janonet al. (2012) reads

σ2
IID =

Var[V11 − S
u
V14

]

σ2
(45)and for LHS, it is easy to show that

σ2
LHS =

Var[R11 − S
u
R14

]

σ2
. (46)Hene,

σ2
IID = σ2

LHS +
Var[A11 − S

u
A14

]

σ2
(47)and the onlusion of (ii) for S̃LHS

u,n follows. Conerning Ŝ
LHS

u,n , the proof follows the same lines � see Proof of(10) in Janon et al. (2012) for details.
27



(iii) First we have
E
[
τ̃2,LHS
u,n

]
=

n− 1

n2

n∑

j=1

E
[
Ẏ j Ẏ j

u

]
− 1

n2

n∑

j=1

n∑

l=1
l 6=j

E
[
Ẏ j Ẏ l

u

]

=
n− 1

n

(
E[Y ]2 + τ2

u

)
− n− 1

n

(Cov(Ẏ 1, Ẏ 2
u
) + E[Y ]2

) (48)and thanks to Lemma 4 in Appendix A, it gives
E
[
τ̃2,LHS
u,n

]
= τ2

u
+Bn,1 (49)with

− 1

n− 1
τ2
u
≤ Bn,1 ≤ 0 . (50)Conerning σ̃2,LHS

n , we have
E
[
σ̃2,LHS
u,n

]
=

n− 1

n2

n∑

j=1

E
[
(Ẏ j)2

]
− 1

n2

n∑

j=1

n∑

l=1
l 6=j

E
[
Ẏ j Ẏ l

]

=
n− 1

n
E[Y 2]− n− 1

n

(Cov(Ẏ 1, Ẏ 2) + E[Y ]2
) (51)and noting that Cov(Ẏ 1, Ẏ 2) = Cov(Ẏ 1, Ẏ 2

{1,...,d}

) (52)we onlude that
E
[
σ̃2,LHS
n

]
= σ2 +Bn,2 (53)with

− 1

n− 1
σ2 ≤ Bn,2 ≤ 0 . (54)As for τ̂2,LHS

u,n and σ̂2,LHS
n , we have

E



(
1

n

n∑

j=1

Ẏ j + Ẏ j
u

2

)2

 =

1

4n
E
[
(Ẏ 1 + Ẏ 1

u
)2
]
+

1

4n2

n∑

j=1

n∑

l=1
l 6=j

E
[
(Ẏ j + Ẏ j

u
)(Ẏ l + Ẏ l

u
)
]

=
1

2n

(
E[Y 2] + τ2

u
+ E[Y ]2

)
+

n− 1

n
E[Y ]2 +

n− 1

2n

(Cov(Ẏ 1, Ẏ 2) + Cov(Ẏ 1, Ẏ 2
u
)
)

=
1

2n

(
σ2 + τ2

u

)
+ E[Y ]2 +

n− 1

2n

(Cov(Ẏ 1, Ẏ 2) + Cov(Ẏ 1, Ẏ 2
u
)
)
. (55)Then it is easy to onlude that

E
[
τ̂2,LHS
u,n

]
= τ2

u
+Bn,3 (56)

E
[
σ̂2,LHS
n

]
= σ2 +Bn,3 (57)with

− 1

2(n− 1)
(σ2 + τ2

u
) ≤ Bn,3 ≤ 0 . (58)28



B Proof of Proposition 2We �rst give three lemmas. The proof of Proposition 2 is given in Setion B.2.B.1 Tehnial lemmasLemma 5. Let d ∈ N
∗, if n ≥ d2

2 then
(
1 +

1

n

)d

− 1 ≤ d+ 1

n
. (59)Proof. If d = 1, the result is obvious. Otherwise, for any x > 0, onsider the funtion gd de�ned by

gd(x) =

(
1 +

1

x

)d

− 1− d+ 1

x
. (60)We show that(1) if there exists x0 > 0 suh that gd(x0) ≤ 0 then for all x ≥ x0, gd(x) ≤ 0(2) gd(d2/2) ≤ 0and the onlusion follows. Conerning (1) note that

gd(x) = 1 +
d

x
+O(x−2)− 1− d

x
− 1

x
= − 1

x
+O(x−2) (61)and then that gd is negative as x tends to +∞. Moreover for any d > 1, gd is �rst dereasing and theninreasing. Indeed, we have

g′d(x) = − d

x2

(
1 +

1

x

)d−1

+
d+ 1

x2
(62)and we dedue that g′d(x0) = 0 with

x0 =
1

(
d+1
d

)1/(d−1) − 1
> 0 (63)and is negative on the left side and positive on the right side. The onlusion of (1) follows. Conerning (2),it is easy to hek that it is true for d = 1 and 2, and for d ≥ 3 we have

gd

(
d2

2

)
=

d∑

k=0

(
d

k

)(
2

d2

)k

− 1− 2

d
− 2

d2

= − 2

d3
+

d∑

k=3

(
d

k

)(
2

d2

)k

≤ − 2

d3
+

d∑

k=3

1

k!

(
2

d

)k

≤ − 2

d3
+

1

d3
+

1

3d3
+

2

3

d∑

k=4

1

dk

≤ − 2

d3
+

d∑

k=3

1

dk
+

1

3d3

(
1−

d−3∑

k=1

1

dk

)

≤ − 2

d3
+

d∑

k=3

1

dk

≤ − 2

d3
+

2

d3
(64)29



and the onlusion follows.Let u be a non-empty subset of {1, . . . d} and onsider (Ẋj)j ∼ LH(n, d). We have the following resultLemma 6. If f is a square integrable funtion, we have
E
[
f(Ẋ1)f(Ẋ1

u
: Ẋ2

uc)
]
= E[Y ]2 + τ2

u
+Bu,n (65)where

−E[Y 2]
∑

∅6=v⊆u
c

|v| odd 1

(n− 1)|v|
≤ Bu,n ≤ E[Y 2]

∑

∅6=v⊆u
c

|v| even 1

(n− 1)|v|
. (66)Proof. First, due to the joint density of (Ẋ1

u
c , Ẋ2

u
c) under LHS � see MKay et al. (1979) or Stein (1987) �we have

E
[
f(Ẋ1)f(Ẋ1

u
: Ẋ2

u
c)
]

=

∫
f(x,x1)f(x,x2)

(
n

n− 1

)d−|u| ∏

i∈uc

(
1− rn(x1i, x2i)

)
dxdx1dx2

=

(
n

n− 1

)d−|u| ∫ ( ∑

v⊆u
c

(−1)|v|
∫

f(x,x1)f(x,x2)
∏

i∈v

rn(x1i, x2i)dx1dx2

︸ ︷︷ ︸
I(x)

)
dx .(67)We now denote fx : y 7→ f(x,y) and then by (32) and (33) we have

I(x) =
∑

v⊆u
c

(−1)|v|
∫

fx(x1)fx(x2)
∏

i∈v

rn(x1i, x2i)dx1dx2

=
∑

v⊆u
c

(−1)|v|
∑

w⊆v

( 1

n

)|v|−|w|
∫

fx,w(x1w)fx,w(x2w)
∏

i∈w

rn(x1i, x2i)dx1wdx2w

=
∑

w⊆u
c

(−1)|w|
(n− 1

n

)d−|u|−|w|
∫

fx,w(x1w)fx,w(x2w)
∏

i∈w

rn(x1i, x2i)dx1wdx2w . (68)Hene by (36) we have for all w 6= ∅,
0 ≤

∫
fx,w(x1w)fx,w(x2w)

∏

i∈w

rn(x1i, x2i)dx1wdx2w ≤
∫
f2
x,w(x1w)dx1w

n|w|
≤

∫
f2
x
(x1)dx1

n|w|
(69)and note that ∫

f
x,∅(x1∅)fx,∅(x2∅)

∏

i∈∅

rn(x1i, x2i)dx1∅dx2∅ = f2
x,∅ . (70)Finally, note that ∫

f2
x,∅dx = τ2

u
+ E[Y ]2 (71)and ∫ ∫

f2
x
(x1)dx1dx = E

[
Y 2

] (72)and onlude that
E
[
f(Ẋ1)f(Ẋ1

u
: Ẋ2

u
c)
]
=

(
n

n− 1

)d−|u| ∫
I(x)dx = τ2

u
+ E[Y ]2 +Bu,n (73)with

−E[Y 2]
∑

∅6=v⊆u
c

|v| odd 1

(n− 1)|v|
≤ Bu,n ≤ E[Y 2]

∑

∅6=v⊆u
c

|v| even 1

(n− 1)|v|
. (74)

30



Lemma 7. The inequalities in Equation (66) imply that
∣∣∣∣
∑

w⊆uc

(
1

n

)|w|

Bu∪w,n

∣∣∣∣ ≤
(
d− |u|+ 1

n
+ 1

)(
d− |u|+ 1

n− 1

)
E
[
Y 2

]
. (75)Proof. By (66), we have

∑

w⊆u
c

(
1

n

)|w|

Bu∪w,n ≤ E
[
Y 2

] ∑

w⊆u
c

(
1

n

)|w| ∑

∅6=v⊆(u∪w)c

1

(n− 1)|w|

≤ E
[
Y 2

] ∑

w⊆u
c

(
1

n

)|w|((
1 +

1

n− 1

)d−|u|−|w|

− 1

)

≤ E
[
Y 2

][(
1 +

1

n− 1

)d−|u| ∑

w⊆u
c

(
1

n

)|w|

−
∑

w⊆u
c

(
1

n

)|w|]

≤ E
[
Y 2

][(
1 +

1

n− 1

)d−|u|(
1 +

1

n

)d−|u|

−
(
1 +

1

n

)d−|u|] (76)and the onlusion follows by applying twie Lemma 5.B.2 Proof of Proposition 2Proof.(i) The proof is divided into two parts. In the �rst one, we only onsider ontinuous funtions, and in theseond one, we extend the result to the whole lass of funtions suh that f4 is integrable.First part: Consisteny is obvious as in Proposition 1, exept for the term
1

n

n∑

j=1

Ÿ j Ÿ j
u
. (77)So denote Z

j the Latin hyperube de�ned by
Z
j
=

⌊nZ̈′j⌋+Uj

n
(78)where the Uj 's are independent random vetors uniformly distributed in [0, 1[d independent from all thepermutations and shifts in the de�nition of (Z̈′j)j , and ⌊·⌋ is the �oor funtion. We an write

1

n

n∑

j=1

Ÿ j Ÿ j
u

=
1

n

n∑

j=1

f(Ẋj
u
: Z̈j

u
c)f(Ẋj

u
: Z̈

′j
u
c)

=
1

n

n∑

j=1

f(Ẋj
u
: Z̈j

u
c)f(Ẋj

u
: Z

j

uc) +
1

n

n∑

j=1

f(Ẋj
u
: Z̈j

u
c)
(
f(Ẋj

u
: Z̈

′j
u
c)− f(Ẋj

u
: Z

j

uc)
)
. (79)The �rst term on the right-hand side is an estimator as desribed in Setion 3.1. sine by the onstrutionproposed in Eq. (78), (Z̈j)j=1..n and (Z

j
)j=1..n are two independent LHS; so Proposition 1 states it onvergesto E[Y ]2 + τ2

u
almost surely. The seond term on the right-hand side onverges to 0 sine as f is bounded �by ontinuity on a ompat � it is bounded by

sup |f |
n

n∑

j=1

∣∣∣f(Ẋj
u
: Z̈

′j
uc)− f(Ẋj

u
: Z

j

u
c)
∣∣∣ (80)31



and by uniform ontinuity of f � due to Heine-Cantor theorem � this quantity tends to 0 as n tends to +∞.Thus the sum in the right-hand side, i.e. 1
n

∑n
j=1 Ÿ

j Ÿ j
u , onverges to E[Y ]2 + τ2

u
almost surely.Seond part: Sine the spae of ontinuous funtions on [0, 1]d � denoted C

(
[0, 1]d

) � is dense in L4
(
[0, 1]d

),let (fm)m∈N∗ be a sequene in C
(
[0, 1]d

) suh that E[|fm(X)−f(X)|4
] onverges to 0 as m tends to +∞, where

X is uniformly distributed on [0, 1]d.Now let ε > 0 and M = M(ε) ∈ N
∗ suh that

E

[(
fM (X)− f(X)

)2]
<

ε2

65 E[f2(X)]
. (81)We an write

1

n

n∑

j=1

Ÿ j Ÿ j
u

=
1

n

n∑

j=1

f(Ẋj
u
: Z̈j

uc)f(Ẋj
u
: Z

j

u
c) +

1

n

n∑

j=1

f(Ẋj
u
: Z̈j

uc)
(
fM (Ẋj

u
: Z̈

′j
uc)− fM (Ẋj

u
: Z

j

u
c)
)

+
1

n

n∑

j=1

f(Ẋj
u
: Z̈j

u
c)
(
f(Ẋj

u
: Z̈

′j
u
c)− fM (Ẋj

u
: Z̈

′j
u
c)
)
+

1

n

n∑

j=1

f(Ẋj
u
: Z̈j

u
c)
(
fM (Ẋj

u
: Z

j

uc)− f(Ẋj
u
: Z

j

uc)
)
.(82)As noted in the proof of (i) in Proposition 1, the �rst term on the right-hand side of (82) onverges to τ2

u
+E[Y ]2almost surely as n tends to +∞ i.e.

P

(
∀ε > 0, ∃N1 ∈ N

∗, ∀n > N1,
∣∣∣ 1
n

n∑

j=1

f(Ẋj
u
: Z̈j

uc)f(Ẋj
u
: Z

j

u
c)− τ2

u
− E[Y ]2

∣∣∣ < ε

4

)
= 1 . (83)Sine fM is uniformly ontinuous on [0, 1]d, we have that

An = sup
1≤j≤n

∣∣fM (Ẋj
u
: Z̈

′j
u
c)− fM (Ẋj

u
: Z

j

uc)
∣∣ (84)onverges almost surely to 0 as n tends to +∞. Moreover, sine f is integrable, we have that 1

n

∑n
j=1 |f(Ẍ

j
u)|onverges to E

[
|Y |

] as n tends to +∞. Hene
P

(
∀ε > 0, ∃N1 ∈ N

∗, ∀n > N1,
∣∣∣ 1
n

n∑

j=1

f(Ẋj
u
: Z̈j

u
c)
(
fM (Ẋj

u
: Z̈

′j
u
c)− fM (Ẋj

u
: Z

j

uc)
)∣∣∣ < ε

4

)

≥ P

(
∀ε > 0, ∃N2 ∈ N

∗, ∀n > N2, An
1

n

n∑

j=1

∣∣f(Ẋj
u
: Z̈j

uc)
∣∣ < ε

4

)

= 1 . (85)For the third and the fourth terms on the right-hand side of (82), we apply twie the same proof. First theCauhy-Shwartz inequality gives
P

(
∀ε > 0, ∃N3 ∈ N

∗, ∀n > N3,
∣∣∣ 1
n

n∑

j=1

f(Ẋj
u
: Z̈j

uc)
(
f(Ẋj

u
: Z̈

′j
uc)− fM (Ẋj

u
: Z̈

′j
uc)

)∣∣∣ < ε

4

)

≥ P

(
∀ε > 0, ∃N3 ∈ N

∗, ∀n > N3,
( 1

n

n∑

j=1

f2(Ẋj
u
: Z̈j

uc)
)1/2( 1

n

n∑

j=1

(
f(Ẋj

u
: Z̈

′j
uc)− fM (Ẋj

u
: Z̈

′j
uc)

)2)1/2

<
ε

4

)
.(86)Then note that 1

n

∑n
j=1 f

2(Ẋj
u : Z̈j

u
c) and 1

n

∑n
j=1

(
f(Ẋj

u : Z̈j
u
c) − fM (Ẋj

u : Z̈
′j
u
c)
)2 onverge almost surely to

E[Y 2] and E[(fM (X)− f(X))2] � where X is uniformly distributed on [0, 1]d � respetively. And dedue that32



there exists N4 ∈ N
∗ suh that for all n > N4, we have 1

n

∑n
j=1 f

2(Ẋj
u : Z̈j

uc) < 2 E[Y 2] and 1
n

∑n
j=1

(
f(Ẋj

u :

Z̈
′j
u
c)− fM (Ẋj

u : Z̈j
u
c)
)2

< 2 E[(fM (X)− f(X))2] almost surely. As a onsequene, dedue from Eq. (81) that
P

(
∀ε > 0, ∃N3 ∈ N

∗, ∀n > N3,
∣∣∣ 1
n

n∑

j=1

f(Ẋj
u
: Z̈j

u
c)
(
f(Ẋj

u
: Z̈

′j
u
c)− fM (Ẋj

u
: Z̈

′j
u
c)
)∣∣∣ < ε

4

)

≥ P

(
∀ε > 0, ∃N3 > N4, ∀n > N3, ε

√
4

65
<

ε

4

)

= 1 (87)Finally, Eqs. (83�87) gives
P

(
∀ε > 0, ∃N ∈ N

∗, ∀n > N,
∣∣∣ 1
n

n∑

j=1

Ÿ j Ÿ j
u

∣∣∣ < ε
)
= 1 (88)and we have the onlusion.(ii) As in (i), the only term to treat is

1

n

n∑

j=1

Ÿ j Ÿ j
u
, (89)so asymptoti normality is shown in the same way by using the deomposition in (79). We always obtain thesum of a term already onsidered in Setion 3 whih onverges in law to a normal distribution and a termwhih onverges to 0 in probability, and the onlusion follows from Slutsky's lemma. We only detail the prooffor S̃RLHS

u,n , it is exatly the same for ŜRLHS

u,n . So note that following the proof of (ii) in Proposition 1 and thenotation above, it is su�ient to show that
√
n

(
1

n

n∑

j=1

(
f(Ẋj

u
: Z̈j

uc)− E[Y ]
)(
f(Ẋj

u
: Z̈

′j
uc)− f(Ẋj

u
: Z

j

u
c)
)) P−→

n→∞
0 (90)to prove the asymptoti normality of S̃RLHS

u,n .So onsider ε, η > 0 and prove that there exists N ∈ N
∗ suh that for all n > N , the quantity

P = P

(∣∣∣ 1
n

n∑

j=1

(
f(Ẍj

u
)− E[Y ]

)(
f(Ẋj

u
: Z̈

′j
u
c)− f(Ẋj

u
: Z

j

uc)
)∣∣∣ > ε

) (91)is less than η. First as f6 is integrable, there exists a onstant K > 0 suh that P(|f(Ẋj
u : Z̈j

uc)| > K) < η/4.Hene
P ≤ P

((∣∣∣ 1√
n

n∑

j=1

(
f(Ẋj

u
: Z̈j

u
c)− E[Y ]

)(
f(Ẋj

u
: Z̈

′j
u
c)− f(Ẋj

u
: Z

j

uc)
)∣∣∣ > ε

)⋂(
|f(Ẋj

u
: Z̈j

u
c)| ≤ K

))

+ P

((∣∣∣ 1√
n

n∑

j=1

(
f(Ẋj

u
: Z̈j

u
c)− E[Y ]

)(
f(Ẋj

u
: Z̈

′j
u
c)− f(Ẋj

u
: Z

j

u
)
)∣∣∣ > ε

)⋂(
|f(Ẋj

u
: Z̈j

u
c)| > K

))

< P

(
K + |E[Y ]|√

n

n∑

j=1

∣∣f(Ẋj
u
: Z̈

′j
u
c)− f(Ẋj

u
: Z

j

uc)
∣∣∣ > ε

)
+

η

4
. (92)Now note that the spae of ontinuous funtions on [0, 1]d, denoted by C([0, 1]d), is dense in L6([0, 1]d) and let

(fm)m∈N∗ be a sequene in C([0, 1]d) suh that E[|fm(X)−f(X)|6] onverges to 0 as m tends to +∞ where X is33



uniformly distributed on [0, 1]d. It is easy to note that there exists M = M(n) suh that P(|fM (X)− f(X)| >

1/n) < η/4. Thus we get from Eq. (92) that
P <

4∑

i=1

P

((K + |E[Y ]|√
n

n∑

j=1

(
|fM (Ẋj

u
: Z̈

′j
uc)− fM (Ẋj

u
: Z

j

u
c)|+ |fM (Ẋj

u
: Z̈

′j
uc)− f(Ẋj

u
: Z̈

′j
uc)|

+ |fM (Ẋj
u
: Z

j

u
c)− f(Ẋj
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u
: Z̈

′j
uc)− f(Ẋj
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j
u
: Z

j

u
c)|+ |fM,Q(Ẋ
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(iii) First note that sine (Ẋj)j ∼ LH(n, d) and (Z̈j , Z̈
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where the πis, the π′
is, the π′′

i s, the Ui,js and the U ′
i,js are independent random variables uniformly distributedon Πn � see De�nition 1 �, Πn, Πn, [0, 1] and [0, 1], respetively. Moreover note that if for an index i in
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f(Ẋ1)f(Ẋ1
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where the biases are O(n−1) as spei�ed above. Conerning σ̃2,RLHS
n , note that σ̃2,RLHS

n = σ̃2,LHS
n and theonlusion follows from (iii) in Proposition 1. Conerning τ̂2,RLHS
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u
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Ÿ 1Ÿ 2

]
= E

[
Ẏ 1Ẏ 2
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+Bn,1 +Bn,2 (116)where the biases are O(n−1) as spei�ed above.C Phytoplankton growth modelThe phytoplankton growth is given by the �ve following equations, where A stands for pp, np or mp.

µA = µmaxAlimIAlimTA(limNO3A + limNH4A)limNO3A =

( NO3NO3 +KNO3A)
exp(−ΨNH4)limNH4A =

( NH4NH4 +KNH4A)limIA =
2(1 + βIA) PARIoptA( PAR

IoptA )2 + 2βIA PAR
IoptA + 1limTA = max


 2(1 + βTA) T−TletA

ToptA−TletA(
T−TletA

ToptA−TletA )2 + 2βIA T−TletA
ToptA−TletA + 1

, 0


where the parameters are de�ned in the following table
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parameter de�nition
µA growth rate of A
µmaxA maximum growth rate of AlimNO3A limitation by NO3 for AlimNH4A limitation by NH4 for AKNO3A half-saturation oe�ient of NO3 for AKNH4A half-saturation oe�ient of NH4 for A
Ψ inhibition oe�ient by NH4NO3 NO3 onentrationNH4 NH4 onentrationlimIA limitation by light for A
βIA shape fator for photoinhibition urve
IoptA optimum insolation for APAR photosyntheti ative radiationlimTA limitation by temperature for A
βTA shape fator for thermoinhibition urve
ToptA optimum temperature for A
TletA lower lethal temperature for A
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