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Abstract

In variance-based sensitivity analysis, the method of Sobol’ (Sobol’, 1993) allows to compute Sobol’
indices using Monte Carlo integration. One of the main drawbacks of this approach is that the estimation
of Sobol’ indices requires the use of several distinct samples. For example, in a d-dimensional space, the
estimation of all the first- or second-order Sobol’ indices basically requires d + 1 or d(d + 1)/2 distinct
samples, respectively. Some interesting combinatorial results have been introduced to weaken this defect,
in particular by Saltelli (2002) and more recently by Owen (2012b), but the quantities they estimate still
require O(d) samples. In this paper, we introduce a new approach to estimate for any k all the k-th order
Sobol’ indices by using only two distinct samples. We establish theoretical properties of such a method
for the first-order Sobol’ indices and discuss the generalization to higher-order indices. As an illustration,
we propose to apply this new approach to a marine ecosystem model of the Ligurian sea (northwestern
Mediterranean) in order to study the relative importance of its several parameters. The calibration process
of this kind of chemical simulators is well-known to be quite intricate, and a rigorous and robust — i.e.
valid without strong regularity assumptions — sensitivity analysis, as the method of Sobol’ provides, could

be of great help.
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1 Introduction and notation

Sobol” indices (SI) (Sobol’, 1993) are quantities defined by normalizing parts of variance in an ANOVA de-
composition (Hoeffding, 1948; Efron and Stein, 1981; Sobol’, 1993). They are an important tool to study the
sensitivity of a model output subject to the input parameters since they allow to quantify the relative impor-
tance of input factors of a function over their entire range of values. As they essentially consist of integrals,
their computation can become rapidly expensive when the number of factors increases. Many techniques have
been proposed to estimate these indices including Fast Amplitude Sensitivity Test (FAST) due to Cukier et al.
(1973) — see also the review paper (Cukier et al., 1978) — and further developed by Saltelli et al. (1999),
Random Balance Design (RBD) due to Tarantola et al. (2006), polynomial chaos expansion (PCE)-based esti-
mators developed by Sudret (2008) and Blatman and Sudret (2010) and the method of Sobol’. A recent review
of these methods can be found in Saltelli et al. (2008), and more specifically a new introduction to FAST and

RBD has been recently provided by Tissot and Prieur (2012).

Until now, spectral methods — as FAST, RBD or PCE-based methods — which exploit the spectral
decomposition of the model with respect to a particular multivariate basis, are generally preferred to the
method of Sobol’ because the latter is too expensive. However, spectral methods provide good estimations of
SIs only under strong assumptions on the spectral decomposition of the model itself such as a decay of the
spectrum sufficiently fast, the negligibility of high-order spectral coefficients, etc. As a result, these methods
are not robust to complex phenomena as high-frequency variations or discontinuities, and so the method of
Sobol” appears as the main method one can trust when no strong a priori knowledge on the model of interest

is available.

The ANOVA decomposition proceeds as follows. Let f be a real square integrable function defined on R¢
and X = (X3,...,X,4) arandom vector with independent components arbitrarily distributed on R. Then let us
consider the real random variable Y = f(X) and for any u C {1, ...,d}, denote by X,, the random vector with
components X;, ¢ € u. The ANOVA decomposition states that Y can be uniquely decomposed into summands

of increasing dimensions

Y = Z fu(Xu)

uC{1,....d}

where fy = E[Y] and the other components have mean zero and are mutually uncorrelated. In particular, the

sum of functions

fo+ [1(X1) + fo(X2) + - + fa(Xa) (1)
is the so-called additive part of f, where the constant fy and the random variables f;(X;) are the components
of lower complexity. The components f,(X,) are explicitely known in terms of conditional expectation. As
already mentioned, we have fy = E[Y] and the other terms are recursively defined by

fu(Xu) = E[Y|Xu] - Z fn(Xn)-

vCu



Then denoting Var[Y] and any term Var[f,(X,)] by 02 and o2, respectively, the equation in Eq. (1) gives

2 _ § 2
g = Oy

uC{L,..d}

and the SIs — also known as global sensitivity indices — are defined as

Sy=—, uC{l,...,d}.

qw | :qw

If u = {i}, Sy quantifies the main effect due to the factor X;, and if Card(u) > 1, S,, quantifies the interaction
effect between the factors X;, ¢ € u. Note that Sy is trivially equal to zero. Similarly one can consider the

quantities
o _Ta_ Var[ENVIX.]]  Focy, Varlfo(Xo)]
v o2 Varly] Var[Y]

, wC{l,...,d}

known as lower SIs or closed sensitivity indices. If u = {i} then S, = Sy, and if Card(u) > 1, S, quantify the
sum of all the main or interaction effects due to any group of factors v C u. Note that for any 1 < r < d, the
knowledge of {S,, Card(u) <r} or {S,, Card(u) < r} are strictly equivalent since, on the one hand, we have

ﬁu:ZSu

vCu

and on the other hand, the Mdbius inversion formula (see, e.g., Stanley, 2012) gives

Sy = Z(,l)lulflnlﬁu )

vCu

In practice global sensitivity analysis focuses on the first- or second-order — i.e. Card(u) <1 or 2, respec-
tively — terms. In the present paper, we only focus on the indices S, which are the quantities estimated by

the method of Sobol’.

The paper proceeds as follows. Section 2 provides a short review of the method of Sobol’, gives some
notation and explains the main idea of the new method we propose in the present paper. In Section 3, theory
is presented including asymptotic properties related to both Latin hypercube sampling (LHS) and replicated
Latin hypercube sampling (RLHS). In this section, we also discuss potential generalizations to using orthogonal
array (OA)-based Latin hypercubes (see Owen, 1992; Tang, 1993). Numerical illustrations are provided in

Section 4, and Section 5 has conclusions. Proofs are given in the appendices.

2 Background

As any numerical integration technique, the method of Sobol’ can be viewed as the particular combination
of a design of experiments (DoE) — i.e. the location the information is collected — and an estimator — i.e.
the way the collected information is processed. In this section, we first describe the designs of experiments of
interest and we then come to the definitions of some currently used estimators in the method of Sobol’. At
last, we introduce the concept of RLHS and we explain why this kind of DoE is of great importance in the

issue of estimating first-order Sls.



From now on, we only consider uniformly distributed inputs, i.e. Xi,..., Xy are independent random
variables uniformly distributed on [0,1]. Tt does not consist of a restrictive assumption since, thanks to the
inversion method — see, e.g., Devroye (1986) — a model formulation Y = f(Xi,...X4) where the X;s are
arbitrarily distributed can always come down to the formulation Y = f(Us,...,Us) where the U;s are random
variables uniformly distributed on [0, 1], defined by U; = F;(X;) with F; the cumulative distribution function

of Xi-

2.1 Designs of experiments

In the present paper a design of experiments refer to a finite subset of [0, 1]%. We do not consider deterministic
constructions of DoEs but only random ones, i.e. as in a Monte Carlo method, DoEs consist of realizations of

a set of random d-dimensional vectors.

For any non-empty subset u of {1,...,d}, there exist several estimators of the lower SI S, and they all
require n double, triple or more evaluations of the model (see Owen (2012a) for a recent survey). In the present
paper, we focus on the most basic estimators that only require n double evaluations. In this case, the first
of any double evaluation is a realization of the random variable Y = f(Xy,...,Xy4), and the complementary
evaluation is obtained from the first one by resampling its components indexed by the elements of u¢. In other

words, the complementary evaluation is a realization of the random variable denoted by Y, and defined by
Yo = f(Xy : Ze) (2)

where Z is a d-dimendional vector uniformly distributed on [0, 1]¢, and for all i in {1,...,d}

X, ificu
Z; otherwise.

(Xy i Zye)i = { (3)

Hence the definition of the design of experiments of size N = 2n for estimating S,,, denoted by D, (INV), proceeds
as follows. First let (Xj )j=1..n and (Zj )j=1..n be independent replications of the random vectors X and Z,

respectively. Then denote the two halves of the main DoE by

=
2
I

{X{:Z)., 1<j<n} (seethe definition in Eq.(3)),

and define Dy (N) to be the resulting union of both sets. Figure 1 shows illustrations of such DoEs for estimating
first-order SIs in a 2-dimensional space. Note that in this figure Dy3(10) and D9} (10) contain two points per
level of the first and second axis, respectively; this consists of the main property — or constraint — of the DoE

in the issue of estimating SIs using the method of Sobol’.
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Figure 1: Designs of experiments of size N = 10 for estimating the first-order SIs S; (subfigure (a)) and S,
(subfigure (b)).

2.2 Estimators

Using the previous notation, we now consider, for any j in {1,...,n}, the output observations
YIo= f(X7) (4)
Y = (X Zue). (5)

In the method of Sobol’, the estimation of the index S, consists in applying a Monte Carlo (MC) method to

both the numerator and denominator of
B Var[IE[Y|XuH
= Var[Y]

that can be rewritten, using the notation in Eq. (2), as

_ Cov(Y,Yy) E[YY,] - E[Y]E[Y,]
= Vary] Var[Y]

(6)

Asg already mentioned in this section, several estimators have been introduced to perform this numerical inte-
gration. In the present paper, we only consider the natural estimator coming from (6), and an other one due

to Monod et al. (2006). Using the notation in (4) and (5), they are defined by

LS (55
T

Eu,n = _gén - j:11 n = 1 n ]:21 7)
e (5xv)
and )
liy]y] _ (iiya eruy)
5 T i 2n =
ﬁu,n: a\.é = 1 & - ) 1 2 (8)
() () - (%ZW +yg>
j=1 j=1
respectively.



2.3 Motivation to use replicated Latin hypercube sampling

Following the previous description of both the designs of experiments and the estimators used in the method
of Sobol’; it is easy to understand that estimating all the first-order SIs using this technique requires n(d + 1)
evaluations of the model, i.e. d + 1 DoEs each containing n points. More generally, for any k in {1,...,d},

estimating all the k-th-order SIs basically requires n((}) + 1) evaluations.

Some interesting combinatorial results have been introduced to weaken this defect. For instance, Saltelli
(2002) shows how to estimate all the second-order SIs by using only n(2d + 2) evaluations. In a more recent
work, Owen (2012b) deeply studies these combinatorial aspects in the issue of estimating SIs. However the
quantities of interest in both these papers still require O(d) evaluations of the model, and this dependency with
respect to the dimension d appears as a major drawback in the sensitivity analysis of high-dimensional models

potentially depending on more than one hundred input parameters.

In order to overcome this issue of dimensionality, we propose a new approach based on a non-common

notion of replication. More precisely, for any DoE
D={x)=(z],....2]), 1<j<d},

we say that a DoE D’ is replicated from D if there exist d independent random permutations of {1,...,n}
— i.e. d independent random variables uniformly distributed on the set of the permutations of {1,...,n} —

denoted by m1,..., g, such that
D = {x'j = (mfl(j),...,acgd(j)), 1<j<n}.

Note that this notation is clearly symmetric, so we can also say that D is replicated from D’ or even that D
and D’ are replicated from each other. As a result, for any axis k in {1,...,d}, the union of a DoE D and one
of its replicate D’ contains two points per level of the k-th coordinate (see Figure 2(a)). Hence, this composite
DoE fulfills the requirement for estimating any first-order SI using the method of Sobol’, and we thus shows

provide a DoE that allows to estimate all the first-order SIs using only 2n evaluations of the model.

However, as we can observe on Figure 2(a), replication can have a bad effect on the space-filling property
of the composite DoE D U D’, and it could be desirable to take care to replicate only good space-filling DoEs.
Then LHS appears as the most natural candidate, and this leads to the notion of RLHS (see Figure 2(b))

already used by McKay (1995) in the issue of estimating first-order Sobol’ indices.

3 Theory

Both the estimators introduced in the previous section, Su,n and S, ., have strong statistical properties. It is

u,n

easy to prove that they are strongly consistent — i.e. they converge almost surely to the theoretical value S,



+ D (initial DoE) X D’ (replicated DoE) + D (initial DOE) X D’ (replicated DoE)
1 : 1
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(a) D: arbitrary DoE (b) D: Latin hypercube

Figure 2: Composite DoE for estimating all the first-order Sls.

— and that the biases of both their numerator and denominator are O(n):

. 1
E[fi.] = mi--m
1
E[&i] = o’ - =0?
n
and, as shown by Owen (2012b),
E[?Q ] = o i(02 +72)
Lun Lu m Lu
1
B[] = o o412

But the most important property, proved by Janon et al. (2012), is that they are asymptotically normal.
In particular this allows to derive asymptotic confidence intervals which provide probabilistic bounds on the

estimation error.

Now the question that naturally arises is

"Does the new approach based on RLHS we proposed for estimating all the first-order

Sobol’ indices still has these strong statistical properties?"

The answer is affirmative to the three previous points of interest and we prove it in this section. First we begin
by stating important results of convergence on LHS — see Proposition 1 in Section 3.1 — and on RLHS — see
Proposition 2 in Section 3.2 — and we then formulate the main result on the estimation of all the first-order SIs
using RLHS in Theorem 1 in Section 3.2. In a last subsection, we address the issue of potential generalizations

to OA-based LHS.

3.1 On Latin hypercube sampling

We now assume that the X7s and the Z’s are no longer independent replications of X and Z, but we consider

that {X7, 1 < j < n} and {Z7, 1 < j < n} are two independent Latin hypercubes of size n. We then prove



that both the estimators introduced in the previous section still have the statistical properties presented above.

We first introduce the definition of a Latin hypercube:

Definition 1. Let d and n in N*, and consider II,, the set of all the permutations of {1,...,n}. We say
that (X7)j—1.., is a Latin hypercube of size n in [0,1]? — and we denote (X7); ~ LH(n,d) — if for all

je{l,...,n},

9)

cey

XI — m(J) — Ut () ma(j) — Ud,ra(i)
n T n

where the m;’s and the U, ;’s are independent random variables uniformly distributed on II,, and [0,1], respec-

tively.

Now let (X7); ~ LH(n,d) and (Z7); ~ LH(n,d) in place of the independent replications X’s and Z7s, and

for any uin {1,...,d} denote

P )
L e
Vio= fKi 7).
. . ~LHS  _ _ ~LHS _ )
The resulting estimators are now denoted S, = Tun''°/G2HS and S, = 7o k"5 /G2EHS | respectively.

Their statistical properties are gathered in the following result:

Proposition 1.
~LHS  ~LHS
(i) If f* is integrable then Syn €tS,, arestrongly consistent.

~LHS ~LHS
(ii) If f© is integrable then \/n(S,, —S,) end \/n(S,, —S,) converge in law to a zero-mean normal

distribution with lower variance than the respective variance given in the central limit theorem (CLT) for the
basic estimators Su, and Su,n .

n

(iii) We have

E[Fat™%] = 12+ Bua
E[&i’LHS} = 0'2 =+ Bn,?
B[E2E15) = 124 Bug
E[G2EH5] = 0%+ B,y
where
__ L < B,i1 <0
n—1""%" ’
1
— 2< B,oa <0
n—1 ’
1 2 2
— < B, <0
2( 71)(0- +Iu)— 3
Proof.

(i) This is a consequence of the strong law of large numbers for LHS given in Theorem 3 in Loh (1996).



(ii) The proof consists in translating the original proof, given for simple random sampling — see Proposi-

tion 2.2 in Janon et al. (2012) — for LHS. The proof is given in Appendix A.

(iii) See Appendix A. O

~2,LHS ~2LHS =~2,LHS
n u,n

Remark 1. Due to their intricate structure, the biases of the estimators 7,/ ", 0. T G2 LHS

and o,
can’t be easily reduced. Nevertheless we can note that these biases are asymptotically negligible, with a rate of
convergence in O(n~1) larger than the rate of convergence of the estimators — to their theoretical values —

themselves, which is in O(n='/?).

To conclude, we have proven that the estimation of SIs combining MC estimators and Latin hypercube
sampling has strong statistical properties. In particular, estimators in such a method have similar — and
potentially smaller — bias than the classic method based on simple random sampling and asymptotically

smaller variance.

3.2 On replicated Latin hypercube sampling

We now come to alternative estimators based on RLHS. First in Proposition 2, we present a technical result
showing that such estimators still have the strong statistical properties of the former estimators. We then prove
that only two RLHS are necessary to estimate all the first-order Sobol’ indices and that the estimators defined

in this efficient strategy have the same statistical properties as in Proposition 2.

We begin with the definition of a replicated Latin hypercube:

Definition 2. Let d and n in N*, and consider I1,, the set of all the permutations of {1,...,n}. We say that
(X7)j=1.n and (X9) ;=1 are two replicated Latin hypercubes of size n in [0,1] — and we denote (X7, X'7); ~

RLH(n,d) — if for all j € {1,...,n},

Xj _ (Wl(j) — Ulvﬂ'l(j) ﬂd(j) - Ud,ﬂ'd(j))

9

n n

and

)
n n

X' = (”1@ “Uim@  mal) - Ud,w;m)

where the m;’s, the ’s and the U, ;’s are independent random variables uniformly distributed on II,,, II,, and

[0, 1], respectively.

Now let (X7); ~ LH(n,d) and (Z7,Z7); ~ RLH(n,d), and for any win {1,...,d} denote

Vio= f(XI:Z.) (10)

Vo= pki: ). (11)



Note that Y7 now depends on u, but the essential constraint stating that the random vectors X7 - Zﬂc and
XJ Zif have the same components in their i-th coordinate, for all ¢ € u is still checked. However for

convenience, we keep the notation unchanged.

] ) SBRLHS 9 RLHS /~9 RLHS oRLHS 9 RLHS ;~2 RLHS
The resulting estimators are now denoted by S, ,, =7,/ /o5 and S, ,, =T, /0% ,

respectively. Note that estimators of SIs based on r replicated Latin hypercubes have already been introduced
by McKay (1995) — see also the summarized presentation by Saltelli et al. (2000) — but the main drawback
of these estimators is that they converge to their corresponding analytical values only as r tends to +o0o0. The

.. . ~RLHS ~RLHS . .
statistical properties of 9, and S, are gathered in the following result:
Proposition 2.

~RLHS ~RLHS
(i) If f* is integrable then Syn andS,,  are strongly consistent.
~RLHS ~RLHS

(ii) If f© is integrable then \/n(S,, —S,) and \/n(S,, —S,) converge in law to a zero-mean normal

~LHS ~LHS
distribution with the same respective variance given in CLT for the estimators S, , and S, ,

(i) We have

. 1
E[_i:}sLHS] = 1121 - gli + Bn,l + B\u\,n
E[gi,RLHS] - 52 + Bn,3
A 1
E[zin"""] = zi- 578+ Bui+ Boa+ Bl
1
E[AQ,RLHS:I = 02 - _Zﬁ + Bn,l + Bn,2
2n
where
d+1 d+1
Bual < (T 2) (2 )mvy
n n
2
o
B, < —
| ’2| 2n
1
- 10'2 < Bn73 S 0
n—
d—|ul+1 d—|ul+1
Bal < (U ) (M gy
n n—1
Proof. See Appendix B. O

Using this technical result, it is possible to estimate all the first-order Sobol’ indices with only two RLH
and in addition the new estimators inherit the strong statistical properties stated in Proposition 2. The main
idea consists in defining, for any i € {1,...,d}, the two samples Y7 and Y{jl.} — necessary to estimate §{i} —

by only considering two RLH. To this end, we first consider (W7, W,j)j ~ RLH(n,d) defined by

— (771(]') = U1m(j) ma(j) — Udﬂrd(j))

yeeey
n n

and

ey

W - 71 (J) = ULz () . Tq(7) — Uanr () .
n ’ n

11



Secondly, let 7 € II,, be a random permutation independent from the m;s and the «’s, and for any i € {1,...,d}

and j € {1,...,n} consider

yi — f(wwflow(j)) (12)

Yiy = JOWTer), (13)
Then we have the following result.

Theorem 1. Consider (W, W'9); ~ RLH(n,d) and denote D(n) the DoE defined as the union of both these

replicated Latin hypercubes:
D(n) = {W/, 1<j<n}U{W79, 1<j<n}.

For anyi € {1,...,d}, consider the evaluations of the function f on D(n) denoted by (Y?);—1. ., and (Y{ji} )j=1..n
as defined in (12) and (13). Then the estimator S{i} as defined in (7) — (resp. 5{1—} as defined in (8)) —
built with Y7 and Y{jl.} is strongly consistent, asymptotically normal and has numerator and denominator with

bias as stated in (iii) of Proposition 2.

Proof. We have Wi °7(i) = X?{Z} : Z%‘i}c and W™ or(i) — Xj{l} : Zi{jz} where
o ] - ﬂ-(]) - Ui,ﬂ'(])
Xy = n
gi o _ (M) -Uing  Tim1() “Viciwag) Bie1() — Vi) Tal) = Usrat)
{i}e n ) ) n ) n ) ) n
g 71 () = ULz N Ti1(U) = Uiciz ) ®ig1() = Uikr,5,,(G) N Tq(7) — Ua ()
{i}e n ) ) n ) n ) ) n

with 7, = 7 o w[l om and 7, = 7, 0 w;*l om. Then note that 7, the ;s and the ;s are independent
random permutations, and deduce that Y7 and Y{jl.} given in (12) and (13) are defined as in (10) and (11).

Thus Proposition 2 applies and the conclusion follows. O

3.3 Potential generalization to orthogonal array-based Latin hypercubes

The main question that arises given the result stated in Theorem 1 is: can we estimate all the k-th order Sobol’
indices with only two RLHS? On the one hand, the most straightforward answer is clearly negative since RLHS
do not have the required strcuture to handle these higher-order Sobol’ indices. On the other hand, we have to
observe that such a well-suited structure can be built by using orthogonal arrays. So we first begin with the

definition of an orthogonal array (OA):

Definition 3. An OA in dimension d, with q levels, strength t < d and index )\ is a matriz with n = ¢
rows and d columns such that in every n-by-t submatriz each of the q* possible rows — i.e. the distinct t-tuples

(I1,...,1t) where the l;’s take their values in the set of the q levels — occurs exactly the same number X of

times.

12



We now recall the definition of OA-based Latin hypercubes — see Owen (1992) — and introduce the general

notion of replicated OA-based Latin hypercubes.

Definition 4. Let (A])i=1.4,j=1..n be an OA in dimension d, with n points and q levels in {1,...,q}, and
consider 11, the set of all the permutations of {1,...,q}. We say that (X7);—1 ,, is a Latin hypercube based on
the OA (A9)j—1.,, — and we denote (X7); ~ LH((AT);) — if for all j € {1,...,n},

o (B oy DU

geeey

q q
where the m;’s and the U; ;’s are independent random variables uniformly distributed on I, and [0,1], respec-
tively.

Definition 5. Let (A]);=1..4,j=1..n an OA in dimension d, with n points and q levels in {1,...,q}, and consider
11, the set of all the permutations of {1,...,q}. We say that (X7);_1., and (X,j)jzl__n are two replicated Latin

hypercubes based on the orthogonal array (AJ)j—; , — and we denote (X7, X7); ~ RLH((AT);) — if for all

je{l,...,n},

ey

%I — (771(14]1) - U1,7r1(,4{) ma(A)) — Ud,wd(Ag))
q q

and

X' — (ﬂll(Ajl) = Uy nr a9 ma(Ay) — Ud,fr;i(A{t))
q q
where the m;’s, the w}’s and the U; ;’s are independent random variables uniformly distributed on I1;, II, and

[0, 1], respectively.

It is interesting to note that in the particular case of the OA (A7);—; with strength 1 and index unity
defined by
Vie{l,...d}, Vje{l,...n}, Al=j

these definitions are exactly Definitions 1 and 2.

Now consider (Z7, Z,j)j ~ RLH((A7);) where (Ag)izlnd,jzl_n is an OA in dimension d, with n points, of
strength t and index unity, and denote D(n) the DoE defined as the union of both these OA-based replicated
Latin hypercubes:

D(n)={Z', 1<j<n}U{Z7, 1<j<n}.

Then thanks to the definition of OA-based RLHS, it is easy to note that for any ¢ indices, 1 < iy < --- < 4y < d,

for all W € D(n), there exists a unique element W' distinct from W such that W; =W/ , 1 <m <t. This

m

property allows to estimate all the ¢-th order Sobol’ indices by using only two the DoE D(n).

Remark 2. Theoretical properties of the estimators for this generalization remain open issues and will consist
of a further work. The first step for strong consistency will be to state a strong law of large numbers for OA-
based Latin hypercubes with strength t > 1 since, as far as we know, such a result does not exist. Asymptotic

normality has already been proved for OA-based Latin hypercube with strength t = 2 under smoothness conditions
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— see Loh (2008) — but it is not sufficient to conclude in the case of replicated OA-based Latin hypercubes
since formulas as in (105) and (106) are necessary. As for the biases of the estimators, it will be necessary to
study covariances in OA-based Latin hypercubes with strength t > 1 in order to state formulas as in (105) and

(106) as well.

4 Numerical illustrations

4.1 Application to the Ishigami function
4.1.1 Main experiment

In this section, we apply the new method proposed in Section 4 to the Ishigami function (see Ishigami and
Homma (1990)):
f(X1, X2, X3) = sin(X;) + 7sin*(X3) + 0.1X3 sin(X;)

where the X;’s are independent random variable uniformly distributed on [—m,7]. Analytical values of SIs of

this model are
S, =03139, §,=04424, §;=0, S, =0.7563, S,3 =0.4424, S5 =0.5575 and S55 = 1.

We are interested in comparing the new method, with the classic one based on crude MC method and which
need d + 1 samples to estimate all the first-order SIs, and 2d + 2 samples to estimate all the second-order SIs
(see Saltelli (2002)). Here, both methods are compared at the same sample size n in order to investigate the
estimators themselves, but keep in mind that the new method is definitely more efficient since only two samples
are needed to estimate all the first-order SIs or all the second-order Sobol’ indices. In the experiment, we focus
on the empirical coverage — i.e. the empirical proportion of confidence interval containing the analytical value
of the SI — of both estimators at different sample size between 10? and 10°, and for » = 100000 replicates.
We first investigate estimators S{i},n and Sg?is, i € {1,...,d} and in both cases, we provide asymptotic

confidence intervals from the estimation of the asymptotic variance given in Janon et al. (2012) (see end of the

proof of Prop. 2.2). Indeed, as we know that this asymptotic variance is:

s Var[(Y —EY)(Y—EY) - 8,/2((Y ~EY)?) (Vi ~EIV])] _ )
OIIDu = Var[Y]2 Z ORLHS,w

we can provide an estimator of the asymptotic confidence interval for the classic method

2 2
o u o U

IIDu Yo /2 11D Ya/2
S

1 a — |: - )
IID,u, Sy i 2y n

and an other one for the new method

2
HSu Ya/2 ORLHS,u Ua/2}

VA Vi

2
g
RL
IRLHS w0 = [ﬁu -

14



where u,, / is the normal quantile at the significance level a.. By using the estimator of the asymptotic variance
given in (14) in both cases, the confidence interval lengths of the classic and the new estimators are the same.
More specifically, the estimated length of the new estimator is greater or equal than its optimal value. Thus
the asymptotic value of the empirical coverage of the new method is greater or equal than the expected one.
However at the moment, we do not know how to estimate correctly o% s because of its singular expression
(see Proof of (ii) in Proposition 1 in Section 3.2). We just say few words about it in the next subsection and
more fundamentally, it should consist of a further work.

) ) ) - ~OA2-RLHS )
We also investigate estimators Sy; 1, and Sy; 1, @ # j € {1,...,d}, where the notation OA2-RLHS

refers to the generalization to replicated latin hypercube based on OA of strength 2 presented in Section 4.4.
In this case, we conjecture that the Central Limit theorem established in (ii) in Proposition 2 is also true under
some smoothness assumption — note that, here, Ishigami function is C*°. Results are gathered in Figures 3

to 6.  For the second-order SIs, we can observe that the bivariate stratification has a bad effect on the new

1 1 1
*- new estimator
[ * * o
%0 005 —F— classic estimator g oo 5 KK Kook D 09%
I g * _ S 099 —tF )
3 * ¥k * 3 099 —E 2
o Lok K * o % N © o985
g 099 f = —* © 0985 g
= = S o098 -
a Q.
g | £ oss —8—classic estimator | & - * nlew estimator
©0.985 | % new estimator @ 0 —H&—classic estimator
i , 0975 0,97 - - .
10° 10 10° 10° 10 10° . 10 10° 10 10 10 10
sample size (n) sample size (n) sample size (n)
Figure 3: Empirical coverage of confidence intervals for S, (left), S, (center) and S5 (right).
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Figure 4: Empirical coverage of confidence intervals for S;, (left), S;5 (center) and S,4 (right).
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Figure 5: Normalized (x+/n) length of the empirical interval for S; (left), S, (center) and S, (right).

estimator at very low sample size, but we can notice its good properties as the number of simulations increases.
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§1 §2 §12 §13 §23
estimated lengths using (14) 4.40 4.15 2.19 3.95 6.45

right lengths 3.96 3.28 1.53 237 5.16

Table 1: Comparison between confidence interval lengths estimated using (14) and the right lengths for Sy,
Sy, 12, 813 and Sy3

4.1.2 Remark on the confidence interval length of the new estimator

Concerning the estimation of the right confidence interval length of the new estimators, note that if the
asymptotic empirical coverage — estimated using Formula (14) — is 1 — o’ instead of the expected value
1 — a, then it means that the true asymptotic confidence interval should be uq/2/uq/ /2 time as long, where
u. denote the normal quantiles. More specifically in our first application, we obtain in this way the true
asymptotic normalized (x+/n) confidence interval length of S;, S5, S15, S13 and S,4; they are gathered in
Table 1. Moreover considering these right normalized confidence interval lengths, we can observe on Figures
7 and 8 that the empirical coverage of the new estimator converges to the expected level 0.99 as n increases,
and so we confirm the reliability of the empirical confidence intervals constructed with the true asymptotic

length. Unfortunately, evaluating the true asymptotic confidence interval length is infeasible in practice since

1r 1-
09981 —B— classic estimator > new estimator (right length)
% > new estimator (right length) % 0.995 —B—classic estimator
5 09941 P
8 g
o 8 099 5 5
= N . =
.g 0.99 = .S
= =
g- ‘S 0985
& 0.986 %
0.98}
0.987% = - . - - - .
10 10 ) 10 10 10 10 ) 10 10
sample size (n) sample size (n)

Figure 7: Empirical coverage of confidence intervals for S; (left) and S, (right).

it requires a lot of replications to estimate the empirical coverage. So the issue related to the construction of

optimal confidence intervals remains open.
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Figure 8: Empirical coverage of confidence intervals for S;, (left), S;5 (center) and S,5 (right).
4.2 Comparison between the new method and the quasi-Monte Carlo estimation

We now come to the comparison between the new method based on RLHS and the method of Sobol’ performed
with Sobol” sequences, also known as LP, sequences and that consist of (¢, s)-sequences in base 2 — see, e.g.,
Niederreiter (1992) for (¢, s)-sequences and Saltelli et al. (2010) for the application to the method of Sobol’.
The numerical application we propose consists in comparing the estimation error — the mean squared error
— in the computation of all the first-order Sobol’ indices S; between these two approaches using exactly the
same total number of model evaluations. Low discrepancy sequences are known for their efficiency but keep
in mind that the total number of model evaluations required to estimate all the first-order Sobol’ indices is
(d+ 1)n when using (¢, s)-sequences while only 2n are necessary when using RLHS. The analytical test-case is

a multiplicative function known as the g-function — see Saltelli and Sobol’ (1995). So we consider the model

Y = fi(X1) x -+ x fa(Xa)

where the X;s are independent random variables uniformly distributed on [0, 1] and for any 7 € {1,...,d}
|4Xi - 2| + a;
(X)) =———, a; >0.

The numerical test is divided into three cases:

Case i) in dimension d = 3 with g-function parameters a = (0, 1,9)
Case ii) in dimension d = 12 with g-function parameters a = (0,0,0,0,1,1,1,1,9,9,9,9)

Case iii) in dimension d = 24 with g-function parameters a = (0,...,0,1,...,1,9,...,9).
——— —— ——

8 times 8 times 8 times

The theoretical values of the Sobol’ indices are the following:

Case i) S, = 0.742, S, = 0.185, S5 = 0.007
Caseil) S = =8, =0098, S; = =S85 =0.024, Sy =+ = S, = 0.001,

Caseiii) §; =+ =95 =0.018, Sg = -+ = S5 =0.004, S, = -+ = Sy, = 1074

The computation are performed at different total number of runs:
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Case i) N = 64, 512, 4096, 32768, 262144, 2097152
Case ii) N = 208, 1664, 13312, 106496, 851968, 6815744

Case iii) N = 200, 1600, 12800, 102400, 819200, 6553600.

In this numerical experiment, as we measure the error in term of mean squared error, we consider randomized

Sobol’ sequences. More precisely we use both the following well-known method of randomization:

1. Cranley-Patterson rotation, that consists in adding a random vector to all the points of a DoE — where

the addition is the componentwise addition modulo 1.

2. Owen’s scrambling, that essentially consists in randomly permuting the levels of a (¢, s)-sequence keeping

the low discrepancy structure unchanged — see Owen (1995, 1997a.b).

The results are gathered in Figures (9-11).

10 E——— . ~— —RLHS ~— —RLHS
" 1 10 ~ - —#— Scrambling | -2 ~ - —#— Scrambling
G- o P oaion T & CP rotton 0 - —o— Cproution
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10 107 .
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W 19 o, e ]
3 3" i
= = = 6
g g g

s

3 0’ @
& ] 8 10°
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= 10 =10 =

1072 1072 107°

0 " S 107 . . 1072l ) )

10 10 10 10° 10° 10° 10° 10" 10°
Total number of model evaluations Total number of model evaluations Total number of model evaluations
(a) Estimation error of S (b) Estimation error of S, (c) Estimation error of Sy

Figure 9: Plots of the estimation error of Sobol’ indices for a g-function in dimension 3 with parameters (0, 1, 9).

NB: CP rotation stands for Cranley-Patterson rotation.
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=
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10° 10 10° 10° 10° 10* 10° 10° 10° 10* 10° 10°
Total number of model evaluations Total number of model evaluations Total number of model evaluations
(a) Estimation error of S;,...,S, (b) Estimation error of S5,...,Sg (c) Estimation error of Sy,...,S,

Figure 10: Plots of the estimation error of Sobol’ indices for a g-function in dimension 12 with parameters

(0,0,0,0,1,1,1,1,9,9,9,9). NB: CP rotation stands for Cranley-Patterson rotation.

First we can observe that the mean squared error (MSE) of all the estimates computed by using RLHS

decreases with a rate of convergence of O(n~1) in the three test-cases, while the rate of convergence of the low
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Figure 11: Plots of the estimation error of Sobol’ indices for a g-function in dimension 24 with parameters

(0,...,0,1,...,1,9,...,9). NB: CP rotation stands for Cranley-Patterson rotation.

discrepancy method — with scrambling as well as Cranley-Patterson rotation — is O(n~2) in dimension 3 but
only O(n~1!) in dimension 24. Second note that MSEs of the estimates computed by using RLHS at the lowest
total number of model evaluations keep in the same range of values, while initial MSEs in low discrepancy
methods become worse as the dimension increases. Consequently, the use of Sobol’ sequences clearly leads to
better results in dimension 3, but appears as a poor choice in the other cases. Indeed in dimension 12, we can
observe that Sobol’ sequences provide better results than RLHS only asymptotically — we can see in Figure
10 that at least 107 model evaluations are necessary — and in dimension 24, MSEs computed by using RLHS

are always a factor 10 or 15 better than those of low discrepancy methods.

4.3 Application to a marine ecosystem simulator

We now illustrate the new method to a one-dimensional coupled hydrodynamical- biological model devel-
oped and applied to the Ligurian Sea (northwestern Mediterranean). This ecosystem simulator, MODe¢le
d’ECOsystéme du GHER et du LOBEPM' (MODECOGelL), combines a 1D (vertical) version of the 3D GHER
model which takes into account momentum and heat surface fluxes computed from a real meteorological data
set, and a biogeochemical model defined by a nitrogen cycle of 12 biological state variables (see Figure 12) con-
trolled by 87 input parameters, see Lacroix and Nival (1998). Here we focus on the chlorophyll-a concentration

which is defined as a function of time and depth
chla(t, z) = 1.59 = (pp(t, 2) + np(t, 2) + mp(Z, 2))

where pp, np and mp are the phyto-, nano- and microphytoplankton biomasses, respectively. The behavior

of these three state variables are modeled by the following reaction-diffusion and reaction-advection-diffusion

LGHER: GeoHydrodynamics and Environment Research, Université de Liége, Belgium. LOBEPM: Laboratoire d’Océanologie

Biologique et d’Ecologie du Plancton Marin, Université Pierre et Marie Curie, France
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Figure 12: Biogeochemical model (NH4: Ammonium; NH3: nitrate; Pp, Np, Mp: pico-, nano-, microphyto-
plankton; Nz, Miz, Mez: nano-, micro-, mesozooplankton; PON1, PON2: type 1 and 2 particulate organic

nitrogen; Bac: bacteria; DON: dissolved organic nitrogen).

equation
% - % <>\ 882p> + (1 — ezudpp) ptpp — MOTtyp )PP — i12Gpp, 12
% = % <>\ 881;p> + ((1 — exUdnp ) fnp — mOTtnp)HP — iNGnp,mizMiz

where nz, miz and mez are the nano-, micro- and mesozooplankton biomasses, respectively, and the other

notations are

A vertical turbulent diffusivity (m2.s=1)
exuda exudation of A (percentage)

A growth rate of A (day™!)

mort 4 mortality rate of A (day™ ')

INGA,B ingestion rate of A by predator B (mgChl)

S1Mmp sinking velocity of microphytoplankton (m.day ')
In our experiment, we focus on two different outputs: the annual maximum of chlorophyll-a concentration
in surface water Ygu,r and the annual maximum of the mean of cholorphyll-a concentration between 20 and 50
meters in depth Ygepth. These are practical indicators of biological activity. We are interested in the influence
of eight parameters among the 87 input factors. On the one hand, we consider 6 a priori sensitive parameters
Hmazpps Mmaznps Wmazmps Loptpps Loptap a0 Iopmp Where fmaza and Iopia denote the maximum growth rate of
A and the optimum insolation for A, respectively. These input factors are directly related to the growth rate
of A, na (see details in Appendix C). On the other hand, we consider the maximum growth rate of bacteria
Pmazbac and the sinking velocity of particulate organic nitrogen (type 1) sinpons Which have a priori a negligible
effect on chlorophyll-a concentration since they do not act directly on pp, np and mp but on the state variables
bac and ponl. We take these eight parameters to be independent gamma distributed random variables with
parameters given in Table 2. We estimate all first- and second-order SIs of both outputs Ygurr and Ygepth by

using the estimators defined in Sections 4.3 and 4.4 with sample sizes n = 65536 and n = 66049, respectively.
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The first-order SIs are estimated by using nested replicated latin hypercubes following Qian’s construction
Qian (2009). They allow to visualize empirical convergence of the estimated indices as shown in Figure 13.
The estimated indices at the biggest sample size (n = 65536) are reported in Tables 3 and 4; we can notice that
both outputs do not define an additive model since in both cases, the sum of the first-order SIs are less than
sixty percents. We also notice that fimazpp is important in both outputs, while three other a priori important
parameters — [imaanps Joptnp a0d Iopmp— have actually no effect. At last, it is surprising to observe that the

parameter fimqarbac; Which does not act directly on both outputs, has non-zero values.

—4— mumaxpp
—4— mumaxpp

—o— mumaxnp
—s—mumaxnp

- mumaxmp
* - mumaxmp

—v—iopy
ot —v—ioptpp

o ioptnp o ioptnp

first-order Sobol’ indices
first-order Sobol’ indices

4 ioptmp 4 ioptmp

¥ mumaxbac v mumaxbac

—%¥—sedpon1l —*¥—sedponl

L L
65536 131072

L L L
2048 4006 8172

16384 32761
total sample size (2n)

Figure 13: Plots of first-order SIs with error bars — 99% confidence interval — for both outputs Yyu,r (left)

and Ydepth (right).

The second-order SIs are estimated by using a replicated latin hypercube based on an orthogonal array with
257 levels, index 1 and strength 2 — i.e. n = 66049 — following Bush’s construction, see Bose (1938). The
results are reported in Tables 5 and 6; they confirm that p,,qa.pp has the main role in both outputs since the
non-negligible second-order SIs are all related to the latter. As a conclusion, we can notice that both outputs
are extremely complex and contain, without any doubt, interactions of order more than or equal to 3. Such
an analysis with the MC estimator of SIs would be less efficient without the new approach we proposed in this
paper. More precisely, both order 1 and order 2 analysis using the classic MC estimator — i.e. estimating all
the SIs of order 1 or 2 — only could use a sample size of 30000 instead of 132000 since this classic approach
needs 9 independent samples while the new one only needs 2 for the order 1 analysis and 18 independent

samples while the new one only needs 4 for the order 2 analysis, see Saltelli (2002).

5 Conclusion

We have introduced a new method to estimate all the k-th order SIs by using only 2 samples, for any k. This
outperforms existing methods including the combinatorial results established by Saltelli (2002). We derive
theoretical results in the particular case of first-order SIs from the work by Janon et al. (2012) on asymptotical
properties of SIs and from the work by Loh (1996) on asymptotical properties of LHS. Further works will

consist in deriving these theoretical results to higher-order SIs and in improving the method by studying how
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label &k 0 mean standard deviation

fmazpp (day™") 1 9 0.33 3 1

[imaznp (day ") 2 9 028 25 0.83
[imazmp (day ') 3 9 0.22 2 0.67
Toptpp (W.m™2) 4 9 1.11 10 3.33
Toptnp (W.m™?) 5 9 167 15 5

Toptmp (W.m™2) 6 9 222 20 6.67
[imazvac (day™") 79 022 2 0.67
SiNpont (m.day™') 8 9 017 1.5 0.5

Table 2: Distributions of variables using gamma density f(x;k,0) = 2*~! exp(—x/0)/(T'(0)6%), where T'(-) is

the gamma function.

Sy Spy Sy Sy Spsy Sey Sy Sgsy
estimated index 0314 0 0.061 0.060 0 _ 0.003 0.051 0.010
estimated error 0.010 0.011 0.012 0.011 0.010 0.010 0.013 0.012

Table 3: Estimation of first-order SIs for the output Ys,rs. The estimated error is the radius of the 99%

confidence interval.

Sy Sppy Sy Sy Sy Se Sy Sisy
estimated index 0451 0 0.055 0.034 0 0 0035 0011
estimated error  0.009 0.010 0.010 0.010 0.010 0.010 0.012 0.010

Table 4: Estimation of first-order SIs for the output Yyeptn. The estimated error is the radius of the 99%

confidence interval.

§{1,2} §{1,3} §{1,4} §{1,5} §{1,6} §{1,7} ﬁ{l,s} §{2,3} §{2,4} §{2,5}
estimated index  0.374 0479 0424 0.339 0.324 0.400 0.318 0.069 0.066 0.016
estimated error ~ 0.012  0.011  0.013 0.011 0.011 0.010 0.011 0.011 0.011 0.011

Sy S Spasy Szay Sgssy Sey Sy Spsy Susy Se
estimated index  0.015  0.069 0.015 0.125 0.074 0075 0.128 0.072 0077 0.070
estimated error  0.010  0.015 0.010 0.011 0.011 0.011 0013 0011 0011 0.011

Sy Susy Seey Sy Spst Sen Sesr Sy
estimated index 0.121 0.066 0.017  0.055 0.014 0.056 0.009 0.050
estimated error 0.013 0.011 0.010 0.015 0.010 0.014 0.010 0.015

Table 5: Estimation of second-order SIs for the output Ysu,s. The estimated error is the radius of the 99%

confidence interval.
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Stoy Spsy Spay Spsy Spey Sy Spsy Spesy Spay Sy
estimated index  0.506  0.593  0.510 0.455 0.450 0.515 0447 0.056 0.034  0.005
estimated error  0.010  0.009 0.010  0.009 0.009 0.008 0.009 0.011 0.011 0.011

Sip6y Spamy Sposy Say Spzsy ey Spry Spsy Susy Sue
estimated index  0.008  0.055 0.009 0.087 0.057 0.064 0.109 0.063 0.041 0.043
estimated error  0.010  0.014  0.010 0.011 0.011 0.011 0.013 0.011 0.010 0.010

Suny Susy Sper Spn Spest Swen Sesy sy
estimated index  0.082 0.041 0.009 0.040 0.007 0.046 0.006 0.041
estimated error 0.013 0.010 0.010 0.014 0.010 0.014 0.010 0.014

Table 6: Estimation of second-order SIs for the output Ygeptn. The estimated error is the radius of the 99%

confidence interval.

we can estimate correctly the asymptotic variance of the new estimator.

Acknowledgments

The authors are grateful to Eric Blayo, Jean-Michel Brankart and Pierre Brasseur for valuable discussions on
the simulator MODECOGeL and more generally on marine ecosystem models. They also thank Art Owen for
his helpful comments. This work has been partially supported by French National Research Agency (ANR)
through COSINUS program (project COSTA-BRAVA n° ANR-09-COSI-015).

A Proof of Proposition 1

NB: the integration set is generally omitted for integrals defined over a unit hypercube [0, 1]* with any s < d,

A.1 Technical lemmas

Let X! and X2 two distinct points of a Latin hypercube of size n in [0,1]%. For any function f defined on

[0,1]¢, consider Y = f(X') et Y2 = f(X?2). In Theorem 1 in Stein (1987), Stein gives the following result

Theorem 2. If f is a square integrable function then as n tends to +o0o, we have

d
o 1
Cov(Y!,Y?) = - Zaf +o(nt) . (15)
i=1

In this subsection, we prove an analogous result with more general settings and without the asymptotic

assumption on n (see Lemma 4).
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Notation and defintions For s and n in N*, define the partition of [0,1)* in elementary hypercubes of side

1/n,

Qé(n): {Qg [051)5 ‘ Q:.l;[l[ai,ﬁi), a; € {Oa%a"'an_l}a Bi:ai+%}' (16)

n

For any square integrable function g defined on [0,1)%, s < d, define the sequence with general term

2
un(g) =n® Z (/ g(x)dx) , neN. (17)

QeQ.(n) @
Outline The first lemma is the analogous result for Lebesgue integrability of a result given in Equation (A.4)
in Stein (1987) for Riemann integrability. The second lemma gives an important inequality which allows to
work without asymptotic assumption on n. The last one consists in simplifying integrals under LHS using the

ANOVA decomposition. Lemma 4 provides the expected inequalities.

Lemma 1. If g is a square integrable function, the sequence (un(g)) converges to [ g*(x)dx as n tends to +oco.

Proof. Noting that
unlg) = [ 9a(x)dx (18)
where

2
e b= ¥ (o [ owiy) 10t (19)

QeQ.(n) Q
Lemma 1 is a straightforward consequence of the dominated convergence theorem. So let us prove that there

exists an integrable function h such that for all n € N*, |g,,| < h almost surely, and g,, converges pointwise to

g2, and the conclusion will follow.

First since g is a square integrable function, we have |g(x)| < M a.s., and by their definition, the g,,’s are
as well. Hence their exists an integrable function (h : x — M) such that |g,| < h almost surely. Concerning

the pointwise convergence, let us prove that for any x € [0, 1),

(ns / g(y)dy>2 )

x

Ve >0, 3N >0, Vn> N, <e (20)

where Qy is the set @ in Q,(n) containing x. This is obvious if g2 is a simple function and we easily generalize

the result to any g2 since any measurable function is a pointwise limit of simple functions. O

Lemma 2. The sequence (uy(g)) is dominated by [ g*(x)dx.

Proof. Let n € N*, the result is proved by showing that the sequence of general term vi(g) = ugr,(g) is
increasing. In this case, by Lemma 1, we have limvx(g) = [ ¢%(x)dx, and since vy, is increasing, all the terms
of this sequence are dominated by [ g?(x)dx, hence vo(g) = un(g) < [ g*(x)dx. To prove that the sequence
(vk(g)) is increasing, note that

venle) = @y Y (/Q g(x)dxf

QEQ:(2kF1n)

N CONED S CAD D < / g(x)dx)2 (21)

QEQ;(2kn) PeP(Q,2k+1n)
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where P(Q,2"+1n) = Q(2¥1n) N Q. Then by Jensen inequality, we have
2 2
2y (/ g(X)dX) > (/ g(X)dX) (22)
PeP(Q2k+1n) NP Q

and we conclude that vi11(g) > vk(g). O

For 0 < z1, x5 <1 define
1 if [naq | = [na2]

. (23)
0 otherwise,

Tn(901,962) = {

where |-| is the floor function. We now end with the following result

Lemma 3. Let v be a subset of {1,...,d}, we have

/f(Xl)f(Xz)HTn($1i,$2i)dX1dX2 = / Z fm(le)fm(X2m)Hrn(wu,wzi)dmdm . (24)

S wCo i€ED

Proof. By the ANOVA decomposition — see (1) — we have

/f(X1)f(X2) HTn(l'li7$2i>dx1dx2 = / Z Z fror (X101 fros (X2r0,) HTn(ZEu,zzi)dxldXQ .

i€v 1 C{1,..,d} w2 C{1,..,d} Sy
(25)
Then note that a certain number of terms in the member on the right-hand side vanishe. If (to;N0¢)U(togNo®) #
() then suppose without loss of generality that there exists k& € o1 \ v; we have
/fml(X1m1)fm2(X2m2) HTn(ZEu, To;)dx1dxy = / (/fml(xlml)dzm) Jros (X210,) HTn(SCu, T2;)dX 1 {1ye dXo

1€ €D
I

(26)
and note that, by a basic property of the ANOVA decomposition, I; = 0. If (3 N0¢) U (tog N v°) = §§ and
] # 1oy, then suppose without loss of generality that there exists k € to; \ 2. In this case, we have

/frm (lel)fmz (X2m2) H Tn(-rli; iE2i)dX1dX2

S

:/(/fnn(lel)rn(l'lk;$2k)d$1kd$2k) fmg(X2m2)< H Tn(OUu‘,$2i)>dx1{k}cdxz{k}c (27)
ieo\{k}

Iz

and note that by the definition of r,,, we have

/ Fros (Xtrmy Yo (110 2 ) s — / Fror (K10, )1 (28)

and thus I = 0. The conclusion of the lemma follows. O

Let u be a non-empty subset of {1,...d} and consider (X7); ~ LH(n,d) and (Z7); ~ LH(n,d). For any

function f defined on [0,1]%, consider
vi=f(XYand V2= f(X2:2%). (29)
We have the following result
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Lemma 4. If f is a square integrable function then we have

3 To < Con(VL,V2) < ) % (30)
— — ov —Q T -
pimea (0D " phe, (D

|| odd || even

Proof. Recall that for 0 < zq1, x5 <1,

rn(m’m):{ 1 if [na1] = [nas) (31)

0 otherwise,
where [-] is the floor function. For x; = (@11,...,714) in [0,1)%, define x;, = (T1iy,- -+ T14),,) Where v =
{i1,...,ijp|}. Due to the joint density of (X}, X2) under LHS — see McKay et al. (1979) or Stein (1987) —
and by Lemma 3, we have

Cov(Y1,Y2) + </f dx) :/f x1) f( Xg)(nT_L1)|u|]:[(1*Tn(il'1i7$2i))dxldx2

€U

\u\
= ( — M/f X1) XQ)HTn($1i,$2i)dX1dX2
" ico
n ‘”‘ ylol
= ( 71 /Z fm X1 fm X2 Hrn x115$21 XmdXQ
" uCu wCo 1€ED
n [u] IDI [to]
- ( — 1) CIILDY ( /fm Ximw) fro (X2w) [ [ (@11, 220 ) 10 X (32)
" vCu wCo n 1€

Then note that for any function of v denoted by A(w), we have

Z \U\ Z ( )IUI Iml Z (7 %)\U\ Z (%)_lmlA(m)

vCu wCo vCu wCo
[u]—]ro]
_ [u| — |w] 1\ k+lw] 1\ —Iwl
- (T (M) G aw
wCu k=0
— 1\ lul=[w]
= Y () nlam) (33)
n
wCu
Hence, we deduce that
. . n |m|
Cov(Y'Y2) = Z (n— 1) 1yl /fm X1 ) fro (X2 Hrn T1i, ¥2;)dX 11 AX 20 - (34)
Cu IS

()
Finally by the definition of r,, we have

Og/fm(Xm)fm(me)Hrn(zu,zzi)dxlmdxm < > ( fm(le)de)2 (35)

1€ Qeg\m\(")
and by Lemma 2, this gives

o2

0< [ fro(X1iw) fro(X2w) I I T (214, T2i)dX 140 dXopy < —o .
'€ n|m|
1€

The latter inequalities and (34) lead to Lemma 4. O

Remark 3. Note that if u={1,...,d}, the resulting inequalities are

2

. %0 _ < Cov(Y!,¥?) < o (37)
mzﬂ (n —1)lwl mzﬂ) (n —1)lwl

|| odd || even

This consists of a non-asymptotic equivalent of the theorem due to Stein presented at the beginning of this

section.
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A.2 Proof of Proposition 1

Proof.
(ii) Concerning Sfﬁs, it is easy to show that
~LHS —
Sun =2(Va) (38)
where
_ 1 <&
vV, — - .
"= Z V; (39)
J=1
o T
v, = (V7 - EY)) (% —ElY]) , Y/ ~E[Y], ¥J —E[Y], (¥ -E[Y))’) (40)
and
r—yz
P t) = . 41
(z,y,2,1) P— (41)
Then we deduce from Theorem 2 in Loh (1996) that
ViV =) == Ni(0,T) (42)

T

where u = (72,0,0,02)7 and T is the covariance matrix of Ry = Vi — A; — see details in Eq. (3) in Loh

(1996) — defined by
Vi e {1,...,4}, Ay is the additive part — see (1) — of V3, . (43)

Thus the Delta method — see Theorem 3.1 in Van der Vaart (1998) — gives

ViiBin = 8.) 5 Ni(0,¢"Ty) (44)
where g = V®(u). Developing the term g”’T'g does not seem to provide any useful information. However,
denoting o7 ;¢ this term, and 0%, the analogous quantity in the CLT for simple random sampling, we can
show that o7 ;¢ < 0%, . Indeed we first note that, for simple random sampling, the variance given in Janon

et al. (2012) reads
9 Var [Vu - §uV14}

O1ip = o2 (45)
and for LHS, it is easy to show that
Var|Ri1 — S, R4
U%HS = [ o2 : ] ’ (46)
Hence,
Var|Ay1 — S, A4
Oiip = Otms + [ o2 Au (47)

~LHS ~LHS
and the conclusion of (ii) for S, ,, follows. Concerning S the proof follows the same lines — see Proof of

Pun o

(10) in Janon et al. (2012) for details.
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(iii) First we have

~2 LHS7 __ n—1y¢ I v
) = L SeiR) - 3SR
Jj=1 Jj=11=1
1#]
—1
= T (ErP+o) -2 (Cov (V1,¥2) + E[Y]?) (48)
and thanks to Lemma 4 in Appendix A, it gives
E[fnn 5] = 12 + Bon (49)
with
L 2op.,<o (50)
n— 1—u n,l >
Concerning 625 we have
ormsy . =1 g 1 an e e
I SO ES 3 ety
Jj=1 Jj=1l1i=1
l#]
1 1 o
= g - = (Cov(y, V) + BV ) (51)
n
and noting that
Cov(Y',Y?) = Cov(Y', Y3 ) (52)
we conclude that
E[6255] = 6% + B, » (53)
with
L,
— <B,>< 4
n— 1O' 2 > 0 (5 )
As for fi’ﬁHS and 52FH3 | we have
1"YJ+YHJ2 1 1 1r9 1 & . SN -
E (H Z T) = RIE[(Y +YH?) + yre ZZE[(W +YHY YY)
=iz
_ 1 2 2 2 n—1 2, n—1 1 y2 1 v2
= 5o (B + o +EYP) + E[Y]? + Cov(Y',Y?) + Cov(Y', ¥;2)
n
1 —1 . . . .
- o (0—2 + Tﬁ) FEY]?+ 2 (cov(yl,y2) + COV(Yl,Yf)) . (55)
n
Then it is easy to conclude that
E[fin™] = Ti+Bngs (56)
E[G2""%] = o>+ Bngs (57)
with
1 2 2
S <B,3<0 58
2(n71)(0 +7) £ Bps < (58)
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B Proof of Proposition 2

We first give three lemmas. The proof of Proposition 2 is given in Section B.2.

B.1 Technical lemmas

Lemma 5. Let d € N*, if n > d—; then

d
1 d+1
(1+—) <t (59)
n n
Proof. If d = 1, the result is obvious. Otherwise, for any x > 0, consider the function g4 defined by
d
1 d+1
=(14+~-)] —1-— . 60
) = (147 ! (60)

We show that
(1) if there exists zg > 0 such that gq(zo) < 0 then for all z > g, ga(zx) <0
(2) gu(d?/2) <0

and the conclusion follows. Concerning (1) note that

ga(2) :1+%+0(x—2)—1—§—1 _ 10w (61)

X €T X

and then that g4 is negative as x tends to +o0o. Moreover for any d > 1, g4 is first decreasing and then

increasing. Indeed, we have

d N\ d+
gy(z) = = <1 + E> + 3 (62)
and we deduce that g;(z¢) = 0 with
1
= ey >0 (63)
(%) L

and is negative on the left side and positive on the right side. The conclusion of (1) follows. Concerning (2),

it is easy to check that it is true for d = 1 and 2, and for d > 3 we have

o8) - £OE) 33
SO

k
2 1/2
< —5+2u()
k=3
d
2 2K 1
= $+d3+3d3+§k§d_k
d d—3
2 11 1
< —HAY mtamll- ﬁ)
k=3 k=1



and the conclusion follows. O

Let u be a non-empty subset of {1,...d} and consider (X7); ~ LH(n,d). We have the following result

Lemma 6. If f is a square integrable function, we have

E[f(X")f(Xy: X2)] = EY]* + 1% + Bun (65)
where
1 1
—E[Y? — = < Bun<E[Y? S 66
[ ]Zlmfmw— n <E ]zlmfw“ (66)
i s

Proof. First, due to the joint density of (X1.,X2.) under LHS — see McKay et al. (1979) or Stein (1987) —

we have

. . . n d—|ul
E[f(Xl)f(Xlll : Xﬁc)] = /f(Xa x1) f(x, XQ)( ) H (1 - Tn($1i,$2i))dXdX1dX2

n—1
= (nn1)d_|u|/(D%;C(—UM/f(Xaxl)f(XaX2)grn(xuawzi)dxldxz)dx .(67)
I(x)

We now denote fx : y — f(x,y) and then by (32) and (33) we have

I(x) = Z(4)'1"/fx(xl)fx(xQ)Hrn(ggh—,:521-)dx1dx2

vCuc S

= Ugc(*1)|u|£ (%)u_m/fx,m(xlm)fx,m(XQm)Zle_!:nrn(xliaz%)dxldeQm

= > (—1)‘m‘(n771)d7‘u‘7‘m‘/fx,m(xlm)fx,m(XQm) [T (@i, w20 dxi dxon - (68)
o Cuc 1€

Hence by (36) we have for all w # 0,
J B (am)dxin _ [ f20x1)dxs

0< /fx,m(xlm)fx,m(xm) le_[ T (T14, 25 ) X110 dXop < Tl < ] (69)
1€
and note that
[ o1 o can) T (o, s )dsrodn = 72, (70)
i€l
Finally, note that
[ o=zt EIYF (71)
and
//ﬁ@MmM:MW} (72)
and conclude that
n d—|u|
Bl X)) = () [ 10ix =22+ BWE B (73)
with
1 1
2 2
P#0Cuc P#0Cuc
[v| odd |v| even
O

30



Lemma 7. The inequalities in Equation (66) imply that

> (%)MB“UM . (d—|u|+1 +1)(d—|u|+1)E[Y2} - (75)

n n—1
o Cuc

Proof. By (66), we have

% (5) pune e

toCuc o Cuc > 0#0C (uUr)e

Il <(1 . ﬁ)d_w_‘m‘ - 1)
)0 20

o Cuc

< E[Y?] [(1 + ﬁ)d_u (1 + %)d_lul - (1 + %)d_lul} (76)

and the conclusion follows by applying twice Lemma 5. O

N
=
=~
At
7N\
S

IN
=
~
N
A/~
S

IN
=
~
N
/~
—
_|_

B.2 Proof of Proposition 2

Proof.
(i) The proof is divided into two parts. In the first one, we only consider continuous functions, and in the

second one, we extend the result to the whole class of functions such that f* is integrable.

First part: Consistency is obvious as in Proposition 1, except for the term

1 o e
~ RO (77)
j=1
So denote Z’ the Latin hypercube defined by
o 7/ + Ui
7z = 2+ (78)

n
where the U’’s are independent random vectors uniformly distributed in [0,1[% independent from all the
permutations and shifts in the definition of (Z'7);, and |-] is the floor function. We can write

SNV = ST K 2 f(KL s )
j=1 j=1
1 <& P 1 <& P
= Y PR B X D)+~ Y O ) (P 23— f(KL ) - (79)
j=1 j=1
The first term on the right-hand side is an estimator as described in Section 3.1. since by the construction
proposed in Eq. (78), (Zj)jzl__n and (zj)jzl__n are two independent LHS; so Proposition 1 states it converges

to E[Y]? 4+ 72 almost surely. The second term on the right-hand side converges to 0 since as f is bounded —

by continuity on a compact — it is bounded by

UL S k- 20— 7KL 2 ) (50)
j=1
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and by uniform continuity of f — due to Heine-Cantor theorem — this quantity tends to 0 as n tends to +oo.

Thus the sum in the right-hand side, i.e. =37, YIY{, converges to E[Y]? + 72 almost surely.

Second part: Since the space of continuous functions on [0, 1] — denoted C([0,1]?) — is dense in L*([0, 1]%),
let (f,)men+ be a sequence in C ([0, 1]%) such that E[| f,,(X) — f(X)|*] converges to 0 as m tends to +oo, where

X is uniformly distributed on [0, 1]¢.

Now let ¢ > 0 and M = M () € N* such that

2

2 19
E{(fM(X) - f(X)) } < & E2X)] (81)
We can write
SOV = L3O B O B + D0 PR ) (1 (KL 2 = O )
Jj=1 j=1 j=1

M=

F ST ) (P K o) — 7K
1

b ROk 2 (FOKL 2 — Fu( 2 +
j=1

j
As noted in the proof of (i) in Proposition 1, the first term on the right-hand side of (82) converges to 72 +E[Y]?

almost surely as n tends to +oo i.e.

n

1 L L
P(vs >0, 3Ny € N*, ¥n > Ny, ‘E S ) (X Ze) — - E[YF] < Z) ~1. (83)
j=1
Since fys is uniformly continuous on [0, 1]¢, we have that

A, = sup |fM(X{l : Zifc) - fM(Xf1 :Zﬂc)

1<j<n

(84)

converges almost surely to 0 as n tends to +oo. Moreover, since f is integrable, we have that + S lf (X))

converges to E[|Y[] as n tends to +oo. Hence

./

Z4) ~ fu(X4:Z)) | < 3)
. €
> P(Ve >0, IN, €N, Vi > Ny, A, = ;'f Lz < 5)

- 1. (85)

P(Ve >0, 3N €N, Vi > Ny, ] Zf Ze) (Far (X4,

For the third and the fourth terms on the right-hand side of (82), we apply twice the same proof. First the

Cauchy-Schwartz inequality gives

(vg>0 IN; € N*, Vn > Nj, }—Zf L7, )(f(X{;:Z:f;)—fM(Xg;;ZL{))‘ < 5)

j=1

. 1 » CN1/21 & Py /2 ¢
P(ve >0, 3Ny € N', vn > NV, (H > PG E) (E S 2E) — fu (Xl 20)7) < Z)'
j=1 j=1
(86)
Then note that + ", fA(XY - Z2.) and = (f FXL 2y — fu(X Zif))2 converge almost surely to

E[Y?] and E[(fu(X) — f(X))?] — where X is uniformly distributed on [0, 1]¢ — respectively. And deduce that
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there exists Ny € N* such that for all n > Ny, we have -3 fAXYL : Z1.) < 2 E[Y?] and D (F(Xi -

Zif) — (X4 Z{lc))2 < 2 E[(fam(X) — f(X))?] almost surely. As a consequence, deduce from Eq. (81) that

n

1 . . e - . . e /- . . e /-
P(Ve >0, 3N; € N*, ¥n > N3, ]5 N0 <K zﬁc)(f(Xﬁ ALY — (X zuﬂc))] < Z)
=1
4 €
> P(Ve >0, 3Ny > Ny, Vn > Ny, ey = < Z)
- 1 (87)
Finally, Eqs. (83-87) gives
1 e
* - AV —
P(V5>O,3NEN,Vn>N, nzlyyu <5) 1 (88)
=
and we have the conclusion.
(ii) As in (i), the only term to treat is
g LI
_ IV
- ZY Y7, (89)
Jj=1

so asymptotic normality is shown in the same way by using the decomposition in (79). We always obtain the

sum of a term already considered in Section 3 which converges in law to a normal distribution and a term

which converges to 0 in probability, and the conclusion follows from Slutsky’s lemma. We only detail the proof
SRLHS . oRLHS . Dy s o

for S, it is exactly the same for S, ,, . So note that following the proof of (ii) in Proposition 1 and the

notation above, it is sufficient to show that

\/ﬁ(% 2_; (F(XS 2 Zho) —E[Y]) (F(Xd  28) — (XKD - Zﬂc))) 0 (90)

. . ~RLHS
to prove the asymptotic normality of S, ,

So consider £, > 0 and prove that there exists N € N* such that for all n > N, the quantity

p=p(| 13 (k) - B (106 ) — 506 )| > <) o1

j=1

is less than 7). First as f is integrable, there exists a constant K > 0 such that P(|f (X}, : Z7.)

> K) < n/4.

Hence
1 <& et N
Pos P((Jom X (0 B - B (kL 8 - £0 20| > ) (10K 2 < K))

(| (O )~ BV D) (KL 20— 4% )| > €) () (K 20 > x))

> 5) + %. (92)

Now note that the space of continuous functions on [0, 1], denoted by C([0, 1]%), is dense in L5([0, 1]¢) and let

(fm)men~ be a sequence in C([0, 1]%) such that E[| f,,(X) — f(X)|%] converges to 0 as m tends to +oc where X is
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uniformly distributed on [0, 1]9. It is easy to note that there exists M = M (n) such that P(|fa(X) — f(X)| >

1/n) < n/4. Thus we get from Eq. (92) that

4 n y ! . .. o /-
Poe Sr( (Y el i) - 6L B+ O 2 - 10K )
i=1 j=1

+ (XL 7)) — f(X]

~—
>
S~
+
13
©
&

where
A= (KL Z) — FOG B > ) 0 (1 (KL 8) - FOK: 2] > ) (94)
Ay = (KL Z) — FOL T > ) 0 (1far (KL 8) - FOKG: 2] < ) (95)

and Az and A4 are the complementary events of A; and As, respectively. So we deduce
P p((FEE ST (g 20— ur S 200+ e (KL 22 — 106G 20
j=1
G 2 - £k T >|)) ﬂAs) £ P(AL) + P(A2) + P(Ay) + ]
u - Hue u - Fue 4
K+ |E)Y
1P>< | (2+Z|fM : — (X4 Z )) >€> +1. (96)

Now by an other density argument, note that there exists a sequence of Lipschitz continuous functions with

constant 1, denoted (far,q)qens, such that supjg 1ja [far,q(x) — far(x)| converges to 0 as ¢ tends to +o0o. Then

there exists @ = Q(n) € N* such that supjq 1ja | far,0(%) — far(x)| < 1/n and deduce that

QX4 22) — (X4 2]

ros P(%(QJFZ |faro(X LjC)*fM,Q(Xﬂ:ZiC)
+ |fM,Q(Xﬁ Zﬁc)—fM(XﬂZﬁc)D) > E) s

p(hﬁm') . €> . (97)

and the conclusion follows.

(iii) First note that since (X7); ~ LH(n,d) and (Z7,Z7); ~ RLH(n,d), we have

Vi=f(XI:73.) and V] = f(XI : Z2) (98)
with
7 (§) —U’ﬂ w0 (5) = Ul
% < 1( 1 (g), . d d (J)) (99)
n n
Ul xi (5 Ud,x
ZJ( G) = Urmiy  mali) = U dm) (100)
n n
and
. ! —U (i e U T
. <7T1(J) i) Tald) = U M) (101)
n n



/
i

where the m;s, the 7/s, the 7/'s, the U; ;s and the Ui/, ;8 are independent random variables uniformly distributed
on II,, — see Definition 1 —, II,, II,, [0,1] and [0, 1], respectively. Moreover note that if for an index ¢ in
{1,...,d}, we have m;(j) = m}(j) then Z/ = Z;j; and if 7;(j) # m;(j) then U; r,(;) and U; /(;) are independent
and therefore Zf and Z;j are two distinct points of a Latin hypercube of size n in [0,1]. For j € {1,...,n},
denote by e(j) the set of integers ¢ € u® such that m;(j) = 7;(j). Thus we have

R 1
EVY] == D D > Y. Lel=wy

wCuc 77'1{(])6 7\'uc(j)€ Tl'/uc(])e
11,0} {1 nyd gyl

"is\ _ . 2\ "5\ . 7 Ia) —
[o(o e m0mm Y O m0m | SO Yy,
n n n n n
—_——
icu keue icu keucnr leucnioe
(102)
where for all i € uUe(j), m(j) = 7(j) and w1;(j) = u2:;(j). And noting that
1
— 1\d—|u|—[w]|,d j{: j{: :E: Lie()=wy -
(n—1) n
wi(e  mue(d)E e (j)e
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(103)
is equal to E[f(X") f (XL . X%uUm)c)], Lemma 6 gives
e 1\ ol s s
E[YIV{] = Z (5> (IE[Y] + 72 +Buum,n) . (104)
wCuc
By Lemmas 5 and 7, and noting that E[Y]? + 72, < E[Y?], we obtain
E[YVIV]] =E[Y]* + 72 + Bjy.n (105)
where
d— 1 d— 1
| Blujn| < (ﬁ + 2) (ﬁﬁ[ﬂ] : (106)
’ n n—1
Following the same proof, it is easy to show that for j # [, we have
E[VIV!] =E[Y]? + Bna (107)
where
d+1 d+1
Boal < (T 2) (45 ) (108)
n n—1
Thus noting that
B —1 .
E[2REHS) 2122 —E[V'Y)] - T —E[V 7] (109)
we conclude that
. 1 n—1
B[z ") =2t — —zi+ —— (Boa + Buja) (110)



where the biases are O(

) as specified above. Concerning 77

o2 REHS “note that g2 HEHS = GZLHS and the
conclusion follows from (iii) in Proposition 1. Concerning 7o"*% and 6215, we have
1 - Vi + V72
El(=S _ g
G2

1 1 1
™ (Y +Y)}+4—

M:
M=

B[+ Y)Y +Y))]
1 ..

- (B[P + EF'HT) +

Then using notation at the beginning of Section 3.1., note that

Il

N

e
Sl
S

3

(B 4 BV,

(111)
B[V17?) = BV'V?] = Cor(V1, V%) + EIY = Cov(V,¥,__y) + EUT (112
and by (106), (108) and Lemma 4, we deduce
1= VI +Vd\? 1 )
E|l- _— = — ElY B, B, 11
<n; 5 > 2nzu+ Y]" +Bn1+ B (113)
where
o2
B,o|l < — 114
[Baal < 2 (114)
and B, ; is specified in (108). Then it is easy to conclude that
~2,RLHS 2 2 n—1
E[ u n ] = I, — %Iu + Bn,l + Bn,? ul,n (115)
E[g2REHS] = o2 — 2—Iu + Bpi+ Bno (116)
where the biases are O(n~!) as specified above O

C Phytoplankton growth model

na

The phytoplankton growth is given by the five following equations, where A stands for pp, np or mp

tmazalimralimra (limyo,a + limnrr, a)
. NO3
llmNo3A =

—UNH
NOs + KNosA) exp( 2

lim _ (__ NHs
NHaA NHy4 + Knm,a

. 2(1+ Bra) 1o
limiy = g 261 PAR
(F25)" + 261
T—T.
. (1 + ﬂTA) optA lTELI:tA
limpy = max 7 T ,0
—lletA letA
(Topr,A*TZetA) + 2ﬂIAT ptA—Tleta +1
where the parameters are defined in the following table
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parameter definition

HA growth rate of A

mazA maximum growth rate of A

limno,A limitation by NOg3 for A

limn, A limitation by NH, for A

KnosaA half-saturation coefficient of NO3 for A
Knm,a half-saturation coefficient of NH, for A
v inhibition coefficient by NHy

NO3 NOj3 concentration

NH,4 NH,4 concentration

limya limitation by light for A

Bia shape factor for photoinhibition curve
Topia optimum insolation for A

PAR photosynthetic active radiation

limra limitation by temperature for A

Bra shape factor for thermoinhibition curve
Topta optimum temperature for A

TietA lower lethal temperature for A

T temperature

Table 7: Parameters of the phytoplankton growth model
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