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Abstra
tIn varian
e-based sensitivity analysis, the method of Sobol' (Sobol', 1993) allows to 
ompute Sobol'indi
es using Monte Carlo integration. One of the main drawba
ks of this approa
h is that the estimationof Sobol' indi
es requires the use of several distin
t samples. For example, in a d-dimensional spa
e, theestimation of all the �rst- or se
ond-order Sobol' indi
es basi
ally requires d + 1 or d(d + 1)/2 distin
tsamples, respe
tively. Some interesting 
ombinatorial results have been introdu
ed to weaken this defe
t,in parti
ular by Saltelli (2002) and more re
ently by Owen (2012b), but the quantities they estimate stillrequire O(d) samples. In this paper, we introdu
e a new approa
h to estimate for any k all the k-th orderSobol' indi
es by using only two distin
t samples. We establish theoreti
al properties of su
h a methodfor the �rst-order Sobol' indi
es and dis
uss the generalization to higher-order indi
es. As an illustration,we propose to apply this new approa
h to a marine e
osystem model of the Ligurian sea (northwesternMediterranean) in order to study the relative importan
e of its several parameters. The 
alibration pro
essof this kind of 
hemi
al simulators is well-known to be quite intri
ate, and a rigorous and robust � i.e.valid without strong regularity assumptions � sensitivity analysis, as the method of Sobol' provides, 
ouldbe of great help.Keywords: sensitivity analysis, varian
e-based sensitivity indi
es, numeri
al integration, orthogonal arrays
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1 Introdu
tion and notationSobol' indi
es (SI) (Sobol', 1993) are quantities de�ned by normalizing parts of varian
e in an ANOVA de-
omposition (Hoe�ding, 1948; Efron and Stein, 1981; Sobol', 1993). They are an important tool to study thesensitivity of a model output subje
t to the input parameters sin
e they allow to quantify the relative impor-tan
e of input fa
tors of a fun
tion over their entire range of values. As they essentially 
onsist of integrals,their 
omputation 
an be
ome rapidly expensive when the number of fa
tors in
reases. Many te
hniques havebeen proposed to estimate these indi
es in
luding Fast Amplitude Sensitivity Test (FAST) due to Cukier et al.(1973) � see also the review paper (Cukier et al., 1978) � and further developed by Saltelli et al. (1999),Random Balan
e Design (RBD) due to Tarantola et al. (2006), polynomial 
haos expansion (PCE)-based esti-mators developed by Sudret (2008) and Blatman and Sudret (2010) and the method of Sobol'. A re
ent reviewof these methods 
an be found in Saltelli et al. (2008), and more spe
i�
ally a new introdu
tion to FAST andRBD has been re
ently provided by Tissot and Prieur (2012).Until now, spe
tral methods � as FAST, RBD or PCE-based methods � whi
h exploit the spe
tralde
omposition of the model with respe
t to a parti
ular multivariate basis, are generally preferred to themethod of Sobol' be
ause the latter is too expensive. However, spe
tral methods provide good estimations ofSIs only under strong assumptions on the spe
tral de
omposition of the model itself su
h as a de
ay of thespe
trum su�
iently fast, the negligibility of high-order spe
tral 
oe�
ients, et
. As a result, these methodsare not robust to 
omplex phenomena as high-frequen
y variations or dis
ontinuities, and so the method ofSobol' appears as the main method one 
an trust when no strong a priori knowledge on the model of interestis available.The ANOVA de
omposition pro
eeds as follows. Let f be a real square integrable fun
tion de�ned on R
dand X = (X1, . . . , Xd) a random ve
tor with independent 
omponents arbitrarily distributed on R. Then let us
onsider the real random variable Y = f(X) and for any u ⊆ {1, . . . , d}, denote by Xu the random ve
tor with
omponents Xi, i ∈ u. The ANOVA de
omposition states that Y 
an be uniquely de
omposed into summandsof in
reasing dimensions

Y =
∑

u⊆{1,...,d}

fu(Xu)where f∅ = E[Y ] and the other 
omponents have mean zero and are mutually un
orrelated. In parti
ular, thesum of fun
tions
f∅ + f1(X1) + f2(X2) + · · ·+ fd(Xd) (1)is the so-
alled additive part of f , where the 
onstant f∅ and the random variables fi(Xi) are the 
omponentsof lower 
omplexity. The 
omponents fu(Xu) are expli
itely known in terms of 
onditional expe
tation. Asalready mentioned, we have f∅ = E[Y ] and the other terms are re
ursively de�ned by
fu(Xu) = E[Y |Xu]−

∑

v⊂u

fv(Xv).3



Then denoting Var[Y ] and any term Var[fu(Xu)] by σ2 and σ2
u
, respe
tively, the equation in Eq. (1) gives

σ2 =
∑

u⊆{1,...,d}

σ2
uand the SIs � also known as global sensitivity indi
es � are de�ned as

Su =
σ2
u

σ2
, u ⊆ {1, . . . , d}.If u = {i}, Su quanti�es the main e�e
t due to the fa
tor Xi, and if Card(u) > 1, Su quanti�es the intera
tione�e
t between the fa
tors Xi, i ∈ u. Note that S∅ is trivially equal to zero. Similarly one 
an 
onsider thequantities

S
u
=

τ2
u

σ2
=

Var[E[Y |Xu]
]Var[Y ]
=

∑
v⊆u

Var[fv(Xv)]Var[Y ]
, u ⊆ {1, . . . , d}known as lower SIs or 
losed sensitivity indi
es. If u = {i} then S

u
= Su, and if Card(u) > 1, S

u
quantify thesum of all the main or intera
tion e�e
ts due to any group of fa
tors v ⊆ u. Note that for any 1 ≤ r ≤ d, theknowledge of {S

u
, Card(u) ≤ r} or {Su, Card(u) ≤ r} are stri
tly equivalent sin
e, on the one hand, we have

S
u
=

∑

v⊆u

Svand on the other hand, the Möbius inversion formula (see, e.g., Stanley, 2012) gives
Su =

∑

v⊆u

(−1)|u|−|v|S
v
.In pra
ti
e global sensitivity analysis fo
uses on the �rst- or se
ond-order � i.e. Card(u) ≤ 1 or 2, respe
-tively � terms. In the present paper, we only fo
us on the indi
es S

u
whi
h are the quantities estimated bythe method of Sobol'.The paper pro
eeds as follows. Se
tion 2 provides a short review of the method of Sobol', gives somenotation and explains the main idea of the new method we propose in the present paper. In Se
tion 3, theoryis presented in
luding asymptoti
 properties related to both Latin hyper
ube sampling (LHS) and repli
atedLatin hyper
ube sampling (RLHS). In this se
tion, we also dis
uss potential generalizations to using orthogonalarray(OA)-based Latin hyper
ubes (see Owen, 1992; Tang, 1993). Numeri
al illustrations are provided inSe
tion 4, and Se
tion 5 has 
on
lusions. Proofs are given in the appendi
es.2 Ba
kgroundAs any numeri
al integration te
hnique, the method of Sobol' 
an be viewed as the parti
ular 
ombinationof a design of experiments (DoE) � i.e. the lo
ation the information is 
olle
ted � and an estimator � i.e.the way the 
olle
ted information is pro
essed. In this se
tion, we �rst des
ribe the designs of experiments ofinterest and we then 
ome to the de�nitions of some 
urrently used estimators in the method of Sobol'. Atlast, we introdu
e the 
on
ept of RLHS and we explain why this kind of DoE is of great importan
e in theissue of estimating �rst-order SIs. 4



From now on, we only 
onsider uniformly distributed inputs, i.e. X1,. . . , Xd are independent randomvariables uniformly distributed on [0, 1]. It does not 
onsist of a restri
tive assumption sin
e, thanks to theinversion method � see, e.g., Devroye (1986) � a model formulation Y = f(X1, . . . Xd) where the Xis arearbitrarily distributed 
an always 
ome down to the formulation Y = f(U1, . . . , Ud) where the Uis are randomvariables uniformly distributed on [0, 1], de�ned by Ui = Fi(Xi) with Fi the 
umulative distribution fun
tionof Xi.2.1 Designs of experimentsIn the present paper a design of experiments refer to a �nite subset of [0, 1]d. We do not 
onsider deterministi

onstru
tions of DoEs but only random ones, i.e. as in a Monte Carlo method, DoEs 
onsist of realizations ofa set of random d-dimensional ve
tors.For any non-empty subset u of {1, . . . , d}, there exist several estimators of the lower SI S
u
and they allrequire n double, triple or more evaluations of the model (see Owen (2012a) for a re
ent survey). In the presentpaper, we fo
us on the most basi
 estimators that only require n double evaluations. In this 
ase, the �rstof any double evaluation is a realization of the random variable Y = f(X1, . . . , Xd), and the 
omplementaryevaluation is obtained from the �rst one by resampling its 
omponents indexed by the elements of uc. In otherwords, the 
omplementary evaluation is a realization of the random variable denoted by Yu and de�ned by

Yu = f(Xu : Zuc) (2)where Z is a d-dimendional ve
tor uniformly distributed on [0, 1]d, and for all i in {1, . . . , d}

(Xu : Zuc)i =

{
Xi if i ∈ u

Zi otherwise. (3)Hen
e the de�nition of the design of experiments of size N = 2n for estimating S
u
, denoted by Du(N), pro
eedsas follows. First let (Xj)j=1..n and (Zj)j=1..n be independent repli
ations of the random ve
tors X and Z,respe
tively. Then denote the two halves of the main DoE by

H(n) =
{
Xj , 1 ≤ j ≤ n

}

Hu(n) =
{
Xj

u
: Zj

u
c , 1 ≤ j ≤ n

}
(see the de�nition in Eq.(3)),and de�neDu(N) to be the resulting union of both sets. Figure 1 shows illustrations of su
h DoEs for estimating�rst-order SIs in a 2-dimensional spa
e. Note that in this �gure D{1}(10) and D{2}(10) 
ontain two points perlevel of the �rst and se
ond axis, respe
tively; this 
onsists of the main property � or 
onstraint � of the DoEin the issue of estimating SIs using the method of Sobol'.
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(b) realization of D{2}(10)Figure 1: Designs of experiments of size N = 10 for estimating the �rst-order SIs S1

(sub�gure (a)) and S2

(sub�gure (b)).2.2 EstimatorsUsing the previous notation, we now 
onsider, for any j in {1, . . . , n}, the output observations
Y j = f(Xj) (4)
Y j
u

= f(Xj
u
: Zuc). (5)In the method of Sobol', the estimation of the index S

u

onsists in applying a Monte Carlo (MC) method toboth the numerator and denominator of

S
u
=

Var[E[Y |Xu]
]Var[Y ]that 
an be rewritten, using the notation in Eq. (2), as

S
u
=

Cov(Y, Yu)Var[Y ]
=

E[Y Yu]− E[Y ]E[Yu]Var[Y ]
. (6)As already mentioned in this se
tion, several estimators have been introdu
ed to perform this numeri
al inte-gration. In the present paper, we only 
onsider the natural estimator 
oming from (6), and an other one dueto Monod et al. (2006). Using the notation in (4) and (5), they are de�ned by

S̃
u,n =

τ̃2
u,n

σ̃2
n

=

1

n

n∑

j=1

Y jY j
u
−
(
1

n

n∑

j=1

Y j

)(
1

n

n∑

j=1

Y j
u

)

1

n

n∑

j=1

(
Y j

)2 −
(
1

n

n∑

j=1

Y j

)2 (7)and
Ŝ
u,n =

τ̂2
u,n

σ̂2
n

=

1

n

n∑

j=1

Y jY j
u
−
(

1

2n

n∑

j=1

Y j + Y j
u

)2

1

2n

n∑

j=1

((
Y j

)2
+
(
Y j
u

)2)−
(

1

2n

n∑

j=1

Y j + Y j
u

)2 , (8)respe
tively. 6



2.3 Motivation to use repli
ated Latin hyper
ube samplingFollowing the previous des
ription of both the designs of experiments and the estimators used in the methodof Sobol', it is easy to understand that estimating all the �rst-order SIs using this te
hnique requires n(d+ 1)evaluations of the model, i.e. d + 1 DoEs ea
h 
ontaining n points. More generally, for any k in {1, . . . , d},estimating all the k-th-order SIs basi
ally requires n((nk)+ 1
) evaluations.Some interesting 
ombinatorial results have been introdu
ed to weaken this defe
t. For instan
e, Saltelli(2002) shows how to estimate all the se
ond-order SIs by using only n(2d + 2) evaluations. In a more re
entwork, Owen (2012b) deeply studies these 
ombinatorial aspe
ts in the issue of estimating SIs. However thequantities of interest in both these papers still require O(d) evaluations of the model, and this dependen
y withrespe
t to the dimension d appears as a major drawba
k in the sensitivity analysis of high-dimensional modelspotentially depending on more than one hundred input parameters.In order to over
ome this issue of dimensionality, we propose a new approa
h based on a non-
ommonnotion of repli
ation. More pre
isely, for any DoE

D =
{
xj = (xj

1, . . . , x
j
d), 1 ≤ j ≤ d

}
,we say that a DoE D′ is repli
ated from D if there exist d independent random permutations of {1, . . . , n}� i.e. d independent random variables uniformly distributed on the set of the permutations of {1, . . . , n} �denoted by π1,. . . , πd, su
h that

D′ =
{
x′j = (x

π1(j)
1 , . . . , x

πd(j)
d ), 1 ≤ j ≤ n

}
.Note that this notation is 
learly symmetri
, so we 
an also say that D is repli
ated from D′ or even that Dand D′ are repli
ated from ea
h other. As a result, for any axis k in {1, . . . , d}, the union of a DoE D and oneof its repli
ate D′ 
ontains two points per level of the k-th 
oordinate (see Figure 2(a)). Hen
e, this 
ompositeDoE ful�lls the requirement for estimating any �rst-order SI using the method of Sobol', and we thus showsprovide a DoE that allows to estimate all the �rst-order SIs using only 2n evaluations of the model.However, as we 
an observe on Figure 2(a), repli
ation 
an have a bad e�e
t on the spa
e-�lling propertyof the 
omposite DoE D ∪D′, and it 
ould be desirable to take 
are to repli
ate only good spa
e-�lling DoEs.Then LHS appears as the most natural 
andidate, and this leads to the notion of RLHS (see Figure 2(b))already used by M
Kay (1995) in the issue of estimating �rst-order Sobol' indi
es.3 TheoryBoth the estimators introdu
ed in the previous se
tion, S̃

u,n and Ŝ
u,n, have strong statisti
al properties. It iseasy to prove that they are strongly 
onsistent � i.e. they 
onverge almost surely to the theoreti
al value S

u7
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(b) D: Latin hyper
ubeFigure 2: Composite DoE for estimating all the �rst-order SIs.� and that the biases of both their numerator and denominator are O(n):
E
[
τ̃2
u,n

]
= τ2

u
− 1

n
τ2
u

E
[
σ̃2
n

]
= σ2 − 1

n
σ2and, as shown by Owen (2012b),

E
[
τ̂2
u,n

]
= τ2

u
− 1

2n
(σ2 + τ2

u
)

E
[
σ̂2
n

]
= σ2 − 1

2n
(σ2 + τ2

u
).But the most important property, proved by Janon et al. (2012), is that they are asymptoti
ally normal.In parti
ular this allows to derive asymptoti
 
on�den
e intervals whi
h provide probabilisti
 bounds on theestimation error.Now the question that naturally arises is"Does the new approa
h based on RLHS we proposed for estimating all the �rst-orderSobol' indi
es still has these strong statisti
al properties?"The answer is a�rmative to the three previous points of interest and we prove it in this se
tion. First we beginby stating important results of 
onvergen
e on LHS � see Proposition 1 in Se
tion 3.1 � and on RLHS � seeProposition 2 in Se
tion 3.2 � and we then formulate the main result on the estimation of all the �rst-order SIsusing RLHS in Theorem 1 in Se
tion 3.2. In a last subse
tion, we address the issue of potential generalizationsto OA-based LHS.3.1 On Latin hyper
ube samplingWe now assume that the Xjs and the Zjs are no longer independent repli
ations of X and Z, but we 
onsiderthat {Xj , 1 ≤ j ≤ n} and {Zj , 1 ≤ j ≤ n} are two independent Latin hyper
ubes of size n. We then prove8



that both the estimators introdu
ed in the previous se
tion still have the statisti
al properties presented above.We �rst introdu
e the de�nition of a Latin hyper
ube:De�nition 1. Let d and n in N
∗, and 
onsider Πn the set of all the permutations of {1, . . . , n}. We saythat (Xj)j=1..n is a Latin hyper
ube of size n in [0, 1]d � and we denote (Xj)j ∼ LH(n, d) � if for all

j ∈ {1, . . . , n},
Xj =

(
π1(j)− U1,π1(j)

n
, . . . ,

πd(j)− Ud,πd(j)

n

) (9)where the πi's and the Ui,j 's are independent random variables uniformly distributed on Πn and [0, 1], respe
-tively.Now let (Ẋj)j ∼ LH(n, d) and (Żj)j ∼ LH(n, d) in pla
e of the independent repli
ations Xjs and Zjs, andfor any u in {1, . . . , d} denote
Ẏ j = f(Ẋj)

Ẏ j
u

= f(Ẋj
u
: Żj

uc).The resulting estimators are now denoted S̃
LHS

u,n = τ̃2,LHS
u,n /σ̃2,LHS

n and Ŝ
LHS

u,n = τ̂2,LHS
u,n /σ̂2,LHS

n , respe
tively.Their statisti
al properties are gathered in the following result:Proposition 1.(i) If f4 is integrable then S̃
LHS

u,n et ŜLHS

u,n are strongly 
onsistent.(ii) If f6 is integrable then √
n(S̃

LHS

u,n − S
u
) and √

n(Ŝ
LHS

u,n − S
u
) 
onverge in law to a zero-mean normaldistribution with lower varian
e than the respe
tive varian
e given in the 
entral limit theorem (CLT ) for thebasi
 estimators S̃

u,n and Ŝ
u,n .(iii) We have

E
[
τ̃2,LHS
u,n

]
= τ2

u
+Bn,1

E
[
σ̃2,LHS
n

]
= σ2 +Bn,2

E
[
τ̂2,LHS
u,n

]
= τ2

u
+Bn,3

E
[
σ̂2,LHS
n

]
= σ2 +Bn,3where

− 1

n− 1
τ2
u
≤ Bn,1 ≤ 0

− 1

n− 1
σ2 ≤ Bn,2 ≤ 0

− 1

2(n− 1)
(σ2 + τ2

u
) ≤ Bn,3 ≤ 0 .Proof.(i) This is a 
onsequen
e of the strong law of large numbers for LHS given in Theorem 3 in Loh (1996).9



(ii) The proof 
onsists in translating the original proof, given for simple random sampling � see Proposi-tion 2.2 in Janon et al. (2012) � for LHS. The proof is given in Appendix A.(iii) See Appendix A.Remark 1. Due to their intri
ate stru
ture, the biases of the estimators τ̃2,LHS
u,n , σ̃2,LHS

n , τ̂2,LHS
u,n and σ̂2,LHS

n
an't be easily redu
ed. Nevertheless we 
an note that these biases are asymptoti
ally negligible, with a rate of
onvergen
e in O(n−1) larger than the rate of 
onvergen
e of the estimators � to their theoreti
al values �themselves, whi
h is in O(n−1/2).To 
on
lude, we have proven that the estimation of SIs 
ombining MC estimators and Latin hyper
ubesampling has strong statisti
al properties. In parti
ular, estimators in su
h a method have similar � andpotentially smaller � bias than the 
lassi
 method based on simple random sampling and asymptoti
allysmaller varian
e.3.2 On repli
ated Latin hyper
ube samplingWe now 
ome to alternative estimators based on RLHS. First in Proposition 2, we present a te
hni
al resultshowing that su
h estimators still have the strong statisti
al properties of the former estimators. We then provethat only two RLHS are ne
essary to estimate all the �rst-order Sobol' indi
es and that the estimators de�nedin this e�
ient strategy have the same statisti
al properties as in Proposition 2.We begin with the de�nition of a repli
ated Latin hyper
ube:De�nition 2. Let d and n in N
∗, and 
onsider Πn the set of all the permutations of {1, . . . , n}. We say that

(Xj)j=1..n and (X
′j)j=1..n are two repli
ated Latin hyper
ubes of size n in [0, 1]d � and we denote (Xj ,X

′j)j ∼

RLH(n, d) � if for all j ∈ {1, . . . , n},
Xj =

(
π1(j)− U1,π1(j)

n
, . . . ,

πd(j)− Ud,πd(j)

n

)and
X

′j =

(
π′
1(j)− U1,π′

1
(j)

n
, . . . ,

π′
d(j)− Ud,π′

d
(j)

n

)where the πi's, the π′
i's and the Ui,j 's are independent random variables uniformly distributed on Πn, Πn and

[0, 1], respe
tively.Now let (Ẋj)j ∼ LH(n, d) and (Z̈j , Z̈
′j)j ∼ RLH(n, d), and for any u in {1, . . . , d} denote

Ÿ j = f(Ẋj
u
: Z̈j

u
c) (10)

Ÿ j
u

= f(Ẋj
u
: Z̈

′j
uc). (11)10



Note that Ÿ j now depends on u, but the essential 
onstraint stating that the random ve
tors Ẋ
j
u : Z̈j

uc and
Ẋ

j
u : Z̈

′j
u
c have the same 
omponents in their i-th 
oordinate, for all i ∈ u is still 
he
ked. However for
onvenien
e, we keep the notation un
hanged.The resulting estimators are now denoted by S̃

RLHS

u,n = τ̃2,RLHS
u,n /σ̃2,RLHS

n and Ŝ
RLHS

u,n = τ̂2,RLHS
u,n /σ̂2,RLHS

n ,respe
tively. Note that estimators of SIs based on r repli
ated Latin hyper
ubes have already been introdu
edby M
Kay (1995) � see also the summarized presentation by Saltelli et al. (2000) � but the main drawba
kof these estimators is that they 
onverge to their 
orresponding analyti
al values only as r tends to +∞. Thestatisti
al properties of S̃RLHS

u
and Ŝ

RLHS

u
are gathered in the following result:Proposition 2.(i) If f4 is integrable then S̃

RLHS

u,n and Ŝ
RLHS

u,n are strongly 
onsistent.(ii) If f6 is integrable then √
n(S̃

RLHS

u,n − S
u
) and √

n(Ŝ
RLHS

u,n − S
u
) 
onverge in law to a zero-mean normaldistribution with the same respe
tive varian
e given in CLT for the estimators S̃

LHS

u,n and S̃
LHS

u,n .(iii) We have
E
[
τ̃2,RLHS
u,n

]
= τ2

u
− 1

n
τ2
u
+Bn,1 +B|u|,n

E
[
σ̃2,RLHS
n

]
= σ2 +Bn,3

E
[
τ̂2,RLHS
u,n

]
= τ2

u
− 1

2n
τ2
u
+Bn,1 +Bn,2 +B|u|,n

E
[
σ̂2,RLHS
n

]
= σ2 − 1

2n
τ2
u
+Bn,1 +Bn,2where

|Bn,1| ≤
(
d+ 1

n
+ 2

)(
d+ 1

n

)
E[Y 2]

|Bn,2| ≤ σ2

2n

− 1

n− 1
σ2 ≤ Bn,3 ≤ 0

|B|u|,n| ≤
(
d− |u|+ 1

n
+ 2

)(
d− |u|+ 1

n− 1

)
E[Y 2] .Proof. See Appendix B.Using this te
hni
al result, it is possible to estimate all the �rst-order Sobol' indi
es with only two RLHand in addition the new estimators inherit the strong statisti
al properties stated in Proposition 2. The mainidea 
onsists in de�ning, for any i ∈ {1, . . . , d}, the two samples Y j and Y j

{i} � ne
essary to estimate S{i} �by only 
onsidering two RLH. To this end, we �rst 
onsider (Ẅj ,Ẅ
′j)j ∼ RLH(n, d) de�ned by

Ẅj =

(
π1(j)− U1,π1(j)

n
, . . . ,

πd(j)− Ud,πd(j)

n

)and
Ẅ

′j =

(
π′
1(j)− U1,π′

1
(j)

n
, . . . ,

π′
d(j)− Ud,π′

d
(j)

n

)
.11



Se
ondly, let π ∈ Πn be a random permutation independent from the πis and the π′
is, and for any i ∈ {1, . . . , d}and j ∈ {1, . . . , n} 
onsider

Y j = f(Ẅπ−1

i ◦π(j)) (12)
Y j
{i} = f(Ẅ

′π
′−1

i
◦π(j)). (13)Then we have the following result.Theorem 1. Consider (Ẅj ,Ẅ

′j)j ∼ RLH(n, d) and denote D(n) the DoE de�ned as the union of both theserepli
ated Latin hyper
ubes:
D(n) = {Ẅj, 1 ≤ j ≤ n} ∪ {Ẅ′j , 1 ≤ j ≤ n}.For any i ∈ {1, . . . , d}, 
onsider the evaluations of the fun
tion f on D(n) denoted by (Y j)j=1..n and (Y j

{i})j=1..nas de�ned in (12) and (13). Then the estimator S̃{i} as de�ned in (7) � (resp. Ŝ{i} as de�ned in (8)) �built with Y j and Y j
{i} is strongly 
onsistent, asymptoti
ally normal and has numerator and denominator withbias as stated in (iii) of Proposition 2.Proof. We have Ẅπ−1

i
◦π(j) = Ẋ

j
{i} : Z̈j

{i}c and Ẅ
′π

′−1

i
◦π(j) = Ẋ

j
{i} : Z̈

′j
{i}c where

Ẋ
j
{i} =

π(j)− Ui,π(j)

n

Z̈
j
{i}c =

(
π̆1(j)− U1,π̆1(j)

n
, . . . ,

π̆i−1(j)− Ui−1,π̆i−1(j)

n
,
π̆i+1(j)− Ui+1,π̆i+1(j)

n
, . . . ,

π̆d(j)− Ud,π̆d(j)

n

)

Z̈
′j
{i}c =

(
π̆′
1(j)− U1,π̆′

1
(j)

n
, . . . ,

π̆′
i−1(j)− Ui−1,π̆′

i−1
(j)

n
,
π̆′
i+1(j)− Ui+1,π̆′

i+1
(j)

n
, . . . ,

π̆′
d(j)− Ud,π̆′

d
(j)

n

)with π̆k = πk ◦ π−1
i ◦ π and π̆′

k = π′
k ◦ π

′−1
i ◦ π. Then note that π, the π̆ks and the π̆′

ks are independentrandom permutations, and dedu
e that Y j and Y j
{i} given in (12) and (13) are de�ned as in (10) and (11).Thus Proposition 2 applies and the 
on
lusion follows.3.3 Potential generalization to orthogonal array-based Latin hyper
ubesThe main question that arises given the result stated in Theorem 1 is: 
an we estimate all the k-th order Sobol'indi
es with only two RLHS? On the one hand, the most straightforward answer is 
learly negative sin
e RLHSdo not have the required str
uture to handle these higher-order Sobol' indi
es. On the other hand, we have toobserve that su
h a well-suited stru
ture 
an be built by using orthogonal arrays. So we �rst begin with thede�nition of an orthogonal array (OA):De�nition 3. An OA in dimension d, with q levels, strength t ≤ d and index λ is a matrix with n = λqtrows and d 
olumns su
h that in every n-by-t submatrix ea
h of the qt possible rows � i.e. the distin
t t-tuples

(l1, . . . , lt) where the li's take their values in the set of the q levels � o

urs exa
tly the same number λ oftimes. 12



We now re
all the de�nition of OA-based Latin hyper
ubes � see Owen (1992) � and introdu
e the generalnotion of repli
ated OA-based Latin hyper
ubes.De�nition 4. Let (Aj
i )i=1..d,j=1..n be an OA in dimension d, with n points and q levels in {1, . . . , q}, and
onsider Πq the set of all the permutations of {1, . . . , q}. We say that (Xj)j=1..n is a Latin hyper
ube based onthe OA (Aj)j=1..n � and we denote (Xj)j ∼ LH

(
(Aj)j

) � if for all j ∈ {1, . . . , n},
Xj =

(π1(A
j
1)− U1,π1(A

j
1
)

q
, . . . ,

πd(A
j
d)− Ud,πd(A

j

d
)

q

)where the πi's and the Ui,j 's are independent random variables uniformly distributed on Πq and [0, 1], respe
-tively.De�nition 5. Let (Aj
i )i=1..d,j=1..n an OA in dimension d, with n points and q levels in {1, . . . , q}, and 
onsider

Πq the set of all the permutations of {1, . . . , q}. We say that (Xj)j=1..n and (X
′j)j=1..n are two repli
ated Latinhyper
ubes based on the orthogonal array (Aj)j=1..n � and we denote (Xj ,X
′j)j ∼ RLH

(
(Aj)j

) � if for all
j ∈ {1, . . . , n},

Xj =

(π1(A
j
1)− U1,π1(A

j
1
)

q
, . . . ,

πd(A
j
d)− Ud,πd(A

j

d
)

q

)and
X

′j =

(π′
1(A

j
1)− U1,π′

1
(Aj

1
)

q
, . . . ,

π′
d(A

j
d)− Ud,π′

d
(Aj

d
)

q

)where the πi's, the π′
i's and the Ui,j 's are independent random variables uniformly distributed on Πq, Πq and

[0, 1], respe
tively.It is interesting to note that in the parti
ular 
ase of the OA (Aj)j=1 with strength 1 and index unityde�ned by
∀i ∈ {1, . . . d}, ∀j ∈ {1, . . . n}, Aj

i = j,these de�nitions are exa
tly De�nitions 1 and 2.Now 
onsider (Z̈j , Z̈
′j)j ∼ RLH((Aj)j) where (Aj

i )i=1..d,j=1..n is an OA in dimension d, with n points, ofstrength t and index unity, and denote D(n) the DoE de�ned as the union of both these OA-based repli
atedLatin hyper
ubes:
D(n) = {Z̈j , 1 ≤ j ≤ n} ∪ {Z̈′j , 1 ≤ j ≤ n}.Then thanks to the de�nition of OA-based RLHS, it is easy to note that for any t indi
es, 1 ≤ i1 < · · · < it ≤ d,for all W ∈ D(n), there exists a unique element W′ distin
t from W su
h that Wim = W ′

im , 1 ≤ m ≤ t. Thisproperty allows to estimate all the t-th order Sobol' indi
es by using only two the DoE D(n).Remark 2. Theoreti
al properties of the estimators for this generalization remain open issues and will 
onsistof a further work. The �rst step for strong 
onsisten
y will be to state a strong law of large numbers for OA-based Latin hyper
ubes with strength t > 1 sin
e, as far as we know, su
h a result does not exist. Asymptoti
normality has already been proved for OA-based Latin hyper
ube with strength t = 2 under smoothness 
onditions13



� see Loh (2008) � but it is not su�
ient to 
on
lude in the 
ase of repli
ated OA-based Latin hyper
ubessin
e formulas as in (105) and (106) are ne
essary. As for the biases of the estimators, it will be ne
essary tostudy 
ovarian
es in OA-based Latin hyper
ubes with strength t > 1 in order to state formulas as in (105) and(106) as well.4 Numeri
al illustrations4.1 Appli
ation to the Ishigami fun
tion4.1.1 Main experimentIn this se
tion, we apply the new method proposed in Se
tion 4 to the Ishigami fun
tion (see Ishigami andHomma (1990)):
f(X1, X2, X3) = sin(X1) + 7 sin2(X2) + 0.1X4

3 sin(X1)where the Xi's are independent random variable uniformly distributed on [−π, π]. Analyti
al values of SIs ofthis model are
S1 = 0.3139, S2 = 0.4424, S3 = 0, S12 = 0.7563, S23 = 0.4424, S13 = 0.5575 and S123 = 1.We are interested in 
omparing the new method, with the 
lassi
 one based on 
rude MC method and whi
hneed d + 1 samples to estimate all the �rst-order SIs, and 2d+ 2 samples to estimate all the se
ond-order SIs(see Saltelli (2002)). Here, both methods are 
ompared at the same sample size n in order to investigate theestimators themselves, but keep in mind that the new method is de�nitely more e�
ient sin
e only two samplesare needed to estimate all the �rst-order SIs or all the se
ond-order Sobol' indi
es. In the experiment, we fo
uson the empiri
al 
overage � i.e. the empiri
al proportion of 
on�den
e interval 
ontaining the analyti
al valueof the SI � of both estimators at di�erent sample size between 102 and 105, and for r = 100000 repli
ates.We �rst investigate estimators Ŝ{i},n and Ŝ

RLHS

{i},n , i ∈ {1, . . . , d} and in both 
ases, we provide asymptoti

on�den
e intervals from the estimation of the asymptoti
 varian
e given in Janon et al. (2012) (see end of theproof of Prop. 2.2). Indeed, as we know that this asymptoti
 varian
e is:
σ2
IID,u =

Var[(Y − E[Y ])(Yu − E[Y ])− S
u
/2

(
(Y − E[Y ])2

)(
Yu − E[Y ]

)]Var[Y ]2
≥ σ2

RLHS,u, (14)we 
an provide an estimator of the asymptoti
 
on�den
e interval for the 
lassi
 method
IIID,u,α =

[
S
u
−

σ2
IID,u uα/2√

n
, S

u
+

σ2
IID,u uα/2√

n

]and an other one for the new method
IRLHS,u,α =

[
S
u
−

σ2
RLHS,u uα/2√

n
, S

u
+

σ2
RLHS,u uα/2√

n

]14



where uα/2 is the normal quantile at the signi�
an
e level α. By using the estimator of the asymptoti
 varian
egiven in (14) in both 
ases, the 
on�den
e interval lengths of the 
lassi
 and the new estimators are the same.More spe
i�
ally, the estimated length of the new estimator is greater or equal than its optimal value. Thusthe asymptoti
 value of the empiri
al 
overage of the new method is greater or equal than the expe
ted one.However at the moment, we do not know how to estimate 
orre
tly σ2
RLHS,u be
ause of its singular expression(see Proof of (ii) in Proposition 1 in Se
tion 3.2). We just say few words about it in the next subse
tion andmore fundamentally, it should 
onsist of a further work.We also investigate estimators Ŝ{i,j},n and Ŝ

OA2-RLHS
{i,j},n , i 6= j ∈ {1, . . . , d}, where the notation OA2-RLHSrefers to the generalization to repli
ated latin hyper
ube based on OA of strength 2 presented in Se
tion 4.4.In this 
ase, we 
onje
ture that the Central Limit theorem established in (ii) in Proposition 2 is also true undersome smoothness assumption � note that, here, Ishigami fun
tion is C∞. Results are gathered in Figures 3to 6. For the se
ond-order SIs, we 
an observe that the bivariate strati�
ation has a bad e�e
t on the new
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classic estimatorFigure 5: Normalized (×√

n) length of the empiri
al interval for S1 (left), S2 (
enter) and S3 (right).estimator at very low sample size, but we 
an noti
e its good properties as the number of simulations in
reases.
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n) length of the empiri
al interval for S12 (left), S13 (
enter) and S23 (right).
S1 S2 S12 S13 S23estimated lengths using (14) 4.40 4.15 2.19 3.95 6.45right lengths 3.96 3.28 1.53 2.37 5.16Table 1: Comparison between 
on�den
e interval lengths estimated using (14) and the right lengths for S1,

S2, S12, S13 and S234.1.2 Remark on the 
on�den
e interval length of the new estimatorCon
erning the estimation of the right 
on�den
e interval length of the new estimators, note that if theasymptoti
 empiri
al 
overage � estimated using Formula (14) � is 1 − α′ instead of the expe
ted value
1 − α, then it means that the true asymptoti
 
on�den
e interval should be uα/2/uα′/2 time as long, where
u· denote the normal quantiles. More spe
i�
ally in our �rst appli
ation, we obtain in this way the trueasymptoti
 normalized (×√

n) 
on�den
e interval length of S1, S2, S12, S13 and S23; they are gathered inTable 1. Moreover 
onsidering these right normalized 
on�den
e interval lengths, we 
an observe on Figures7 and 8 that the empiri
al 
overage of the new estimator 
onverges to the expe
ted level 0.99 as n in
reases,and so we 
on�rm the reliability of the empiri
al 
on�den
e intervals 
onstru
ted with the true asymptoti
length. Unfortunately, evaluating the true asymptoti
 
on�den
e interval length is infeasible in pra
ti
e sin
e
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Figure 7: Empiri
al 
overage of 
on�den
e intervals for S1 (left) and S2 (right).it requires a lot of repli
ations to estimate the empiri
al 
overage. So the issue related to the 
onstru
tion ofoptimal 
on�den
e intervals remains open.
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al 
overage of 
on�den
e intervals for S12 (left), S13 (
enter) and S23 (right).4.2 Comparison between the new method and the quasi-Monte Carlo estimationWe now 
ome to the 
omparison between the new method based on RLHS and the method of Sobol' performedwith Sobol' sequen
es, also known as LPτ sequen
es and that 
onsist of (t, s)-sequen
es in base 2 � see, e.g.,Niederreiter (1992) for (t, s)-sequen
es and Saltelli et al. (2010) for the appli
ation to the method of Sobol'.The numeri
al appli
ation we propose 
onsists in 
omparing the estimation error � the mean squared error� in the 
omputation of all the �rst-order Sobol' indi
es Si between these two approa
hes using exa
tly thesame total number of model evaluations. Low dis
repan
y sequen
es are known for their e�
ien
y but keepin mind that the total number of model evaluations required to estimate all the �rst-order Sobol' indi
es is

(d+ 1)n when using (t, s)-sequen
es while only 2n are ne
essary when using RLHS. The analyti
al test-
ase isa multipli
ative fun
tion known as the g-fun
tion � see Saltelli and Sobol' (1995). So we 
onsider the model
Y = f1(X1)× · · · × fd(Xd)where the Xis are independent random variables uniformly distributed on [0, 1] and for any i ∈ {1, . . . , d}

fi(Xi) =
|4Xi − 2|+ ai

1 + ai
, ai ≥ 0.The numeri
al test is divided into three 
ases:Case i) in dimension d = 3 with g-fun
tion parameters a = (0, 1, 9)Case ii) in dimension d = 12 with g-fun
tion parameters a = (0, 0, 0, 0, 1, 1, 1, 1, 9, 9, 9, 9)Case iii) in dimension d = 24 with g-fun
tion parameters a = (0, . . . , 0︸ ︷︷ ︸

8 times , 1, . . . , 1︸ ︷︷ ︸
8 times , 9, . . . , 9︸ ︷︷ ︸

8 times ).The theoreti
al values of the Sobol' indi
es are the following:Case i) S1 = 0.742, S2 = 0.185, S3 = 0.007Case ii) S1 = · · · = S4 = 0.098, S5 = · · · = S8 = 0.024, S9 = · · · = S12 = 0.001,Case iii) S1 = · · · = S8 = 0.018, S9 = · · · = S16 = 0.004, S17 = · · · = S24 = 10−4.The 
omputation are performed at di�erent total number of runs:17



Case i) N = 64, 512, 4096, 32768, 262144, 2097152Case ii) N = 208, 1664, 13312, 106496, 851968, 6815744Case iii) N = 200, 1600, 12800, 102400, 819200, 6553600.In this numeri
al experiment, as we measure the error in term of mean squared error, we 
onsider randomizedSobol' sequen
es. More pre
isely we use both the following well-known method of randomization:1. Cranley-Patterson rotation, that 
onsists in adding a random ve
tor to all the points of a DoE � wherethe addition is the 
omponentwise addition modulo 1.2. Owen's s
rambling, that essentially 
onsists in randomly permuting the levels of a (t, s)-sequen
e keepingthe low dis
repan
y stru
ture un
hanged � see Owen (1995, 1997a,b).The results are gathered in Figures (9�11).
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(
) Estimation error of S
3Figure 9: Plots of the estimation error of Sobol' indi
es for a g-fun
tion in dimension 3 with parameters (0, 1, 9).NB: CP rotation stands for Cranley-Patterson rotation.
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(
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9
, . . . , S

12Figure 10: Plots of the estimation error of Sobol' indi
es for a g-fun
tion in dimension 12 with parameters
(0, 0, 0, 0, 1, 1, 1, 1, 9, 9, 9, 9). NB: CP rotation stands for Cranley-Patterson rotation.First we 
an observe that the mean squared error (MSE) of all the estimates 
omputed by using RLHSde
reases with a rate of 
onvergen
e of O(n−1) in the three test-
ases, while the rate of 
onvergen
e of the low18
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24Figure 11: Plots of the estimation error of Sobol' indi
es for a g-fun
tion in dimension 24 with parameters
(0, . . . , 0, 1, . . . , 1, 9, . . . , 9). NB: CP rotation stands for Cranley-Patterson rotation.dis
repan
y method � with s
rambling as well as Cranley-Patterson rotation � is O(n−2) in dimension 3 butonly O(n−1) in dimension 24. Se
ond note that MSEs of the estimates 
omputed by using RLHS at the lowesttotal number of model evaluations keep in the same range of values, while initial MSEs in low dis
repan
ymethods be
ome worse as the dimension in
reases. Consequently, the use of Sobol' sequen
es 
learly leads tobetter results in dimension 3, but appears as a poor 
hoi
e in the other 
ases. Indeed in dimension 12, we 
anobserve that Sobol' sequen
es provide better results than RLHS only asymptoti
ally � we 
an see in Figure10 that at least 107 model evaluations are ne
essary � and in dimension 24, MSEs 
omputed by using RLHSare always a fa
tor 10 or 15 better than those of low dis
repan
y methods.4.3 Appli
ation to a marine e
osystem simulatorWe now illustrate the new method to a one-dimensional 
oupled hydrodynami
al� biologi
al model devel-oped and applied to the Ligurian Sea (northwestern Mediterranean). This e
osystem simulator, MODèled'ÉCOsystème du GHER et du LOBEPM1 (MODECOGeL), 
ombines a 1D (verti
al) version of the 3D GHERmodel whi
h takes into a

ount momentum and heat surfa
e �uxes 
omputed from a real meteorologi
al dataset, and a biogeo
hemi
al model de�ned by a nitrogen 
y
le of 12 biologi
al state variables (see Figure 12) 
on-trolled by 87 input parameters, see La
roix and Nival (1998). Here we fo
us on the 
hlorophyll-a 
on
entrationwhi
h is de�ned as a fun
tion of time and depth
hla(t, z) = 1.59 ∗

(pp(t, z) + np(t, z) + mp(t, z))where pp, np and mp are the phyto-, nano- and mi
rophytoplankton biomasses, respe
tively. The behaviorof these three state variables are modeled by the following rea
tion-di�usion and rea
tion-adve
tion-di�usion1GHER: GeoHydrodynami
s and Environment Resear
h, Université de Liège, Belgium. LOBEPM: Laboratoire d'O
éanologieBiologique et d'É
ologie du Plan
ton Marin, Université Pierre et Marie Curie, Fran
e
19



Figure 12: Biogeo
hemi
al model (NH4: Ammonium; NH3: nitrate; Pp, Np, Mp: pi
o-, nano-, mi
rophyto-plankton; Nz, Miz, Mez: nano-, mi
ro-, mesozooplankton; PON1, PON2: type 1 and 2 parti
ulate organi
nitrogen; Ba
: ba
teria; DON: dissolved organi
 nitrogen).equation
∂ pp
∂t

=
∂

∂z

(
λ
∂ pp
∂z

)
+
(
(1− exudpp)µpp −mortpp)pp− ingpp,nznz

∂ np
∂t

=
∂

∂z

(
λ
∂ np
∂z

)
+
(
(1− exudnp)µnp −mortnp)np− ingnp,mizmiz

∂ mp
∂t

=
∂

∂z

(
λ
∂ mp
∂z

)
+
(
(1− exudmp)µmp −mortmp)mp− ingmp,mezmez− sinmp∂mp

∂zwhere nz, miz and mez are the nano-, mi
ro- and mesozooplankton biomasses, respe
tively, and the othernotations are
λ verti
al turbulent di�usivity (m2.s−1)
exudA exudation of A (per
entage)
µA growth rate of A (day−1)
mortA mortality rate of A (day−1)
ingA,B ingestion rate of A by predator B (mgChl)
sinmp sinking velo
ity of mi
rophytoplankton (m.day−1)In our experiment, we fo
us on two di�erent outputs: the annual maximum of 
hlorophyll-a 
on
entrationin surfa
e water Ysurf and the annual maximum of the mean of 
holorphyll-a 
on
entration between 20 and 50meters in depth Ydepth. These are pra
ti
al indi
ators of biologi
al a
tivity. We are interested in the in�uen
eof eight parameters among the 87 input fa
tors. On the one hand, we 
onsider 6 a priori sensitive parameters

µmaxpp, µmaxnp, µmaxmp, Ioptpp, Ioptnp and Ioptmp where µmaxA and IoptA denote the maximum growth rate of
A and the optimum insolation for A, respe
tively. These input fa
tors are dire
tly related to the growth rateof A, µA (see details in Appendix C). On the other hand, we 
onsider the maximum growth rate of ba
teria
µmaxba
 and the sinking velo
ity of parti
ulate organi
 nitrogen (type 1) sinpon1 whi
h have a priori a negligiblee�e
t on 
hlorophyll-a 
on
entration sin
e they do not a
t dire
tly on pp, np and mp but on the state variablesba
 and pon1. We take these eight parameters to be independent gamma distributed random variables withparameters given in Table 2. We estimate all �rst- and se
ond-order SIs of both outputs Ysurf and Ydepth byusing the estimators de�ned in Se
tions 4.3 and 4.4 with sample sizes n = 65536 and n = 66049, respe
tively.20



The �rst-order SIs are estimated by using nested repli
ated latin hyper
ubes following Qian's 
onstru
tionQian (2009). They allow to visualize empiri
al 
onvergen
e of the estimated indi
es as shown in Figure 13.The estimated indi
es at the biggest sample size (n = 65536) are reported in Tables 3 and 4; we 
an noti
e thatboth outputs do not de�ne an additive model sin
e in both 
ases, the sum of the �rst-order SIs are less thansixty per
ents. We also noti
e that µmaxpp is important in both outputs, while three other a priori importantparameters � µmaxnp, Ioptnp and Ioptmp� have a
tually no e�e
t. At last, it is surprising to observe that theparameter µmaxba
, whi
h does not a
t dire
tly on both outputs, has non-zero values.
2048 4096 8172 16384 32768 65536 131072

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

total sample size (2n)

fir
st

−
or

de
r 

S
ob

ol
’ i

nd
ic

es

 

 

mumaxpp

mumaxnp

mumaxmp

ioptpp

ioptnp

ioptmp

mumaxbac

sedpon1

2048 4096 8172 16384 32768 65536 131072
−0.1

0

0.1

0.2

0.3

0.4

0.5

total sample size (2n)

fir
st

−
or

de
r 

S
ob

ol
’ i

nd
ic

es

 

 

mumaxpp

mumaxnp

mumaxmp

ioptpp

ioptnp

ioptmp

mumaxbac

sedpon1Figure 13: Plots of �rst-order SIs with error bars � 99% 
on�den
e interval � for both outputs Ysurf (left)and Ydepth (right).The se
ond-order SIs are estimated by using a repli
ated latin hyper
ube based on an orthogonal array with
257 levels, index 1 and strength 2 � i.e. n = 66049 � following Bush's 
onstru
tion, see Bose (1938). Theresults are reported in Tables 5 and 6; they 
on�rm that µmaxpp has the main role in both outputs sin
e thenon-negligible se
ond-order SIs are all related to the latter. As a 
on
lusion, we 
an noti
e that both outputsare extremely 
omplex and 
ontain, without any doubt, intera
tions of order more than or equal to 3. Su
han analysis with the MC estimator of SIs would be less e�
ient without the new approa
h we proposed in thispaper. More pre
isely, both order 1 and order 2 analysis using the 
lassi
 MC estimator � i.e. estimating allthe SIs of order 1 or 2 � only 
ould use a sample size of 30000 instead of 132000 sin
e this 
lassi
 approa
hneeds 9 independent samples while the new one only needs 2 for the order 1 analysis and 18 independentsamples while the new one only needs 4 for the order 2 analysis, see Saltelli (2002).5 Con
lusionWe have introdu
ed a new method to estimate all the k-th order SIs by using only 2 samples, for any k. Thisoutperforms existing methods in
luding the 
ombinatorial results established by Saltelli (2002). We derivetheoreti
al results in the parti
ular 
ase of �rst-order SIs from the work by Janon et al. (2012) on asymptoti
alproperties of SIs and from the work by Loh (1996) on asymptoti
al properties of LHS. Further works will
onsist in deriving these theoreti
al results to higher-order SIs and in improving the method by studying how21



label k θ mean standard deviation
µmaxpp (day−1) 1 9 0.33 3 1

µmaxnp (day−1) 2 9 0.28 2.5 0.83

µmaxmp (day−1) 3 9 0.22 2 0.67

Ioptpp (W.m−2) 4 9 1.11 10 3.33

Ioptnp (W.m−2) 5 9 1.67 15 5

Ioptmp (W.m−2) 6 9 2.22 20 6.67

µmaxba
 (day−1) 7 9 0.22 2 0.67

sinpon1 (m.day−1) 8 9 0.17 1.5 0.5Table 2: Distributions of variables using gamma density f(x; k, θ) = xk−1 exp(−x/θ)/(Γ(θ)θk), where Γ(·) isthe gamma fun
tion.
S{1} S{2} S{3} S{4} S{5} S{6} S{7} S{8}estimated index 0.314 0 0.061 0.060 0 0.003 0.051 0.010estimated error 0.010 0.011 0.012 0.011 0.010 0.010 0.013 0.012Table 3: Estimation of �rst-order SIs for the output Ysurf . The estimated error is the radius of the 99%
on�den
e interval.
S{1} S{2} S{3} S{4} S{5} S{6} S{7} S{8}estimated index 0.451 0 0.055 0.034 0 0 0.035 0.011estimated error 0.009 0.010 0.010 0.010 0.010 0.010 0.012 0.010Table 4: Estimation of �rst-order SIs for the output Ydepth. The estimated error is the radius of the 99%
on�den
e interval.
S{1,2} S{1,3} S{1,4} S{1,5} S{1,6} S{1,7} S{1,8} S{2,3} S{2,4} S{2,5}estimated index 0.374 0.479 0.424 0.339 0.324 0.400 0.318 0.069 0.066 0.016estimated error 0.012 0.011 0.013 0.011 0.011 0.010 0.011 0.011 0.011 0.011

S{2,6} S{2,7} S{2,8} S{3,4} S{3,5} S{3,6} S{3,7} S{3,8} S{4,5} S{4,6}estimated index 0.015 0.069 0.015 0.125 0.074 0.075 0.128 0.072 0.077 0.070estimated error 0.010 0.015 0.010 0.011 0.011 0.011 0.013 0.011 0.011 0.011

S{4,7} S{4,8} S{5,6} S{5,7} S{5,8} S{6,7} S{6,8} S{7,8}estimated index 0.121 0.066 0.017 0.055 0.014 0.056 0.009 0.050estimated error 0.013 0.011 0.010 0.015 0.010 0.014 0.010 0.015Table 5: Estimation of se
ond-order SIs for the output Ysurf . The estimated error is the radius of the 99%
on�den
e interval. 22



S{1,2} S{1,3} S{1,4} S{1,5} S{1,6} S{1,7} S{1,8} S{2,3} S{2,4} S{2,5}estimated index 0.506 0.593 0.510 0.455 0.450 0.515 0.447 0.056 0.034 0.005estimated error 0.010 0.009 0.010 0.009 0.009 0.008 0.009 0.011 0.011 0.011

S{2,6} S{2,7} S{2,8} S{3,4} S{3,5} S{3,6} S{3,7} S{3,8} S{4,5} S{4,6}estimated index 0.008 0.055 0.009 0.087 0.057 0.064 0.109 0.063 0.041 0.043estimated error 0.010 0.014 0.010 0.011 0.011 0.011 0.013 0.011 0.010 0.010

S{4,7} S{4,8} S{5,6} S{5,7} S{5,8} S{6,7} S{6,8} S{7,8}estimated index 0.082 0.041 0.009 0.040 0.007 0.046 0.006 0.041estimated error 0.013 0.010 0.010 0.014 0.010 0.014 0.010 0.014Table 6: Estimation of se
ond-order SIs for the output Ydepth. The estimated error is the radius of the 99%
on�den
e interval.we 
an estimate 
orre
tly the asymptoti
 varian
e of the new estimator.A
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t COSTA-BRAVA n◦ ANR-09-COSI-015).A Proof of Proposition 1NB: the integration set is generally omitted for integrals de�ned over a unit hyper
ube [0, 1]s with any s ≤ d,A.1 Te
hni
al lemmasLet Ẋ1 and Ẋ2 two distin
t points of a Latin hyper
ube of size n in [0, 1]d. For any fun
tion f de�ned on
[0, 1]d, 
onsider Ẏ 1 = f(Ẋ1) et Ẏ 2 = f(Ẋ2). In Theorem 1 in Stein (1987), Stein gives the following resultTheorem 2. If f is a square integrable fun
tion then as n tends to +∞, we haveCov(Ẏ 1, Ẏ 2) = − 1

n

d∑

i=1

σ2
i + o(n−1) . (15)In this subse
tion, we prove an analogous result with more general settings and without the asymptoti
assumption on n (see Lemma 4).
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Notation and de�ntions For s and n in N
∗, de�ne the partition of [0, 1)s in elementary hyper
ubes of side

1/n,
Qs(n) =

{
Q ⊆ [0, 1)s

∣∣ Q =

s∏

i=1

[αi, βi), αi ∈
{
0,

1

n
, . . . ,

n− 1

n

}
, βi = αi +

1

n

}
. (16)For any square integrable fun
tion g de�ned on [0, 1)s, s ≤ d, de�ne the sequen
e with general term

un(g) = ns
∑

Q∈Qs(n)

(∫

Q

g(x)dx

)2

, n ∈ N. (17)Outline The �rst lemma is the analogous result for Lebesgue integrability of a result given in Equation (A.4)in Stein (1987) for Riemann integrability. The se
ond lemma gives an important inequality whi
h allows towork without asymptoti
 assumption on n. The last one 
onsists in simplifying integrals under LHS using theANOVA de
omposition. Lemma 4 provides the expe
ted inequalities.Lemma 1. If g is a square integrable fun
tion, the sequen
e (un(g)
) 
onverges to ∫

g2(x)dx as n tends to +∞.Proof. Noting that
un(g) =

∫
gn(x)dx (18)where

∀x ∈ [0, 1)s, gn(x) =
∑

Q∈Qs(n)

(
ns

∫

Q

g(y)dy

)2

1Q(x) (19)Lemma 1 is a straightforward 
onsequen
e of the dominated 
onvergen
e theorem. So let us prove that thereexists an integrable fun
tion h su
h that for all n ∈ N
∗, |gn| ≤ h almost surely, and gn 
onverges pointwise to

g2, and the 
on
lusion will follow.First sin
e g is a square integrable fun
tion, we have |g(x)| ≤ M a.s., and by their de�nition, the gn's areas well. Hen
e their exists an integrable fun
tion (h : x 7→ M) su
h that |gn| ≤ h almost surely. Con
erningthe pointwise 
onvergen
e, let us prove that for any x ∈ [0, 1)s,
∀ε > 0, ∃ N > 0, ∀n ≥ N,

∣∣∣∣∣

(
ns

∫

Qx

g(y)dy

)2

− g2(x)

∣∣∣∣∣ < ε (20)where Qx is the set Q in Qs(n) 
ontaining x. This is obvious if g2 is a simple fun
tion and we easily generalizethe result to any g2 sin
e any measurable fun
tion is a pointwise limit of simple fun
tions.Lemma 2. The sequen
e (
un(g)

) is dominated by ∫
g2(x)dx.Proof. Let n ∈ N

∗, the result is proved by showing that the sequen
e of general term vk(g) = u2kn(g) isin
reasing. In this 
ase, by Lemma 1, we have lim vk(g) =
∫
g2(x)dx, and sin
e vk is in
reasing, all the termsof this sequen
e are dominated by ∫

g2(x)dx, hen
e v0(g) = un(g) ≤
∫
g2(x)dx. To prove that the sequen
e

(
vk(g)

) is in
reasing, note that
vk+1(g) = (2k+1n)s

∑

Q∈Qs(2k+1n)

(∫

Q

g(x)dx

)2

= (2kn)s
∑

Q∈Qs(2kn)


2s

∑

P∈P(Q,2k+1n)

(∫

P

g(x)dx

)2

 (21)24



where P(Q, 2k+1n) = Q(2k+1n) ∩Q. Then by Jensen inequality, we have
2s

∑

P∈P(Q,2k+1n)

(∫

P

g(x)dx

)2

≥
(∫

Q

g(x)dx

)2 (22)and we 
on
lude that vk+1(g) ≥ vk(g).For 0 ≤ x1, x2 ≤ 1 de�ne
rn(x1, x2) =

{
1 if ⌊nx1⌋ = ⌊nx2⌋
0 otherwise, (23)where ⌊·⌋ is the �oor fun
tion. We now end with the following resultLemma 3. Let v be a subset of {1, . . . , d}, we have

∫
f(x1)f(x2)

∏

i∈v

rn(x1i, x2i)dx1dx2 =

∫ ∑

w⊆v

fw(x1w)fw(x2w)
∏

i∈v

rn(x1i, x2i)dx1dx2 . (24)Proof. By the ANOVA de
omposition � see (1) � we have
∫

f(x1)f(x2)
∏

i∈v

rn(x1i, x2i)dx1dx2 =

∫ ∑

w1⊆{1,..,d}

∑

w2⊆{1,..,d}

fw1
(x1w1

)fw2
(x2w2

)
∏

i∈v

rn(x1i, x2i)dx1dx2 .(25)Then note that a 
ertain number of terms in the member on the right-hand side vanishe. If (w1∩vc)∪(w2∩vc) 6=

∅ then suppose without loss of generality that there exists k ∈ w1 \ v; we have
∫

fw1
(x1w1

)fw2
(x2w2

)
∏

i∈v

rn(x1i, x2i)dx1dx2 =

∫ (∫
fw1

(x1w1
)dx1k

)

︸ ︷︷ ︸
I1

fw2
(x2w2

)
∏

i∈v

rn(x1i, x2i)dx1{k}cdx2(26)and note that, by a basi
 property of the ANOVA de
omposition, I1 = 0. If (w1 ∩ v
c) ∪ (w2 ∩ v

c) = ∅ and
w1 6= w2, then suppose without loss of generality that there exists k ∈ w1 \w2. In this 
ase, we have

∫
fw1

(x1w1
)fw2

(x2w2
)
∏

i∈v

rn(x1i, x2i)dx1dx2

=

∫ (∫
fw1

(x1w1
)rn(x1k, x2k)dx1kdx2k

)

︸ ︷︷ ︸
I2

fw2
(x2w2

)

( ∏

i∈v\{k}

rn(x1i, x2i)

)
dx1{k}cdx2{k}c (27)and note that by the de�nition of rn, we have

∫
fw1

(x1w1
)rn(x1k, x2k)dx1kdx2k =

∫
fw1

(x1w1
)dx1k (28)and thus I2 = 0. The 
on
lusion of the lemma follows.Let u be a non-empty subset of {1, . . . d} and 
onsider (Ẋj)j ∼ LH(n, d) and (Żj)j ∼ LH(n, d). For anyfun
tion f de�ned on [0, 1]d, 
onsideṙ

Y 1 = f(Ẋ1) and Ẏ 2
u
= f(Ẋ2

u
: Ż2

u
c) . (29)We have the following result 25



Lemma 4. If f is a square integrable fun
tion then we have
−

∑

∅6=w⊆u

|w| odd σ2
w

(n− 1)|w|
≤ Cov(Ẏ 1, Ẏ 2

u
) ≤

∑

∅6=w⊆u

|w| even σ2
w

(n− 1)|w|
. (30)Proof. Re
all that for 0 ≤ x1, x2 ≤ 1,

rn(x1, x2) =

{
1 if ⌊nx1⌋ = ⌊nx2⌋
0 otherwise, (31)where ⌊·⌋ is the �oor fun
tion. For x1 = (x11, . . . , x1d) in [0, 1)d, de�ne x1v = (x1i1 , . . . , x1i|v|

) where v =

{i1, . . . , i|v|}. Due to the joint density of (Ẋ1
u
, Ẋ2

u
) under LHS � see M
Kay et al. (1979) or Stein (1987) �and by Lemma 3, we haveCov(Ẏ 1, Ẏ 2

u
) +

(∫
f(x)dx

)2

=

∫
f(x1)f(x2)

( n

n− 1

)|u|∏

i∈u

(
1− rn(x1i, x2i)

)
dx1dx2

=
( n

n− 1

)|u| ∑

v⊆u

(−1)|v|
∫

f(x1)f(x2)
∏

i∈v

rn(x1i, x2i)dx1dx2

=
( n

n− 1

)|u| ∑

v⊆u

(−1)|v|
∫ ∑

w⊆v

fw(x1w)fw(x2w)
∏

i∈v

rn(x1i, x2i)dx1dx2

=
( n

n− 1

)|u| ∑

v⊆u

(−1)|v|
∑

w⊆v

( 1

n

)|v|−|w|
∫

fw(x1w)fw(x2w)
∏

i∈w

rn(x1i, x2i)dx1wdx2w (32)Then note that for any fun
tion of w denoted by A(w), we have
∑

v⊆u

(−1)|v|
∑

w⊆v

( 1

n

)|v|−|w|

A(w) =
∑

v⊆u

(
− 1

n

)|v| ∑

w⊆v

( 1

n

)−|w|

A(w)

=
∑

w⊆u




|u|−|w|∑

k=0

(|u| − |w|
k

)(
− 1

n

)k+|w|




( 1

n

)−|w|

A(w)

=
∑

w⊆u

(n− 1

n

)|u|−|w|

(−1)|w|A(w) (33)Hen
e, we dedu
e thatCov(Ẏ 1, Ẏ 2
u
) =

∑

w⊆u

w 6=∅

( n

n− 1

)|w|

(−1)|w|

∫
fw(x1w)fw(x2w)

∏

i∈w

rn(x1i, x2i)dx1wdx2w . (34)Finally by the de�nition of rn, we have
0 ≤

∫
fw(x1w)fw(x2w)

∏

i∈w

rn(x1i, x2i)dx1wdx2w ≤
∑

Q∈Q|w|(n)

(∫

Q

fw(x1w)dx1w

)2 (35)and by Lemma 2, this gives
0 ≤

∫
fw(x1w)fw(x2w)

∏

i∈w

rn(x1i, x2i)dx1wdx2w ≤ σ2
w

n|w|
. (36)The latter inequalities and (34) lead to Lemma 4.Remark 3. Note that if u = {1, . . . , d}, the resulting inequalities are

−
∑

w 6=∅
|w| odd σ2

w

(n− 1)|w|
≤ Cov(Ẏ 1, Ẏ 2) ≤

∑

w 6=∅
|w| even σ2

w

(n− 1)|w|
. (37)This 
onsists of a non-asymptoti
 equivalent of the theorem due to Stein presented at the beginning of thisse
tion. 26



A.2 Proof of Proposition 1Proof.(ii) Con
erning S̃
LHS

u,n , it is easy to show that
S̃
LHS

u,n = Φ(Vn) (38)where
Vn =

1

n

n∑

j=1

Vj (39)
Vj =

((
Ẏ j − E[Y ]

)(
Ẏ j
u
− E[Y ]

)
, Ẏ j − E[Y ] , Ẏ j

u
− E[Y ] ,

(
Ẏ j − E[Y ]

)2)T (40)and
Φ(x, y, z, t) =

x− yz

t− y2
. (41)Then we dedu
e from Theorem 2 in Loh (1996) that

√
n
(
Vn − µ

) L−→
n→∞

N4(0,Γ) (42)where µ = (τ2
u
, 0, 0, σ2)T and Γ is the 
ovarian
e matrix of R1 = V1 − A1 � see details in Eq. (3) in Loh(1996) � de�ned by

∀i ∈ {1, . . . , 4}, A1i is the additive part � see (1) � of V1i . (43)Thus the Delta method � see Theorem 3.1 in Van der Vaart (1998) � gives
√
n
(
S̃
LHS

u,n − S
u

) L−→
n→∞

N1(0, g
TΓg) (44)where g = ∇Φ(µ). Developing the term gTΓg does not seem to provide any useful information. However,denoting σ2

LHS this term, and σ2
IID the analogous quantity in the CLT for simple random sampling, we 
anshow that σ2

LHS ≤ σ2
IID. Indeed we �rst note that, for simple random sampling, the varian
e given in Janonet al. (2012) reads

σ2
IID =

Var[V11 − S
u
V14

]

σ2
(45)and for LHS, it is easy to show that

σ2
LHS =

Var[R11 − S
u
R14

]

σ2
. (46)Hen
e,

σ2
IID = σ2

LHS +
Var[A11 − S

u
A14

]

σ2
(47)and the 
on
lusion of (ii) for S̃LHS

u,n follows. Con
erning Ŝ
LHS

u,n , the proof follows the same lines � see Proof of(10) in Janon et al. (2012) for details.
27



(iii) First we have
E
[
τ̃2,LHS
u,n

]
=

n− 1

n2

n∑

j=1

E
[
Ẏ j Ẏ j

u

]
− 1

n2

n∑

j=1

n∑

l=1
l 6=j

E
[
Ẏ j Ẏ l

u

]

=
n− 1

n

(
E[Y ]2 + τ2

u

)
− n− 1

n

(Cov(Ẏ 1, Ẏ 2
u
) + E[Y ]2

) (48)and thanks to Lemma 4 in Appendix A, it gives
E
[
τ̃2,LHS
u,n

]
= τ2

u
+Bn,1 (49)with

− 1

n− 1
τ2
u
≤ Bn,1 ≤ 0 . (50)Con
erning σ̃2,LHS

n , we have
E
[
σ̃2,LHS
u,n

]
=

n− 1

n2

n∑

j=1

E
[
(Ẏ j)2

]
− 1

n2

n∑

j=1

n∑

l=1
l 6=j

E
[
Ẏ j Ẏ l

]

=
n− 1

n
E[Y 2]− n− 1

n

(Cov(Ẏ 1, Ẏ 2) + E[Y ]2
) (51)and noting that Cov(Ẏ 1, Ẏ 2) = Cov(Ẏ 1, Ẏ 2

{1,...,d}

) (52)we 
on
lude that
E
[
σ̃2,LHS
n

]
= σ2 +Bn,2 (53)with

− 1

n− 1
σ2 ≤ Bn,2 ≤ 0 . (54)As for τ̂2,LHS

u,n and σ̂2,LHS
n , we have

E



(
1

n

n∑

j=1

Ẏ j + Ẏ j
u

2

)2

 =

1

4n
E
[
(Ẏ 1 + Ẏ 1

u
)2
]
+

1

4n2

n∑

j=1

n∑

l=1
l 6=j

E
[
(Ẏ j + Ẏ j

u
)(Ẏ l + Ẏ l

u
)
]

=
1

2n

(
E[Y 2] + τ2

u
+ E[Y ]2

)
+

n− 1

n
E[Y ]2 +

n− 1

2n

(Cov(Ẏ 1, Ẏ 2) + Cov(Ẏ 1, Ẏ 2
u
)
)

=
1

2n

(
σ2 + τ2

u

)
+ E[Y ]2 +

n− 1

2n

(Cov(Ẏ 1, Ẏ 2) + Cov(Ẏ 1, Ẏ 2
u
)
)
. (55)Then it is easy to 
on
lude that

E
[
τ̂2,LHS
u,n

]
= τ2

u
+Bn,3 (56)

E
[
σ̂2,LHS
n

]
= σ2 +Bn,3 (57)with

− 1

2(n− 1)
(σ2 + τ2

u
) ≤ Bn,3 ≤ 0 . (58)28



B Proof of Proposition 2We �rst give three lemmas. The proof of Proposition 2 is given in Se
tion B.2.B.1 Te
hni
al lemmasLemma 5. Let d ∈ N
∗, if n ≥ d2

2 then
(
1 +

1

n

)d

− 1 ≤ d+ 1

n
. (59)Proof. If d = 1, the result is obvious. Otherwise, for any x > 0, 
onsider the fun
tion gd de�ned by

gd(x) =

(
1 +

1

x

)d

− 1− d+ 1

x
. (60)We show that(1) if there exists x0 > 0 su
h that gd(x0) ≤ 0 then for all x ≥ x0, gd(x) ≤ 0(2) gd(d2/2) ≤ 0and the 
on
lusion follows. Con
erning (1) note that

gd(x) = 1 +
d

x
+O(x−2)− 1− d

x
− 1

x
= − 1

x
+O(x−2) (61)and then that gd is negative as x tends to +∞. Moreover for any d > 1, gd is �rst de
reasing and thenin
reasing. Indeed, we have

g′d(x) = − d

x2

(
1 +

1

x

)d−1

+
d+ 1

x2
(62)and we dedu
e that g′d(x0) = 0 with

x0 =
1

(
d+1
d

)1/(d−1) − 1
> 0 (63)and is negative on the left side and positive on the right side. The 
on
lusion of (1) follows. Con
erning (2),it is easy to 
he
k that it is true for d = 1 and 2, and for d ≥ 3 we have

gd

(
d2

2

)
=

d∑

k=0

(
d

k

)(
2

d2

)k

− 1− 2

d
− 2

d2

= − 2

d3
+

d∑

k=3

(
d

k

)(
2

d2

)k

≤ − 2

d3
+

d∑

k=3

1

k!

(
2

d

)k

≤ − 2

d3
+

1

d3
+

1

3d3
+

2

3

d∑

k=4

1

dk

≤ − 2

d3
+

d∑

k=3

1

dk
+

1

3d3

(
1−

d−3∑

k=1

1

dk

)

≤ − 2

d3
+

d∑

k=3

1

dk

≤ − 2

d3
+

2

d3
(64)29



and the 
on
lusion follows.Let u be a non-empty subset of {1, . . . d} and 
onsider (Ẋj)j ∼ LH(n, d). We have the following resultLemma 6. If f is a square integrable fun
tion, we have
E
[
f(Ẋ1)f(Ẋ1

u
: Ẋ2

uc)
]
= E[Y ]2 + τ2

u
+Bu,n (65)where

−E[Y 2]
∑

∅6=v⊆u
c

|v| odd 1

(n− 1)|v|
≤ Bu,n ≤ E[Y 2]

∑

∅6=v⊆u
c

|v| even 1

(n− 1)|v|
. (66)Proof. First, due to the joint density of (Ẋ1

u
c , Ẋ2

u
c) under LHS � see M
Kay et al. (1979) or Stein (1987) �we have

E
[
f(Ẋ1)f(Ẋ1

u
: Ẋ2

u
c)
]

=

∫
f(x,x1)f(x,x2)

(
n

n− 1

)d−|u| ∏

i∈uc

(
1− rn(x1i, x2i)

)
dxdx1dx2

=

(
n

n− 1

)d−|u| ∫ ( ∑

v⊆u
c

(−1)|v|
∫

f(x,x1)f(x,x2)
∏

i∈v

rn(x1i, x2i)dx1dx2

︸ ︷︷ ︸
I(x)

)
dx .(67)We now denote fx : y 7→ f(x,y) and then by (32) and (33) we have

I(x) =
∑

v⊆u
c

(−1)|v|
∫

fx(x1)fx(x2)
∏

i∈v

rn(x1i, x2i)dx1dx2

=
∑

v⊆u
c

(−1)|v|
∑

w⊆v

( 1

n

)|v|−|w|
∫

fx,w(x1w)fx,w(x2w)
∏

i∈w

rn(x1i, x2i)dx1wdx2w

=
∑

w⊆u
c

(−1)|w|
(n− 1

n

)d−|u|−|w|
∫

fx,w(x1w)fx,w(x2w)
∏

i∈w

rn(x1i, x2i)dx1wdx2w . (68)Hen
e by (36) we have for all w 6= ∅,
0 ≤

∫
fx,w(x1w)fx,w(x2w)

∏

i∈w

rn(x1i, x2i)dx1wdx2w ≤
∫
f2
x,w(x1w)dx1w

n|w|
≤

∫
f2
x
(x1)dx1

n|w|
(69)and note that ∫

f
x,∅(x1∅)fx,∅(x2∅)

∏

i∈∅

rn(x1i, x2i)dx1∅dx2∅ = f2
x,∅ . (70)Finally, note that ∫

f2
x,∅dx = τ2

u
+ E[Y ]2 (71)and ∫ ∫

f2
x
(x1)dx1dx = E

[
Y 2

] (72)and 
on
lude that
E
[
f(Ẋ1)f(Ẋ1

u
: Ẋ2

u
c)
]
=

(
n

n− 1

)d−|u| ∫
I(x)dx = τ2

u
+ E[Y ]2 +Bu,n (73)with

−E[Y 2]
∑

∅6=v⊆u
c

|v| odd 1

(n− 1)|v|
≤ Bu,n ≤ E[Y 2]

∑

∅6=v⊆u
c

|v| even 1

(n− 1)|v|
. (74)
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Lemma 7. The inequalities in Equation (66) imply that
∣∣∣∣
∑

w⊆uc

(
1

n

)|w|

Bu∪w,n

∣∣∣∣ ≤
(
d− |u|+ 1

n
+ 1

)(
d− |u|+ 1

n− 1

)
E
[
Y 2

]
. (75)Proof. By (66), we have

∑

w⊆u
c

(
1

n

)|w|

Bu∪w,n ≤ E
[
Y 2

] ∑

w⊆u
c

(
1

n

)|w| ∑

∅6=v⊆(u∪w)c

1

(n− 1)|w|

≤ E
[
Y 2

] ∑

w⊆u
c

(
1

n

)|w|((
1 +

1

n− 1

)d−|u|−|w|

− 1

)

≤ E
[
Y 2

][(
1 +

1

n− 1

)d−|u| ∑

w⊆u
c

(
1

n

)|w|

−
∑

w⊆u
c

(
1

n

)|w|]

≤ E
[
Y 2

][(
1 +

1

n− 1

)d−|u|(
1 +

1

n

)d−|u|

−
(
1 +

1

n

)d−|u|] (76)and the 
on
lusion follows by applying twi
e Lemma 5.B.2 Proof of Proposition 2Proof.(i) The proof is divided into two parts. In the �rst one, we only 
onsider 
ontinuous fun
tions, and in these
ond one, we extend the result to the whole 
lass of fun
tions su
h that f4 is integrable.First part: Consisten
y is obvious as in Proposition 1, ex
ept for the term
1

n

n∑

j=1

Ÿ j Ÿ j
u
. (77)So denote Z

j the Latin hyper
ube de�ned by
Z
j
=

⌊nZ̈′j⌋+Uj

n
(78)where the Uj 's are independent random ve
tors uniformly distributed in [0, 1[d independent from all thepermutations and shifts in the de�nition of (Z̈′j)j , and ⌊·⌋ is the �oor fun
tion. We 
an write

1

n

n∑

j=1

Ÿ j Ÿ j
u

=
1

n

n∑

j=1

f(Ẋj
u
: Z̈j

u
c)f(Ẋj

u
: Z̈

′j
u
c)

=
1

n

n∑

j=1

f(Ẋj
u
: Z̈j

u
c)f(Ẋj

u
: Z

j

uc) +
1

n

n∑

j=1

f(Ẋj
u
: Z̈j

u
c)
(
f(Ẋj

u
: Z̈

′j
u
c)− f(Ẋj

u
: Z

j

uc)
)
. (79)The �rst term on the right-hand side is an estimator as des
ribed in Se
tion 3.1. sin
e by the 
onstru
tionproposed in Eq. (78), (Z̈j)j=1..n and (Z

j
)j=1..n are two independent LHS; so Proposition 1 states it 
onvergesto E[Y ]2 + τ2

u
almost surely. The se
ond term on the right-hand side 
onverges to 0 sin
e as f is bounded �by 
ontinuity on a 
ompa
t � it is bounded by

sup |f |
n

n∑

j=1

∣∣∣f(Ẋj
u
: Z̈

′j
uc)− f(Ẋj

u
: Z

j

u
c)
∣∣∣ (80)31



and by uniform 
ontinuity of f � due to Heine-Cantor theorem � this quantity tends to 0 as n tends to +∞.Thus the sum in the right-hand side, i.e. 1
n

∑n
j=1 Ÿ

j Ÿ j
u , 
onverges to E[Y ]2 + τ2

u
almost surely.Se
ond part: Sin
e the spa
e of 
ontinuous fun
tions on [0, 1]d � denoted C

(
[0, 1]d

) � is dense in L4
(
[0, 1]d

),let (fm)m∈N∗ be a sequen
e in C
(
[0, 1]d

) su
h that E[|fm(X)−f(X)|4
] 
onverges to 0 as m tends to +∞, where

X is uniformly distributed on [0, 1]d.Now let ε > 0 and M = M(ε) ∈ N
∗ su
h that

E

[(
fM (X)− f(X)

)2]
<

ε2

65 E[f2(X)]
. (81)We 
an write

1

n

n∑

j=1

Ÿ j Ÿ j
u

=
1

n

n∑

j=1

f(Ẋj
u
: Z̈j

uc)f(Ẋj
u
: Z

j

u
c) +

1

n

n∑

j=1

f(Ẋj
u
: Z̈j

uc)
(
fM (Ẋj

u
: Z̈

′j
uc)− fM (Ẋj

u
: Z

j

u
c)
)

+
1

n

n∑

j=1

f(Ẋj
u
: Z̈j

u
c)
(
f(Ẋj

u
: Z̈

′j
u
c)− fM (Ẋj

u
: Z̈

′j
u
c)
)
+

1

n

n∑

j=1

f(Ẋj
u
: Z̈j

u
c)
(
fM (Ẋj

u
: Z

j

uc)− f(Ẋj
u
: Z

j

uc)
)
.(82)As noted in the proof of (i) in Proposition 1, the �rst term on the right-hand side of (82) 
onverges to τ2

u
+E[Y ]2almost surely as n tends to +∞ i.e.

P

(
∀ε > 0, ∃N1 ∈ N

∗, ∀n > N1,
∣∣∣ 1
n

n∑

j=1

f(Ẋj
u
: Z̈j

uc)f(Ẋj
u
: Z

j

u
c)− τ2

u
− E[Y ]2

∣∣∣ < ε

4

)
= 1 . (83)Sin
e fM is uniformly 
ontinuous on [0, 1]d, we have that

An = sup
1≤j≤n

∣∣fM (Ẋj
u
: Z̈

′j
u
c)− fM (Ẋj

u
: Z

j

uc)
∣∣ (84)
onverges almost surely to 0 as n tends to +∞. Moreover, sin
e f is integrable, we have that 1

n

∑n
j=1 |f(Ẍ

j
u)|
onverges to E

[
|Y |

] as n tends to +∞. Hen
e
P

(
∀ε > 0, ∃N1 ∈ N

∗, ∀n > N1,
∣∣∣ 1
n

n∑

j=1

f(Ẋj
u
: Z̈j

u
c)
(
fM (Ẋj

u
: Z̈

′j
u
c)− fM (Ẋj

u
: Z

j

uc)
)∣∣∣ < ε

4

)

≥ P

(
∀ε > 0, ∃N2 ∈ N

∗, ∀n > N2, An
1

n

n∑

j=1

∣∣f(Ẋj
u
: Z̈j

uc)
∣∣ < ε

4

)

= 1 . (85)For the third and the fourth terms on the right-hand side of (82), we apply twi
e the same proof. First theCau
hy-S
hwartz inequality gives
P

(
∀ε > 0, ∃N3 ∈ N

∗, ∀n > N3,
∣∣∣ 1
n

n∑

j=1

f(Ẋj
u
: Z̈j

uc)
(
f(Ẋj

u
: Z̈

′j
uc)− fM (Ẋj

u
: Z̈

′j
uc)

)∣∣∣ < ε

4

)

≥ P

(
∀ε > 0, ∃N3 ∈ N

∗, ∀n > N3,
( 1

n

n∑

j=1

f2(Ẋj
u
: Z̈j

uc)
)1/2( 1

n

n∑

j=1

(
f(Ẋj

u
: Z̈

′j
uc)− fM (Ẋj

u
: Z̈

′j
uc)

)2)1/2

<
ε

4

)
.(86)Then note that 1

n

∑n
j=1 f

2(Ẋj
u : Z̈j

u
c) and 1

n

∑n
j=1

(
f(Ẋj

u : Z̈j
u
c) − fM (Ẋj

u : Z̈
′j
u
c)
)2 
onverge almost surely to

E[Y 2] and E[(fM (X)− f(X))2] � where X is uniformly distributed on [0, 1]d � respe
tively. And dedu
e that32



there exists N4 ∈ N
∗ su
h that for all n > N4, we have 1

n

∑n
j=1 f

2(Ẋj
u : Z̈j

uc) < 2 E[Y 2] and 1
n

∑n
j=1

(
f(Ẋj

u :

Z̈
′j
u
c)− fM (Ẋj

u : Z̈j
u
c)
)2

< 2 E[(fM (X)− f(X))2] almost surely. As a 
onsequen
e, dedu
e from Eq. (81) that
P

(
∀ε > 0, ∃N3 ∈ N

∗, ∀n > N3,
∣∣∣ 1
n

n∑

j=1

f(Ẋj
u
: Z̈j

u
c)
(
f(Ẋj

u
: Z̈

′j
u
c)− fM (Ẋj

u
: Z̈

′j
u
c)
)∣∣∣ < ε

4

)

≥ P

(
∀ε > 0, ∃N3 > N4, ∀n > N3, ε

√
4

65
<

ε

4

)

= 1 (87)Finally, Eqs. (83�87) gives
P

(
∀ε > 0, ∃N ∈ N

∗, ∀n > N,
∣∣∣ 1
n

n∑

j=1

Ÿ j Ÿ j
u

∣∣∣ < ε
)
= 1 (88)and we have the 
on
lusion.(ii) As in (i), the only term to treat is

1

n

n∑

j=1

Ÿ j Ÿ j
u
, (89)so asymptoti
 normality is shown in the same way by using the de
omposition in (79). We always obtain thesum of a term already 
onsidered in Se
tion 3 whi
h 
onverges in law to a normal distribution and a termwhi
h 
onverges to 0 in probability, and the 
on
lusion follows from Slutsky's lemma. We only detail the prooffor S̃RLHS

u,n , it is exa
tly the same for ŜRLHS

u,n . So note that following the proof of (ii) in Proposition 1 and thenotation above, it is su�
ient to show that
√
n

(
1

n

n∑

j=1

(
f(Ẋj

u
: Z̈j

uc)− E[Y ]
)(
f(Ẋj

u
: Z̈

′j
uc)− f(Ẋj

u
: Z

j

u
c)
)) P−→

n→∞
0 (90)to prove the asymptoti
 normality of S̃RLHS

u,n .So 
onsider ε, η > 0 and prove that there exists N ∈ N
∗ su
h that for all n > N , the quantity

P = P

(∣∣∣ 1
n

n∑

j=1

(
f(Ẍj

u
)− E[Y ]

)(
f(Ẋj

u
: Z̈

′j
u
c)− f(Ẋj

u
: Z

j

uc)
)∣∣∣ > ε

) (91)is less than η. First as f6 is integrable, there exists a 
onstant K > 0 su
h that P(|f(Ẋj
u : Z̈j

uc)| > K) < η/4.Hen
e
P ≤ P

((∣∣∣ 1√
n

n∑

j=1

(
f(Ẋj

u
: Z̈j

u
c)− E[Y ]

)(
f(Ẋj

u
: Z̈

′j
u
c)− f(Ẋj

u
: Z

j

uc)
)∣∣∣ > ε

)⋂(
|f(Ẋj

u
: Z̈j

u
c)| ≤ K

))

+ P

((∣∣∣ 1√
n

n∑

j=1

(
f(Ẋj

u
: Z̈j

u
c)− E[Y ]

)(
f(Ẋj

u
: Z̈

′j
u
c)− f(Ẋj

u
: Z

j

u
)
)∣∣∣ > ε

)⋂(
|f(Ẋj

u
: Z̈j

u
c)| > K

))

< P

(
K + |E[Y ]|√

n

n∑

j=1

∣∣f(Ẋj
u
: Z̈

′j
u
c)− f(Ẋj

u
: Z

j

uc)
∣∣∣ > ε

)
+

η

4
. (92)Now note that the spa
e of 
ontinuous fun
tions on [0, 1]d, denoted by C([0, 1]d), is dense in L6([0, 1]d) and let

(fm)m∈N∗ be a sequen
e in C([0, 1]d) su
h that E[|fm(X)−f(X)|6] 
onverges to 0 as m tends to +∞ where X is33



uniformly distributed on [0, 1]d. It is easy to note that there exists M = M(n) su
h that P(|fM (X)− f(X)| >

1/n) < η/4. Thus we get from Eq. (92) that
P <

4∑

i=1

P

((K + |E[Y ]|√
n

n∑

j=1

(
|fM (Ẋj

u
: Z̈

′j
uc)− fM (Ẋj

u
: Z

j

u
c)|+ |fM (Ẋj

u
: Z̈

′j
uc)− f(Ẋj

u
: Z̈

′j
uc)|

+ |fM (Ẋj
u
: Z

j

u
c)− f(Ẋj

u
: Z

j

u
c)|

))⋂
Ai

)
+

η

4
(93)where

A1 =
(
|fM (Ẋj

u
: Z

j

uc)− f(Ẋj
u
: Z

j

uc)| > 1

n

)
∩
(
|fM (Ẋj

u
: Z̈

′j
u
c)− f(Ẋj

u
: Z̈

′j
u
c)| > 1

n

) (94)
A2 =

(
|fM (Ẋj

u
: Z

j

u
c)− f(Ẋj

u
: Z

j

u
c)| > 1

n

)
∩
(
|fM (Ẋj

u
: Z̈

′j
uc)− f(Ẋj

u
: Z̈

′j
uc)| < 1

n

) (95)and A3 and A4 are the 
omplementary events of A1 and A2, respe
tively. So we dedu
e
P < P

((K + |E[Y ]|√
n

n∑

j=1

(
|fM (Ẋj

u
: Z̈

′j
uc)− fM (Ẋj

u
: Z

j

u
c)|+ |fM (Ẋj

u
: Z̈

′j
uc)− f(Ẋj

u
: Z̈

′j
uc)|

+ |fM (Ẋj
u
: Z̈

′j
uc)− f(Ẋj

u
: Z

j

u
c)|

))⋂
A3

)
+ P(A1) + P(A2) + P(A4) +

η

4

< P

(
K + |E[Y ]|√

n

(
2 +

n∑

j=1

|fM (Ẋj
u
: Z̈

′j
uc)− fM (Ẋj

u
: Z

j

u
c)|

)
> ε

)
+ η. (96)Now by an other density argument, note that there exists a sequen
e of Lips
hitz 
ontinuous fun
tions with
onstant 1, denoted (fM,q)q∈N∗ , su
h that sup[0,1]d |fM,q(x) − fM (x)| 
onverges to 0 as q tends to +∞. Thenthere exists Q = Q(n) ∈ N

∗ su
h that sup[0,1]d |fM,Q(x) − fM (x)| < 1/n and dedu
e that
P < P

(
K + |E[Y ]|√

n

(
2 +

n∑

j=1

(
|fM,Q(Ẋ

j
u
: Z̈

′j
u
c)− fM,Q(Ẋ

j
u
: Z

j

u
c)|+ |fM,Q(Ẋ

j
u
: Z̈

′j
u
c)− fM (Ẋj

u
: Z̈

′j
u
c)|

+ |fM,Q(Ẋ
j
u
: Z

j

u
c)− fM (Ẋj

u
: Z

j

u
c)|

))
> ε

)
+ η

< P

(
5(K + |E[Y ]|)√

n
> ε

)
+ η. (97)and the 
on
lusion follows.

(iii) First note that sin
e (Ẋj)j ∼ LH(n, d) and (Z̈j , Z̈
′j)j ∼ RLH(n, d), we have

Ÿ j = f(Ẋj : Z̈j
u
c) and Ÿ j

u
= f(Ẋj

u
: Z̈

′j
u
c) (98)with

Ẋj =

(π′′
1 (j)− U ′

1,π′′
1
(j)

n
, . . . ,

π′′
d (j)− U ′

d,π′′
d
(j)

n

) (99)
Z̈j =

(
π1(j)− U1,π1(j)

n
, . . . ,

πd(j)− Ud,πd(j)

n

) (100)and
Z̈

′j =

(
π′
1(j)− U1,π′

1
(j)

n
, . . . ,

π′
d(j)− Ud,π′

d
(j)

n

) (101)34



where the πis, the π′
is, the π′′

i s, the Ui,js and the U ′
i,js are independent random variables uniformly distributedon Πn � see De�nition 1 �, Πn, Πn, [0, 1] and [0, 1], respe
tively. Moreover note that if for an index i in

{1, . . . , d}, we have πi(j) = π′
i(j) then Z̈j

i = Z̈
′j
i ; and if πi(j) 6= π′

i(j) then Ui,πi(j) and Ui,π′
i
(j) are independentand therefore Z̈j

i and Z̈
′j
i are two distin
t points of a Latin hyper
ube of size n in [0, 1]. For j ∈ {1, . . . , n},denote by e(j) the set of integers i ∈ u

c su
h that πi(j) = π′
i(j). Thus we have

E
[
Ÿ j Ÿ j

u

]
=

1

n2d−|u|

∑

w⊆u
c

∑

π
′′
u
(j)∈

{1,...,n}|u|

∑

πu
c (j)∈

{1,...,n}d−|u|

∑

π
′
u
c (j)∈

{1,...,n}d−|u|

1{e(j)=w} · · ·

∫
f

(
. . . ,

π′′
i (j)− u1i

n︸ ︷︷ ︸
i∈u

, . . . ,
πk(j)− u1k

n︸ ︷︷ ︸
k∈u

c

, . . .

)
f

(
. . . ,

π′′
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n︸ ︷︷ ︸
i∈u

, . . . ,
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n︸ ︷︷ ︸
k∈u

c∩w

, . . . ,
π′
l(j)− u2l

n︸ ︷︷ ︸
l∈u

c∩w
c

, . . .

)
du1du2(u∪w)c(102)where for all i ∈ u ∪ e(j), πi(j) = π′

i(j) and u1i(j) = u2i(j). And noting that
1

(n− 1)d−|u|−|w|nd

∑

π
′′
u
(j)∈

{1,...,n}|u|

∑

πu
c (j)∈

{1,...,n}d−|u|

∑

π
′
u
c (j)∈

{1,...,n}d−|u|

1{e(j)=w} · · ·

∫
f

(
. . . ,

π′′
i (j)− u1i

n︸ ︷︷ ︸
i∈u

, . . . ,
πk(j)− u1k

n︸ ︷︷ ︸
k∈u

c

, . . .

)
f

(
. . . ,

π′′
i (j)− u1i

n︸ ︷︷ ︸
i∈u

, . . . ,
πk(j)− u1k

n︸ ︷︷ ︸
k∈u

c∩w

, . . . ,
π′
l(j)− u2l

n︸ ︷︷ ︸
l∈u

c∩w
c

, . . .

)
du1du2(u∪w)c(103)is equal to E

[
f(Ẋ1)f(Ẋ1

u∪w
, Ẋ2

(u∪w)c)
], Lemma 6 gives

E
[
Ÿ j Ÿ j

u

]
=

∑

w⊆uc

(
1

n

)|w|(
E[Y ]2 + τ2

u∪w
+Bu∪w,n

)
. (104)By Lemmas 5 and 7, and noting that E[Y ]2 + τ2

u∪w
≤ E[Y 2], we obtain

E
[
Ÿ j Ÿ j

u

]
= E[Y ]2 + τ2

u
+B|u|,n (105)where

∣∣B|u|,n

∣∣ ≤
(
d− |u|+ 1

n
+ 2

)(
d− |u|+ 1

n− 1

)
E[Y 2] . (106)Following the same proof, it is easy to show that for j 6= l, we have

E
[
Ÿ j Ÿ l

u

]
= E[Y ]2 +Bn,1 (107)where

∣∣Bn,1

∣∣ ≤
(
d+ 1

n
+ 2

)(
d+ 1

n− 1

)
E[Y 2] . (108)Thus noting that

E
[
τ2,RLHS
u,n

]
=

n− 1

n
E[Ÿ 1Ÿ 1

u
]− n− 1

n
E[Ÿ 1Ÿ 2

u
] (109)we 
on
lude that

E
[
τ̃2,RLHS
u,n

]
= τ2

u
− 1

n
τ2
u
+

n− 1

n

(
Bn,1 +B|u|,n

) (110)35



where the biases are O(n−1) as spe
i�ed above. Con
erning σ̃2,RLHS
n , note that σ̃2,RLHS

n = σ̃2,LHS
n and the
on
lusion follows from (iii) in Proposition 1. Con
erning τ̂2,RLHS

u,n and σ̂2,RLHS
n , we have

E



(
1

n

n∑

j=1

Ÿ j + Ÿ j
u

2

)2

 =

1

4n
E
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(Ÿ 1 + Ÿ 1

u
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1

4n2

n∑

j=1

n∑

l=1
l 6=j

E
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(Ÿ j + Ÿ j
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)
]

=
1

2n

(
E
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(Ÿ 1)2

]
+ E[Ÿ 1Ÿ 1

u
]
)
+

n− 1

2n

(
E[Ÿ 1Ÿ 2] + E[Ÿ 1Ÿ 2

u
]
)
. (111)Then using notation at the beginning of Se
tion 3.1., note that

E
[
Ÿ 1Ÿ 2

]
= E

[
Ẏ 1Ẏ 2

]
= Cov(Ẏ 1, Ẏ 2

)
+ E[Y ]2 = Cov(Ẏ 1, Ẏ 2

{1,...,d}

)
+ E[Y ]2 (112)and by (106), (108) and Lemma 4, we dedu
e

E


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(
1

n

n∑

j=1

Ÿ j + Ÿ j
u

2

)2

 =

1

2n
τ2
u
+ E[Y ]2 +Bn,1 +Bn,2 . (113)where

|Bn,2| ≤
σ2

2n
(114)and Bn,1 is spe
i�ed in (108). Then it is easy to 
on
lude that

E
[
τ̂2,RLHS
u,n

]
= τ2

u
− 1

2n
τ2
u
+Bn,1 +Bn,2 +

n− 1

n
B|u|,n (115)

E
[
σ̂2,RLHS
n

]
= σ2 − 1

2n
τ2
u
+Bn,1 +Bn,2 (116)where the biases are O(n−1) as spe
i�ed above.C Phytoplankton growth modelThe phytoplankton growth is given by the �ve following equations, where A stands for pp, np or mp.

µA = µmaxAlimIAlimTA(limNO3A + limNH4A)limNO3A =

( NO3NO3 +KNO3A)
exp(−ΨNH4)limNH4A =

( NH4NH4 +KNH4A)limIA =
2(1 + βIA) PARIoptA( PAR

IoptA )2 + 2βIA PAR
IoptA + 1limTA = max


 2(1 + βTA) T−TletA

ToptA−TletA(
T−TletA

ToptA−TletA )2 + 2βIA T−TletA
ToptA−TletA + 1

, 0


where the parameters are de�ned in the following table
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parameter de�nition
µA growth rate of A
µmaxA maximum growth rate of AlimNO3A limitation by NO3 for AlimNH4A limitation by NH4 for AKNO3A half-saturation 
oe�
ient of NO3 for AKNH4A half-saturation 
oe�
ient of NH4 for A
Ψ inhibition 
oe�
ient by NH4NO3 NO3 
on
entrationNH4 NH4 
on
entrationlimIA limitation by light for A
βIA shape fa
tor for photoinhibition 
urve
IoptA optimum insolation for APAR photosyntheti
 a
tive radiationlimTA limitation by temperature for A
βTA shape fa
tor for thermoinhibition 
urve
ToptA optimum temperature for A
TletA lower lethal temperature for A
T temperatureTable 7: Parameters of the phytoplankton growth modelReferen
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