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Abstract

In variance-based sensitivity analysis, the method of Sobol’ (1993) allows to compute Sobol’
indices using Monte Carlo integration. One of the main drawbacks of this approach is that the
estimation of Sobol’ indices requires the use of several samples. For example, in a d-dimensional
space, the estimation of all the first-order Sobol’ indices requires d + 1 samples. Some interesting
combinatorial results have been introduced to weaken this defect, in particular by Saltelli (2002) and
more recently by Owen (2012), but the quantities they estimate still require O(d) samples. In this
paper, we introduce a new approach to estimate for any k all the k-th order Sobol’ indices by using
only two samples. We establish theoretical properties of such a method for the first-order Sobol’
indices and discuss the generalization to higher-order indices. As an illustration, we propose to apply
this new approach to a marine ecosystem model of the Ligurian sea (northwestern Mediterranean)
in order to study the relative importance of its several parameters. The calibration process of this
kind of chemical simulators is well-known to be quite intricate, and a rigorous and robust — i.e.
valid without strong regularity assumptions — sensitivity analysis, as the method of Sobol’ provides,

could be of great help.

*Corresponding author.



Keywords: global sensitivity analysis, variance-based sensitivity indices, numerical integration, orthogo-

nal arrays

technometrics tex template (do not remove)



1 Introduction and notation

Sobol’ indices are quantities defined by normalizing parts of variance in an ANOVA decomposition.
They allow to quantify the relative importance of input factors of a function over their entire range of
values. They essentially consist of integrals and as a consequence, their computation can become rapidly
expensive when the number of factors increases. Many techniques have been developed to estimate
these indices including Fast Amplitude Sensitivity Test (FAST) due to Cukier et al. (1978) and Saltelli
et al. (1999), Random Balance Design (RBD) due to Tarantola et al. (2006) — for a recent survey see
Tissot and Prieur (2012) —, polynomial chaos expansion (PCE)-based estimators developed in Sudret
(2008) and Blatman and Sudret (2010) and the method of Sobol’, see also Saltelli et al. (2008) for
a review. Until now, spectral methods — as FAST, RBD or PCE-based methods — which exploit
the spectral decomposition of the model with respect to a particular multivariate basis, are generally
preferred to the method of Sobol’ because the latter is too expensive. However, spectral methods provide
good estimations of Sobol’ indices only under assumptions on the spectral decomposition of the model
itself (decay of the spectrum sufficiently fast, negligibility of high-order spectral coefficients, etc.). As
a consequence, these methods are not robust to complex phenomena as high-frequency variations or
discontinuities, and so the method of Sobol’ appears as the only method one can trust when no strong

a priori knowledge on the model of interest is available.

The general framework of ANOVA decomposition and Sobol” indices is the following. Let f be a real
square integrable function defined on the unit hypercube [0,1]¢ and X = (X1, ..., X4) a random vector
with independent components uniformly distributed on [0,1]. We consider the real random variable
Y = f(X). Note that this framework can be generalized to independent arbitrary marginal distributions
(Xi)i=1..a by using the inverse transformation method. Then for any u C {1,...,d}, denote X, the
random vector with components X;, i« € u. The ANOVA decomposition — see Hoeffding (1948) and
Efron and Stein (1981) — states that Y = f(X) can be uniquely decomposed into summands of increasing

dimensions

f(X) - Z fu(Xu) (1)

uC{1,....d}

where fy = E[Y] and the other components have mean zero and are mutually uncorrelated. In particular,

the sum of functions

fo+ [1(X1) + fo(X2) + -+ + fa(Xa) (2)
is the so-called additive part of f.

The Sobol’ index with respect to the combination of all the variables in u C {1,...,d} — see Sobol’



(1993) — is then defined as
o2 _ Var[fu(xu)]

Su= o2 Var[Y]

and the Sobol’ index with respect to a subset of variables u C {1,...,d} — see Homma and Saltelli

(1996) — is then defined as
o _ o _ Var[Yoc, folx)]
o Var[Y]

u
In practice, global sensitivity analysis focuses on the first-order — i.e. |u| = 1 — and the second-order
— i.e. |u] =2 — terms. Note that, thanks to the properties of the ANOVA decomposition, we have
ﬁu = Z Sh
vCu
and the Mobius inversion formula — see, e.g., Stanley (2012) — gives

Sy = Z(_l)lulflblﬁu )

vCu

Concerning notation, when integrals are over a unit hypercube [0,1]°, s < d, the integration set is
generally omitted, and for any u C {1,...,d}, we denote by u¢ = {1,...,d} \ u the relative complement

of u with respect to {1,...,d}.

Section 2 provides a short review of Monte Carlo estimators of Sobol’ indices and gives some notation.
In Section 3 we explain how to combine Monte Carlo estimators and Latin hypercube sampling — see
McKay et al. (1979) — in a basic way, and we give asymptotic and bias properties of such a technique.
In Section 4 we study the method introduced in Section 3 using replicated Latin hypercubes — see
McKay (1995) —, we give asymptotic and bias properties of this technique and we explain how it allows
to compute all the first-order Sobol’ indices using only two replicated Latin hypercubes. Potential
generalization to orthogonal array-based Latin hypercubes — see Owen (1992) — is also discussed in
this section. Numerical illustrations are provided in Section 5, and Section 6 has conclusions. Note that

technical lemmas are given in the Appendix.

2 Review of Monte Carlo estimators

2.1 Notation
Let u be a non-empty subset of {1,...d}, and j in {1,...n}, and consider

u

Z = (X{, - X3y ) (3)



where the X f ’s are independent random variables uniformly distributed on [0, 1]. We also denote

X, = (X{,... X)) (4)
X5 = (X X3) (5)
X = (Xgs s X)) (6)
so that
7 = (X, XD X2y (7)
Finally, for £ = 1 and 2, consider
Yk = f(Xd, X5 (8)

With this notation, we consider two estimators of the Sobol’ indices S, introduced in Homma and

Saltelli (1996) and Monod et al. (2006), which are functions of (Zj,);=1..,. They are defined by

Sun =2 == = 9
n + 4.1 27 S 4,1
PILEY (ZY

and

Sum _ I/l\lén _ — j=1 : . j=1 — _, (10)
n _ J,)1 7,2 _ = § J)1 7,2
2n j=1 ((Yu ) * (Yu ) ) (2n j=1 Yu * Yu )

respectively. Note that other Monte Carlo estimators exist (for a recent review, see Owen (2012)).

2.2 Statistical properties of the estimators

Asymptotic properties of both the estimators introduced in the previous section are detailed in Janon
et al. (2012). Su,n and Su,n are strongly consistent and asymptotically normal estimators, and Su,n is,
in addition, asymptotically efficient in some sense (see details in Proposition 2.5 in Janon et al. (2012)).

Concerning the biases, it is easy to show that

~ 1
E[fi,] = m--zi (11)
~ 1
E[gZ] = o°— -0’ (12)
n
and — see e.g. Owen (2012) —
E[Z:,] = 20?112 (13)
Lun Lu m Lu
A 1
E[gr] = o°— %(02 +72) (14)

but as far as we know, there is no result on the global biases of Su,n and Su,n'



3 Monte Carlo estimators and Latin hypercube sampling

3.1 Notation and definitions

We begin with the definition of a Latin hypercube:
Definition 1. Let d and n in N*, and consider I1,, the set of all the permutations of {1,...,n}. We say
that (X7);—1.n is a Latin hypercube of size n in [0,1]¢ — and we denote (X7); ~ LH(n,d) — if for all

je{l,...,n},

*

_ N Uy ) — Uy (i
i — (m(]) . ENOINE) . d du)) (15)

where the m;’s and the U; ;’s are independent random variables uniformly distributed on II,, and [0,1],

respectively.

Now let u be a non-empty subset of {1,...d}, and j in {1,...n}, and consider
Zl = (X{,. . X3y ) (16)

such that (Z3); ~ LH(n,2d — |u|) and denote

o y
X5 = (X X3)
X = (X X)) (17)

so that (X2); ~ LH(n, |[u]) and (XZ);, (X22); ~ LH(n,d — |u]). Finally, for k =1 and 2, we denote
Yk = fXL X (18)
As in the previous section, we consider the estimators defined in (9) and (10) but we now replace the

simple random sample (Zﬂ) j=1..n, by the stratified sample (Zﬂ)jzl_n. The resulting estimators are now

~LHS _5 1 Hg ~LHS
— 2 ~2,LHS _ ~2,LHS /=2 LHS :
denoted S, ,, =17, /o, and S, ,, =1, /o , respectively.

3.2 Statistical properties of the estimators

. . ~LHS ~LHS . )
The statistical properties of S, ,, and S, ,, are gathered in the following result:

Proposition 1.

. 4 . ~LHS  ~LHS )
(i) If f* is integrable then S, ,, et S, , are strongly consistent.

~LHS ~LHS
(i) If f© is integrable then \/n(S, , —S,) and \/n(S,, —S,) converge in law to a zero-mean normal

distribution with lower variance than the respective variance given in the central limit theorem (CLT)



for the basic estimators S, ,, and S, ,, .

(i) We have

E[7ar®] = 12+ Baa
E[52LH] = o2+ By,
E[Z2E7%] = 1224 B.s
E[&?{LHS} = 0'2 =+ Bn13
where
I
— < B, <0
n— lzu - o1
- ! 02 S Bn 2 <0
n—1 ’
1 2 2
- < B3 <0
2(71—1)(0 +Iu) = ,3
Proof.

(i) This is a consequence of the strong law of large numbers for Latin hypercube sampling given in

Theorem 3 in Loh (1996).

(ii) The proof consists in translating the original proof, given for simple random sampling — see Propo-

sition 2.2 in Janon et al. (2012) — for Latin hypercube sampling. Concerning
that
~LHS —
LQun — (I)(Vn)
where
V=YV,
j=1
v, = (73— BIY)) (72 - BIY]) , ¥ —EY], Y32 - Y], (%" - E[Y])?)
and
T —yz
P t) = .
(:L'a Y,z, ) :_ y2

Then we deduce from Theorem 2 in Loh (1996) that

Vi(V =) = Ni(0.1)

~LHS
S

Eun o

it is easy to show

(26)

where 1 = (72,0,0,0%)T and T is the covariance matrix of R; = V; — A; — see details in Eq. (3) in

Loh (1996) — defined by

Vie{l,...,4}, Ay is the additive part — see (2) — of V3, .

(31)



Thus the Delta method — see Theorem 3.1 in Van der Vaart (1998) — gives

V(8 ~8.) 55 Mi(0,7Ty) (32)

where g = V®(u). Developing the term g7 T'g does not seem to provide any useful information. However,
denoting 07 ;; ¢ this term, and 0%, the analogous quantity in the CLT for simple random sampling, we
can show that 07 ;¢ < 07, . Indeed we first note that, for simple random sampling, the variance given
in Janon et al. (2012) reads

9 Val"[Vu — SuV14}

011D = o2 — (33)

and for Latin hypercube sampling, it is easy to show that

9 Var [Rn - ﬁuRm]

OLHS = o2 . (34)

Hence,

2 Var[AH _ﬁuAld

0irp = 0lus + 02 (35)

and the conclusion of (ii) for Su follows. Concerning S the proof follows the same lines — see

=u,n

Proof of (10) in Janon et al. (2012) for details.

(iii) First we have

~2,LHS| __ n—1g 1 2 1 v 1 l2
Ef.""] = — EE[W v _n_z_:; E[V7'VE (36)
~ R
—1 —1 . .
= T (BYP +22) - T (Cov(¥, ¥22) + E[Y2) (37)
and thanks to Lemma 4 in Appendix A, it gives
E[for %] = 2% + Bun (38)
with
L
- < Bn1 <
n — 1—11 11 —_ 0 (39)
Concerning 625H9  we have
~2 LHS n—1¢ 5 1\2 I v i 1yl1
B, "] = — D E[WV)) - 5> D BNV (40)
j=1 j=11=1
I#j
—1 -1 . .
= EY?Y) - T (Cov(¥, V) +E[Y]?) (41)
and noting that
y . 1,1 2,2
Cov(Y, ", V) = COV(Y{1 ..... d}’Y{l ..... d}) (42)
we conclude that
EI:"'Q,LHS} _ 0,2 +Bn2 (43)



with

02 < B,2<0. (44)

n —

FHLHS
As for 7 and 52175 we have

(% i v +YJ’ ) )

1 1,1 1.2) 1 -\ 1 2y (yr1,1 1,2
= 4nIE[(Y +Yh 4—2_:; (VI + Y)Y+ Y] (46)
A
1 2 2 2 n—1 o n—1 1,1 yr2,1 1,1 vr2,2
- %(E[Y |+ 72 +E[Y] ) + E[Y]? + 1= (Cov(Yu ,Y21) 4 Cov(V 11, Y )) (47)
1 -1 ) ) ) )
= (a tr )+IE[Y]2+ > (Cov(Yul’l,Yf’l)+Cov(Yu1’1,Yu2’2)) . (48)
n n
Then it is easy to conclude that
E[Z0 i) = 12+ Bns (49)
E[62ES] = 6>+ B, (50)
with
1 2, 2
S < B,3<0 51
O
Remark 1. Due to their intricate structure, the biases of the estimators 7'2 LHS G2.LHS fﬁ LHS ond
GLLHS can’t be easily reduced. Nevertheless we can note that these biases are asymptotically negligible,

with a rate of convergence in O(n~1) larger than the rate of convergence of the estimators — to their

theoretical values — themselves, which is in O(n=1/?).

4 Monte Carlo estimators and replicated Latin hypercube sam-

pling

4.1 Notation and definitions

We begin with the definition of replicated Latin hypercubes:

Definition 2. Let d and n in N*, and consider I1,, the set of all the permutations of {1,...,n}. We say
that (X7);-1..n and (X/j)jzl__n are two replicated Latin hypercubes of size n in [0,1] — and we denote

(X7, X'7); ~ RLH(n,d) — if for all j € {1,...,n},

Xi — (m(j) = Ui () . ma(j) — Ud,frd(j)) (52)

)

n n



and

(53)

ceey
n n

X' — (ﬂi(j) - Um;u)’ () — Ud,w;m)

where the m;’s, the m’s and the U, ;’s are independent random variables uniformly distributed on II,,

I1,, and [0, 1], respectively.

Now let u be a non-empty subset of {1,...d}, and j in {1,...n}, and consider

and
X, = (X{,.... %) (55)
Xy = (X XD (56)
Xl = (X$+1,...,X;d7|u|) (57)

where (X1); ~ LH(n, |u]) and (XL, X72); ~ RLH(n,d — |u]), (X4); and (X!, X22); being indepen-

dent. Finally, for £ = 1 and 2, we denote
VIk = (X4, X (58)

As in Section 2, we consider the estimators defined in (9) and (10) but we now replace the simple random

sample (Zﬂ) j=1..n, by the stratified sample based on replicated Latin hypercubes (Zﬂ) j=1..n- Theresulting

HS o - ~RLHS
_ TQaRLHS/O.%RLHS and ﬁu .

=Tun , respectively.

. SRL ~2,RLHS ~
estimators are now denoted S, ,, =Tun JG2RLHS
Note that estimators of Sobol” indices based on r replicated Latin hypercubes have already be introduced
by McKay (1995) (see also the summarized presentation by Saltelli et al. (2000)), but these estimators

converge to their corresponding analytical Sobol’ index only as r tends to +oo.

4.2 Statistical properties of the estimators

e . ~RLHS ~RLHS . .
The statistical properties of S, ,  and S, ,,  are gathered in the following result:

Proposition 2.
~RLHS ~RLHS
(i) If f* is integrable then Syn ondS,,  are strongly consistent.
~RLHS ~RLHS

(ii) If f© is integrable then /n(S - 8,) and \/n(S,, —S,) converge in law to a zero-mean

un
T . . . . . . <LHS <LHS
normal distribution with the same respective variance given in CLT for the estimators S, ,, and S, ,

10



(iii) We have

-~ 1
E[_i:{;LHS] = Iﬁ — gzﬁ + Bn,l + B\u\,n (59)
E[&TQL,RLHS] — g2 + B3 (60)
N 1
E[Ii:{rlzLHS] = Iﬁ - %Iﬁ + Bn,l + Bn,2 + B\u\,n (61)
1
]E[a?l’RLHS:I = O'2 - %Ii + Bn,l + Bn,? (62)
where
d+1 d+1
|Bna| < ( ha +2)< i )E[YQ] (63)
n n
o2
B, < — 4
Bl <7 (64)
1
———=0?<  Bus <0 (65)
d—|ul+1 d—|ul+1 2
Bal < (T o) (2B gy (66)
Proof.

(i) The proof is divided into two parts. In the first one, we only consider continuous functions, and in

the second one, we extend the result to the whole class of functions such that f# is integrable.

First part: Consistency is obvious as in Proposition 1, except for the term
1 n
~ PR Fi Fa (67)
j=1

So denote XJ’ the Latin hypercube defined by

xi? = Xl 10, TJL o (68)

where the U,’s are independent random vectors uniformly distributed in [0, 1[4~ independent, from all

the permutations and shifts in the definition of (Z});, and |-] is the floor function. We can write
1S e S oo
~ ZIYJ’IYJQ = - Zf (X3, X3 (X, X32)

7.2

—ZfXJ XN (XX

+ —Zf (X3, X501 (f(Xﬁ,X{;f)—f(Xf X”)) . (69)

The first term on the right-hand side is an estimator as described in Section 3 since we note that

(X4, X2! Xﬁf)J 1. ~ LH(n,2d—|ul); so it converges to E[Y]? + 72 almost surely. The second term on

the right-hand side converges to 0 since as f is bounded — by continuity on a compact — it is bounded
by

3,2

Sup|f| Z‘f X_] ){]7 _f(X_] X

) (70)

11



and by uniform continuity of f — due to Heine-Cantor theorem — this quantity tends to 0 as n tends

to +00. Thus the sum in the right-hand side, i.e. £ 377, Y'Y ?, converges to E[Y]?+72 almost surely.

Second part: Since the space of continuous functions on [0,1] — denoted C([0,1]?) — is dense
in L*([0,1]%), let (fm)men- be a sequence in C([0,1]?) such that E[|fm(X) — f(X)|*] converges to 0 as

m tends to +oo, where X is uniformly distributed on [0, 1]%.

Now let € > 0 and M = M (e) € N* such that

62

]E{(fM(X)*f(X))Q} < B E2X)] (71)
We can write

XX F(X3, X0

uc

S|

<
Il
—_

1 n

R G

n Yu Yu
j=1

_l’_
S|

<
Il
—_

. . o . .. o . .. . _'12
FOL XN (1 (R X0 = far (X0, X00))

O 340 (3. 5K82) — 1 (561, 552))

_l’_
S|

<
Il
—_

+ £ X (Far (X0, R0D) - (X0, X00)) (72)

S|

Il
—

J

As noted in the proof of (i) in Proposition 1, the first term on the right-hand side of (72) converges to
72 + E[Y]? almost surely as n tends to +oc i.e.
1 <& N N
P(Vs >0, AN, € N*, ¥n > Ny, ‘— 3G X £ X0 — 22 - E[YH < Z) =1.  (13)
n
j=1
Since fys is uniformly continuous on [0, 1]¢, we have that

Ap = sup ‘fM(Xfu XZ&Q) - fM(Xquff)
1<j<n

(74)

converges almost surely to 0 as n tends to +oo. Moreover, since f is integrable, we have that 1 Yo lf (X3, X2

converges to E[|Y[] as n tends to +oo. Hence

P(ve >0, 3N1 € N, ¥ > N, | = S 74X (Fur (X4 X02) - e (XL X)) < 5) (9)
j=1
N 1 n Sl £
> P(¥e >0, IN; €N, V> Ny, An D[R XE)| < -)
j=1
= 1. (76)

For the third and the fourth terms on the right-hand side of (72), we apply twice the same proof. First

the Cauchy-Schwartz inequality gives

P(Ve >0, 3N; € N°, ¥n > No, | =37 FREL X (£, X0 — i (KLXED)) | < 5) ()

j=1

12



n 1/2

> P(¥e >0, 3Ng € N, vn > NV, (% jzlfQ(XﬂvXﬁ’cl))m(% > (P X (X0, X32)) T < S

j=1

(78)
Then note that + ", FA(XL, X% and L > (F(XL, X523 — fur (X, Xflf))2 converge almost surely
to E[Y?] and E[(fu(X) — f(X))?] — where X is uniformly distributed on [0, 1] — respectively. And
deduce that there exists Ny € N* such that for all n > Ny, we have £ 37", FAXLXEN < 2 BlY?
and £ Y%, (f(X, X523 — fM(Xﬁ,Xﬁf)f < 2 E[(fm(X) — f(X))?] almost surely. As a consequence,
deduce from Eq. (71) that

n

P(ve >0, 3Ny € N', ¥n > Na, |7 FOKL X0 (FXLXE2) — i (KLXED)) | < 7) (19)
j=1

1
> P(V€>O, 3Ny > N, ¥n > Ny, e/ < Z)

-1 (80)

Finally, Eqs. (73-80) gives

n

1 e
IP(VE >0, 3N €N, Vn > N, |~ S ¥71¥5?| < g) =1 (81)
n e~
and we have the conclusion.
(ii) As in (i), the only term to treat is
1S e
SR Sl (82)
n
j=1

so asymptotic normality is shown in the same way by using the decomposition in (69). We always obtain
the sum of a term already considered in Section 3 which converges in law to a normal distribution and
a term which converges to 0 in probability, and the conclusion follows from Slutsky’s lemma. We only
. SRLHS . . SRLHS . Ly
detail the proof for S, ,, , it is exactly the same for S, ,, . So note that following the proof of (ii) in

Proposition 1 and the notation above, it is sufficient to show that

n—o0

\/ﬁ(%z (f(XL XL — EIYD) (X4, XT) — f(X{l,iﬂ’f))) L0 (83)

j=1

. . ~RLHS
to prove the asymptotic normality of S, ,

So consider £, > 0 and prove that there exists N € N* such that for all n > N, the quantity

P = P(}% ; (PO XED — BV (£(R4, X07) - 7R, X0) | > ) (84)

is less than 7. First as f© is integrable, there exists a constant K > 0 such that P(|f(X, X2!)| > K) <

13

4

).



n/4. Hence

P < P<(‘%§;(f(xﬂ,xﬁ’3)E[Y])(f(Xf;Xﬁ’f)f(Xf;,Yﬂ’f))‘>€)ﬂ(|f(xﬁ,xﬂ’3)|§ff)>

HM:

4 <(]7 (f(Xg;,xz;bE[Y])(f(xf;,xf:?)f(Xf;,if;f))!>e)ﬂ<|f<>"<f;,xf;3>|>K)>
+

< p(F2 ><) +

Now note that the space of continuous functions on [0, 1]¢, denoted by C([0, 1]%), is dense in L°([0, 1]¢)

|Z|f Xi X2y - f(Xi, X2 (85)

13

and let (fy)men- be a sequence in C([0, 1]¢) such that E[|f,,(X) — f(X)|] converges to 0 as m tends
to +00 where X is uniformly distributed on [0,1]. It is easy to note that there exists M = M (n) such

that P(| far(X) — f(X)| > 1/n) < n/4. Thus we get from Eq. (85) that

4 n y . .. .. -
po< 3o (B (130, R02) — 1 (L X0 + L (0, 309) — PO REP)
i=1 j=1
UGG X - X)) N 4:) + ] (56)
where
A = (LT — FELTN > ) (e X0 - SO KID > 5) (87)
Ay = (LX) — JOL TN > o) (1 (K02 - SR KD < 2) (89)

and Az and A4 are the complementary events of A; and As, respectively. So we deduce

P p(((FEEY (R K - (LK)
j=1
T 4 XJ’)—f(Xﬁ,Yﬂ’f)l))ﬂAs>+IP(A1)+P(A2)+P(A4)+2
P<K+ E[Y (2+Z|fM (X4, X32) - fu (X0 X0)]) > 5) +. (89)

Now by an other density argument, note that there exists a sequence of Lipschitz continuous functions
with constant 1, denoted (far,q)gen+, such that supyg 1ja | far,q(x) — far(x)| converges to 0 as g tends to

+00. Then there exists Q = Q(n) € N* such that supjg ¢ [fa,Q(x) — far(x)| < 1/n and deduce that

K + [E| o io
Po< IE"('7(”2 (R K02) — Far o (R4 X0+ (K4, K02) — far (R4, X02))

—
+ g (R0 X — LX) > <)+
S5(K + [E[Y]])
P( > 5) +1. (90)

and the conclusion follows.

(iii) The proof is given in Appendix B. O
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4.3 Estimating all the first-order Sobol’ indices using only two replicated

Latin hypercube
First note that for any independent random permutations 7; and o uniformly distributed in II,, we
have that 7m; and 71 o w9 are independent.

Then, let (D7, D72); ~ RLH(n,d) be a design of experiments of 2n points in dimension d defined

as in Definition 2. Note that, by keeping the notation used in Definition 2, for any i € {1,...,d} , we

have:
() (DI); ~ LH(n, 1)
(ii) for all j € {1,...,n}, DI* = pr °m0)2
(i) (Dy)e. D " 9%) ~ RLH(n,d 1)
(iv) (D'); and (Di’1 Dwrloﬂi(j)’Q)j are independent.

¢ fayer T {ire

As a consequence, we can estimate all the S;’s with the two replicated Latin hypercubes (D71, D7:2);

by considering successively as in Eqs. (55-58), for any 7 € {1,...,d} and j € {1,...,n},

Xjy = pit=ppm (o1)
X} - i, o
X = D (99)
and for £k =1 and 2,
iy = 1(Xh0)- (94)

4.4 Construction with Latin hypercubes based on general orthogonal arrays

We first begin with the definition of an orthogonal array (OA):

Definition 3. An orthogonal array in dimension d, with q levels, strength t < d and index X\ is a matriz
with n = A\g* rows and d columns such that in every n-by-t submatriz each of the q* possible rows — i.e.
the distinct t-tuples (11, ...,1l;) where the l;’s take their values in the set of the q levels — occurs exactly

the same number A\ of times.

We now recall the definition of OA-based Latin hypercubes — see Owen (1992) — and introduce the

general notion of replicated OA-based Latin hypercubes.
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Definition 4. Let (Ag)izl__dyjzlnn be an orthogonal array in dimension d, with n points and q levels
in {1,...,q}, and consider 11, the set of all the permutations of {1,...,q}. We say that (X7);=1. , is a
Latin hypercube based on the orthogonal array (A%);—1.,, — and we denote (X7); ~ LH((AT);) — if

forall j € {1,...,n},

(95)

geeey

%I — (771(14]1) - U1,7r1(,4{) ma(A)) — Ud,wd(Ag))
q q
where the m;’s and the U; ;’s are independent random variables uniformly distributed on II, and [0,1],

respectively.

Definition 5. Let (Ag)izl__dyjzlnn an orthogonal array in dimension d, with n points and q levels in
{1,...,q}, and consider 11, the set of all the permutations of {1,...,q}. We say that (X7),;—1. ., and
(X/j)jzl__n are two replicated Latin hypercubes based on the orthogonal array (A7);—1. ., — and we denote

(X7,X'7); ~ RLH((AT);) — if for all j € {1,...,n},

geeey

Xi — (771(14]1) - Ul,m(A{) Ta(Ay) — Ud,wd(Ag))
q q

and

X'i = (97)

iy <7T£(AJ1) - U177r’1(A{) ma(A)) — Ud,W;(AJE'l)>
. R .
where the m;’s, the w}’s and the U; ;’s are independent random variables uniformly distributed on Il , II,

and [0, 1], respectively.

Note that in the particular case of the orthogonal array (A7);—; with strength 1 and index unity
defined by
Vie{l,...d}, Vje{l,...n}, Al=j (98)

these definitions are exactly Definitions 1 and 2.

Now the designs of experiments introduced in Definition 5 allow to estimate all the S, ’s with |u| =¢
where t is the strength of the underlying orthogonal array of the replicated Latin hypercube. More
precisely, let (A7); be an orthogonal array with ¢ levels in {1,..., ¢}, strength ¢ and index unity, and
consider (D7*, D7?); ~ RLH((A7);). For any u C {1,...,d}, with u = {i1,... %}, and any k =1 or
2, define (D7("):F), as the set of points (D’*); ranked in increasing lexicographic order with respect to
the i;-, ..., 4;-th coordinates. Then we can define estimators of the S,’s by considering those in Eqs.
(9) and (10) and by replacing (8) by

u

Yk = f(DIWF) (99)

Remark 2. Theoretical properties of the estimators for this generalisation remain open issues and will

consist of a further work. The first step for strong consistency will be to state a strong law of large
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numbers for OA-based Latin hypercubes with strength t > 1 since, as far as we know, such a result does
not exist. Asymptotic normality has already been proved for OA-based Latin hypercube with strength
t = 2 under smoothness conditions — see Loh (2008) — but it is not sufficient to conclude in the case
of replicated OA-based Latin hypercubes since formulas as in (172) and (173) are necessary. As for the
biases of the estimators, it will be necessary to study covariances in OA-based Latin hypercubes with

strength t > 1 in order to state formulas as in (172) and (173) as well.

5 Numerical illustrations

5.1 Application to an analytical test-case
5.1.1 Main experiment

In this section, we apply the new method proposed in Section 4 to the Ishigami function, see Ishigami
and Homma (1990):
f(X1, X2, X3) = sin(X;) + 7sin*(X3) + 0.1X3 sin(X;) (100)

where the X;’s are independent random variable uniformly distributed on [—7, 7]. Analytical values of

Sobol’ indices of this model are
S, =0.3139, S, =0.4424, S; =0, S;5 =0.7563, S5 =0.4424, S,5 =0.5575 and S;55 = 1. (101)

We are interested in comparing the new method, with the classic one based on crude Monte Carlo
method and which need d + 1 samples to estimate all the first-order Sobol’ indices, and 2d + 2 samples
to estimate all the second-order Sobol’ indices, see Saltelli (2002)). Here, both methods are compared at
the same sample size n in order to investigate the estimators themselves, but keep in mind that the new
method is definitely more efficient since only two samples are needed to estimate all the first-order Sobol’
indices or all the second-order Sobol’ indices. In the experiment, we focus on the empirical coverage —
i.e. the empirical proportion of confidence interval containing the analytical value of the Sobol’ index
— of both estimators at different sample size between 10? and 10°, and for » = 100000 replicates. We
first investigate estimators S{i},n and Eﬁ?is, i € {1,...,d} and in both cases, we provide asymptotic
confidence intervals from the estimation of the asymptotic variance given in Janon et al. (2012) (see end
of the proof of Prop. 2.2). Indeed, as we know that this asymptotic variance is:

Var[(Y, — B[V )(Y — E[Y,]) — 8, /2((Y — E[Y,])?) (V2 — E[Y,])]

U?ID,u = L - Var[Y — > O—IQR’,LHS,uv (102)

we can provide an estimator of the asymptotic confidence interval for the classic method

2 2
I _ g OIrDu Ya/2 OIIDu Ya/2
IIDywa = |9y ————F—— + ——

Voo Vn
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and an other one for the new method

2 2
g _ ORLHSu Ya/2 ORLHSu Ya/2

IRLHS U0 = [_u Jn .S, i

where u,/5 is the normal quantile at the significance level a. By using the estimator of the asymptotic
variance given in (102) in both cases, the confidence interval lengths of the classic and the new estimators
are the same. More specifically, the estimated length of the new estimator is greater or equal than its
optimal value. Thus the asymptotic value of the empirical coverage of the new method is greater or equal
than the expected one. However at the moment, we do not know how to estimate correctly %, HS.u
because of its singular expression (see Proof of (ii) in Proposition 1 in Section 3.2). We just say few
words about it in the next subsection and more fundamentally, it should consist of a further work.

. . . ~ ~OA2—-RLHS . _ )
We also investigate estimators Sy; 51, and Sy, 5, , 1 # j € {l,...,d}, where the notation

OA2 — RLHS refers to the generalization to replicated latin hypercube based on orthogonal array
of strength 2 presented in Section 4.4. In this case, we conjecture that the Central Limit theorem
established in (ii) in Proposition 2 is also true under some smoothness assumption — note that, here,

Ishigami function is C*°. Results are gathered in Figures 1 to 4.  For the second-order Sobol’ indices,

1 1 1
*- new estimator
o - - g ook Kk * 2 o005
S 008 —B—classic estimator g 0o x KX 2
20 [ ¥ S 099
g * ¥k * 3 o099 = —a z #
3 Lok * * o N © o985
= 0 5
8 0.99 ¥ = —F] S 0.985 8
= = = 098 "
2 =3 - - =3 new estimator
g‘ Ny % 0.98 —&— classic estimator £ Lors * s fimat
©0.985 % new estimator @ O —&—classic estimator
, 0975 097
1[02 10 10° 10° 10° 10° ) 10" 10° 10° 10° 10" 10°
sample size (n) sample size (n) sample size (n)

Figure 1: Empirical coverage of confidence intervals for S; (left), S, (center) and S5 (right).
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empirical coverage
0
0
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*

0.85

? : . s 0.96 095
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. 10 10
sample size (n)

10° i 30‘ 10° . 10
sample size (n sample size (n)

Figure 2: Empirical coverage of confidence intervals for S;, (left), S;5 (center) and S,5 (right).

we can observe that the bivariate stratification has a bad effect on the new estimator at very low sample

size, but we can notice its good properties as the number of simulations increases.
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Figure 4: Normalized (x+/n) length of the empirical interval for S, (left), S5 (center) and S,5 (right).
5.1.2 Remark on the confidence interval length of the new estimator

Concerning the estimation of the right confidence interval length of the new estimators, note that if the
asymptotic empirical coverage — estimated using Formula (102) — is 1 — o’ instead of the expected
value 1 — «, then it means that the true asymptotic confidence interval should be uq/2/uq/ /2 time as
long, where u. denote the normal quantiles. More specifically in our first application, we obtain in this
way the true asymptotic normalized (x./n) confidence interval length of S;, S5, Si5, S;5 and Sy;
they are gathered in Table 1. Moreover considering these right normalized confidence interval lengths,
we can observe on Figures 5 and 6 that the empirical coverage of the new estimator converges to the
expected level 0.99 as n increases, and so we confirm the reliability of the empirical confidence intervals
constructed with the true asymptotic length. Unfortunately, evaluating the true asymptotic confidence
interval length is infeasible in practice since it requires a lot of replications to estimate the empirical

coverage. So the issue related to the construction of optimal confidence intervals remains open.

§1 §2 §12 §13 §23
estimated lengths using (102) 4.40 4.15 2.19 3.95 6.45
right lengths 3.96 3.28 1.53 237 5.16

Table 1: Comparison between confidence interval lengths estimated using (102) and the right lengths
for §17 §2, §127 §13 and §23
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Figure 6: Empirical coverage of confidence intervals for S;, (left), S;5 (center) and S,5 (right).
5.2 Application to a marine ecosystem simulator

We now illustrate the new method to a one-dimensional coupled hydrodynamical- biological model
developed and applied to the Ligurian Sea (northwestern Mediterranean). This ecosystem simulator,
MODéle d’ECOsystéme du GHER et du LOBEPM' (MODECOGeL), combines a 1D (vertical) version
of the 3D GHER model which takes into account momentum and heat surface fluxes computed from
a real meteorological data set, and a biogeochemical model defined by a nitrogen cycle of 12 biological
state variables (see Figure 7) controlled by 87 input parameters, see Lacroix and Nival (1998). Here we

focus on the chlorophyll-a concentration which is defined as a function of time and depth
chla(t, z) = 1.59 = (pp(t, 2) + np(t, 2) + mp(Z, 2)) (103)

where pp, np and mp are the phyto-, nano- and microphytoplankton biomasses, respectively. The behavior
of these three state variables are modeled by the following reaction-diffusion and reaction-advection-

diffusion equation

0 0 0 )

% = 3 <)\ azp> + ((1 — exudyp) fipp — MOTtyp )PP — iNGpp,nzZ (104)
0 0 0

% = 3 ()\8—2) + ((1 — exUdnp ) finp — mortnp)np — iNYnp,mizMiZ (105)
Omp 0 0 mp . . Omp

5 = s ()\ P ) + ((1 — exUnp ) flmp — mortmp)mp — iNGnp, mezMEZ — smmpg (106)

'GHER: GeoHydrodynamics and Environment Research, Université de Liége, Belgium. LOBEPM: Laboratoire

d’Océanologie Biologique et d’Ecologie du Plancton Marin, Université Pierre et Marie Curie, France
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Figure 7: Biogeochemical model (NH4: Ammonium; NH3: nitrate; Pp, Np, Mp: pico-, nano-, micro-
phytoplankton; Nz, Miz, Mez: nano-, micro-, mesozooplankton; PON1, PON2: type 1 and 2 particulate

organic nitrogen; Bac: bacteria; DON: dissolved organic nitrogen).

where nz, miz and mez are the nano-, micro- and mesozooplankton biomasses, respectively, and the other

notations are

A vertical turbulent diffusivity (m2.s~1)
exuda exudation of A (percentage)

1A growth rate of A (day™!)

mort 4 mortality rate of A (day™')

INgA,B ingestion rate of A by predator B (mgChl)

S1Mmp sinking velocity of microphytoplankton (m.day ")
In our experiment, we focus on two different outputs: the annual maximum of chlorophyll-a concen-
tration in surface water Yg,s and the annual maximum of the mean of cholorphyll-a concentration
between 20 and 50 meters in depth Ygeptn. These are practical indicators of biological activity. We
are interested in the influence of eight parameters among the 87 input factors. On the one hand, we
consider 6 a priori sensitive parameters Lmaazpps Hmaznps Mmazmps Loptpp> Loptnp AN Iopimp Where fimaza
and I,p:4 denote the maximum growth rate of A and the optimum insolation for A, respectively. These
input factors are directly related to the growth rate of A, 4 (see details in Appendix C). On the other
hand, we consider the maximum growth rate of bacteria ft,,qzvac and the sinking velocity of particulate
organic nitrogen (type 1) sinpons which have a priori a negligible effect on chlorophyll-a concentration
since they do not act directly on pp, np and mp but on the state variables bac and ponl. We take these
eight parameters to be independent gamma distributed random variables with parameters given in Table
2. We estimate all first- and second-order Sobol’ indices of both outputs Ysurr and Ygepen by using the

estimators defined in Sections 4.3 and 4.4 with sample sizes n = 65536 and n = 66049, respectively.

The first-order Sobol’ indices are estimated by using nested replicated latin hypercubes following
Qian’s construction Qian (2009). They allow to visualize empirical convergence of the estimated indices

as shown in Figure 8. The estimated indices at the biggest sample size (n = 65536) are reported in
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Tables 3 and 4; we can notice that both outputs do not define an additive model since in both cases, the
sum of the first-order Sobol’ indices are less than sixty percents. We also notice that fim,qzpp is important
in both outputs, while three other a priori important parameters — ftymaznp, Loptnp and Iopimp— have
actually no effect. At last, it is surprising to observe that the parameter fi;,qzpac, Which does not act

directly on both outputs, has non-zero values.

—2— mumaxpp
—4— mumaxpp

—o—mumaxnp
—=— mumaxnp

mumaxmp
- mumaxmp

——iopt
optep ——ioptpp

o ioptnp o ioptnp

first-order Sobol’ indices
first-order Sobol' indices

2 ioptmp 2 ioptmp

v mumaxbac v mumaxbac

—#—sedponl —#—sedponl

I I _oalr 1 I 1 I
16384 32768 65536 131072 2048 2096 8172 16384 32768 65536 131072
total sample size (2n) total sample size (2n)

L
2048 096 8172

Figure 8: Plots of first-order Sobol’ indices with error bars — 99% confidence interval — for both outputs

Ysurt (left) and Ydepth (I‘ight).

The second-order Sobol’ indices are estimated by using a replicated latin hypercube based on an
orthogonal array with 257 levels, index 1 and strength 2 — i.e. n = 66049 — following Bush’s construc-
tion, see Bose (1938). The results are reported in Tables 5 and 6; they confirm that fi,,q0pp has the main
role in both outputs since the non-negligible second-order Sobol’ indices are all related to the latter. As
a conclusion, we can notice that both outputs are extremely complex and contain, without any doubt,
interactions of order more than or equal to 3. Such an analysis with the Monte Carlo estimator of Sobol’
indices would be less efficient without the new approach we proposed in this paper. More precisely,
both order 1 and order 2 analysis using the classic Monte Carlo estimator — i.e. estimating all the
Sobol’ indices of order 1 or 2 — only could use a sample size of 30000 instead of 132000 since this classic
approach needs 9 independent samples while the new one only needs 2 for the order 1 analysis and 18

independent samples while the new one only needs 4 for the order 2 analysis, see Saltelli (2002).

6 Conclusion

We have introduced a new method to estimate all the k-th order Sobol’ indices by using only 2 samples,
for any k. This outperforms existing methods including the combinatorial results established by Saltelli
(2002). We derive theoretical results in the particular case of first-order Sobol’ indices from the work
by Janon et al. (2012) on asymptotical properties of Sobol’ indices and from the work by Loh (1996)

on asymptotical properties of LHS. Further works will consist in deriving these theoretical results to
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label &k 0 mean standard deviation

fmazpp (day ") 1 9 0.33 3 1

fimaznp (day™") 2 9 028 25 0.83
[imazmp (day ") 3 9 0.22 2 0.67
Toptpp (W.m™2) 4 9 111 10 3.33
Topinp (W.m™2) 5 9 167 15 5

Toptmp (W.m™2) 6 9 222 20 6.67
fmazbac (day ™) 7 9 0.22 2 0.67
Sifpont (m.day™') 8 9 017 1.5 0.5

Table 2: Distributions of variables using gamma density f(z;k,0) = 2%~ ! exp(—xz/0)/(T(0)0%), where

['(-) is the gamma function.

Sy Spy Sy Sy Spsy Se Sy Sgsy
estimated index 0314 0 0061 0060 0 0003 0.051 0.010
estimated error  0.010  0.011 0.012 0.011 0.010 0.010 0.013 0.012

Table 3: Estimation of first-order Sobol’ indices for the output Y,,¢. The estimated error is the radius

of the 99% confidence interval.

Sy Spy Sy Sy Spsy Se Sgny Sgsy
estimated index 0451 0 0.055 0.034 0 0 0035 0011
estimated error  0.009 0.010 0.010 0.010 0.010 0.010 0.012 0.010

Table 4: Estimation of first-order Sobol’ indices for the output Ygeptn. The estimated error is the radius

of the 99% confidence interval.

Stioy Spay Spay Spsy Spey Spmy Spsy Spay Spay Spsy

estimated index 0.374 0479 0424 0339 0.324 0400 0.318 0.069 0.066 0.016
estimated error  0.012 0.011 0.013 0.011 0.011 0.010 0.011 0.011 0.011 0.011

Sper Sy Spsy Spay Sps i Serr Spesy Susy Qe

estimated index 0.015 0.069 0.015 0.125 0.074 0.07v5 0.128 0.072 0.077  0.070
estimated error  0.010 0.015 0.010 0.011 0.011 0.011 0.013 0.011 0.011 0.011

Sty Spsy Spsey Ssry Sissy Sgerny Siesy  Sirsy
estimated index  0.121  0.066 0.017 0.055 0.014 0.056 0.009 0.050
estimated error  0.013  0.011  0.010 0.015 0.010 0.014 0.010 0.015

Table 5: Estimation of second-order Sobol’ indices for the output Ys.,¢. The estimated error is the

radius of the 99% confidence interval.
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Stoy Spsy Spay Spsy Spey Sy Spsy Spesy Spay Spsy

estimated index 0.506 0.593 0.510 0.455 0.450 0.515 0.447 0.056 0.034 0.005
estimated error ~ 0.010 0.009 0.010 0.009 0.009 0.008 0.009 0.011 0.011 0.011

Sip6y Sppmy Sposy Spay Spzsy ey Sry Spsy Susy Se

estimated index 0.008 0.055 0.009 0.087 0.057 0.064 0.109 0.063 0.041 0.043
estimated error  0.010 0.014 0.010 0.011 0.011 0.011 0.013 0.011 0.010 0.010

Stany Spusy Sisey Sismy Sssy Sery Siesy  Sqrsy
estimated index  0.082  0.041  0.009 0.040 0.007 0.046 0.006  0.041
estimated error  0.013  0.010 0.010 0.014 0.010 0.014 0.010 0.014

Table 6: Estimation of second-order Sobol’ indices for the output Ygep:n. The estimated error is the

radius of the 99% confidence interval.

higher-order Sobol’ indices and in improving the method by studying how we can estimate correctly the

asymptotic variance of the new estimator.
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7 Lemmas for Proposition 1

Let X! and X? two distinct points of a Latin hypercube of size n in [0, 1]¢. For any function f defined
on [0,1]%, consider Y! = f(X1) et Y2 = f(X2). In Theorem 1 in Stein (1987), Stein gives the following

result

Theorem 1. If f is a square integrable function then as n tends to +o0o, we have

d
1
YLY?) =-=> o} . 1
Cov(Y",Y?) ni_laz—i—o(n ) (107)

In this section, we prove an analogous result with more general settings and without the asymptotic

assumption on n (see Lemma 4).
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7.1 Notation and definitions

For s and n in N*, define the partition of [0,1)® in elementary hypercubes of side 1/n,

Qs(”):{QQ [0,1)° | Q:H[aiaﬁi)a Q; € {0,%,--- n—l}’ Bizai—i-%}. (108)

)
n

For any square integrable function g defined on [0, 1)%, s < d, define the sequence with general term

un(g) =n* (/Qg(x)dx)2, n € N. (109)

7.2 Preliminary results

The first lemma is the analogous result for Lebesgue integrability of a result given in Equation (A.4) in
Stein (1987) for Riemann integrability. The second one gives an important inequality which allows to
work without asymptotic assumption on n. The last one consists in simplifying integrals under Latin

hypercube sampling using the ANOVA decomposition.

Lemma 1. If g is a square integrable function, the sequence (un(g)) converges to [ g*(x)dx as n tends

to +o00.

Proof. Noting that
un(g) = / g ()X (110)

where

I A S / g(y)dy)21Q<x> an

Q€EQs(n)

Lemma 1 is a straightforward consequence of the dominated convergence theorem. So let us prove that
there exists an integrable function h such that for all n € N*, |g,,| < h almost surely, and g,, converges

pointwise to g2, and the conclusion will follow.

First since g is a square integrable function, we have |g(x)| < M a.s., and by their definition, the
gn’s are as well. Hence their exists an integrable function (h : x — M) such that |g,| < h almost surely.
Concerning the pointwise convergence, let us prove that for any x € [0, 1),

(ns / g(y)dy)2 - 9%(x)

x

Ve >0, 3N >0, Vn> N, <e (112)

where Q is the set Q in Q,(n) containing x. This is obvious if g2 is a simple function and we easily

generalize the result to any g2 since any measurable function is a pointwise limit of simple functions. O

Lemma 2. The sequence (uy(g)) is dominated by [ g*(x)dx.
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Proof. Let n € N*, the result is proved by showing that the sequence of general term vg(g) = ugr,(g) is
increasing. In this case, by Lemma 1, we have lim v (g f 9°(x)dx, and since vy is increasing, all the
terms of this sequence are dominated by [ ¢*(x)dx, hence vy(g) = ) < [ g*(x)dx. To prove that
the sequence (vk (g)) is increasing, note that

werly) = @ Y (/Q g(x)dxf (113)

QEQ(2kF1n)

LU SR CON S < / g(x)dx)2 (114)

QEQs(2Fn) PeP(Q,2kt1n)

where P(Q, 2" 1n) = Q(2¥*1n) N Q. Then by Jensen inequality, we have

> ¥ (/ g(x)dx>zz(/Q o) (115)

PEP(Q,2%+1n)

and we conclude that vi11(g) > vk(g). O

For 0 < z1, x5 <1 define

ro(z1,22) = 1 if [nay] = [naa (116)

0 otherwise , (117)

where |-| is the floor function. We now end with the following result

Lemma 3. Let v be a subset of {1,...,d}, we have

/f x1) f(x2) [ [ rn (@i, w20 dxydxy = /Z Fro(X110) fro (X2 ) [ [ rn (@1, 20 dxa dx (118)

IS wCo IS

Proof. By the ANOVA decomposition — see (1) — we have

/f x1) f(x2) [ [ rn (@i, w2i)dxrdxs = / > E fml(Xun1 Froo(Xawy) [ [ 7 (1s, i) dx1dxs

€D 1 C{1,..,d} w2 C{1,.. €0
(119)

Then note that a certain number of terms in the member on the right-hand side vanishe. If (to; N v%) U
(o2 N ) # O then suppose without loss of generality that there exists k € to; \ v; we have

/fm1 X1, ) fron (X2, Hrn (w14, T2)dx1dXo = /(/fm1 lel)diﬁlk) Jron (X2, ]___[Tn T14, T2 )dX1 ye dX2

S 1€ED
I

(120)
and note that, by a basic property of the ANOVA decomposition, I; = 0. If (to; N 6°) U (toa Nv°) =
and to; # o, then suppose without loss of generality that there exists k € w; \ o. In this case, we
have

/fml lel)me(X2m2)HTn(zlniCQz)XmdXQ (121)

S
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:/(/fml(lel)Tn(mlk,.Tgk)dl'ugdwgk) me(Xng)( H Tn(l'li,wgi))dxl{k}chQ{k}c (122)
ieo\{k}

Iz

and note that by the definition of r,,, we have

/fml(xlm1>7"n(z1ka1'2k)d$1kd1'2k = /fml(xlml)dxlk (123)

and thus I = 0. The conclusion of the lemma. follows. O

7.3 Main result

Let u be a non-empty subset of {1,...d} and consider (Z); ~ LH(n,2d — |u|). For any function f

defined on [0,1]%, consider

Vil = f(XL XL and V22 = £(X2, X272 . (124)

We have the following result

Lemma 4. If f is a square integrable function then we have

2 2

O 1,1 72,2 O
_ _Twmw < ) 2\ < o
S e < Cov( V) < 3 R (125)
P#wCu P#rmwCu
|| odd || even

Proof. Recall that for 0 < z1, xo <1,

ro(z1,22) = 1 if [nzy] = [naa) (126)
= 0 otherwise , (127)
where |-] is the floor function. For x; = (211,...,214) in [0, 1)d, define x1, = (214, - ,xlim) where

v = {i1,...,%y|}. Due to the joint density of (Xlll, Xﬁ) under Latin hypercube sampling — see McKay

et al. (1979) or Stein (1987) — and by Lemma 3, we have

)lul H (1 = rp(21i, i) ) dx1dxs (128)

S

Cov(V11,722) & < / f(x)dx>2 _ / £ ) (

n—1

(555) " S0 [ 56 o) [T oz

vCu ico
(nﬁ 1)m l;_u(1)“/ngufm(xlm)fm(XQm)z]_;[Tn(xu,zgi)dxldXQ
(ni 1)‘11‘ Z(*l)w Z (%)lnl_lml/fm(le)fm(sz) Hrn(zli,zgi)dxlmdxm (129)
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Then note that for any function of to denoted by A(w), we have

DY (%)""_'“"A(m)

vCu wCo

_ z:: (Iulklml>(%)k+m (%)_‘m‘A(m)

Hence, we deduce that

Cov(V, V2?) = Z ( = )‘m‘(*l)‘m‘ /fm(xlm>fm(x2m) HTn(xu,iEm)Xmdezm .

o Cu n—1 1€
to#£Q

Finally by the definition of r,, we have
2
0< /fm(X1m)fm(X2m) [ 7 (@i 22 dximdxon < > (/ fm(le)dX1m)
i€ QEQ|wi(n) ~7@
and by Lemma 2, this gives
0< ) dony < 2
< fo(Xiw) fro(X2w) l;lnrn(wh,wm) Xiw (Xow < —7T -

The latter inequalities and (131) lead to Lemma 4.

8 Proof of (iii) in Proposition 2

We first give three lemmas. The proof of (iii) in Proposition 2 is given in Section B.2.

8.1 Preliminary results

Lemma 5. Let d € N*, if n > d—; then

d
1 d+1
(147) ~1= ==
n n

(130)

(131)

(132)

(133)

(134)

Proof. If d = 1, the result is obvious. Otherwise, for any x > 0, consider the function g4 defined by

d
1 d+1
gd(z)<1+—) -1- + .
x x

We show that

(1) if there exists zg > 0 such that gq(zo) < 0 then for all z > g, ga(zx) <0
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(2) ga(d®/2) <0

and the conclusion follows. Concerning (1) note that

d d 1 1
—1+4 ) T [ -2 1
ga(x) + . +O0(x779) i . +O0(x779) (136)

and then that g4 is negative as x tends to +o0o0. Moreover for any d > 1, g4 is first decreasing and then

increasing. Indeed, we have

d N d+
gé(:v)Z——(lJr—) ++2 (137)

T

and we deduce that g/;(x¢) = 0 with

1
- 1/(d—1)
(20

>0 (138)

and is negative on the left side and positive on the right side. The conclusion of (1) follows. Concerning

(2), it is easy to check that it is true for d = 1 and 2, and for d > 3 we have

A(8) - £ 1

k=0
d k
2 d 2
- E06
k=3
d k
2 1 /2
< —ﬁ‘FZE(g) (141)
k=3
2 1 1 2 1
< S INT 142
- d3+d3+3d3+3kz:;1dk (142)
d d—3
2 1 1 1
< —$+Z%+3—3 1— ﬁ) (143)
k=3 k=1
2 X
< B + Z T (144)
k=3
2 2
< 242 (145)
and the conclusion follows. O

With the same notation as at the beginning of Section A.3, we have the following result

Lemma 6. If f is a square integrable function, we have

E[f(X5 X)) f(X4, X5:)] = B[Y]? + 72 + Bun (146)
where
1 1
—E[Y? — = < Bun<E[Y? S 147
[ ] Z . (TL* 1>|v\ — u,n —= [ ] Z . (TL* 1>|v\ ( )
s
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Proof. First, due to the joint density of (Xlll’cl,Xi’cl) under Latin hypercube sampling — see McKay

et al. (1979) or Stein (1987) — we have

n—1

E[f(xlllvxiél)f(xia Xiél)} = /f(X,Xl)f(X, X2)<

vCuc i€v

d—|u|
> H (1 — rn(zli; zgi))dxdxldXQ
ST

(nnl)d_u/(Z(_l)u/f(Xaxl)f(XaX2)HTn(wlumi)dxldm

I(x)

We now denote fx : y — f(x,y) and then by (129) and (130) we have

I(x) = Z(*1)“"/fx(Xl)fx(Xz)HTn(ZEu,ZE2i)dX1dX2

vCuc S
|U| 1 \u\—\m\
= Z (*1) Z (_) fx,m(xlm)fx,m(XQm) H Tn($1z‘, $2i)dxlmdx2m
pCuc Co n 1€

n
toCuc 1€

- ¥ (71)\m\<n_71)d_‘u‘_‘m‘/fxﬁm(xlm)fxﬁm(xm)Hrn(zli,zgi)dxlmdem.

Hence by (133) we have for all w # 0,

J f2 0 (X)) dX 1 < [ F2(x1)dxy

nlol - nlwl

0< /fx,m(xlm)fx,m(XQm) H T (14, 2:)dX110 dXopp <

i€
and note that

/fx,@(xw))fx,@(x2(z)) HTn(ZEu, T2;)dxX19dXap = fi@ .
ich

Finally, note that
/fiwdx =12+ E[Y)?
and

[ [ rroxoixix—Ey?]

and conclude that

d—|u|
E[f(xi,xiz1>f<Xi,xial>}=< n ) [ 160dx = 22 + BV + B

n—1
with
1 1
_E[Y? — < Bu, <E[Y? e
[Y~] Zc(n—l)\ﬂ = Twn = Y~ Zc(n—l)\ﬂ
P#0Cu P#0Cu
|v] odd |v| even

Lemma 7. The inequalities in Equation (147) imply that

) e (2 ) (e

n n—1
o Cuc
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(151)

(152)

(153)

(154)

(155)

(156)

(157)

(158)

(159)

(148)

o



Proof. By (147), we have

|

1

§ (_> BuUm,n
n

wCuc

] 1

I (160)

A
=
~
5
7N
S|

) 0F#0C (ulto)

(o)) om
2020

wCuc wCuc

< E[Y?] [(1 + ni 1)du (1 + %)dw - (1 + %)dw} (163)

and the conclusion follows by applying twice Lemma 5. |

AN

=

~

N
7 N
SR

IN
=
P~<
N
7N\
—
+

8.2 Proof of (iii) in Proposition 2

Proof. First note that by the definition of (Zﬂ)jzlnn we have

Vil = f(X2, X0 and VP2 = (X2, X020 (164)

with
xy - (Mo ) ) (165)

and
%92 = (Wi(j) *nULTr;(j) . T4 (7) nUd,w&(j)) (166)

where the m;’s, the 7}’s and the U, ;’s are independent random variables uniformly distributed on IL,
— see Definition 1 —, II,, and [0, 1], respectively. Moreover note that if for an index i € u¢, we
have m;(j) = 7.(j) then X7'' = X7%; and if m;(j) # 7.(j) then Ui (j) and Uj z1(;) are independent and
therefore Xfl and XfQ are two distinct points of a Latin hypercube of size n in [0, 1]. For j € {1,...,n},

denote by e(j) the set of integers ¢ € u® such that m;(j) = 7}(j). Thus we have

e 1
E[V7'V7?] = WZ > > 1wy (167)

wCus  mw(j)e e (j)e
{1,...n} {1, nyd=inl

/f<7T1(j) —un ma(j) — U1d>f<7fi(j) IR sz(j)n* u2d>du1du2(uum)c

n n n
(168)

where for all i € uUe(j), m(j) = 7}(j) and w1;(j) = u2;(j). And noting that

1
(n — 1)d—lul=Twlpd > > WeGrmmy (169)
(e = me()e
{1,...,n}4 {1, nyd=inl
N N (A (AN
../f<7r1(3) u11 . ma(j) um)f(m(J) u21 . ma(d) u2d>du1du2(uum)c (170)
n n n n

31



is equal to E[ f(XL . Xéutm) )F(XE s X2 oe)] where (X, X7 e )i ~ LH(n, d), Lemma 6 gives

(uUw)e (uUro)e/J
[ro]
N 1
E[YI1Y%] = ) (g) (EYP? + 220 + Buswon) - (171)

toCuc

By Lemmas 5 and 7, and noting that E[Y]? + 72 ,,, < E[Y?], we obtain

E[Y]'Y]?] = E[Y]® + 2} + By (172)
where
d—|ul+1 d—|ul+1
| Bluj,n g( [ +2)< [ >E[Y2]. (173)
n n—1

Following the same proof, it is easy to show that for j # [, we have

E[Y{'Y?] =E[Y]* + By, (174)
where
d+1 d+1
|Bn1| < (L + 2) (L)E[W] . (175)
n n—1
Thus noting that
E[Zﬁ:gLHS] — - E[Yul,lyu1,2] _ ~ E[Yul’lyl?’Q] (176)
we conclude that
. 1 n—1
E[_i:ﬁLHS} = 1121 - Elﬁ + (Bn,l + B\u\,n) (177)
where the biases are O(n~!) as specified above. Concerning 52 #-H5 note that 52 FHS = 52.LHS and
the conclusion follows from (iii) in Proposition 1. Concerning 7 #“"% and 527275 we have
1« YJ’1+YJ’2 2 1 1,1 | 11,242 I v il 72\ vl | xol2
E Ezf = RE[(Yu’ +Y1%)?] +mZZE[(Yu’ +YIHWR V] (118)
j=1 j=11=1
1]
n—1

1 .. .. ..
= o (B[] + BN +
Then using notation in (16-18), note that

E[VVP] = E[VDY2] = Cov(V,P Y2 + BIYP? = Cov(Yyh 0 VG2 ) +EYT (180)

and by (173), (175) and Lemma 4, we deduce

1 n }'}],1+5}j72 2 1
B (A3 ) = L E 4 B+ e s
j=1
where
2
g
|Bual < 5~ (182)

and By, 1 is specified in (175). Then it is easy to conclude that

= 1 n—1
E[zon""] = zi- 578+ Bui+ Boa+ ——Bua (183)
n n
~ 1
E[U%RLHS] = o’ - %Ii + Bp1+ B (184)
where the biases are O(n™!) as specified above. O

32



parameter definition

HA growth rate of A

mazA maximum growth rate of A

limno,a limitation by NOg3 for A

limn, A limitation by NH, for A

KnosA half-saturation coefficient of NO3 for A
Knm,a half-saturation coefficient of NH, for A
v inhibition coefficient by NHy

NO3 NOj3 concentration

NH,4 NH,4 concentration

limya limitation by light for A

Bia shape factor for photoinhibition curve
Topta optimum insolation for A

PAR photosynthetic active radiation

limra limitation by temperature for A

Bra shape factor for thermoinhibition curve
Topta optimum temperature for A

TietA lower lethal temperature for A

T temperature

Table 7: Parameters of the phytoplankton growth model

9 Phytoplankton growth model

A = ,U/mazAlimIAlimTA (limN03A T 1imNH4A)
NO3

lim = (NO; 7 Kugs ) SP(-WNH

NO3A (N03 T KNOgA) p( 4)
) < NH, )
im = NHs + Knm A

NH4A NH,4 + Knm,a

| 2(1 + Bra) /2R

limja = PAR 2 PAR

(BAR) 1 op, PAR g
T—Tiet
1‘ 2(1+ Bra) 7,50
imTa = max 0

T—Tieta 2 T—Ticta ’
(Topr,A*TZetA) +2P1a Topta—Treta +1

where the parameters are defined in the following table
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The phytoplankton growth is given by the five following equations, where A stands for pp, np or mp.

(185)

(186)

(187)

(188)

(189)
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