
Detailed proofs of Propositions 3.1 and 3.2

1 Proof of Proposition 3.1

NB: integration sets are generally omitted for integrals defined over a unit hypercube [0, 1]s

with any s ≤ d.

We first give four lemmas. The proof of Proposition 3.1 is presented in Section 1.2.

1.1 Technical lemmas

Let X1 and X2 two distinct points of a Latin hypercube of size n in [0, 1]d. For any function
f defined on [0, 1]d, consider Y 1,LHS = f(X1) and Y 2,LHS = f(X2). In Theorem 1 in Stein
(1987), Stein gives the following result

Theorem 1. If f is a square integrable function then as n tends to +∞, we have

Cov(Y 1,LHS, Y 2,LHS) = − 1

n

d∑
i=1

σ2
i + o(n−1) (1)

with σ2
i = Var

[
E[Y |Xi]

]
, i = 1, . . . , d, Y = f(X), X uniformly distributed on [0, 1]d.

In this subsection, we prove an analogous result with more general settings and without the
asymptotic assumption on n (see Lemma 4 below).

Notation and definitions For s and n in N∗, define the partition of [0, 1)s in elementary
hypercubes of side 1/n,

Qs(n) =

{
Q ⊆ [0, 1)s

∣∣ Q =
s∏
i=1

[αi, βi), αi ∈
{

0,
1

n
, . . . ,

n− 1

n

}
, βi = αi +

1

n

}
. (2)

For any square integrable function g defined on [0, 1)s, s ≤ d, define the sequence with general
term

un(g) = ns
∑

Q∈Qs(n)

(∫
Q

g(x)dx

)2

, n ∈ N. (3)

Outline The first lemma is the analogous result for Lebesgue integrability of a result given in
Equation (A.4) in Stein (1987) for Riemann integrability. The second lemma gives an important
inequality which allows to work without asymptotic assumption on n. The third one consists
in simplifying integrals under LHS using the ANOVA decomposition. Lemma 4 provides the
expected inequalities.

Lemma 1. Let s ∈ N∗. If g is a continuous function on [0, 1]s, the sequence
(
un(g)

)
converges

to
∫
g2(x)dx as n tends to +∞.
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Proof. Noting that

un(g) =

∫
g2n(x)dx (4)

where

∀x ∈ [0, 1)s, g2n(x) =
∑

Q∈Qs(n)

(
ns
∫
Q

g(y)dy

)2

1Q(x), (5)

We can rewrite gn as g2n(x) =

(
ns
∫
Qx
g(y)dy

)2

, where Qx is the set Q in Qs(n) containing x.

We now prove that ‖gn−g‖∞ −−−−→
n→+∞

0. Indeed, as g is continuous on a compact, it is uniformly

continuous on this compact. Thus gn(x)−g(x) = ns
∫

(g(y)−g(x))1Q(x)dy converges uniformly
to zero. From this latter convergence, we also deduce that for n large enough, g2n ≤ g2 + 1. We
then conclude by applying the dominated convergence theorem, as

∫
[0,1]s

(g2(x) + 1)dx <∞.

Lemma 2. The sequence
(
un(g)

)
is dominated by

∫
g2(x)dx.

Proof. Let n ∈ N∗, the result is proved by showing that the sequence of general term vk(g) =
u2kn(g) is increasing. In this case, by Lemma 1, we have lim vk(g) =

∫
g2(x)dx, and since vk is

increasing, all the terms of this sequence are dominated by
∫
g2(x)dx, hence v0(g) = un(g) ≤∫

g2(x)dx. To prove that the sequence
(
vk(g)

)
is increasing, note that

vk+1(g) = (2k+1n)s
∑

Q∈Qs(2k+1n)

(∫
Q

g(x)dx

)2

= (2kn)s
∑

Q∈Qs(2kn)

2s
∑

P∈P(Q,2k+1n)

(∫
P

g(x)dx

)2
 (6)

where P(Q, 2k+1n) = Q(2k+1n) ∩Q. Then by Jensen inequality, we have

2s
∑

P∈P(Q,2k+1n)

(∫
P

g(x)dx

)2

≥
(∫

Q

g(x)dx

)2

(7)

and we conclude that vk+1(g) ≥ vk(g).

For 0 ≤ x1, x2 ≤ 1 define

rn(x1, x2) =
{

1 if bnx1c = bnx2c
0 otherwise, (8)

where b·c is the floor function. We now end with the following result

Lemma 3. Let v be a subset of {1, . . . , d}, we have∫
f(x1)f(x2)

∏
i∈v

rn(x1i, x2i)dx1dx2 =

∫ ∑
w⊆v

fw(x1w)fw(x2w)
∏
i∈v

rn(x1i, x2i)dx1dx2 . (9)
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Proof. By the ANOVA decomposition, we have∫
f(x1)f(x2)

∏
i∈v

rn(x1i, x2i)dx1dx2 =

∫ ∑
w1⊆{1,..,d}

∑
w2⊆{1,..,d}

fw1(x1w1)fw2(x2w2)
∏
i∈v

rn(x1i, x2i)dx1dx2 .

(10)
Then note that a certain number of terms in the member on the right-hand side vanishe. If
(w1∩vc)∪(w2∩vc) 6= ∅ then suppose without any loss of generality that there exists k ∈ w1\v.
We have∫
fw1(x1w1)fw2(x2w2)

∏
i∈v

rn(x1i, x2i)dx1dx2 =

∫ (∫
fw1(x1w1)dx1k

)
︸ ︷︷ ︸

I1

fw2(x2w2)
∏
i∈v

rn(x1i, x2i)dx1{k}cdx2

(11)
and note that, by a basic property of the ANOVA decomposition, I1 = 0. If (w1∩vc)∪(w2∩vc) =
∅ and w1 6= w2, then suppose without any loss of generality that there exists k ∈ w1 \ w2. In
this case, we have∫
fw1(x1w1)fw2(x2w2)

∏
i∈v

rn(x1i, x2i)dx1dx2

=

∫ (∫
fw1(x1w1)rn(x1k, x2k)dx1kdx2k

)
︸ ︷︷ ︸

I2

fw2(x2w2)

( ∏
i∈v\{k}

rn(x1i, x2i)

)
dx1{k}cdx2{k}c (12)

and note that by the definition of rn, we have∫
fw1(x1w1)rn(x1k, x2k)dx1kdx2k =

∫
fw1(x1w1)dx1k (13)

and thus I2 = 0. The conclusion of the lemma follows.

Let u be a non-empty subset of {1, . . . d} and consider (Xj)j ∼ LH(n, d) and (Zj)j ∼
LH(n, d). For any function f defined on [0, 1]d, consider

Y 1,LHS = f(X1) and Y 2,LHS
u = f(X2

u,Z
2
uc) . (14)

We have the following result

Lemma 4. If f is a square integrable function then we have

−
∑
∅6=w⊆u
|w| odd

σ2
w

(n− 1)|w|
≤ Cov(Y 1,LHS, Y 2,LHS

u ) ≤
∑
∅6=w⊆u
|w| even

σ2
w

(n− 1)|w|
. (15)

Proof. Recall that for 0 ≤ x1, x2 ≤ 1,

rn(x1, x2) =
{

1 if bnx1c = bnx2c
0 otherwise, (16)

where b·c is the floor function. For x1 = (x11, . . . , x1d) in [0, 1)d, define x1v = (x1i1 , . . . , x1i|v|)

where v = {i1, . . . , i|v|}. Due to the joint density of (X1
u,X

2
u) under LHS — see McKay et al.

(1979) or Stein (1987) — and by Lemma 3, we have

Cov(Y 1,LHS, Y 2,LHS
u )+

(∫
f(x)dx

)2

=

∫
f(x1)f(x2)

( n

n− 1

)|u|∏
i∈u

(
1−rn(x1i, x2i)

)
dx1dx2
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=
( n

n− 1

)|u|∑
v⊆u

(−1)|v|
∫
f(x1)f(x2)

∏
i∈v

rn(x1i, x2i)dx1dx2

=
( n

n− 1

)|u|∑
v⊆u

(−1)|v|
∫ ∑

w⊆v

fw(x1w)fw(x2w)
∏
i∈v

rn(x1i, x2i)dx1dx2

=
( n

n− 1

)|u|∑
v⊆u

(−1)|v|
∑
w⊆v

( 1

n

)|v|−|w| ∫
fw(x1w)fw(x2w)

∏
i∈w

rn(x1i, x2i)dx1wdx2w. (17)

Then note that for any function of w denoted by A(w), we have∑
v⊆u

(−1)|v|
∑
w⊆v

( 1

n

)|v|−|w|
A(w) =

∑
v⊆u

(
− 1

n

)|v|∑
w⊆v

( 1

n

)−|w|
A(w)

=
∑
w⊆u

|u|−|w|∑
k=0

(
|u| − |w|

k

)(
− 1

n

)k+|w|( 1

n

)−|w|
A(w)

=
∑
w⊆u

(n− 1

n

)|u|−|w|
(−1)|w|A(w) (18)

Hence, we deduce that

Cov(Y 1,LHS, Y 2,LHS
u ) =

∑
w⊆u
w 6=∅

( n

n− 1

)|w|
(−1)|w|

∫
fw(x1w)fw(x2w)

∏
i∈w

rn(x1i, x2i)dx1wdx2w .

(19)
Finally by the definition of rn, we have

0 ≤
∫
fw(x1w)fw(x2w)

∏
i∈w

rn(x1i, x2i)dx1wdx2w ≤
∑

Q∈Q|w|(n)

(∫
Q

fw(x1w)dx1w

)2

(20)

and by Lemma 2, this gives

0 ≤
∫
fw(x1w)fw(x2w)

∏
i∈w

rn(x1i, x2i)dx1wdx2w ≤
σ2
w

n|w|
. (21)

The latter inequalities and (19) lead to Lemma 4.

Remark 1. Note that if u = {1, . . . , d}, the resulting inequalities are

−
∑
w 6=∅
|w| odd

σ2
w

(n− 1)|w|
≤ Cov(Y 1,LHS, Y 2,LHS) ≤

∑
w 6=∅
|w| even

σ2
w

(n− 1)|w|
. (22)

This consists of a non-asymptotic equivalent of the theorem due to Stein presented at the begin-
ning of this section.

1.2 Proof of Proposition 3.1

(i) This is a consequence of the strong law of large numbers for LHS given in Theorem 3 in Loh
(1996).
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(ii) The proof consists in translating the original proof given for simple random sampling —
see Proposition 2.2 in Janon et al. (2013) — for LHS. Concerning S̃

LHS

u,n , it is easy to show that

S̃
LHS

u,n = Φ(Vn) (23)

where Vn = 1
n

∑n
j=1Vj and Vj equal to((

Y j,LHS − E[Y ]
)(
Y j,LHS
u − E[Y ]

)
, Y j,LHS − E[Y ] , Y j,LHS

u − E[Y ] ,
(
Y j,LHS − E[Y ]

)2)T
and with Φ(x, y, z, t) = x−yz

t−y2 . Then we deduce from Theorem 2 in Loh (1996) that

√
n
(
Vn − µ

) L−→
n→∞

N4(0,Γ) (24)

where µ = (τ 2u, 0, 0, σ
2)T and Γ is the covariance matrix of R1 = V1 −A1 — see details in Eq.

(3) in Loh (1996) — defined by

∀i ∈ {1, . . . , 4}, A1i is the additive part — see (2) in the main document — of V1i . (25)

Thus the Delta method — see Theorem 3.1 in Van der Vaart (1998) — gives

√
n
(
S̃
LHS

u,n − Su

) L−→
n→∞

N1(0, g
TΓg) (26)

where g = ∇Φ(µ). Developing the term gTΓg does not seem to provide any useful information.
However, denoting σ2

LHS this term, and σ2
IID the analogous quantity in the CLT for simple

random sampling, we can show that σ2
LHS ≤ σ2

IID. Indeed we first note that, for simple random
sampling, the variance given in Janon et al. (2013) reads

σ2
IID =

Var
[
V11 − SuV14

]
σ2

(27)

and for LHS, it is easy to show that

σ2
LHS =

Var
[
R11 − SuR14

]
σ2

. (28)

Hence

σ2
IID = σ2

LHS +
Var
[
A11 − SuA14

]
σ2

(29)

and the conclusion of (ii) for S̃
LHS

u,n follows. Concerning Ŝ
LHS

u,n , the proof follows the same lines
— see Proof of (10) in Janon et al. (2013) for details.

(iii) First we have

E
[
τ̃ 2,LHSu,n

]
=

n− 1

n2

n∑
j=1

E
[
Y j,LHSY j,LHS

u

]
− 1

n2

n∑
j=1

n∑
l=1
l 6=j

E
[
Y j,LHSY l,LHS

u

]
=

n− 1

n

(
E[Y ]2 + τ 2u

)
− n− 1

n

(
Cov(Y 1,LHS, Y 2,LHS

u ) + E[Y ]2
)

(30)
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and thanks to Lemma 4, this gives

E
[
τ̃ 2,LHSu,n

]
= τ 2u +Bn,1 (31)

with
− 1

n− 1
τ 2u ≤ Bn,1 ≤ 0 . (32)

Concerning σ̃2,LHS
n , we have

E
[
σ̃2,LHS
u,n

]
=

n− 1

n2

n∑
j=1

E
[
(Y j,LHS)2

]
− 1

n2

n∑
j=1

n∑
l=1
l 6=j

E
[
Y j,LHSY l,LHS

]
=

n− 1

n
E[Y 2]− n− 1

n

(
Cov(Y 1,LHS, Y 2,LHS) + E[Y ]2

)
(33)

and noting that
Cov(Y 1,LHS, Y 2,LHS) = Cov

(
Y 1,LHS, Y 2,LHS

{1,...,d}
)

(34)

we conclude that
E
[
σ̃2,LHS
n

]
= σ2 +Bn,2 (35)

with
− 1

n− 1
σ2 ≤ Bn,2 ≤ 0 . (36)

As for τ̂ 2,LHSu,n and σ̂2,LHS
n , we have

E

[(
1

n

n∑
j=1

Y j,LHS + Y j,LHS
u

2

)2
]

=
1

4n
E
[
(Y 1,LHS + Y 1,LHS

u )2
]

+
1

4n2

n∑
j=1

n∑
l=1
l 6=j

E
[
(Y j,LHS + Y j,LHS

u )(Y l,LHS + Y l,LHS
u )

]
=

1

2n

(
E[Y 2] + τ 2u + E[Y ]2

)
+
n− 1

n
E[Y ]2 +

n− 1

2n

(
Cov(Y 1,LHS, Y 2,LHS) + Cov(Y 1,LHS, Y 2,LHS

u )
)

=
1

2n

(
σ2 + τ 2u

)
+ E[Y ]2 +

n− 1

2n

(
Cov(Y 1,LHS, Y 2,LHS) + Cov(Y 1,LHS, Y 2,LHS

u )
)
. (37)

Then it is easy to conclude that

E
[
τ̂ 2,LHSu,n

]
= τ 2u +Bn,3 (38)

E
[
σ̂2,LHS
n

]
= σ2 +Bn,3 (39)

with
− 1

2(n− 1)
(σ2 + τ 2u) ≤ Bn,3 ≤ 0 . (40)

2 Proof of Proposition 3.2

We first give three lemmas. The proof of Proposition 3.2 is presented in Section 2.2.
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2.1 Technical lemmas

Lemma 5. Let d ∈ N∗, if n ≥ d2

2
then(

1 +
1

n

)d
− 1 ≤ d+ 1

n
. (41)

Proof. If d = 1, the result is obvious. Otherwise, for any x > 0, consider the function gd defined
by

gd(x) =

(
1 +

1

x

)d
− 1− d+ 1

x
. (42)

We show that
(a) if there exists x0 > 0 such that gd(x0) ≤ 0 then for all x ≥ x0, gd(x) ≤ 0
(b) gd(d2/2) ≤ 0

and the conclusion follows. Concerning (a) note that

gd(x) = 1 +
d

x
+O(x−2)− 1− d

x
− 1

x
= −1

x
+O(x−2) (43)

and then that gd is negative as x tends to +∞. Moreover for any d > 1, gd is first decreasing
and then increasing. Indeed, we have

g′d(x) = − d

x2

(
1 +

1

x

)d−1
+
d+ 1

x2
(44)

and we deduce that g′d(x0) = 0 with

x0 =
1(

d+1
d

)1/(d−1) − 1
> 0 (45)

and is negative on the left-hand side and positive on the right-hand side. The conclusion of (a)
follows. Concerning (b), it is easy to check that it is true for d = 1 and 2, and for d ≥ 3 we
have

gd

(
d2

2

)
=

d∑
k=0

(
d

k

)(
2

d2

)k
− 1− 2

d
− 2

d2

= − 2

d3
+

d∑
k=3

(
d

k

)(
2

d2

)k
≤ − 2

d3
+

d∑
k=3

1

k!

(
2

d

)k
≤ − 2

d3
+

1

d3
+

1

3d3
+

2

3

d∑
k=4

1

dk

≤ − 2

d3
+

d∑
k=3

1

dk
+

1

3d3

(
1−

d−3∑
k=1

1

dk

)

≤ − 2

d3
+

d∑
k=3

1

dk

≤ − 2

d3
+

2

d3
(46)
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and the conclusion follows.

Let u be a non-empty subset of {1, . . . d} and consider (Xj)j ∼ LH(n, d). We have the
following result

Lemma 6. If f is a square integrable function, we have

E
[
f(X1)f(X1

u,X
2
uc)
]

= E[Y ]2 + τ 2u +Bu,n (47)

where
−E[Y 2]

∑
∅6=v⊆uc
|v| odd

1

(n− 1)|v|
≤ Bu,n ≤ E[Y 2]

∑
∅6=v⊆uc
|v| even

1

(n− 1)|v|
. (48)

Proof. First due to the joint density of (X1
u,X

2
uc) under LHS — see McKay et al. (1979) or

Stein (1987) — we have

E
[
f(X1)f(X1

u,X
2
uc)
]

=

∫
f(x,x1)f(x,x2)

(
n

n− 1

)d−|u|∏
i∈uc

(
1− rn(x1i, x2i)

)
dxdx1dx2

=

(
n

n− 1

)d−|u| ∫ (∑
v⊆uc

(−1)|v|
∫
f(x,x1)f(x,x2)

∏
i∈v

rn(x1i, x2i)dx1dx2︸ ︷︷ ︸
I(x)

)
dx.

(49)

We now denote fx : y 7→ f(x,y) and then by (17) and (18) we have

I(x) =
∑
v⊆uc

(−1)|v|
∫
fx(x1)fx(x2)

∏
i∈v

rn(x1i, x2i)dx1dx2

=
∑
v⊆uc

(−1)|v|
∑
w⊆v

( 1

n

)|v|−|w| ∫
fx,w(x1w)fx,w(x2w)

∏
i∈w

rn(x1i, x2i)dx1wdx2w

=
∑
w⊆uc

(−1)|w|
(n− 1

n

)d−|u|−|w| ∫
fx,w(x1w)fx,w(x2w)

∏
i∈w

rn(x1i, x2i)dx1wdx2w . (50)

Hence by (21) we have for all w 6= ∅,

0 ≤
∫
fx,w(x1w)fx,w(x2w)

∏
i∈w

rn(x1i, x2i)dx1wdx2w ≤
∫
f 2
x,w(x1w)dx1w

n|w|
≤
∫
f 2
x(x1)dx1

n|w|
(51)

and note that ∫
fx,∅(x1∅)fx,∅(x2∅)

∏
i∈∅

rn(x1i, x2i)dx1∅dx2∅ = f 2
x,∅ . (52)

Finally, note that ∫
f 2
x,∅dx = τ 2u + E[Y ]2 (53)

and ∫ ∫
f 2
x(x1)dx1dx = E

[
Y 2
]

(54)
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and conclude that

E
[
f(X1)f(X1

u,X
2
uc)
]

=

(
n

n− 1

)d−|u| ∫
I(x)dx = τ 2u + E[Y ]2 +Bu,n (55)

with
−E[Y 2]

∑
∅6=v⊆uc
|v| odd

1

(n− 1)|v|
≤ Bu,n ≤ E[Y 2]

∑
∅6=v⊆uc
|v| even

1

(n− 1)|v|
. (56)

Lemma 7. The inequalities in Equation (48) imply that∣∣∣∣ ∑
w⊆uc

(
1

n

)|w|
Bu∪w,n

∣∣∣∣ ≤ (d− |u|+ 1

n
+ 1

)(
d− |u|+ 1

n− 1

)
E
[
Y 2
]
. (57)

Proof. By (48), we have

∑
w⊆uc

(
1

n

)|w|
Bu∪w,n ≤ E

[
Y 2
] ∑
w⊆uc

(
1

n

)|w| ∑
∅6=v⊆(u∪w)c

1

(n− 1)|w|

≤ E
[
Y 2
] ∑
w⊆uc

(
1

n

)|w|((
1 +

1

n− 1

)d−|u|−|w|
− 1

)

≤ E
[
Y 2
][(

1 +
1

n− 1

)d−|u|∑
w⊆uc

(
1

n

)|w|
−
∑
w⊆uc

(
1

n

)|w|]

≤ E
[
Y 2
][(

1 +
1

n− 1

)d−|u|(
1 +

1

n

)d−|u|
−
(

1 +
1

n

)d−|u|]
(58)

and the conclusion follows by applying twice Lemma 5.

2.2 Proof of Proposition 3.2

(i) The proof is divided into two parts. In the first one, we only consider continuous functions,
and in the second one, we extend the result to the larger class of functions such that f 4 is
integrable.

First part: Consistency is obvious as in Proposition 3.1, except for the term

1

n

n∑
j=1

Y j,RLHSY j,RLHS
u . (59)

So denote Z
j the Latin hypercube defined by

Z
j

=
bnZ′jc+ Uj

n
(60)
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where the Ujs are independent random vectors uniformly distributed in [0, 1[d independent
from all the permutations and shifts in the definition of (Z

′j)j, and b·c is the floor function. We
can write 1

n

∑n
j=1 Y

j,RLHSY j,RLHS
u = 1

n

∑n
j=1 f(Xj

u,Z
j
uc)f(Xj

u,Z
′j
uc) as

1

n

n∑
j=1

f(Xj
u,Z

j
uc)f(Xj

u,Z
j

uc) +
1

n

n∑
j=1

f(Xj
u,Z

j
uc)
(
f(Xj

u,Z
′j
uc)− f(Xj

u,Z
j

uc)
)
. (61)

The first term on the right-hand side is an estimator as described in Section 3.1. in the main
document since by the construction proposed in Eq. (60), (Zj)j=1..n and (Z

j
)j=1..n are two

independent LHS; so Proposition 3.1 states it converges to E[Y ]2 + τ 2u almost surely. The
second term on the right-hand side converges to 0 since, as f is bounded, — by continuity on
a compact — it is bounded by

sup |f |
n

n∑
j=1

∣∣∣f(Xj
u,Z

′j
uc)− f(Xj

u,Z
j

uc)
∣∣∣ (62)

and by uniform continuity of f — due to Heine-Cantor theorem — this quantity tends to 0 as
n tends to +∞. Thus the sum in the right-hand side, i.e. 1

n

∑n
j=1 Y

j,RLHSY j,RLHS
u , converges

to E[Y ]2 + τ 2u almost surely.

Second part: Since the space of continuous functions on [0, 1]d — denoted C
(
[0, 1]d

)
— is

dense in L4
(
[0, 1]d

)
, let (fm)m∈N∗ be a sequence in C

(
[0, 1]d

)
such that E

[
|fm(X) − f(X)|4

]
converges to 0 as m tends to +∞, where X is uniformly distributed on [0, 1]d.

Now let ε > 0 and M = M(ε) ∈ N∗ such that

E
[(
fM(X)− f(X)

)2]
<

ε2

65 E[f 2(X)]
. (63)

We can write 1
n

∑n
j=1 Y

j,RLHSY j,RLHS
u as

1

n

n∑
j=1

f(Xj
u,Z

j
uc)f(Xj

u,Z
j

uc) +
1

n

n∑
j=1

f(Xj
u,Z

j
uc)
(
fM(Xj

u,Z
′j
uc)− fM(Xj

u,Z
j

uc)
)

+
1

n

n∑
j=1

f(Xj
u,Z

j
uc)
(
f(Xj

u,Z
′j
uc)− fM(Xj

u,Z
′j
uc)
)

+
1

n

n∑
j=1

f(Xj
u,Z

j
uc)
(
fM(Xj

u,Z
j

uc)− f(Xj
u,Z

j

uc)
)
.

(64)

As noted in the proof of (i) in Proposition 3.1, the first term on the right-hand side of (64)
converges to τ 2u + E[Y ]2 almost surely as n tends to +∞ i.e.

P
(
∀ε > 0, ∃N1 ∈ N∗, ∀n > N1,

∣∣∣ 1
n

n∑
j=1

f(Xj
u,Z

j
uc)f(Xj

u,Z
j

uc)− τ 2u − E[Y ]2
∣∣∣ < ε

4

)
= 1 . (65)

Since fM is uniformly continuous on [0, 1]d, we have that

An = sup
1≤j≤n

∣∣fM(Xj
u,Z

′j
uc)− fM(Xj

u,Z
j

uc)
∣∣ (66)
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converges almost surely to 0 as n tends to +∞. Moreover, since f is integrable, we have that
1
n

∑n
j=1 |f(Xj

u)| converges to E
[
|Y |
]
as n tends to +∞. Hence

P
(
∀ε > 0, ∃N1 ∈ N∗, ∀n > N1,

∣∣∣ 1
n

n∑
j=1

f(Xj
u,Z

j
uc)
(
fM(Xj

u,Z
′j
uc)−fM(Xj

u,Z
j

uc)
)∣∣∣ < ε

4

)
≥ P

(
∀ε > 0, ∃N2 ∈ N∗, ∀n > N2, An

1

n

n∑
j=1

∣∣f(Xj
u,Z

j
uc)
∣∣ < ε

4

)
= 1 . (67)

For the third and the fourth terms on the right-hand side of (64), we apply twice the same
proof. First the Cauchy-Schwartz inequality gives

P
(
∀ε > 0, ∃N3 ∈ N∗, ∀n > N3,

∣∣∣ 1
n

n∑
j=1

f(Xj
u,Z

j
uc)
(
f(Xj

u,Z
′j
uc)−fM(Xj

u,Z
′j
uc)
)∣∣∣ < ε

4

)

≥ P
(
∀ε > 0, ∃N3 ∈ N∗, ∀n > N3,

( 1

n

n∑
j=1

f 2(Xj
u,Z

j
uc)
)1/2( 1

n

n∑
j=1

(
f(Xj

u,Z
′j
uc)−fM(Xj

u,Z
′j
uc)
)2)1/2

<
ε

4

)
.

(68)
Then note that 1

n

∑n
j=1 f

2(Xj
u,Z

j
uc) and 1

n

∑n
j=1

(
f(Xj

u,Z
j
uc) − fM(Xj

u,Z
′j
uc)
)2 converge almost

surely to E[Y 2] and E[(fM(X) − f(X))2] — where X is uniformly distributed on [0, 1]d —
respectively. And deduce that there exists N4 ∈ N∗ such that for all n > N4, we have
1
n

∑n
j=1 f

2(Xj
u,Z

j
uc) < 2 E[Y 2] and 1

n

∑n
j=1

(
f(Xj

u,Z
′j
uc)−fM(Xj

u,Z
j
uc)
)2
< 2 E[(fM(X)−f(X))2]

almost surely. As a consequence, deduce from Eq. (63) that

P
(
∀ε > 0, ∃N3 ∈ N∗, ∀n > N3,

∣∣∣ 1
n

n∑
j=1

f(Xj
u,Z

j
uc)
(
f(Xj

u,Z
′j
uc)−fM(Xj

u,Z
′j
uc)
)∣∣∣ < ε

4

)
≥ P

(
∀ε > 0, ∃N3 > N4, ∀n > N3, ε

√
4

65
<
ε

4

)
= 1 (69)

Finally, Eqs. (65–69) gives

P
(
∀ε > 0, ∃N ∈ N∗, ∀n > N,

∣∣∣ 1
n

n∑
j=1

Y j,RLHSY j,RLHS
u

∣∣∣ < ε
)

= 1 (70)

and we have the conclusion.

(ii) As in (i), the only term to treat is

1

n

n∑
j=1

Y j,RLHSY j,RLHS
u , (71)

so asymptotic normality is shown in the same way by using the decomposition in (61). We
always obtain the sum of a term already considered in Section 3 in the main document which
converges in law to a normal distribution and a term which converges to 0 in probability, and
the conclusion follows from Slutsky’s lemma. We only detail the proof for S̃

RLHS

u,n , it is exactly

11



the same for Ŝ
RLHS

u,n . So note that following the proof of (ii) in Proposition 3.1 and the notation
above, it is sufficient to show that

√
n

(
1

n

n∑
j=1

(
f(Xj

u,Z
j
uc)− E[Y ]

)(
f(Xj

u,Z
′j
uc)− f(Xj

u,Z
j

uc)
)) P−→

n→∞
0 (72)

to prove the asymptotic normality of S̃
RLHS

u,n .

So consider ε, η > 0 and prove that there exists N ∈ N∗ such that for all n > N , the quantity

P = P
(∣∣∣ 1
n

n∑
j=1

(
f(Xj

u)− E[Y ]
)(
f(Xj

u,Z
′j
uc)− f(Xj

u,Z
j

uc)
)∣∣∣ > ε

)
(73)

is less than η. First as f 6 is integrable, there exists a constant K > 0 such that P(|f(Xj
u,Z

j
uc)| >

K) < η/4. Hence

P ≤ P
((∣∣∣ 1√

n

n∑
j=1

(
f(Xj

u,Z
j
uc)− E[Y ]

)(
f(Xj

u,Z
′j
uc)− f(Xj

u,Z
j

uc)
)∣∣∣ > ε

)⋂(
|f(Xj

u,Z
j
uc)| ≤ K

))

+ P
((∣∣∣ 1√

n

n∑
j=1

(
f(Xj

u,Z
j
uc)− E[Y ]

)(
f(Xj

u,Z
′j
uc)− f(Xj

u,Z
j

u)
)∣∣∣ > ε

)⋂(
|f(Xj

u,Z
j
uc)| > K

))

< P
(
K + |E[Y ]|√

n

n∑
j=1

∣∣f(Xj
u,Z

′j
uc)− f(Xj

u,Z
j

uc)
∣∣∣ > ε

)
+
η

4
. (74)

Now note that the space of continuous functions on [0, 1]d, denoted by C([0, 1]d), is dense in
L6([0, 1]d) and let (fm)m∈N∗ be a sequence in C([0, 1]d) such that E[|fm(X)− f(X)|6] converges
to 0 as m tends to +∞ where X is uniformly distributed on [0, 1]d. It is easy to note that there
exists M = M(n) such that P(|fM(X)− f(X)| > 1/n) < η/4. Thus we get from Eq. (74) that

P <
4∑
i=1

P
((K + |E[Y ]|√

n

n∑
j=1

(
|fM(Xj

u,Z
′j
uc)− fM(Xj

u,Z
j

uc)|+ |fM(Xj
u,Z

′j
uc)− f(Xj

u,Z
′j
uc)|

+ |fM(Xj
u,Z

j

uc)− f(Xj
u,Z

j

uc)|
))⋂

Ai

)
+
η

4
(75)

where

A1 =
(
|fM(Xj

u,Z
j

uc)− f(Xj
u,Z

j

uc)| >
1

n

)
∩
(
|fM(Xj

u,Z
′j
uc)− f(Xj

u,Z
′j
uc)| >

1

n

)
(76)

A2 =
(
|fM(Xj

u,Z
j

uc)− f(Xj
u,Z

j

uc)| >
1

n

)
∩
(
|fM(Xj

u,Z
′j
uc)− f(Xj

u,Z
′j
uc)| <

1

n

)
(77)

and A3 and A4 are the complementary events of A1 and A2, respectively. So we deduce

P < P
((K + |E[Y ]|√

n

n∑
j=1

(
|fM(Xj

u,Z
′j
uc)− fM(Xj

u,Z
j

uc)|+ |fM(Xj
u,Z

′j
uc)− f(Xj

u,Z
′j
uc)|

+ |fM(Xj
u,Z

′j
uc)− f(Xj

u,Z
j

uc)|
))⋂

A3

)
+ P(A1) + P(A2) + P(A4) +

η

4

< P
(
K + |E[Y ]|√

n

(
2 +

n∑
j=1

|fM(Xj
u,Z

′j
uc)− fM(Xj

u,Z
j

uc)|
)
> ε

)
+ η. (78)
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Now by an other density argument, note that there exists a sequence of Lipschitz continuous
functions with constant 1, denoted (fM,q)q∈N∗ , such that sup[0,1]d |fM,q(x)−fM(x)| converges to 0
as q tends to +∞. Then there exists Q = Q(n) ∈ N∗ such that sup[0,1]d |fM,Q(x)−fM(x)| < 1/n
and deduce that

P < P
(
K + |E[Y ]|√

n

(
2 +

n∑
j=1

(
|fM,Q(Xj

u,Z
′j
uc)− fM,Q(Xj

u,Z
j

uc)|+ |fM,Q(Xj
u,Z

′j
uc)− fM(Xj

u,Z
′j
uc)|

+ |fM,Q(Xj
u,Z

j

uc)− fM(Xj
u,Z

j

uc)|
))

> ε

)
+ η

< P
(

5(K + |E[Y ]|)√
n

> ε

)
+ η. (79)

and the conclusion follows.

(iii) First note that since (Xj)j ∼ LH(n, d) and (Zj,Z
′j)j ∼ RLH(n, d), we have

Y j,RLHS = f(Xj,Zjuc) and Y j,RLHS
u = f(Xj

u,Z
′j
uc) (80)

with

Xj =

(
π′′1(j)− U ′1,π′′1 (j)

n
, . . . ,

π′′d(j)− U ′d,π′′d (j)
n

)
(81)

Zj =

(
π1(j)− U1,π1(j)

n
, . . . ,

πd(j)− Ud,πd(j)
n

)
(82)

and

Z
′j =

(
π′1(j)− U1,π′1(j)

n
, . . . ,

π′d(j)− Ud,π′d(j)
n

)
(83)

where the πis, the π′is, the π′′i s, the Ui,js and the U ′i,js are independent random variables uni-
formly distributed on Πn — see Definition 1 in the main document —, Πn, Πn, [0, 1] and [0, 1],
respectively. Moreover note that if for an index i in {1, . . . , d}, we have πi(j) = π′i(j) then
Zj
i = Z

′j
i ; and if πi(j) 6= π′i(j) then Ui,πi(j) and Ui,π′i(j) are independent and therefore Zj

i and
Z
′j
i are two distinct points of a Latin hypercube of size n in [0, 1]. For j ∈ {1, . . . , n}, denote

by e(j) the set of integers i ∈ uc such that πi(j) = π′i(j).

Thus we have E
[
Y j,RLHSY j,RLHS

u

]
equal to

1

n2d−|u|

∑
w⊆uc

∑
π′′u (j)∈
{1,...,n}|u|

∑
πuc (j)∈

{1,...,n}d−|u|

∑
π′uc (j)∈

{1,...,n}d−|u|

1{e(j)=w}

∫
f

(
. . . ,

π′′i (j)− u1i
n︸ ︷︷ ︸
i∈u

, . . . ,
πk(j)− u1k

n︸ ︷︷ ︸
k∈uc

, . . .

)
· · ·

f

(
. . . ,

π′′i (j)− u1i
n︸ ︷︷ ︸
i∈u

, . . . ,
πk(j)− u1k

n︸ ︷︷ ︸
k∈uc∩w

, . . . ,
π′l(j)− u2l

n︸ ︷︷ ︸
l∈uc∩wc

, . . .

)
du1du2(u∪w)c (84)

where for all i ∈ u ∪ e(j), πi(j) = π′i(j) and u1i(j) = u2i(j). And noting that

1

(n− 1)d−|u|−|w|nd

∑
π′′u (j)∈
{1,...,n}|u|

∑
πuc (j)∈

{1,...,n}d−|u|

∑
π′uc (j)∈

{1,...,n}d−|u|

1{e(j)=w}

∫
f

(
. . . ,

π′′i (j)− u1i
n︸ ︷︷ ︸
i∈u

, . . . ,
πk(j)− u1k

n︸ ︷︷ ︸
k∈uc

, . . .

)
· · ·
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f

(
. . . ,

π′′i (j)− u1i
n︸ ︷︷ ︸
i∈u

, . . . ,
πk(j)− u1k

n︸ ︷︷ ︸
k∈uc∩w

, . . . ,
π′l(j)− u2l

n︸ ︷︷ ︸
l∈uc∩wc

, . . .

)
du1du2(u∪w)c (85)

is equal to E
[
f(X1)f(X1

u∪w,X
2
(u∪w)c)

]
, Lemma 6 gives

E
[
Y j,RLHSY j,RLHS

u

]
=
∑
w⊆uc

(
1

n

)|w|(
E[Y ]2 + τ 2u∪w +Bu∪w,n

)
. (86)

By Lemmas 5 and 7, and noting that E[Y ]2 + τ 2u∪w ≤ E[Y 2], we obtain

E
[
Y j,RLHSY j,RLHS

u

]
= E[Y ]2 + τ 2u +B|u|,n (87)

where ∣∣B|u|,n∣∣ ≤ (d− |u|+ 1

n
+ 2

)(
d− |u|+ 1

n− 1

)
E[Y 2] . (88)

Following the same proof, it is easy to show that for j 6= l, we have

E
[
Y j,RLHSY l,RLHS

u

]
= E[Y ]2 +Bn,1 (89)

where

∣∣Bn,1

∣∣ ≤ (d+ 1

n
+ 2

)(
d+ 1

n− 1

)
E[Y 2] . (90)

Thus noting that

E
[
τ 2,RLHSu,n

]
=
n− 1

n
E[Y 1,RLHSY 1,RLHS

u ]− n− 1

n
E[Y 1,RLHSY 2,RLHS

u ] (91)

we conclude that
E
[
τ̃ 2,RLHSu,n

]
= τ 2u −

1

n
τ 2u +

n− 1

n

(
Bn,1 +B|u|,n

)
(92)

where the biases are O(n−1) as specified in Proposition 3.2. Concerning σ̃2,RLHS
n , note that

σ̃2,RLHS
n = σ̃2,LHS

n and the conclusion follows from (iii) in Proposition 3.1. Concerning τ̂ 2,RLHSu,n

and σ̂2,RLHS
n , we have E

[(
1
n

∑n
j=1

Y j,RLHS+Y j,RLHS
u

2

)2
]
equal to

1

4n
E
[
(Y 1,RLHS + Y 1,RLHS

u )2
]

+
1

4n2

n∑
j=1

n∑
l=1
l 6=j

E
[
(Y j,RLHS + Y j,RLHS

u )(Y l,RLHS + Y l,RLHS
u )

]

=
1

2n

(
E
[
(Y 1,RLHS)2

]
+E[Y 1,RLHSY 1,RLHS

u ]
)

+
n− 1

2n

(
E[Y 1,RLHSY 2,RLHS]+E[Y 1,RLHSY 2,RLHS

u ]
)
.

Then using notation introduced in Section 3 in the main document, note that

E
[
Y 1,RLHSY 2,RLHS

]
= E

[
Y 1,LHSY 2,LHS

]
= Cov

(
Y 1,LHS, Y 2,LHS

)
+E[Y ]2 = Cov

(
Y 1,LHS, Y 2,LHS

{1,...,d}
)
+E[Y ]2

and by (88), (90) and Lemma 4, we deduce

E

[(
1

n

n∑
j=1

Y j,RLHS + Y j,RLHS
u

2

)2
]

=
1

2n
τ 2u + E[Y ]2 +Bn,1 +Bn,2
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where
|Bn,2| ≤

σ2

2n
(93)

and Bn,1 is specified in (90). Then it is easy to conclude that

E
[
τ̂ 2,RLHSu,n

]
= τ 2u −

1

2n
τ 2u +Bn,1 +Bn,2 +

n− 1

n
B|u|,n (94)

E
[
σ̂2,RLHS
n

]
= σ2 − 1

2n
τ 2u +Bn,1 +Bn,2 (95)

where the biases are O(n−1) as specified in Proposition 3.2.
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