Detailed proofs of Propositions 3.1 and 3.2

1 Proof of Proposition 3.1

NB: integration sets are generally omitted for integrals defined over a unit hypercube [0, 1}
with any s < d.

We first give four lemmas. The proof of Proposition 3.1 is presented in Section 1.2.

1.1 Technical lemmas
Let X! and X2 two distinct points of a Latin hypercube of size n in [0, 1]¢. For any function

f defined on [0,1]%, consider YA = f(X1) and Y?E1S = f(X?). In Theorem 1 in Stein
(1987), Stein gives the following result

Theorem 1. If f is a square integrable function then as n tends to +o0o, we have
1
Co Yl,LHS,YZ,LHS - _ 2_'_0 n*l 1
X )= 2ot ol (1)

with o? = Var[E[Y\Xi]], i=1,....d, Y = f(X), X uniformly distributed on [0, 1]%.

In this subsection, we prove an analogous result with more general settings and without the
asymptotic assumption on n (see Lemma 4 below).

Notation and definitions For s and n in N*, define the partition of [0,1)® in elementary
hypercubes of side 1/n,

)
n

Q.(n) = {QQ 0. | @=[Tlaw 8, e {0.5,.... ==}, @:oﬁ%}. &)

For any square integrable function g defined on [0,1)%, s < d, define the sequence with general

- wio) = 3 ([ aix) e )

Q€Qs(n)

Outline The first lemma is the analogous result for Lebesgue integrability of a result given in
Equation (A.4) in Stein (1987) for Riemann integrability. The second lemma gives an important
inequality which allows to work without asymptotic assumption on n. The third one consists
in simplifying integrals under LHS using the ANOVA decomposition. Lemma 4 provides the
expected inequalities.

Lemma 1. Let s € N*. If g is a continuous function on [0,1]%, the sequence (un(g)) converges
to [ g*(x)dx as n tends to +oo.



Proof. Noting that
w(9) = [ g2 (1

where )
e = 5 (0 [ aiy) 1000 5)
QEQ.(n) <
2
We can rewrite g, as g2(x) = (n fQ > , where Q) is the set @ in Q4(n) containing x.

We now prove that ||g, — gHOO —= 0. Indeed, as ¢ is continuous on a compact, it is uniformly
n—-+0oo

continuous on this compact. Thus g, () — =n* [(g( z))1g(x)dy converges uniformly
to zero. From this latter convergence, we also deduce that for n large enough, g2 < ¢g*+ 1. We
then conclude by applying the dominated convergence theorem, as f[o e (¢*(x) + 1)dx < oo.

]

Lemma 2. The sequence (u,(g)) is dominated by [ ¢*(x)dx

Proof. Let n € N*| the result is proved by showing that the sequence of general term vg(g) =
Ugk, (g) is increasing. In this case, by Lemma 1, we have limv,(g) = [ ¢*(x)dx, and since vy, is
1ncreasmg, all the terms of this sequence are dommated by [ g* g x)dx, hence vo(g) = un(g) <
[ ¢*(x)dx. To prove that the sequence (vk(g)) is increasing, note that

oenlg) = @) Y ( /Q g(X)dX)2

QEQS(2k+1n)
2
@ Y (2 O ( / g<x>dx) (6)
Q€Q,(2kn) PeP(Q2k+1n) VT

where P(Q, 2" n) = Q(2*"!n) N Q. Then by Jensen inequality, we have
2 2
2° Z (/ g(x)dx) > (/ g(x)dx> (7)
Pep(Q2k+in) NV T Q

and we conclude that v 1(g) > vk(g). O
For 0 < z1, x5 <1 define

1 if =
o) = { G hirae, " ®

where [-] is the floor function. We now end with the following result

Lemma 3. Let v be a subset of {1,...,d}, we have

/f X1 X2 HTn 3?11,3721 Xmdxz /me X1w fm Xow HT’n 371173321 XmdXQ . (9)

€0 wCo S



Proof. By the ANOVA decomposition, we have

/f(Xl)f(X2) H T (14, T2i)dXx1dxy = / Z Z fror (X1, ) fros (X2m, ) Hrn(xliu T )dx1dxs .
icv w1 C{1,..,d} 02C{1,...d} icv
(10)
Then note that a certain number of terms in the member on the right-hand side vanishe. If
(01 No°)U (2No°) # () then suppose without any loss of generality that there exists & € wy \ v.
We have

/fml(Xml)fmz(XmQ)HTn($1i,$2i)dX1dX2 = / (/fml(xlml)dxlk) fmz(Xng)Hrn(xliain)dxl{k}CdXQ

1€0 / €D

-

I

(11)
and note that, by a basic property of the ANOVA decomposition, I; = 0. If (ro;N0¢)U(toeNo¢) =
() and w7 # 1oy, then suppose without any loss of generality that there exists k& € w; \ ,. In
this case, we have

/ fm1 (lel)me (X2m2) H Tn(ﬂfli, ﬂfzi)XmdXQ

€D

:/(/fml(lel)Tn(Jflk»fm)dfmdfm) fmz(X2m2)< 11 Tn(l’u,$2¢)>dxl{k}cd><2{k}c (12)

~ v iEU\{k)}

-

1P

and note that by the definition of r,, we have

/ Foon Kty )P (11 30 ) sy, — / Fo (X, )l (13)

and thus I, = 0. The conclusion of the lemma follows. O

Let u be a non-empty subset of {1,...d} and consider (X’); ~ LH(n,d) and (Z7); ~
LH(n,d). For any function f defined on [0, 1]¢, consider

YU = f(XY) and YEHS = f(X2Z5) (14
We have the following result

Lemma 4. If f is a square integrable function then we have

2 2

Z On 1,LHS ~,2,LHS Z O
DA Cu P#roCu
[w| odd || even

Proof. Recall that for 0 < xy, x5 <1,

1 if =
v ={ 5 oehermtbe, (16
where |-] is the floor function. For x; = (z11,...,714) in [0,1)4, define x;, = (71, .. . ’xli\xﬂ)
where v = {iy,...,7;y}. Due to the joint density of (X}, X?2) under LHS — see McKay et al.
(1979) or Stein (1987) — and by Lemma 3, we have

Cov(Yl’LHS,Yf’LHS)—i—( / f(X)dX)2 = / f(xl)f(m)(

n

|l
]_) H (1_Tn<x1iax2z‘))dxldx2

€U

n

3



— (n ﬁ 1) . Z(—l)“" /f(Xl)f(XQ) Hrn(mli,xgi)dxld)cg

- (nﬁ1>u§(_1)n/ngfm(xlm>fm(x2m)grn(%i,x%)dxldxg
_ (ni1>uz(_1)nz<%>n|ml/fm(xlm)fm(xzm)Hrn(g;“,g;zi)dxlde%_ (17)

Then note that for any function of tv denoted by A(w), we have

S () = T () S ()
_ Z Mi' (!u\;{jlm\x_%)kﬂm (%)lmlA(m)

= > (5 1)u_‘ﬁnl<—1)'"’f4<m> (18)

Hence, we deduce that

||

Cov (Y LEHS 'y 2LHSy — ;l (n i 1) (=1 /fm(X1m)fm(X2m) g'f’n(iﬁ1i7$2i)dx1md><2m -
0

(19)

Finally by the definition of r,, we have

0< /fm(le)fm(X2m)Hrn(mlhx%)dxlmdxm < Z )(/Qfm(xlm)dxlm>2 (20)

i€ QEQn|(n
and by Lemma 2, this gives
2
o
0< /fm(X1m)fm(X2m) Hrn(xliux%)dxldeQm < n|_:’]| : (21)
1€
The latter inequalities and (19) lead to Lemma 4. O

Remark 1. Note that if u={1,...,d}, the resulting inequalities are

2 2

O 1,LHS v 2,LHS O
- z:@ mSCov(Y V) < Z:@ (n— 1)kl (22)
\mrT#odd \m‘r;:ven

This consists of a non-asymptotic equivalent of the theorem due to Stein presented at the begin-
ning of this section.

1.2 Proof of Proposition 3.1

(i) This is a consequence of the strong law of large numbers for LHS given in Theorem 3 in Loh
(1996).



(ii) The proof consists in translating the original proof given for simple random sampling —
~LHS
see Proposition 2.2 in Janon et al. (2013) — for LHS. Concerning S

Syn 1t s easy to show that

S = a(V,) (23)

Pun
where V,, = =y 'V and V; equal to

T

(= — B[Y)) (V£S5 BIY]) , Y95~ E[Y], 45~ E[Y], (V#H5S — B[Y]))

and with ®(z,y, z,t) = 7=% . Then we deduce from Theorem 2 in Loh (1996) that

-y

Vi (Vo — 1) = Ni(0,T) (24)
where p = (72,0,0,02%)" and T is the covariance matrix of Ry = V| — A; — see details in Eq.
(3) in Loh (1996) — defined by

Vie {1,...,4}, Ajy; is the additive part — see (2) in the main document — of V3; . (25)

Thus the Delta method — see Theorem 3.1 in Van der Vaart (1998) — gives

~LHS

c
\/ﬁ(ﬁu,n - ﬁu) rjo NI (07 gTrg) (26>
where g = V®(u). Developing the term ¢g”T'g does not seem to provide any useful information.
However, denoting o7 ;¢ this term, and o%;,, the analogous quantity in the CLT for simple
random sampling, we can show that 0% ;¢ < 0%,5,. Indeed we first note that, for simple random
sampling, the variance given in Janon et al. (2013) reads

9 Var[Vi; — S, Vi)

Or1p = 2 (27)

and for LHS, it is easy to show that

9 Var [Rn - ﬁuRM}

Orgs = o2 . (28)

Hence
Var [All — ﬁuAld

o2

(29)

2 _
O1rp = 0rps +

~LHS ~LHS
and the conclusion of (ii) for S, follows. Concerning S the proof follows the same lines

— see Proof of (10) in Janon et al. (2013) for details. o

(iii) First we have

~ 1 n ' ' 1 n n .
E[Iisz/HS] _ an ZE[Y],LHSY;],LHS} o F ZZE[YJ7LHSY37LHS}
j=1 j=1 1=1
I#j
-1 -1
= T (BIYP + 72) = T (Cov(yHHIS Y2EES) L EY]E)  (30)
n n

5



E

and thanks to Lemma 4, this gives

E[7on "] = 72 + Bux (31)
with X
_ < B, <0. 32
n— 17-u ! (32)
Concerning 6279 we have
~2 LHS1 _ N — 1 LHS 1 v LHS~/I,LHS
Bzl = " LS m[raey] - LYy mpysesytens
j=1 j=1 1l=1
J
1 1
= TE[Y?) - T (Cov(Y IS, yRLIS) L E[Y]?) (33)
and noting that
COV(YI LHS Y2 LHS) COV(Yl ,LHS }/t{Ql’LI”I‘S}V) (34)
we conclude that
E[62"5] = 0® + By (35)
with X
— 0°<B,2<0 (36)
n —_—
As for 7'2 LHS and 62115 we have
1 Y]LHS+Y]LHS 2
o)
7=1
1 1,LHS 1,LHS ¢ LLHS LHS\ (v\l,LHS ILLHS
= EE[(Y + Y REAS)] 4 4n2ZZE [(VIEAS 4y LHS) (yLLHS |y LLHS)]
7j=1 Il=1
I#5
1 -1 -1
= o (E[Y2]+T L E[Y] ) - E[Y]2+ n . <COV(Y1,LHS’Y2,LHS)+COV(Y1,LHS7Y112,LHS)>
1 1
= (0 22) +EIJ? + "= (Cov(y1HHS, Y REAS) 1 Coy(y LEHS Y 2EHS)) (37)
n n

Then it is easy to conclude that

B[] = i+ Buy

E[62"'5] = 0%+ By,;
with

1

- (o < B,3<0.

2 Proof of Proposition 3.2

We first give three lemmas. The proof of Proposition 3.2 is presented in Section 2.2.



2.1 Technical lemmas

Lemma 5. Let d € N*, if n > % then

1\? d+1
(1+—) < (41)
n n
Proof. If d = 1, the result is obvious. Otherwise, for any x > 0, consider the function g, defined
by
1\° d+1
=(1+—-) —1-— . 42
aite) = (1 1) . (42)

We show that
(a) if there exists xy > 0 such that gq4(z¢) < 0 then for all = > ¢, ga(z) <0
(b) ga(d?/2) <0

and the conclusion follows. Concerning (a) note that

d d 1 1
=14+ - )l - 2= - 4
gal@) =1+~ +0@?) ~1- =~ — =~ 4 0(x™) (43)

and then that g, is negative as x tends to +o00. Moreover for any d > 1, g, is first decreasing
and then increasing. Indeed, we have

d)y(x) = —i(1+1>d1+ s (44)

T2

Ty = >0 (45)

and is negative on the left-hand side and positive on the right-hand side. The conclusion of (a)
follows. Concerning (b), it is easy to check that it is true for d = 1 and 2, and for d > 3 we

have
a2 CoraN /2\" )
- ) = ) 12 =
942) ;KQ(@) i~ &

k=3
d
2 1 2 1
—‘$+$+?ﬁﬁgﬁﬁ
d d—3
2 1 1 1
S —EtlwtaE\lc %)
k= k=1
d
2 1
< ETlg
k=3
2 2
S et (46)



and the conclusion follows.

]

Let u be a non-empty subset of {1,...d} and consider (X7); ~ LH(n,d). We have the

following result

Lemma 6. If f is a square integrable function, we have
E[f(X) (X X5)] =E[Y]* + 2+ Bun

where

1 1
o 2 - 2 -
E[y? Y =y < Ban <EY?Y Y TR
(T o e

(47)

(48)

Proof. First due to the joint density of (X1, X2) under LHS — see McKay et al. (1979) or

Stein (1987) — we have

n d—|u|
E[ﬂXl)f(XLlu Xﬁ)] = /f(X,Xl)f(X7X2)( ) H (1 - Tn(ﬁlu 272i))dXdX1dX2

n—1

= (nil>d_|u|/ (Z(—1)|°/f(Xaxl)f(XaX2)Hrn(%u@i)dxld&

vCuc S
NS

J/

1(x)

We now denote fyx :y — f(x,y) and then by (17) and (18) we have

I(x) = Z<_1)|DI/fx(Xl)fx(X2>Hrn(xlial'Qi)dxldXZ

vCuc S
1 lol—=Iw]
= Z(_l)MZ (‘) /fx,m(le)fx,m(X2m)H'f’n(xu,%%)dxmdxm
vCuc wCo n 1€

= Z (_1>|m| (n__1>d—u—|m| / fx,m (le)fx’m (X2m) H Tn(xu, IQi)dxldeQm .

n ;
roCuc 1€

Hence by (21) we have for all w # (),

J Fw(am)dxin _ [ f2(x1)dx

nlwl - nlwl

0< /fx,m (X1r) fr,r0 (Xomw) Hrn(xliain)XmdeQm <

icto
and note that
/fx,@(xm)fx,@(xzﬂ) Hrn(xlia Tai ) dxX1pdXop = ff,@ -
i€
Finally, note that
[ Fradx =2+ BT

and

| [ frexiax = B[y

(51)

(52)

(53)

(54)

Jax

(49)



and conclude that

n d—|u]
B = (1) [1ac= v EVP 4B, 69
with . )
~E[Y?] ) 1) < Bun <E[Y?] ) R (56)
0#£0Cuc P#0Cuc
|v] odd |v| even
]

Lemma 7. The inequalities in Equation (48) imply that

B e () (2

n n—1
roCuc

Proof. By (48), we have

1 [ro] ) 1 |ro 1
2 (5) meme < 2L () T
0#£0C (uUto)©

o Cuc roCuc

<Y (D) () )

sp (1 4) > (5 )" > ()]
SE[YZ]KH—niJ ( ) ) } (58)

and the conclusion follows by applying twice Lemma 5. [

IN

2.2 Proof of Proposition 3.2

(i) The proof is divided into two parts. In the first one, we only consider continuous functions,
and in the second one, we extend the result to the larger class of functions such that f* is
integrable.

First part: Consistency is obvious as in Proposition 3.1, except for the term
1 e, ,
- Z y#RLHSy.RLHS (59)
j=1
So denote Z' the Latin hypercube defined by

i _ |nZ"7] 4+ U7

- (60)



where the U’s are independent random vectors uniformly distributed in [0,1[? independent
from all the permutations and shifts in the definition of (Z7);, and |-] is the floor function. We

can write + Z ' YRRLASYJRLAS — 1 oo F(X, Z1.)f(Xi,Z.3) as
OS2 S0 B Y 2 (502 - ) o

The first term on the right-hand side is an estimator as described in Section 3.1. in the main

document since by the construction proposed in Eq. (60), (Z7);-1., and (Zj)jzl,,n are two
independent LHS; so Proposition 3.1 states it converges to E[Y]? + 72 almost surely. The
second term on the right-hand side converges to 0 since, as f is bounded, — by continuity on
a compact — it is bounded by

wlfly S|zt - 10 2L (62)

and by uniform continuity of f — due to Heine-Cantor theorem — this quantity tends to 0 as
n tends to +o0o. Thus the sum in the right-hand side, i.e. %Z?:l YHRLASY J.RLHS - converges
to E[Y]? + 72 almost surely.

Second part: Since the space of continuous functions on [0, 1] — denoted C([0,1]%) — is
dense in L*([0,1]%), let (fm)men= be a sequence in C([0,1]%) such that E[|f,,(X) — f(X)[*]
converges to 0 as m tends to +o00, where X is uniformly distributed on [0, 1]¢.

Now let € > 0 and M = M(e) € N* such that

2

E[(fM(X) - f(X))z] < m (63)
We can write = 2 ' YIRLASYJRLHS o
' Z %4, Z40) XL, Zhe) + % 1042 (0K ) = (X4 Z20)
b3 P0G 20 (PO 20 — S (X4, 20 + Zf (X4 2) (P (XL ) — F(XLT) ).

J=1

(64)

As noted in the proof of (i) in Proposition 3.1, the first term on the right-hand side of (64)
converges to 72 + E[Y]? almost surely as n tends to +oo i.e.

1 & o .
IP’(Vs >0, 3N, € N*, ¥n > N}, ’EZf(X{l,Zﬂc)f(Xﬂ,Zﬁc) — 72 —E[Y]2‘ < Z) —1. (65)

j=1
Since fy is uniformly continuous on [0, 1]¢, we have that

Ay = sup | fu(X3Z0) — fu(Xd ZL)

1<j<n

10



converges almost surely to 0 as n tends to +00. Moreover, since f is integrable, we have that
%Z?ﬂ | f(X3)| converges to E[|Y[] as n tends to +oc. Hence

P(Ve >0, 3N, € N*, Vn > Ny,

Zf zi(f O )t X.Z0)| <)
> P(ve>0, TN, €N, > N, A, Z\f (XL 7)< )
N

~ 1. (67)

For the third and the fourth terms on the right-hand side of (64), we apply twice the same
proof. First the Cauchy-Schwartz inequality gives

€

P(Va >0, 3N; € N*, Vi > N, Zf (X3, Z0.) ( X{;,z;f;)—fM(Xﬁ,zifg))‘ < 1)

1

> IP’(VE >0, IN; € N*, ¥n > N, ( Zf2 (X3, Z3, )1/2(_i (f(Xﬂ,Z;jc)—fM(Xﬂ,Z;jc))2>1/2 <

n -

(68)
Then note that + ", f*(XJ, Zl.) and Ly (X, Zl) — fau(XI, Z;];))Q converge almost
surely to E[Y?] and E[(fy(X) — f(X))?] — where X is uniformly distributed on [0, 1]%
respectively. And deduce that there exists Ny € N* such that for all n > N4, we have
n ) . n S ) .\ 2
g fA(XY Zye) < 2E[Y?and 5300 (F(XL Zie) — fu (XY, Ze))™ < 2 E[(fur(X) = £(X))?]

almost surely. As a consequence, deduce from Eq. (63) that

P(vg >0, IN; € N*, Vn > Ny, Zf (X3, Z3,) ( F(X, zif;)—fM(X{;,zifg))‘ < 2)
4
> P(v5>o, 3Ny > Ny, ¥ > Ny, ey = < 2
= 1 (69)
Finally, Egs. (65-69) gives
1 e . .
P(ve >0, AN €N, V> N, |= 37 yIEASy LS| < o) (70)
n
j=1
and we have the conclusion.
(ii) As in (i), the only term to treat is
l Z Yj,RLHSyj,RLHS (71)
n " ’

J=1

so asymptotic normality is shown in the same way by using the decomposition in (61). We
always obtain the sum of a term already considered in Section 3 in the main document which
converges in law to a normal distribution and a term which converges to 0 in probability, and

~R
the conclusion follows from Slutsky’s lemma. We only detail the proof for S, ,, it is exactly

11
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~RLHS
the same for S, . So note that following the proof of (ii) in Proposition 3.1 and the notation
above, it is sufficient to show that

n

\/a(% S (F(XI,Ze) — BIY]) (F(XE, Z) — f(XﬁazﬂJ)) —0 (72)

n—oo
j=1
. . ~RLHS
to prove the asymptotic normality of S, , .

So consider €, > 0 and prove that there exists N € N* such that for all n > N, the quantity
j=1
is less than 7. First as f© is integrable, there exists a constant K > 0 such that P(| (X7, Z.)| >
K) < n/4. Hence

((‘ Vi Z F(X3,Z4) = BIY)) (F (X3 Zd) = [(X3,Z00))| > ) () (15 (XL Z)] < K))

+P((\ fz FX4. ) E[Y])(f(Xﬁ>ZLJé)—f(Xﬁ,Zﬂ))‘>6>ﬂ(|f(Xf;,Zf;c>|>K))

>5)+

Now note that the space of continuous functions on [0,1]%, denoted by C([0,1]%), is dense in
L5(]0,1]¢) and let (f,)men+ be a sequence in C([0, 1]?) such that E[| f,,(X) — f(X)|%] converges
to 0 as m tends to +oo where X is uniformly distributed on [0, 1]%. Tt is easy to note that there
exists M = M (n) such that P(| far(X) — f(X)| > 1/n) < n/4. Thus we get from Eq. (74) that

P < ZP((K+|E ‘Z | Far(XE, ZE) — far (X2, 7o)

>3

v |fM<Xz;,Zic>—f<Xf;,2ic>))ﬂAi)+Z (75)
where

A = (X Zo) — L Z] > 1) 0 (1K ZE) — 1L 23| > 5)  (76)

A = (L2~ FOG 20| > 1) 0 (KL ZE) - FXL 20 < 1) (7D

and Az and A, are the complementary events of A; and A,, respectively. So we deduce

po< p((BEEES (17000 220 - 1O B+ U (X4, 2 - 5064 22)
b 12 ~ FOLZN) (V4 ) + (A + P(Ag) + B(4) +
IP’(K+|E (2+Z!fMXJZJ s (Xﬂ,Zﬁc)\>>e)+n. (78)

12
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Now by an other density argument, note that there exists a sequence of Lipschitz continuous
functions with constant 1, denoted (farq)qen+, such that supy qya | fare(x) — far(x)| converges to 0
as ¢ tends to +oo. Then there exists QQ = Q(n) € N* such that supyg jja | far.(x) — fu(x)] < 1/n
and deduce that

7 -

K + |E[Y y o o |
P < IP’( | (2+Z (Ifvo(X3,Z2) — fao(X3, Zoo) | + | fuo(X3, ZE) — fau(X2,Z.0))|

+—uMmXLZb—fMa¢Zin)>a)+n

5K + [EY) _ _
IP’( NG > ) + 1. (79)

and the conclusion follows.

(i) First note that since (X7); ~ LH(n,d) and (Z7,Z"7); ~ RLH(n, d), we have

Yy RLHS _ f(X7, Zﬂ) and K{’RLHS = f(X], Z;j) (80)
with ,,( ) U’ ( ) U
TG = U =
XJ:( 1 1,1(3)7”'7 d, (])) (81)
n n
i _ (m(j) —Uim(y) L Ta(j) — Udﬂw(j)) (82)
n n
and Iy (s
g (AUt S Do) 3
n n

where the 7;s, the ms, the s, the U; js and the U] ;s are independent random variables uni-
formly distributed on II,, — see Deﬁmtlon 1 in the main document —, I1,,, I1,,, [0, 1] and [0, 1],
respectively. Moreover note that if for an index i in {1,...,d}, we have m;(j) = 7i(j) then
Z) = Z7: and if m(j) # (j) then Uir,(j) and Uj ;) are independent and therefore Z) and
Zi] are two distinct points of a Latin hypercube of size n in [0,1]. For j € {1,...,n}, denote
by e(j) the set of integers ¢ € u® such that m;(j) = wi(j).

Thus we have E[Y7RLHSY RLES] oqual to

(5

n2d|u|z Z Z Z Lie()= m}/f( jTi(J)n_u”,...,ﬂ’“(j)_“”f,m>...

n
mCuC 7.‘./l ﬂ.uc )e 7T e ~~ > L. ~ >
{1,.., n}lul {1,...,n}%= Jul {1, n}d Jul €U keu

nes ' N A
f(...,w,...,ﬂ-k(j) um,...,ﬂ-l(]) u2l,...>du1du2(uUm)c (84)
n n n
\w_./ (. ~ N -~ ,
S kEucnm lEucNe

where for all i € uUe(j), m(j) = 7.(j5) and uy;(j) = ug(j). And noting that

"(

(n—ldlul ol y,d Z Z Z 1ee()= m}/f( MM)

T (J)E e (f)€ ()€ — —
{1, n}|u| {1,...,n}d=lul {1,..n}4= u| icu keuc
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nes\ . N\ s\
f(...,M,...,”’“U) vk ml) qu,...)dulduQ(uUm)C (85)
n n n

N s A - 7 A\ - >
ST keucnmw leucnro¢
is equal to E[f(X") f(Xium: Xfyum)e)]» Lemma 6 gives
 RLHSvj,RLHS 1\ 2, 2
E[y#REHSyJREAS] — (E) (]E[Y] + Tuow + Buum,n) : (86)

toCuc

By Lemmas 5 and 7, and noting that E[Y]? + 72, < E[Y?], we obtain

E[ijRLHSY;j,RLHS} — E[Y]2 +I§ 4 B|u|7n (87)
where 4 . p .
— Ju| + —jul+
Bual < (T o) (M gy 9
n n—1
Following the same proof, it is easy to show that for j # [, we have
E[yj,RLHSY;l,RLHS} _ E[Y]Q + Bn,l (89)
where
d+1 d+1
|B,.| < < Ty 2) ( + )E[Y?] . (90)
n n—1
Thus noting that
E[LZI,T}L%LHS} _n- 1E[Y1,RLHSY;1,RLHS] _n-= 1E[Y1,RLHSY;2,RLHS] (91)
’ n n
we conclude that . |
E[Z28H15) = 12 — 12 + "= (Bus + By») (92)
’ n n
where the biases are O(n™!) as specified in Proposition 3.2. Concerning >##5 note that
o2RLHS — G2LHS and the conclusion follows from (iii) in Proposition 3.1. Concerning 72 RLHS
2
and g2PLHS  wwe have E ( > YJ,RLHs_;YuJ,RLHS) ] equal to
1
~ R[(yLRLHS | y1.RLHS E (Y#RLHS | yi.RLHS)(yLRLHS | yLRLHS
E[( + YRS W;; + I + )
I#]

— %<E[(Y1,RLHS)2]_{_E[Yl,RLHSKll,RLHS])_‘_nQ__nl(E[Yl,RLHSYZRLHS]_|_E[Y1,RLHSYL27RLHS]>'
Then using notation introduced in Section 3 in the main document, note that

E[yl,RLHSyQ,RLHS] — E[yl,LHSyQ,LHS} — COV(YLLHS,YZ’LHS)—i—]E[Y] COV(YI ,LHS }/{217[/}71;'})—’_1['2[}/]2

and by (88), (90) and Lemma 4, we deduce

. (1 n yj,RLHS_i_Kj,RLHS)?] 1

— — 2+ E[Y] + By + B,
n i 2 2nL‘+ Y1+ Buy + Bna

14



where )

o
B, s < — 93
|Bpa| < o (93)

and B, ; is specified in (90). Then it is easy to conclude that

n—1

. 1

]E[_iszHS} = Iz - %Iﬁ + Bn,l + Bn,Z + B\u\,n (94)
A 1

E [O-g,RLHS} = o2 — %Iﬁ + B,1+ By (95)

where the biases are O(n™') as specified in Proposition 3.2.
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