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Abstract

This paper deals with the switched linear regression problem inherent in hybrid system identification. In
particular, we discuss k-LinReg, a straightforward and easy to implement algorithm in the spirit of k-means
for the nonconvex optimization problem at the core of switched linear regression, and focus on the question
of its accuracy on large data sets and its ability to reach global optimality. To this end, we emphasize the
relationship between the sample size and the probability of obtaining a local minimum close to the global
one with a random initialization. This is achieved through the estimation of a model of the behavior of this
probability with respect to the problem dimensions. This model can then be used to tune the number of
restarts required to obtain a global solution with high probability. Experiments show that the model can
accurately predict the probability of success and that, despite its simplicity, the resulting algorithm can
outperform more complicated approaches in both speed and accuracy.

Keywords: switched regression, system identification, switched linear systems, piecewise affine systems,
sample size, nonconvex optimization, global optimality

1. Introduction

This paper deals with hybrid dynamical system identification and more precisely with the switched
linear regression problem. In this framework, a set of linear models are estimated in order to approximate a
noisy data set with minimal error under the assumption that the data are generated by a switched system.
We consider that the number of linear models is fixed a priori. Note that, even with this assumption,
without knowledge of the classification of the data into groups associated to each one of the linear models,
this problem is NP-hard [1] and is thus naturally intractable for data living in a high dimensional space.
However, even for data in low dimension, algorithmic efficiency on large data sets remains an open issue.

Related work. As witnessed by the seminal works [2, 3, 4, 5, 6] reviewed in [1], the switched regression
problem has been extensively studied over the last decade for the identification of hybrid dynamical systems.
While methods in [3, 4] focus on piecewise affine systems, the ones in [2, 5, 6] equivalently apply to arbitrarily
switched systems. Due to the NP-hard nature of the problem, all methods, except the global optimization
approach of [4], yield suboptimal solutions in the sense that they are based on local optimization algorithms
or only solve an approximation of the original nonconvex problem. However, each approach increased our
understanding of hybrid system identification with a different point of view. By studying the noiseless
setting, the algebraic approach [2, 7] showed how to cast the problem as a linear system of equations.
The clustering-based method [3] proposed a mapping of the data into a feature space where the submodels
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become separable. The Bayesian approach [5] analyzed the problem in a probabilistic framework, while the
bounded-error approach [6] switched the focus by investigating the estimation of the number of modes for a
given error tolerance. Each one of these offers a practical solution to deal with a specific case: noiseless for
[2], with few data for [4], with prior knowledge on parameters for [5] or on the noise level for [6].

But despite this activity, most of the proposed approaches have strong limitations on the dimension of
the data they can handle and are mostly applicable to small data sets with less than a thousand points and
ten regressors. The algebraic approach [2, 7] provides a closed form solution, which can be very efficiently
computed from large data sets, but which is only valid in the noise-free setting and rather sensitive to noise
otherwise. Robust formulations of this approach exist [8, 9], but these still suffer from a major limitation
inherent in the algebraic approach: the complexity grows exponentially with respect to the dimension of
the data and the number of modes. This issue is also critical for the approach of [10] which, for small data
dimensions, efficiently deals with noise in large data sets through a global optimization strategy applied to
a continuous cost function. The recent method of [11], based on sparse optimization, circumvents the issue
of the number of modes by iteratively estimating each parameter vector independently, in the spirit of the
bounded-error approach [6]. However, the method relies on an ℓ1-norm relaxation of a sparse optimization
problem, which requires restrictive conditions on the fraction of data generated by each mode to apply. In
particular, when the number of modes increases, the assumption on the fraction of data generated by a single
mode becomes less obvious. Other works on convex relaxation of sparse optimization formulations include
[12, 13], but the number of variables and of constraints in these convex optimization problems quickly grow
with the number of data.

In a realistic scenario, say with noise, more than a thousand data points and more than two modes,
globally optimal solutions (such as those obtained by [4]) cannot be computed in reasonable time and little
can be stated on the quality of the models trained by approximate or local methods. Even for convex
optimization based methods [11, 9, 13], the conditions under which the global minimizer of the convex
relaxation coincides with the one of the original problem can be unclear or violated in practice. In this
context, experimentally asserted efficiency and performance of an algorithm are of primary interest. In this
respect, the paper shows empirical evidence that a rather straightforward approach to the problem can
outperform other approaches from the recent literature in low dimensional problems while increasing the
range of tractable problems towards larger dimensions.

Methods and contribution. This paper considers one of the most straightforward and easy to implement
switched regression method and analyzes the conditions under which it offers an accurate solution to the
problem with high probability. The algorithm discussed here is inspired by classical approaches to clustering
and the k-means algorithm [14], hence its name: k-LinReg. As such, it is a local optimization method based
on alternatively solving the problem (to be specified later) with respect to integer and real variables. The
key issue in such an approach is therefore how to obtain a solution sufficiently close to the global one, which
is typically tackled by multiple initializations and runs of the algorithm, but without guarantees on the
quality of the result. In this paper, we focus on random initializations of the k-LinReg algorithm and the
estimation of the probability of drawing an initialization leading to a satisfactory solution. In particular, we
show how this probability is related to the number of data and how the number of random initializations
can be chosen a priori to yield good results. This analysis is based on a random sampling of both the
problem and initialization spaces to compute the estimates of the probability of success. Inspired by works
on probabilistic methods [15], probabilistic bounds on the accuracy of these estimates are derived. These
bounds provide the ground to consider the estimates as data for the subsequent estimation of a predictive
model of the probability of success, from which the number of restarts from different initializations for a
particular task can be inferred.

This study also reveals a major difference with the classical k-means problem, namely, that high dimen-
sional problems can be solved efficiently and globally if the number of data is large enough. Compared
with other approaches to switched linear regression, the computing time of the proposed method can even
decrease when the number of data increases for high dimensional problems due to a reduced number of
required restarts. Note that the approach developed in [16] has some similarities with the k-LinReg algo-
rithm discussed here, but also some differences, for instance with respect to working in a recursive or batch
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manner. In addition, the issue of the convergence towards a global solution was not clearly addressed in
[16], whereas it is the central subject of the proposed analysis.

Beside these aspects, the paper also provides new insights into the inherent difficulty of hybrid system
identification problems measured through the probability of success for the proposed baseline method. In
particular, numerical examples show that test problems typically considered in the literature can be solved
with few randomly initialized runs of the k-LinReg algorithm.

Paper organization. The paper starts by formally stating the problem in Section 2. The k-LinReg algorithm
is presented in Section 3 and Section 4 is devoted to the study of its ability to find a solution close enough
to the global one. Then, these results are used to build a model of its probability of success in Sect. 5, on
the basis of which the number of restarts is computed in Sect. 5.2. Finally, Section 6 provides numerical
experiments to test the proposed model and compares the final algorithm with some of the most recent
approaches for hybrid system identification.

2. Problem formulation

Consider switched linear regression as the problem of learning a collection of n linear models fj(x) =
wT

j x, j = 1, . . . , n, with parameter vectors wj ∈ R
p from a training set of N pairs (xi, yi) ∈ R

p ×R, where
xi is the regression vector and yi the observed output. In particular, we focus on least squares estimates of
{wj}nj=1, i.e., parameter vector estimates minimizing the squared error, (yi− f(xi))

2, over the training set.
The model f is a switching model in the sense that the output f(x) for a given input x is computed as the
output of a single submodel fj , i.e., f(x) = fλ(x), where λ is the index of the particular submodel being
used, which we refer to as the mode of x.

When i is the time index and the regression vector is built from lagged outputs yi−k and inputs ui−k of
a system as xi = [yi−1, . . . , yi−ny

, ui−na
, . . . , ui−nb

]T , we obtain a class of hybrid dynamical systems known
as the Switched Auto-Regressive eXogenous (SARX) model, compactly written as

yi = wT
λi
xi + ei,

with an additive noise term ei. In this setting, the identification of the SARX model can be posed as a
switched linear regression problem.

In this paper, we are particularly interested in instances of this switched linear regression problem with
large data sets and focus on the case where the number of linear models n is fixed a priori1. Note that, even
with this assumption, the problem is nontrivial and highly nonconvex. Indeed, given a data set, {(xi, yi)}Ni=1,
the least squares estimates of the parameters of a switched linear model with nmodes, {wj}nj=1, are obtained
by solving the following mixed integer optimization problem.

Problem 1 (Least squares switched linear regression).

min
{wj},{βij}

1

N

N∑

i=1

n∑

j=1

βij (yi −wT
j xi)

2

s.t. βij ∈ {0, 1}, i = 1, . . . , N, j = 1, . . . , n
n∑

j=1

βij = 1, i = 1, . . . , N,

where the βij are binary variables coding the assignment of point i to submodel j.

1Any data set can be arbitrarily well approximated by an unbounded set of linear models, e.g., by considering a linear model
for each data point.
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Problem 1 belongs to one of the most difficult class of optimization problems, namely, mixed-integer
nonlinear programs, and is known to be NP-hard [1]. For a particular choice of model structure (hinging
hyperplanes, that are only suitable for piecewise affine system identification), it can be transformed into
a mixed-integer quadratic program, as detailed in [4]. However, even in this “simplified” form, it remains
NP-hard and its global solution cannot be obtained except for very small instances with few data points [4].

In order to deal with numerous data while maintaining the dimension of the problem as low as possible,
the following minimum-of-error reformulation of Problem 1 can be considered [10].

Problem 2 (Minimum-of-error formulation).

min
w

F (w),

where

F (w) =
1

N

N∑

i=1

min
j∈{1,...,n}

(yi −wT
j xi)

2, (1)

and where w = [wT
1 . . . wT

n ]
T is the concatenation of all model parameter vectors wj.

The equivalence between Problem 1 and 2 is given by the following proposition (see the proof in Appendix
A). In particular, Proposition 1 shows that an optimal solution2 to Problem 1 can be directly obtained from
a global solution of Problem 2.

Proposition 1. Problems 1 and 2 are equivalent under the simple mapping

βij =




1, if j = arg min

k=1,...,n
(yi −wT

k xi)
2,

0, otherwise,
i = 1, . . . , N, j = 1, . . . , n. (2)

Moreover, this mapping is optimal in the sense that no other choice of {βij} leads to a lower value of the
cost function in Problem 1.

Though being equivalent to Problem 1, Problem 2 has the advantage of being a continuous optimization
problem (with a continuous objective function and without integer variables) involving only a small number
of variables equal to n× p. To see this, note that the cost function (1) can be rewritten as

F (w) =
1

N

N∑

i=1

ℓ(xi, yi,w),

where the loss function ℓ is defined as the point-wise minimum of a set of n loss functions ℓj(xi, yi,w) =
(yi −wT

j xi)
2, j = 1, . . . , n. Since the point-wise minimum of a set of continuous functions is continuous, F

is continuous (though non-differentiable) with respect to the variables w.
Nonetheless, Problem 2 is a nonconvex problem which may have many local minima. In particular,

switching from Problem 1 to 2 does not alleviate the NP-hardness, but simply changes the focus in terms
of complexity from the number of data to the number of modes, n, and the dimension, p. This paper will
therefore concentrate on the main issue of finding a solution to Problem 2 that is sufficiently close to a global
one.

Remark 1. The paper focuses on the error measured by the cost function F , and more particularly on the
gap between F (w) obtained with estimates w and F (θ) obtained with the true parameters θ, rather than on
classification errors. While |F (w)−F (θ)| can be zero, classification errors are unavoidable in hybrid system
identification due to so-called undecidable points that lie at the intersection between submodels and for which

2Multiple solutions with the same cost function value exist due to the symmetry of Problems 1 and 2. These can all be
recovered from a single solution by swapping parameter vectors as wj ↔ wk.
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one cannot determine the true mode solely on the basis of (xi, yi). Though all switched system identification
methods are subject to such misclassifications, these errors have a limited influence on parameter estimates,
since they correspond by definition to data points that are consistent with more than one submodel. We refer
to [6] for a more in-depth discussion on this issue and some corrective measures that can be employed in
piecewise affine system identification.

3. The k-LinReg algorithm

The k-LinReg algorithm builds on the relationship between Problem 1 and the classical unsupervised
classification (or clustering) problem. These problems share the common difficulty of simultaneously com-
puting a classification of the data points (through the binary variables βij) and a model of each group
of points. In the clustering literature, the baseline method typically used to solve such problems is the
k-means algorithm [14], which alternates between assignments of data points to groups and updates of the
model parameters. Applying a similar strategy in the context of switched regression leads to the k-LinReg
algorithm, which is depicted in Algorithm 1, where we let X = [x1, . . . ,xN ]T be the regression matrix and
y = [y1, . . . , yN ]T be the target output vector.

Algorithm 1 k-LinReg

Require: the data set (X,y) ∈ R
N×p × R

N , the number of modes n and an initial vector w0 =

[w0
1
T
, . . . ,w0

n
T
]T .

Initialize t← 0.
repeat
Classify the data points according to

λt
i = arg min

j∈{1,...,n}
(yi −wt

j
T
xi)

2, i = 1, . . . , N. (3)

for j = 1 to n do
if |{i : λt

i = j}| < p then
return w∗ = wt and F (w∗).

end if
Build the matrix Xt

j , containing all the ith rows of X for which λt
i = j, and the target vector yt

j

with the corresponding components from y.
Update the model parameters for mode j with

wt+1
j = arg min

wj∈Rp
‖yt

j −Xt
jwj‖22. (4)

The solution to this least-squares problem is obtained via the pseudo-inverse of Xt
j and can be given

in closed form if Xt
j is full rank by

wt+1
j = (Xt

j
T
Xt

j)
−1Xt

j
T
yt
j ,

or through the singular value decomposition of Xt
j .

end for
Increase the counter t← t+ 1.

until convergence, e.g., until
||wt+1 −wt||2 ≤ ǫ,

or no more changes occur in the classification.
return w∗ = wt+1 and F (w∗).
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The IF statement in the FOR loop of Algorithm 1 simply ensures that the subsequent update of wt+1
j

can proceed with sufficient data. If not, then the algorithm returns the current solution before updating
(which will usually correspond to a failure in the terms of Section 4). Such situations are also typical in the
k-means algorithm, where a group of points can become empty. In this case, possible refinements include
resetting the corresponding parameter vector to a random value or merely dropping it to obtain a final
model with fewer modes. However, since the aim of the paper is to analyze the most simple version of the
k-LinReg algorithm, these strategies will not be considered.

Algorithm 1 can be interpreted as a block-coordinate descent algorithm, where the cost function in
Problem 1 is alternatively optimized over two sets of variables: the discrete and the real ones. Convergence
towards a local minimum is guaranteed by the following proposition that considers the equivalent form of
Problem 2 (see the proof in Appendix B).

Proposition 2. Algorithm 1 monotonically decreases the cost function F (wt) in (1), in the sense that
∀t ≥ 0, F (wt+1) ≤ F (wt).

The k-LinReg algorithm is guaranteed to converge to a local minimum of the cost function (1). However,
such cost functions may exhibit a number of local minima, many of which are not good solutions to the
original problem of switched linear modeling. In order to obtain a good local minimum, if not a global
one, the procedure must be restarted from different initializations. The following sections will provide an
indication on the number of restarts required to obtain a good solution with high probability.

Remark 2. In [3], a clustering-based technique was proposed for hybrid system identification. It is
“clustering-based” in the sense that a particular inner step of this method uses the k-means algorithm to
classify the data points mapped in some feature space. Here, the approach is different in that the entire prob-
lem is solved by an adaptation of k-means to switched regression, where the parameter vectors are estimated
together with the classification which takes place in the original regression space of the data. Also, note that
the method of [3] only applies to piecewise affine systems, whereas the k-LinReg algorithm is designed for
arbitrarily switched systems.

4. Estimating the probability of success

One important issue when using local algorithms such as k-LinReg is the evaluation of their performance,
i.e., their ability to reach global optimality. Here, we aim at a probabilistic evaluation under a random
sampling of both the initialization and the data. More precisely, we will measure the probability of success,
defined for given n, p, N and ε ≥ 0 as

Psuccess(n, p,N, ε) = 1− Pfail(n, p,N, ε) (5)

with
Pfail(n, p,N, ε) = Pw,θ,X,λ,e{F (w∗;X,λ, e)− F (θ;X,λ, e) ≥ ε},

where F (w∗;X,λ, e) = F (w∗) emphasizes the dependency of the cost function (1) on the data and where
all variables are now random variables. In particular, w∗ is the random vector defined as the output of
the k-LinReg algorithm initialized at w and applied to a data set generated by the random vector θ with
yi = θT

λi
xi + ei, i = 1, . . . , N , λ is a random switching sequence, e is a random noise sequence and X a

random regression matrix with rows xT
i . Note that the randomness of w∗ is only due to the randomness

of the initialization w and the data, while the k-LinReg algorithm implementing the mapping w 7→ w∗ is
deterministic.

The probability Pfail can also be defined as the expected value of the loss

L = I(F (w∗;X,λ, e)− F (θ;X,λ, e) ≥ ε),

i.e., Pfail(n, p,N, ε) = EL, where I is the indicator function and E is the expectation over fixed and predefined
distributions of the various random quantities w∗,θ,X,λ, e.
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Since Pfail involves the solution w∗ of the iterative Algorithm 1, its direct calculation is intractable and
we instead rely on the estimate given by the empirical average as

P emp
fail (n, p,N, ε) =

1

m

m∑

k=1

Lk, (6)

where the Lk are independent copies of L, i.e., Lk = I(F (wk∗;Xk,λk, ek)− F (θk;Xk,λk, ek) ≥ ε), where
the superscript k denotes the kth copy of a random variable. The estimate of the probability of success is
finally given by

P emp
success(n, p,N, ε) = 1− P emp

fail (n, p,N, ε). (7)

Thanks to the law of large numbers, we know that the empirical average, P emp
fail (n, p,N, ε), asymptotically

converges (in m) towards the true probability Pfail(n, p,N, ε). In addition, classical concentration inequal-
ities provide a quantitative version of the law of large numbers, with finite-sample bounds on the error
between the empirical average and the expected value. More precisely, Hoeffding inequality [17] yields

Pm

{∣∣∣∣∣
1

m

m∑

k=1

Lk − EL

∣∣∣∣∣ ≥ t

}
≤ 2 exp(−2mt2),

where Pm stands for the product probability over an m-sample of iid. Lk. By setting δ = 2 exp(−2mt2),
we obtain the following error bound, which holds with probability at least 1− δ,

∣∣∣P emp
fail (n, p,N, ε)− Pfail(n, p,N, ε)

∣∣∣ ≤

√
log 2

δ

2m
. (8)

As an example, by choosing δ = 0.01 and m = 10000 samples, the right-hand side of (8) is 0.0163, and
there is a probability less than 1% of drawing 10000 samples which lead to an estimate P emp

fail (n, p,N, ε) not
within [Pfail(n, p,N, ε)− 0.0163, Pfail(n, p,N, ε) + 0.0163].

Remark 3. The analysis above can be interpreted in the framework of probabilistic and randomized methods
reviewed in [15]. In the terms defined in [15], the probability of failure is the probability of violation and
the probability of success (5) is the reliability of the specification F (w∗;X,λ, e) ≤ F (θ;X,λ, e) + ε, which
is estimated by the empirical reliability (7). Under this framework, a probabilistic design method would
search for a realization of the control variable, here, e.g., the initialization w, leading to a predefined level
of reliability. However, this approach is not applicable to our problem, since the randomness of the system
embedded in θ is non-informative. Indeed, the distribution of θ does not represent some uncertainty interval
around a mean value of the system parameters, but rather allows for a whole range of different systems to
be identified, as discussed below.

Choice of distribution. The bound (8) applies for any distribution of the random variables w,θ,X,λ, e.
The only requirement is that the distribution remains fixed throughout the estimation procedure and that
the samples are drawn independently and identically. Thus, when estimating the empirical mean (6), we
have to choose a particular distribution to draw the samples from. In the absence of strong assumptions
on the distribution of the random variables beyond simple limiting intervals, the uniform distribution is
the choice typically considered in randomized methods [15]. Indeed, with few assumptions on the class
of possible distributions and the probability of interest, this choice was rigorously justified in [18] in the
following sense. The uniform distribution is a minimizer of the probability of interest over the whole class of
distributions, and thus leads to worst-case estimates of the probability when used for sampling. Therefore,
in all the following experiments, we sample the variables according to the distributions as detailed below.

In order to sample as much diverse switched regression problems as possible, while not favoring particular
instances, the regression vectors, xi, and the parameter vectors, θj , j = 1, . . . , n, are uniformly distributed
in [−5, 5]p. The data sets on which Algorithm 1 is applied are further generated with a uniformly distributed
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Figure 1: Probability of success (in %) estimated for n = 4 and p = 10 by (7) over m = 10000 samples (plain line) with the
error bounds given by (8) at δ = 1% (dashed lines).

mode λi in {1, . . . , n} and with a zero-mean Gaussian noise ei of standard deviation σe = 0.2. The initial-
ization w of Algorithm 1 follows a uniform distribution in the rather large interval [−100, 100]np, assuming
no prior knowledge on the true parameter values.

Section 4.1 below analyzes the influence of the size of the data sets, N , on the probability of success
under these conditions, while Section 4.2 further studies the validity of the results for other noise levels.
Finally, Section 4.3 will emphasize the effect of the constraints on the regressors implied by a SARX system.

4.1. Influence of the number of data

Consider the following set of experiments which aim at highlighting the relationship between the number
of data and the difficulty of the problem measured through the probability of success of the simple k-LinReg
algorithm. For each setting, defined by the triplet of problem dimensions (n, p,N), we generate m = 10000
training sets of N points, {(xi, yi)}Ni=1, with the equation yi = θT

λi
xi + ei, i = 1, . . . , N , where θ, xi, λi, ei

are realizations of the corresponding random variables drawn according to the distributions defined above.
For each data set, we apply Algorithm 1 with a random initialization wk and compute the estimate (7)

of the probability of success. More precisely, we set ǫ = 10−9, which means that an initialization must lead
to a value of the cost function (1) very close to the global optimum in order to be considered as successful.

In fact, the analysis considers a slight modification to Algorithm 1, in which the returned value of the
objective function, F (wk∗), is arbitrarily set to F (wk∗) = +∞ for problematic cases discussed in Sect. 3
and where, at some iteration t and for some mode j, |{i : λt

i = j}| < p. More generally, note that, in R
p,

any set of p− 1 points can be fitted by a single linear model. Therefore, for N ≤ n(p− 1), there are trivial
solutions that minimize the cost F (w), but do not correspond to solutions of the modeling problem with n
submodels. The modification to Algorithm 1 ensures that such cases are considered as failures throughout
the analysis.

Figure 1 shows a typical curve of the influence of the number of data on the quality of the solution returned
by k-LinReg in terms of the quantity (7). The probabilistic bounds within which the true probability of
success lies are also plotted and we see that they are very tight. The curves obtained in various settings are
reported in Figure 2. These plots of (7) indicate that using more data increases the probability of success,
so that the cost function (1) seems to have fewer local minima for large N than for small N .

Remark 4. Most approaches that aim at globally solving Problem 1 have difficulties to handle large data
sets. This is often related to an increase of the number of optimization variables, which may lead to a
prohibitive computational burden. However, this does not necessarily means that the corresponding nonconvex
optimization problem is more difficult to solve in terms of the number of local minima or the relative size
of their basin of attraction compared with the one of the global optimum. Indeed, the results above provide
evidence in favor of the opposite statement: the probability of success of the local optimization Algorithm 1
monotonically increases with the number of data.
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Figure 2: Estimates of the probability of success, P emp
success(n, p,N), versus the number of data N . Each plot corresponds to a

different dimension p and each curve corresponds to a different number of modes n.
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Figure 3: Estimates of the probability of success (in %) versus the noise level σe for different settings (n, p).

4.2. Influence of the noise level

The analysis in the previous section holds for fixed distributions of the random variables w,θ,X,λ, e,
and in particular for the chosen noise level implemented by the standard deviation, σe, of the Gaussian
distribution of e. Here, we evaluate the influence of this noise level on the estimates of the probability of
success.

Experiments are conducted as in the previous subsection, except for the training set size, N , which is
fixed to 1000 and the noise level, σe, which now varies over a grid of the interval [0.5, 4.0] (corresponding to
a range of about 20 dB in terms of signal-to-noise ratio and reasonable values within which the submodels
can be distinguished). This means that for each value of σe on this grid, 10000 samples of the random
variables are drawn to compute the estimate of the probability of success via the application of Algorithm 1
and (6)–(7). These experiments are repeated for different problem dimensions (n, p) and the results are
plotted in Figure 3. Note that, here, the aim is not to evaluate the range of noise levels that the k-LinReg
algorithm can deal with, but instead to determine whether the curves of Figure 2 are sensitive to the noise
level.

These results show that the noise level has little influence on the performance of the algorithm. Recall
that here, the performance of the algorithm is evaluated as its ability to reach a value of the cost function
sufficiently close to the global minimum. Of course, once a solution close to the global one has been found,
the noise level influences the accuracy of the parameter estimation, as for any regression algorithm. However,
these experiments support the idea that the noise level does not directly determines the level of difficulty of
a switched regression problem, which rather lies in the ability of an algorithm to discriminate between the
modes. It will therefore be omitted from the predictive model discussed in Section 5 which will focus on the
influential parameters n and p.

4.3. Influence of the SARX system structure

This section reproduces the analysis of Sect. 4.1 for SARX system identification instead of switched
regression, i.e., for a regression vector xi = [yi−1, . . . , yi−ny

, ui−na
, . . . , ui−nb

]T , constrained to a manifold of
R

p. More precisely, X is now a deterministic function of the random variables θ, x0 (the initial conditions),
u (the input sequence), λ and e. The probability is now defined over x0,u,λ, e instead of X,λ, e and with
uniform distributions for x0 and u. In addition, for a given p, we uniformly draw ny in {1, . . . , p− 1} and
set na = 0, nb = p − ny. Thus, we uniformly sample identification problems with various system orders.
We use a simple rejection method to discard unbounded trajectories without particular assumptions on the

9
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Figure 4: Same curves as in Figure 2, but for SARX system identification.

system whose parameters θ remain uniformly distributed in [−1, 1]np (depending on the switching sequence,
unstable subsystems can lead to stable trajectories and vice versa).

The results are plotted in Fig. 4 and confirm the general tendency of the probability of success with
respect to N . However, these results also show that the constraints on the regression vector increase the
difficulty of the problem. In particular, both the rate of increase of the probability of success and its maximal
value obtained for large N are smaller than in the unconstrained case reported in Fig. 2.

5. Modeling the probability of success

The following presents the estimation of a model of the probability of success based on the measurements
of this quantity derived in the previous section. The aim of this model is to provide a simple means to set
the number of restarts for k-LinReg (Section 5.2) and an indication on the number of data with which we
can expect k-LinReg to be successful on a particular task (Section 5.3).

More precisely, we are interested in obtaining these numbers from general parameters of a given problem
instance summarized by the triplet (n, p, N). In order to fulfill this goal, we require an estimate of the
probability of success of k-LinReg for any given triplet of problem dimensions (n, p, N). Since estimating
this probability as in Section 4 for all possible triplets would clearly be intractable, we resort to a modeling
approach. Thus, the aim is to estimate a model that can predict with sufficient accuracy the probability
Psuccess(n, p,N, ε). Irrespective of the quantity of interest, the classical approach to modeling involves several
steps. First, we need to choose a particular model structure. This structure can either be parametric and
based on general assumptions or nonparametric as in black-box models. Here, we consider the parametric
approach and choose a particular model structure from a set of assumptions. Then, the parameters of
this model are estimated from data. Here, the data consist in the estimates of the probability of success
obtained in Section 4 for a finite set of triplets (n, p,N). Therefore, in the following, these estimates,
P emp
success(n, p,N, ε), are interpreted as noisy measurements of the quantity of interest, Psuccess, from which

the model can be determined.
This section and the followings are based on the measurements obtained in Sect. 4 with a fixed and small

value of the threshold ε = 10−9. Therefore, in the remaining of the paper we will simply use the notation
Psuccess(n, p,N) to refer to Psuccess(n, p,N, ε) for this specific value of ε.

The choice of structure for the proposed model relies on the following assumptions.

• The probability of success should be zero when N is too small. Obviously, without sufficient data,
accurate estimation of the parameters w is hopeless. In particular, we aim at the estimation of all
parameter vectors, {wj}nj=1, and therefore consider that solutions leading to a low error with fewer
submodels as inaccurate. More precisely, this is implemented in the data by the modification of
Algorithm 1 discussed in Sect. 3 and which returns an infinite error value in such cases.

• The probability of success monotonically increases with N . This assumption is clearly supported by
the observations of Section 4. It is also in line with common results in learning and estimation theory,
where better estimates are obtained with more data. However, the validity of such assumptions in the
context of switched regression was not obvious, since these results usually apply to local algorithms
under the condition that the initialization is in the vicinity of the global minimizer (or that the problem
is convex).
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Figure 5: Parameters of the model (9) as obtained from the average curves in Fig. 2 (blue ’+’), the ones in Fig. 4 (black
’◦’) and from the proposed formulas (13)–(18) in a switched regression (top row) or SARX system identification (bottom row)
setting.

• The probability of success converges, when N goes to infinity, to a value smaller than one. This
assumption reflects the fact that the size of the data set cannot alleviate all difficulties, in particular
regarding the issue of local minima. Note that this is an issue specific to the switched regression setting,
whereas classical regression algorithms can compute consistent estimates. In switched regression,
consistency of an estimator formulated as the solution to a nonconvex optimization problem does not
imply the computability of consistent estimates.

• The probability of success should be a decreasing function of both n and p. This assumption reflects the
increasing difficulty of the problem with respect to its dimensions. In particular, with more submodels
(larger n), more local minima can be generated, while increasing the dimension p increases the range
of possible initializations and thus decreases the probability of drawing an initialization in the vicinity
of the global optimum.

Following these assumptions, we model the probability of success, Psuccess(n, p,N), by the unitary step
response of a first order dynamical system with delay, where the number of data N plays the role of the
time variable, i.e.,

P̂success(n, p,N) =




K(n, p)

(
1− exp

(−(N − τ(n, p))

T (n, p)

))
, if N > τ(n, p)

0, otherwise,
(9)

and where the dimensions n and p influence the parameters. In particular, K(n, p) is the “gain”, τ(n, p) is
the “time-delay” and T (n, p) is the “time-constant”. Such models are used in Bröıda’s identification method
[19], in which the constants K, τ and T are estimated on the basis of curves as the ones in Figures 2 and 4.
This estimation relies on the following formulas:

K(n, p) = lim
N→+∞

Psuccess(n, p,N) = sup
N

Psuccess(n, p,N), (10)

τ(n, p) = 2.8N1 − 1.8N2, (11)

T (n, p) = 5.5(N2 −N1), (12)

where N1 and N2 are the numbers of data (originally, the “times”) at Psuccess(n, p,N) = 0.28K(n, p) and
Psuccess(n, p,N) = 0.40K(n, p), respectively. We use linear interpolation to determine N1 and N2 more
precisely from the curves in Fig. 2 and 4 and obtain estimates of the constants K, τ and T for different
numbers of modes n and dimensions p.

As shown by Figure 5, these constants can be approximated by the following functions of n and p:

K(n, p) = 0.99, (13)

τ(n, p) = 0.2 (2np)
1.4

, (14)

T (n, p) = 2.22× 2np, (15)
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Figure 6: Empirical estimates of the probability of success (solid line) and values predicted by the model (7) (dash line) for
switched regression (left) and SARX system identification (right). These curves are obtained with n = 4 and p = 10.

for switched regression, while the following approximations are suitable for SARX system identification:

KSARX(n, p) = 1.02− 0.023n, (16)

τSARX(n, p) = 1.93× 2np− 37, (17)

TSARX(n, p) = 52
√
2np− 220. (18)

The coefficients in these equations are the least squares estimates of the generic parameters a and b in the
linear regressions K(n, p) = an + b, τ̃ = az̃ + b and T (n, p) = az + b, where z = 2np, τ̃ = log τ(n, p) and
z̃ = log z. For SARX systems, the relationships giving τSARX and TSARX are modified as τSARX(n, p) =
az + b and TSARX(n, p) = a

√
z + b.

Finally, the model of the probability of success is given either by

P̂success(n, p,N) =




0.99

(
1− exp

(
−(N−0.2(2np)1.4)

2.22×2np

))
, if N > 0.2 (2np)

1.4

0, otherwise,
(19)

in a regression setting or by,

P̂SARX
success(n, p,N) =

{
(1.02− 0.023n)

(
1− exp

(
−(N−1.93×2np−37)

52
√
2np−220

))
, if N > 1.93× 2np− 37

0, otherwise,
(20)

for SARX system identification. The output of these models is very close to the empirical average
of Psuccess(n, p,N) as illustrated for n = 4 and p = 10 by Figure 6. The mean absolute error,

1/|T |∑(n,p,N)∈T |Psuccess(n, p,N)− P̂success(n, p,N)|, over the set of triplets, T , used for their estimation,

is 0.048 for P̂success(n, p,N) and 0.102 for P̂SARX
success(n, p,N).

5.1. Estimation of the generalization ability of the model via cross-validation

The generalization error of the models (19)-(20) reflects their ability to accurately predict the probability
of success for triplets (n, p,N) not in T , i.e., for previously unseen test cases. This generalization error can
be estimated from the data through a classical cross-validation procedure (see, e.g., [20]), which iterates over
KCV subsets of the data. At each iteration, the model is estimated from KCV − 1 subsets and tested on the
remaining subset. The average error thus obtained yields the cross-validation estimate of the generalization
error.

Since the computation of each value of the constants K, τ, T (each point in Fig. 5) rely on an entire curve
with respect to N , we split the data with respect to n and p: all data in a subset correspond to a curve in
Fig. 2 or 4 for fixed (n, p). Then, at iteration k, the models (19)-(20) are estimated without the data for the
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setting (nk, pk) and the sum of absolute errors, |Psuccess(nk, pk, N)− P̂success(nk, pk, N)|, is computed over
all N .

Applying this procedure leads to a cross-validation estimate of the mean absolute error of 0.050 for
switched regression and 0.105 for SARX system identification. Though the model is less accurate for SARX
systems, its error remains reasonable for practical purposes such as the automatic tuning of the number of
restarts for k-LinReg, as proposed next.

5.2. Computing the number of restarts for k-LinReg

Consider now the algorithm restarted r times with initializations that are independently and identically
drawn from a uniform distribution. The probability of drawing a successful initialization for a particular
problem instance, i.e., for given θ, X, λ and e, is the conditional probability of success Pcond(θ,X,λ, e) =
Pw|θ,X,λ,e(F (w∗) − F (θ) ≤ 10−9) and the probability of not drawing a successful initialization in any of
the restarts is

Pfail(r) =

r∏

k=1

(1− Pcond(θ,X,λ, e)) = (1− Pcond(θ,X,λ, e))r. (21)

To set the number of restarts, we consider the average probability of drawing a successful initialization,
where the average is taken over all problem instances, i.e., we consider the expected value of the conditional
probability of success Pcond(θ,X,λ, e). This expectation corresponds to the joint probability of success,
Psuccess(n, p,N) = Pw,θ,X,λ,e(F (w∗)− F (θ) ≤ 10−9), since

Psuccess(n, p,N) = Ew,θ,X,λ,e[I(F (w∗)− F (θ) ≤ 10−9)]

= Eθ,X,λ,eEw|θ,X,λ,e[I(F (w∗)− F (θ) ≤ 10−9)|θ,X,λ, e]

= Eθ,X,λ,e[Pcond(θ,X,λ, e)].

Considering the mean conditional probability, i.e., replacing Pcond(θ,X,λ, e) by Psuccess(n, p,N) in (21),
leads to a trade-off between optimistic estimates for difficult problems and pessimistic ones for easier prob-
lems. This trade-off allows us to build an algorithm that is both computationally efficient and sufficiently
successful on average. This algorithm relies on the following estimate of the probability of failure:

P̂fail(r) = (1− P̂success(n, p,N))r.

Then, the number of restarts r∗ required to obtain a given maximal probability of failure P ∗
f such that

P̂fail(r) ≤ P ∗
f , is computed as

r∗ = min
r∈N∗

r, s.t. r ≥
logP ∗

f

log
(
1− P̂success(n, p,N)

) , (22)

where P̂success(n, p,N) is given by (19) or (20).
In practice, the bound in (22) can be used as a stopping criterion on the restarts of the algorithm once

the value of the hyperparameter P ∗
f has been set. This leads to Algorithm 2, which can easily be cast into

a parallel form by executing the line in italic multiple times in separate working threads.
The internal box bounds on the initialization vectors, [w,w], can be used to include prior knowledge on

the values of the parameters, but they can also be set to quite large intervals in practice. Note that these
bounds do not constrain the solution of the algorithm beyond the initialization, so that wbest /∈ [w,w] can
be observed.

5.3. Estimating the sample complexity

We define the sample complexity of k-LinReg at level γ as the minimal size of the training sample, N(γ),
leading to

Psuccess(n, p,N) ≥ γ.
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Algorithm 2 k-LinReg with multiple restarts

Require: the data set (X,y) ∈ R
N×p × R

N , the number of modes n and the probability of failure P ∗
f .

Initialize Fbest = +∞ and k = 0.
Compute K, τ , T as in (13)-(15) or (16)-(18).
Set r∗ according to (22).
repeat
k ← k + 1.
Draw a random vector w uniformly in [w,w] ⊂ R

np .
Apply Algorithm 1 initialized at w to get the pair (F (w∗),w∗).
if F (w∗) < Fbest then
Update the best local minimum Fbest ← F (w∗) and minimizer wbest ← w∗.

end if
until k ≥ r∗.
return Fbest and wbest.

After substituting the model P̂success(n, p,N) for Psuccess(n, p,N) in the above, this sample complexity can
be estimated by using (9) as




N̂(γ) ≥ τ(n, p)− T (n, p) log

(
1− γ

K(n, p)

)
, if γ < K(n, p),

N̂(γ) = +∞, otherwise.
(23)

In a given setting with n and p fixed, this can provide an indicative lower bound on the number of data
required to solve the problem with probability γ by a single run of k-LinReg. The case N̂(γ) = +∞ reflects
the impossibility to reach the probability γ, which may occur for unreasonable values of γ > 0.99 or for
SARX systems with a very large number of modes n.

However, note that (23) is mostly of practical use, since its analytical form depends on the particular
choice of structure for (9).

6. Numerical experiments

This section is dedicated to the assessment of the model of the probability of success (19) as a means to
tune the number of restarts on one hand and of the k-LinReg algorithm as an efficient method for switched
linear regression on the other hand. Its time efficiency is studied in Sec. 6.1 and 6.2 with respect to the
number of data and the problem dimensions, respectively. Section 6.3 analyses the ability of the method to
reach global optimality, while Sec. 6.4 is dedicated to its application to hybrid dynamical systems.

The k-LinReg method is compared with the approach of [10], which directly attempts to globally optimize
(1) with the Multilevel Coordinate Search (MCS) algorithm [21] and which we label ME-MCS. The second
version of this approach, based on a smooth product of error terms, is also included in the comparison and
labeled PE-MCS. We also consider the algebraic approach [2], which can deal efficiently with noiseless data,
and the recent sparse optimization-based method [11]. The application of the latter is slightly different as
it requires to set a threshold on the modeling error instead of the number of modes. The comparison with
this approach will therefore only be conducted on the example taken from [11].

Three evaluation criteria are considered: the computing time, the mean squared error (MSE) computed
by the cost function (1), and the normalized mean squared error on the parameters (NMSE) evaluated
against the true parameter values {θj} as

NMSE =
1

n

n∑

j=1

‖θj −wj‖22
‖θj‖22

, (24)

for the set of estimated parameter vectors {wj} ordered such that the NMSE is minimum. All numbers
reported in the Tables and points in the plots are averages computed over 100 random problems generated
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with a different set of parameters {θj}, except for the examples in Sect. 6.4 where the parameters are fixed
and the averages are taken over 100 trials with different noise sequences.

For indicative purposes, a reference model is also included in the experiments and corresponds to the
model obtained by applying n independent least-squares estimators to the data classified on the basis of the
true mode (which is unknown to the other methods).

Except when mentioned otherwise, k-LinReg refers to Algorithm 2, which is stopped after completing
the number of restarts r∗ given by (22) with a maximal probability of failure P ∗

f = 0.1% and with the model
(19), or (20) for the examples of Sect. 6.4. The bounds on the initialization are always set to w = −100 ·1np

and w = 100 · 1np. The web page at http://www.loria.fr/~lauer/klinreg/ provides open source code
for k-LinReg in addition to all the scripts used in the following experiments.

6.1. Large data sets in low dimension

The performance of the methods on large data sets is evaluated through a set of low-dimensional problems
with n = 2 and p = 3, in a similar setting as in [10]. The N data are generated by yi = θT

λi
xi + vi,

with uniformly distributed random regression vectors xi ∈ [−5, 5]p, a random switching sequence {λi} and
additive zero-mean Gaussian noise vi of standard deviation σv = 0.2. The goal is to recover the set of true
parameters {θj} randomly drawn from a uniform distribution in the interval [−2, 2]p in each experiment.
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Figure 7: Average NMSE (left) and computing time (right) over 100 trials versus the number of data N (plots in log-log scale).

Figure 7 shows the resulting NMSE and computing times of k-LinReg, ME-MCS and PE-MCS, as
averaged over 100 experiments for different numbers of data N . The computing time of the algebraic
method, considered as the fastest method for such problems, is also shown for indicative purposes though
this method cannot handle such a noise level (times are obtained by applying it to noiseless data). All
computing times are given with respect to Matlab implementations of the methods running on a laptop
with 2 CPU cores at 2.4 Ghz. The k-LinReg algorithm is much faster than the general purpose MCS
algorithm and almost as fast as the algebraic method, while still leading to very accurate estimates of the
parameters. In particular, the average NMSE of k-LinReg is similar to the ones obtained by the reference
model and the ME-MCS. However, the ME-MCS algorithm fails to find a relevant model (with NMSE
< 1) in a number of cases which are not taken into account in its average NMSE. Note that the k-LinReg
estimates are found with only two random initializations since (22) leads to r∗ = 2 in this setting.

6.2. High dimensions

Figure 8 shows the average computing times over 100 random experiments of the k-LinReg, the PE-MCS
and the algebraic methods versus the dimension p. Data sets of N = 10 000 points are generated as in the
previous subsection with a noise standard deviation of σv = 0.1, except for the algebraic method which is
applied to noiseless data in order to produce consistent results. The reported numbers reflect the computing
times of Matlab implementations of the three methods as obtained on a computer with 8 cores running
at 2.53 GHz. For low dimensions, i.e., p ≤ 5, the k-LinReg algorithm is slightly slower than the algebraic
method, with however computing times that remain below 1 second. For high dimensions, p ≥ 50, the
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Figure 8: Average computing time (over 100 trials) of the methods versus the dimension p for different numbers of modes n

and N = 10000 data points (log-log scale). The Figure is best viewed in color.
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Figure 9: Average computing time (over 100 trials) of the methods versus the number of modes n for p = 10 and N = 10000
(log scale). The Figure is best viewed in color.

PE-MCS and the algebraic methods cannot yield a satisfactory result in a reasonable time (or run out of
memory for the latter) even for the smallest number of modes n = 2. On the other hand, the k-LinReg
algorithm remains efficient and can handle a dimension of p = 200 in few seconds for n = 2, despite an
exponential complexity with respect to p. The knees in the curves of the k-LinReg computing time, observed
for instance for n = 3 at p = 100, reflect the increase in the number of restarts given by (22). Figure 9
shows that all methods also have an exponential computing time with respect to the number of modes n,
and that the algebraic approach suffers from the largest rate of increase.

6.3. Global optimality

For noiseless data, the global optimum of the cost function (1) is known to be zero. In such a setting,
we can measure the running time and the number of restarts required by the algorithm to reach the global
optimum. Table 1 shows the results of such experiments for problems of different sizes. Algorithm 1 is
restarted until the criterion F (w∗) < 10−6 is satisfied or the number of restarts exceeds 100, in which case
this is interpreted as a failure. The experiments are repeated for 100 random problems for all sizes and if a
failure is detected, only lower bounds on the number of restarts and the computing time are given in Table 1
(even if the global optimum was found in another experiment of the same set). The results indicate that
the k-LinReg algorithm always finds the global optimum in less than 100 restarts (often just one) and few
seconds, except when the numbers n and p lead to τ(n, p) > N , in which case the model (19) predicts the
failure. Table 1 additionally shows how the dimension p can be increased without affecting the performance
of k-LinReg when the number of data N is also sufficiently increased. Though the algebraic approach [2]
also leads to the global optimum in noiseless cases, it is not suitable for such high-dimensional problems, as
previously emphasized by Fig. 8.
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Table 1: Number of restarts and computing times (on a laptop with 2 CPUs at 2.4 GHz) required to reach global optimality.
Numbers are given in the format average ± standard deviation ≤ maximum, or > lower bound for failures.

N = 1000 N = 10000
n p τ # restarts Time (s) n p τ # restarts Time (s)
2 50 333 1± 1 ≤ 3 0.1± 0.1 < 0.5 2 100 879 1± 0 ≤ 1 4.2± 0.7 < 7.8

100 879 3± 3 ≤ 17 1.4± 1.0 < 5.6 500 8365 1± 1 ≤ 3 70± 43 < 269
200 2320 > 100 > 98 1000 22076 > 100 > 10800

3 10 92 1± 1 ≤ 2 0.0± 0.0 < 0.1 3 100 2320 1± 0 ≤ 1 6.8± 1.9 < 16.4
30 430 1± 1 ≤ 5 0.1± 0.1 < 0.5 200 6121 1± 1 ≤ 6 53± 45 < 290
50 879 > 100 > 11 400 16153 > 100 > 5712

4 10 244 1± 1 ≤ 2 0.0± 0.0 < 0.1 4 50 2320 1± 0 ≤ 1 1.7± 0.8 < 4.8
20 643 3± 3 ≤ 19 0.3± 0.2 < 1.8 100 6121 1± 1 ≤ 4 24± 16 < 94
30 1134 > 100 > 12 200 16153 > 100 > 2748

5 10 643 2± 2 ≤ 10 0.1± 0.1 < 0.4 5 10 643 1± 0 ≤ 1 0.1± 0.1 < 0.4
20 1697 > 100 > 11 50 6121 1± 1 ≤ 3 4.7± 2.8 < 15.1

100 16153 > 100 > 1506
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Figure 10: Influence of the noise level on the average NMSE and classification error rate (the standard deviations follow similar
patterns) and on the percentage of failures of the methods. The average NMSEs for k-LinReg, ME-MCS and the reference
model are hardly distinguishable and so are the classification error rates for all methods.

6.4. Application to hybrid dynamical system identification

The following studies two hybrid system identification examples from the recent literature and will show
that these benchmark problems can be solved with few restarts of k-LinReg.

6.4.1. Robustness to noise

Consider the example taken from [7] and also considered in [10]. The aim is to recover, from N = 1000
samples, the parameters θ1= [0.9, 1]T and θ2 = [1,−1]T of a dynamical system, arbitrarily switching between
n = 2 modes, with xi = [yi−1, ui−1]

T and a zero-mean Gaussian input with unit variance ui. Experiments
with additive and centered Gaussian noise are conducted for different values of the noise standard deviation
ranging from 0 to 0.3, whereas the standard deviation of the output is σy≈2.

Figure 10 shows the parametric error (NMSE) and the classification error rate of the k-LinReg, the
ME-MCS, the PE-MCS and the algebraic methods as a function of the noise level and averaged over 100
experiments. All methods recover the parameters without error from the noiseless data. But only the k-
LinReg and the ME-MCS methods achieve errors similar to the ones of the reference model for all noise
levels. In addition, Figure 10 shows that the ME-MCS method failed in about 15% of the experiments.
These failures represent the cases for which the NMSE is larger than 10−3 and which are not taken into
account in the averaged NMSE and classification error rate. The PE-MCS method benefits from much less
failures, but leads to a larger average NMSE. Finally, the error of the algebraic method quickly increases with
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Table 2: Average parameter estimates over 100 trials for the example taken from [11] and discussed in Sect. 6.4.2.

θ1 -0.4 0.25 -0.15 0.08
Reference −0.3998± 0.0051 0.2499± 0.0051 −0.1516± 0.0083 0.0806± 0.0095
k-LinReg (r = 5) −0.3999± 0.0053 0.2499± 0.0053 −0.1514± 0.0085 0.0801± 0.0099
k-LinReg (r∗ = 3) −0.3964± 0.0405 0.2448± 0.0537 −0.1504± 0.0105 0.0860± 0.0689
Sparse optim. [11] −0.3914± 0.0115 0.2452± 0.0106 −0.1666± 0.0201 0.0875± 0.0200

θ2 1.55 -0.58 -2.1 0.96
Reference 1.5495± 0.0048 −0.5751± 0.0047 −2.1013± 0.0085 0.9594± 0.0114
k-LinReg (r = 5) 1.5428± 0.0667 −0.5751± 0.0437 −2.1017± 0.0096 0.9551± 0.0443
k-LinReg (r∗ = 3) 1.5328± 0.0740 −0.5626± 0.0793 −2.0886± 0.1127 0.9422± 0.1069
Sparse optim. [11] 1.5360± 0.0549 −0.5706± 0.0337 −2.0680± 0.1421 0.9434± 0.0728

θ3 1.0 -0.24 -0.65 0.30
Reference 1.0002± 0.0043 −0.2407± 0.0042 −0.6502± 0.0074 0.2989± 0.0085
k-LinReg (r = 5) 1.0033± 0.0296 −0.2439± 0.0310 −0.6504± 0.0100 0.3016± 0.0283
k-LinReg (r∗ = 3) 1.0111± 0.0677 −0.2535± 0.0736 −0.6573± 0.0434 0.3226± 0.1323
Sparse optim. [11] 0.9909± 0.0128 −0.2365± 0.0124 −0.6727± 0.0263 0.3102± 0.0271

the noise level, which leads to many failures in the high-noise regime. Note that, with a single initialization
(r∗ = 1), the k-LinReg algorithm showed only one failure over the hundreds of trials of these experiments.

Regarding the classification errors, all methods lead to similar rates, including the reference model, which
shows that these errors cannot be avoided. As discussed in Remark 1, this is due to data points that are
consistent with multiple submodels and which are in a number increasing with the noise level. However,
these misclassifications have a limited influence on the estimation of the parameters by k-LinReg as they
correspond to small values of (yi −wT

j xi)
2 in (4).

6.4.2. A slightly more difficult example

The next hybrid system identification example is taken from [11] with n = 3 modes and N = 300
data points in dimension p = 4. The signal-to-noise ratio (SNR) in this data is 30 dB. For these problem
dimensions, the model (20) leads to set the number of restarts to r∗ = 3 in accordance with (22).

We perform 100 random experiments as described in [11] and Table 2 shows the average value of the
estimated parameters over these 100 trials. The estimates obtained by k-LinReg in less than 0.1 second are
comparable with the results of the sparse optimization method reported in [11]. However, in order to cancel
the difference between the k-LinReg average estimates and the ones of the reference model, the number
of restarts needs to be slightly increased to r = 5. For few instances (out of 100 trials) of this particular
example, the estimate r∗ in (22) is too optimistic and the global solution is not found with r∗ restarts.

7. Conclusions

We analyzed a k-means-like algorithm for switched linear regression and estimated a model of its expected
performance. This model can be used in practice to set the main parameter of the algorithm, that is, the
number of restarts or initializations. The resulting k-LinReg algorithm is very simple and can quickly identify
switched linear systems from large data sets. In addition, experiments showed that the algorithm is able
to yield a global solution when the number of data is sufficiently large, which corroborates the predictions
of the model. This also indicates that switched linear regression problems with large data sets are not as
difficult to solve as one would expect. In this respect, the k-LinReg algorithm and its model of performance
offer a simple means to evaluate the difficulty of a particular problem.

While the paper focused on a simple model of the probability of success designed to provide the number
of restarts, future work will further study the relationship between the sample size and the probability of
success in order to produce more accurate models. Another issue concerns the determination of the validity
range of the model: are predictions still accurate for much larger values of n or p? At the practical level,
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various enhancements of the k-LinReg algorithm can be investigated, such as the strategy to adopt when
too few data points are assigned to a mode and how this could be used to estimate the number of submodels
when n is overestimated. Finally, application of k-LinReg to switched nonlinear system identification with
kernel submodels as proposed in [22] could also be investigated.
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Appendix A. Proof of Proposition 1 (equivalence of Problems 1 and 2)

Proof. We first prove by contradiction that, for all w ∈ R
np, the minimum of the cost function of Problem 1

is obtained with βij set as in (2). Consider a set of optimal variables {β∗
ij} and assume without loss of
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generality that it differs from βij in (2) only for the set of points with indexes in I and that ∀i ∈ I, λ∗
i 6= λi,

β∗
iλ∗

i
= 1 and βiλi

= 1, while the constraints of Problem 1 are satisfied by both {β∗
ij} and {βij}. Then, the

cost in Problem 1 with {β∗
ij} is bounded from below as follows:

1

N

∑

i∈I

(yi −wT
λ∗

i
xi)

2 +
1

N

∑

i/∈I

n∑

j=1

β∗
ij(yi −wT

j xi)
2 =

1

N

∑

i∈I

(yi −wT
λ∗

i
xi)

2 +
1

N

∑

i/∈I

n∑

j=1

βij(yi −wT
j xi)

2

≥ 1

N

∑

i∈I

(yi −wT
λi
xi)

2 +
1

N

∑

i/∈I

n∑

j=1

βij(yi −wT
j xi)

2

(A.1)

≥ 1

N

N∑

i=1

n∑

j=1

βij(yi −wT
j xi)

2,

since, by the definition of βij in (2), ∀i ∈ I, (yi −wT
λi
xi)

2 ≤ (yi −wT
λ∗

i
xi)

2.

Thus, the values {β∗
ij} cannot be optimal and the minimum of the cost function is obtained for {βij} set

as in (2), except in cases where equality holds in (A.1) and in which both choices lead to similar costs.
Secondly, since the variables βij are entirely determined by w through (2), we can rewrite Problem 1 in

terms of w only. This leads to

min
w

1

N

N∑

i=1

(yi −wT
λi
xi)

2

s.t. λi = arg min
j=1,...,n

(yi −wT
j xi)

2, i = 1, . . . , N,

where the constraints of Problem 1 are automatically satisfied by (2). Further simplifying the formulation
finally yields Problem 2.

Appendix B. Proof of Proposition 2 (convergence of Algorithm 1)

Proof. At each iteration t, the classification (3) leads to

F (wt) =
1

N

N∑

i=1

min
j∈{1,...,n}

(yi −wt
j
T
xi)

2 =
1

N

N∑

i=1

(yi −wt
λt
i

T
xi)

2.

Or equivalently, by letting Ij = {i ∈ {1, . . . , N} : λt
i = j},

F (wt) =
1

N

n∑

j=1

∑

i∈Ij

(yi −wt
j
T
xi)

2 =
1

N

n∑

j=1

‖yt
j −Xt

jw
t
j‖22.

On the other hand, the update (4) ensures that ‖yt
j −Xt

jw
t+1
j ‖22 is minimium for all j ∈ {1, . . . , n} and

thus that
1

N

n∑

j=1

‖yt
j −Xt

jw
t+1
j ‖22 ≤

1

N

n∑

j=1

‖yt
j −Xt

jw
t
j‖22 = F (wt).

Since the inequality

1

N

N∑

i=1

min
j∈{1,...,n}

(yi −wt+1
j

T
xi)

2 ≤ 1

N

N∑

i=1

(yi −wt+1
λt
i

T
xi)

2,

holds for all sequences {λt
i}Ni=1 ∈ {1, . . . , n}N , we have

F (wt+1) ≤ 1

N

n∑

j=1

‖yt
j −Xt

jw
t+1
j ‖22 ≤ F (wt).
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This completes the proof.
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