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This paper deals with the switched linear regression problem inherent in hybrid system identification. In particular, we discuss k-LinReg, a straightforward and easy to implement algorithm in the spirit of k-means for the nonconvex optimization problem at the core of switched linear regression, and focus on the question of its accuracy on large data sets and its ability to reach global optimality. To this end, we emphasize the relationship between the sample size and the probability of obtaining a local minimum close to the global one with a random initialization. This is achieved through the estimation of a model of the behavior of this probability with respect to the problem dimensions. This model can then be used to tune the number of restarts required to obtain a global solution with high probability. Experiments show that the model can accurately predict the probability of success and that, despite its simplicity, the resulting algorithm can outperform more complicated approaches in both speed and accuracy.

Introduction

This paper deals with hybrid dynamical system identification and more precisely with the switched linear regression problem. In this framework, a set of linear models are estimated in order to approximate a noisy data set with minimal error under the assumption that the data are generated by a switched system. We consider that the number of linear models is fixed a priori. Note that, even with this assumption, without knowledge of the classification of the data into groups associated to each one of the linear models, this problem is NP-hard [START_REF] Paoletti | Identification of hybrid systems: a tutorial[END_REF] and is thus naturally intractable for data living in a high dimensional space. However, even for data in low dimension, algorithmic efficiency on large data sets remains an open issue.

Related work.

As witnessed by the seminal works [START_REF] Vidal | An algebraic geometric approach to the identification of a class of linear hybrid systems[END_REF][START_REF] Ferrari-Trecate | A clustering technique for the identification of piecewise affine systems[END_REF][START_REF] Roll | Identification of piecewise affine systems via mixed-integer programming[END_REF][START_REF] Juloski | A Bayesian approach to identification of hybrid systems[END_REF][START_REF] Bemporad | A bounded-error approach to piecewise affine system identification[END_REF] reviewed in [START_REF] Paoletti | Identification of hybrid systems: a tutorial[END_REF], the switched regression problem has been extensively studied over the last decade for the identification of hybrid dynamical systems. While methods in [START_REF] Ferrari-Trecate | A clustering technique for the identification of piecewise affine systems[END_REF][START_REF] Roll | Identification of piecewise affine systems via mixed-integer programming[END_REF] focus on piecewise affine systems, the ones in [START_REF] Vidal | An algebraic geometric approach to the identification of a class of linear hybrid systems[END_REF][START_REF] Juloski | A Bayesian approach to identification of hybrid systems[END_REF][START_REF] Bemporad | A bounded-error approach to piecewise affine system identification[END_REF] equivalently apply to arbitrarily switched systems. Due to the NP-hard nature of the problem, all methods, except the global optimization approach of [START_REF] Roll | Identification of piecewise affine systems via mixed-integer programming[END_REF], yield suboptimal solutions in the sense that they are based on local optimization algorithms or only solve an approximation of the original nonconvex problem. However, each approach increased our understanding of hybrid system identification with a different point of view. By studying the noiseless setting, the algebraic approach [START_REF] Vidal | An algebraic geometric approach to the identification of a class of linear hybrid systems[END_REF][START_REF] Vidal | Recursive identification of switched ARX systems[END_REF] showed how to cast the problem as a linear system of equations. The clustering-based method [START_REF] Ferrari-Trecate | A clustering technique for the identification of piecewise affine systems[END_REF] proposed a mapping of the data into a feature space where the submodels become separable. The Bayesian approach [START_REF] Juloski | A Bayesian approach to identification of hybrid systems[END_REF] analyzed the problem in a probabilistic framework, while the bounded-error approach [START_REF] Bemporad | A bounded-error approach to piecewise affine system identification[END_REF] switched the focus by investigating the estimation of the number of modes for a given error tolerance. Each one of these offers a practical solution to deal with a specific case: noiseless for [START_REF] Vidal | An algebraic geometric approach to the identification of a class of linear hybrid systems[END_REF], with few data for [START_REF] Roll | Identification of piecewise affine systems via mixed-integer programming[END_REF], with prior knowledge on parameters for [START_REF] Juloski | A Bayesian approach to identification of hybrid systems[END_REF] or on the noise level for [START_REF] Bemporad | A bounded-error approach to piecewise affine system identification[END_REF].

But despite this activity, most of the proposed approaches have strong limitations on the dimension of the data they can handle and are mostly applicable to small data sets with less than a thousand points and ten regressors. The algebraic approach [START_REF] Vidal | An algebraic geometric approach to the identification of a class of linear hybrid systems[END_REF][START_REF] Vidal | Recursive identification of switched ARX systems[END_REF] provides a closed form solution, which can be very efficiently computed from large data sets, but which is only valid in the noise-free setting and rather sensitive to noise otherwise. Robust formulations of this approach exist [START_REF] Ma | Identification of deterministic switched ARX systems via identification of algebraic varieties[END_REF][START_REF] Ozay | Robust identification of switched affine systems via moments-based convex optimization[END_REF], but these still suffer from a major limitation inherent in the algebraic approach: the complexity grows exponentially with respect to the dimension of the data and the number of modes. This issue is also critical for the approach of [START_REF] Lauer | A continuous optimization framework for hybrid system identification[END_REF] which, for small data dimensions, efficiently deals with noise in large data sets through a global optimization strategy applied to a continuous cost function. The recent method of [START_REF] Bako | Identification of switched linear systems via sparse optimization[END_REF], based on sparse optimization, circumvents the issue of the number of modes by iteratively estimating each parameter vector independently, in the spirit of the bounded-error approach [START_REF] Bemporad | A bounded-error approach to piecewise affine system identification[END_REF]. However, the method relies on an ℓ 1 -norm relaxation of a sparse optimization problem, which requires restrictive conditions on the fraction of data generated by each mode to apply. In particular, when the number of modes increases, the assumption on the fraction of data generated by a single mode becomes less obvious. Other works on convex relaxation of sparse optimization formulations include [START_REF] Ozay | A sparsification approach to set membership identification of a class of affine hybrid systems[END_REF][START_REF] Ozay | A sparsification approach to set membership identification of switched affine systems[END_REF], but the number of variables and of constraints in these convex optimization problems quickly grow with the number of data.

In a realistic scenario, say with noise, more than a thousand data points and more than two modes, globally optimal solutions (such as those obtained by [START_REF] Roll | Identification of piecewise affine systems via mixed-integer programming[END_REF]) cannot be computed in reasonable time and little can be stated on the quality of the models trained by approximate or local methods. Even for convex optimization based methods [START_REF] Bako | Identification of switched linear systems via sparse optimization[END_REF][START_REF] Ozay | Robust identification of switched affine systems via moments-based convex optimization[END_REF][START_REF] Ozay | A sparsification approach to set membership identification of switched affine systems[END_REF], the conditions under which the global minimizer of the convex relaxation coincides with the one of the original problem can be unclear or violated in practice. In this context, experimentally asserted efficiency and performance of an algorithm are of primary interest. In this respect, the paper shows empirical evidence that a rather straightforward approach to the problem can outperform other approaches from the recent literature in low dimensional problems while increasing the range of tractable problems towards larger dimensions.

Methods and contribution. This paper considers one of the most straightforward and easy to implement switched regression method and analyzes the conditions under which it offers an accurate solution to the problem with high probability. The algorithm discussed here is inspired by classical approaches to clustering and the k-means algorithm [START_REF] Macqueen | Some methods for classification and analysis of multivariate observations[END_REF], hence its name: k-LinReg. As such, it is a local optimization method based on alternatively solving the problem (to be specified later) with respect to integer and real variables. The key issue in such an approach is therefore how to obtain a solution sufficiently close to the global one, which is typically tackled by multiple initializations and runs of the algorithm, but without guarantees on the quality of the result. In this paper, we focus on random initializations of the k-LinReg algorithm and the estimation of the probability of drawing an initialization leading to a satisfactory solution. In particular, we show how this probability is related to the number of data and how the number of random initializations can be chosen a priori to yield good results. This analysis is based on a random sampling of both the problem and initialization spaces to compute the estimates of the probability of success. Inspired by works on probabilistic methods [START_REF] Calafiore | Research on probabilistic methods for control system design[END_REF], probabilistic bounds on the accuracy of these estimates are derived. These bounds provide the ground to consider the estimates as data for the subsequent estimation of a predictive model of the probability of success, from which the number of restarts from different initializations for a particular task can be inferred.

This study also reveals a major difference with the classical k-means problem, namely, that high dimensional problems can be solved efficiently and globally if the number of data is large enough. Compared with other approaches to switched linear regression, the computing time of the proposed method can even decrease when the number of data increases for high dimensional problems due to a reduced number of required restarts. Note that the approach developed in [START_REF] Bako | A recursive identification algorithm for switched linear/affine models[END_REF] has some similarities with the k-LinReg algorithm discussed here, but also some differences, for instance with respect to working in a recursive or batch manner. In addition, the issue of the convergence towards a global solution was not clearly addressed in [START_REF] Bako | A recursive identification algorithm for switched linear/affine models[END_REF], whereas it is the central subject of the proposed analysis.

Beside these aspects, the paper also provides new insights into the inherent difficulty of hybrid system identification problems measured through the probability of success for the proposed baseline method. In particular, numerical examples show that test problems typically considered in the literature can be solved with few randomly initialized runs of the k-LinReg algorithm.

Paper organization. The paper starts by formally stating the problem in Section 2. The k-LinReg algorithm is presented in Section 3 and Section 4 is devoted to the study of its ability to find a solution close enough to the global one. Then, these results are used to build a model of its probability of success in Sect. 5, on the basis of which the number of restarts is computed in Sect. 5.2. Finally, Section 6 provides numerical experiments to test the proposed model and compares the final algorithm with some of the most recent approaches for hybrid system identification.

Problem formulation

Consider switched linear regression as the problem of learning a collection of n linear models f j (x) = w T j x, j = 1, . . . , n, with parameter vectors w j ∈ R p from a training set of N pairs (x i , y i ) ∈ R p × R, where x i is the regression vector and y i the observed output. In particular, we focus on least squares estimates of {w j } n j=1 , i.e., parameter vector estimates minimizing the squared error, (y i -f (x i )) 2 , over the training set. The model f is a switching model in the sense that the output f (x) for a given input x is computed as the output of a single submodel f j , i.e., f (x) = f λ (x), where λ is the index of the particular submodel being used, which we refer to as the mode of x.

When i is the time index and the regression vector is built from lagged outputs y i-k and inputs u i-k of a system as x i = [y i-1 , . . . , y i-ny , u i-na , . . . , u i-n b ] T , we obtain a class of hybrid dynamical systems known as the Switched Auto-Regressive eXogenous (SARX) model, compactly written as

y i = w T λi x i + e i ,
with an additive noise term e i . In this setting, the identification of the SARX model can be posed as a switched linear regression problem.

In this paper, we are particularly interested in instances of this switched linear regression problem with large data sets and focus on the case where the number of linear models n is fixed a priori1 . Note that, even with this assumption, the problem is nontrivial and highly nonconvex. Indeed, given a data set, {(x i , y i )} N i=1 , the least squares estimates of the parameters of a switched linear model with n modes, {w j } n j=1 , are obtained by solving the following mixed integer optimization problem.

Problem 1 (Least squares switched linear regression).

min {wj },{βij } 1 N N i=1 n j=1 β ij (y i -w T j x i ) 2 s.t. β ij ∈ {0, 1}, i = 1, . . . , N, j = 1, . . . , n n j=1 β ij = 1, i = 1, . . . , N,
where the β ij are binary variables coding the assignment of point i to submodel j.

Problem 1 belongs to one of the most difficult class of optimization problems, namely, mixed-integer nonlinear programs, and is known to be NP-hard [START_REF] Paoletti | Identification of hybrid systems: a tutorial[END_REF]. For a particular choice of model structure (hinging hyperplanes, that are only suitable for piecewise affine system identification), it can be transformed into a mixed-integer quadratic program, as detailed in [START_REF] Roll | Identification of piecewise affine systems via mixed-integer programming[END_REF]. However, even in this "simplified" form, it remains NP-hard and its global solution cannot be obtained except for very small instances with few data points [START_REF] Roll | Identification of piecewise affine systems via mixed-integer programming[END_REF].

In order to deal with numerous data while maintaining the dimension of the problem as low as possible, the following minimum-of-error reformulation of Problem 1 can be considered [START_REF] Lauer | A continuous optimization framework for hybrid system identification[END_REF]. 

(y i -w T j x i ) 2 , (1) 
and where w = [w T 1 . . . w T n ] T is the concatenation of all model parameter vectors w j . The equivalence between Problem 1 and 2 is given by the following proposition (see the proof in Appendix A). In particular, Proposition 1 shows that an optimal solution2 to Problem 1 can be directly obtained from a global solution of Problem 2.

Proposition 1. Problems 1 and 2 are equivalent under the simple mapping

β ij =    1, if j = arg min k=1,...,n (y i -w T k x i ) 2 , 0, otherwise, i = 1, . . . , N, j = 1, . . . , n. (2) 
Moreover, this mapping is optimal in the sense that no other choice of {β ij } leads to a lower value of the cost function in Problem 1.

Though being equivalent to Problem 1, Problem 2 has the advantage of being a continuous optimization problem (with a continuous objective function and without integer variables) involving only a small number of variables equal to n × p. To see this, note that the cost function (1) can be rewritten as

F (w) = 1 N N i=1 ℓ(x i , y i , w),
where the loss function ℓ is defined as the point-wise minimum of a set of n loss functions ℓ j (x i , y i , w) = (y iw T j x i ) 2 , j = 1, . . . , n. Since the point-wise minimum of a set of continuous functions is continuous, F is continuous (though non-differentiable) with respect to the variables w.

Nonetheless, Problem 2 is a nonconvex problem which may have many local minima. In particular, switching from Problem 1 to 2 does not alleviate the NP-hardness, but simply changes the focus in terms of complexity from the number of data to the number of modes, n, and the dimension, p. This paper will therefore concentrate on the main issue of finding a solution to Problem 2 that is sufficiently close to a global one.

Remark 1. The paper focuses on the error measured by the cost function F , and more particularly on the gap between F (w) obtained with estimates w and F (θ) obtained with the true parameters θ, rather than on classification errors. While |F (w) -F (θ)| can be zero, classification errors are unavoidable in hybrid system identification due to so-called undecidable points that lie at the intersection between submodels and for which one cannot determine the true mode solely on the basis of (x i , y i ). Though all switched system identification methods are subject to such misclassifications, these errors have a limited influence on parameter estimates, since they correspond by definition to data points that are consistent with more than one submodel. We refer to [START_REF] Bemporad | A bounded-error approach to piecewise affine system identification[END_REF] for a more in-depth discussion on this issue and some corrective measures that can be employed in piecewise affine system identification.

The k-LinReg algorithm

The k-LinReg algorithm builds on the relationship between Problem 1 and the classical unsupervised classification (or clustering) problem. These problems share the common difficulty of simultaneously computing a classification of the data points (through the binary variables β ij ) and a model of each group of points. In the clustering literature, the baseline method typically used to solve such problems is the k-means algorithm [START_REF] Macqueen | Some methods for classification and analysis of multivariate observations[END_REF], which alternates between assignments of data points to groups and updates of the model parameters. Applying a similar strategy in the context of switched regression leads to the k-LinReg algorithm, which is depicted in Algorithm 1, where we let X = [x 1 , . . . , x N ] T be the regression matrix and y = [y 1 , . . . , y N ] T be the target output vector.

Algorithm 1 k-LinReg Require: the data set (X, y) ∈ R N ×p × R N , the number of modes n and an initial vector

w 0 = [w 0 1 T , . . . , w 0 n T ] T .
Initialize t ← 0. repeat Classify the data points according to

λ t i = arg min j∈{1,...,n} (y i -w t j T x i ) 2 , i = 1, . . . , N. (3) 
for j = 1 to n do if |{i : λ t i = j}| < p then return w * = w t and F (w * ). end if Build the matrix X t j , containing all the ith rows of X for which λ t i = j, and the target vector y t j with the corresponding components from y. Update the model parameters for mode j with

w t+1 j = arg min wj ∈R p y t j -X t j w j 2 2 . (4) 
The solution to this least-squares problem is obtained via the pseudo-inverse of X t j and can be given in closed form if X t j is full rank by

w t+1 j = (X t j T X t j ) -1 X t j T y t j ,
or through the singular value decomposition of X t j . end for Increase the counter t ← t + 1. until convergence, e.g., until

||w t+1 -w t || 2 ≤ ǫ,
or no more changes occur in the classification. return w * = w t+1 and F (w * ).

The IF statement in the FOR loop of Algorithm 1 simply ensures that the subsequent update of w t+1 j can proceed with sufficient data. If not, then the algorithm returns the current solution before updating (which will usually correspond to a failure in the terms of Section 4). Such situations are also typical in the k-means algorithm, where a group of points can become empty. In this case, possible refinements include resetting the corresponding parameter vector to a random value or merely dropping it to obtain a final model with fewer modes. However, since the aim of the paper is to analyze the most simple version of the k-LinReg algorithm, these strategies will not be considered. Algorithm 1 can be interpreted as a block-coordinate descent algorithm, where the cost function in Problem 1 is alternatively optimized over two sets of variables: the discrete and the real ones. Convergence towards a local minimum is guaranteed by the following proposition that considers the equivalent form of Problem 2 (see the proof in Appendix B).

Proposition 2. Algorithm 1 monotonically decreases the cost function

F (w t ) in (1), in the sense that ∀t ≥ 0, F (w t+1 ) ≤ F (w t ).
The k-LinReg algorithm is guaranteed to converge to a local minimum of the cost function [START_REF] Paoletti | Identification of hybrid systems: a tutorial[END_REF]. However, such cost functions may exhibit a number of local minima, many of which are not good solutions to the original problem of switched linear modeling. In order to obtain a good local minimum, if not a global one, the procedure must be restarted from different initializations. The following sections will provide an indication on the number of restarts required to obtain a good solution with high probability.

Remark 2. In [START_REF] Ferrari-Trecate | A clustering technique for the identification of piecewise affine systems[END_REF], a clustering-based technique was proposed for hybrid system identification. It is "clustering-based" in the sense that a particular inner step of this method uses the k-means algorithm to classify the data points mapped in some feature space. Here, the approach is different in that the entire problem is solved by an adaptation of k-means to switched regression, where the parameter vectors are estimated together with the classification which takes place in the original regression space of the data. Also, note that the method of [START_REF] Ferrari-Trecate | A clustering technique for the identification of piecewise affine systems[END_REF] only applies to piecewise affine systems, whereas the k-LinReg algorithm is designed for arbitrarily switched systems.

Estimating the probability of success

One important issue when using local algorithms such as k-LinReg is the evaluation of their performance, i.e., their ability to reach global optimality. Here, we aim at a probabilistic evaluation under a random sampling of both the initialization and the data. More precisely, we will measure the probability of success, defined for given n, p, N and ε ≥ 0 as

P success (n, p, N, ε) = 1 -P f ail (n, p, N, ε) (5) 
with

P f ail (n, p, N, ε) = P w,θ,X,λ,e {F (w * ; X, λ, e) -F (θ; X, λ, e) ≥ ε},
where F (w * ; X, λ, e) = F (w * ) emphasizes the dependency of the cost function (1) on the data and where all variables are now random variables. In particular, w * is the random vector defined as the output of the k-LinReg algorithm initialized at w and applied to a data set generated by the random vector θ with y i = θ T λi x i + e i , i = 1, . . . , N , λ is a random switching sequence, e is a random noise sequence and X a random regression matrix with rows x T i . Note that the randomness of w * is only due to the randomness of the initialization w and the data, while the k-LinReg algorithm implementing the mapping w → w * is deterministic.

The probability P f ail can also be defined as the expected value of the loss

L = I(F (w * ; X, λ, e) -F (θ; X, λ, e) ≥ ε),
i.e., P f ail (n, p, N, ε) = EL, where I is the indicator function and E is the expectation over fixed and predefined distributions of the various random quantities w * , θ, X, λ, e.

Since P f ail involves the solution w * of the iterative Algorithm 1, its direct calculation is intractable and we instead rely on the estimate given by the empirical average as

P emp f ail (n, p, N, ε) = 1 m m k=1 L k , (6) 
where the L k are independent copies of L, i.e.,

L k = I(F (w k * ; X k , λ k , e k ) -F (θ k ; X k , λ k , e k ) ≥ ε)
, where the superscript k denotes the kth copy of a random variable. The estimate of the probability of success is finally given by

P emp success (n, p, N, ε) = 1 -P emp f ail (n, p, N, ε). (7) 
Thanks to the law of large numbers, we know that the empirical average, P emp f ail (n, p, N, ε), asymptotically converges (in m) towards the true probability P f ail (n, p, N, ε). In addition, classical concentration inequalities provide a quantitative version of the law of large numbers, with finite-sample bounds on the error between the empirical average and the expected value. More precisely, Hoeffding inequality [START_REF] Hoeffding | Probability inequalities for sums of bounded random variables[END_REF] yields

P m 1 m m k=1 L k -EL ≥ t ≤ 2 exp(-2mt 2 ),
where P m stands for the product probability over an m-sample of iid. L k . By setting δ = 2 exp(-2mt 2 ), we obtain the following error bound, which holds with probability at least 1 -δ,

P emp f ail (n, p, N, ε) -P f ail (n, p, N, ε) ≤ log 2 δ 2m . (8) 
As an example, by choosing δ = 0.01 and m = 10000 samples, the right-hand side of ( 8) is 0.0163, and there is a probability less than 1% of drawing 10000 samples which lead to an estimate P emp f ail (n, p, N, ε) not within [P f ail (n, p, N, ε) -0.0163, P f ail (n, p, N, ε) + 0.0163].

Remark 3. The analysis above can be interpreted in the framework of probabilistic and randomized methods reviewed in [START_REF] Calafiore | Research on probabilistic methods for control system design[END_REF]. In the terms defined in [START_REF] Calafiore | Research on probabilistic methods for control system design[END_REF], the probability of failure is the probability of violation and the probability of success (5) is the reliability of the specification F (w * ; X, λ, e) ≤ F (θ; X, λ, e) + ε, which is estimated by the empirical reliability [START_REF] Vidal | Recursive identification of switched ARX systems[END_REF]. Under this framework, a probabilistic design method would search for a realization of the control variable, here, e.g., the initialization w, leading to a predefined level of reliability. However, this approach is not applicable to our problem, since the randomness of the system embedded in θ is non-informative. Indeed, the distribution of θ does not represent some uncertainty interval around a mean value of the system parameters, but rather allows for a whole range of different systems to be identified, as discussed below.

Choice of distribution. The bound (8) applies for any distribution of the random variables w, θ, X, λ, e. The only requirement is that the distribution remains fixed throughout the estimation procedure and that the samples are drawn independently and identically. Thus, when estimating the empirical mean (6), we have to choose a particular distribution to draw the samples from. In the absence of strong assumptions on the distribution of the random variables beyond simple limiting intervals, the uniform distribution is the choice typically considered in randomized methods [START_REF] Calafiore | Research on probabilistic methods for control system design[END_REF]. Indeed, with few assumptions on the class of possible distributions and the probability of interest, this choice was rigorously justified in [START_REF] Barmish | The uniform distribution: A rigorous justification for its use in robustness analysis[END_REF] in the following sense. The uniform distribution is a minimizer of the probability of interest over the whole class of distributions, and thus leads to worst-case estimates of the probability when used for sampling. Therefore, in all the following experiments, we sample the variables according to the distributions as detailed below.

In order to sample as much diverse switched regression problems as possible, while not favoring particular instances, the regression vectors, x i , and the parameter vectors, θ j , j = 1, . . . , n, are uniformly distributed in [-5, 5] p . The data sets on which Algorithm 1 is applied are further generated with a uniformly distributed 7) over m = 10000 samples (plain line) with the error bounds given by ( 8) at δ = 1% (dashed lines). mode λ i in {1, . . . , n} and with a zero-mean Gaussian noise e i of standard deviation σ e = 0.2. The initialization w of Algorithm 1 follows a uniform distribution in the rather large interval [-100, 100] np , assuming no prior knowledge on the true parameter values.

Section 4.1 below analyzes the influence of the size of the data sets, N , on the probability of success under these conditions, while Section 4.2 further studies the validity of the results for other noise levels. Finally, Section 4.3 will emphasize the effect of the constraints on the regressors implied by a SARX system.

Influence of the number of data

Consider the following set of experiments which aim at highlighting the relationship between the number of data and the difficulty of the problem measured through the probability of success of the simple k-LinReg algorithm. For each setting, defined by the triplet of problem dimensions (n, p, N ), we generate m = 10000 training sets of N points, {(x i , y i )} N i=1 , with the equation y i = θ T λi x i + e i , i = 1, . . . , N , where θ, x i , λ i , e i are realizations of the corresponding random variables drawn according to the distributions defined above.

For each data set, we apply Algorithm 1 with a random initialization w k and compute the estimate (7) of the probability of success. More precisely, we set ǫ = 10 -9 , which means that an initialization must lead to a value of the cost function (1) very close to the global optimum in order to be considered as successful.

In fact, the analysis considers a slight modification to Algorithm 1, in which the returned value of the objective function, F (w k * ), is arbitrarily set to F (w k * ) = +∞ for problematic cases discussed in Sect. [START_REF] Ferrari-Trecate | A clustering technique for the identification of piecewise affine systems[END_REF] and where, at some iteration t and for some mode j, |{i : λ t i = j}| < p. More generally, note that, in R p , any set of p -1 points can be fitted by a single linear model. Therefore, for N ≤ n(p -1), there are trivial solutions that minimize the cost F (w), but do not correspond to solutions of the modeling problem with n submodels. The modification to Algorithm 1 ensures that such cases are considered as failures throughout the analysis.

Figure 1 shows a typical curve of the influence of the number of data on the quality of the solution returned by k-LinReg in terms of the quantity [START_REF] Vidal | Recursive identification of switched ARX systems[END_REF]. The probabilistic bounds within which the true probability of success lies are also plotted and we see that they are very tight. The curves obtained in various settings are reported in Figure 2. These plots of [START_REF] Vidal | Recursive identification of switched ARX systems[END_REF] indicate that using more data increases the probability of success, so that the cost function (1) seems to have fewer local minima for large N than for small N . Remark 4. Most approaches that aim at globally solving Problem 1 have difficulties to handle large data sets. This is often related to an increase of the number of optimization variables, which may lead to a prohibitive computational burden. However, this does not necessarily means that the corresponding nonconvex optimization problem is more difficult to solve in terms of the number of local minima or the relative size of their basin of attraction compared with the one of the global optimum. Indeed, the results above provide evidence in favor of the opposite statement: the probability of success of the local optimization Algorithm 1 monotonically increases with the number of data. 

Influence of the noise level

The analysis in the previous section holds for fixed distributions of the random variables w, θ, X, λ, e, and in particular for the chosen noise level implemented by the standard deviation, σ e , of the Gaussian distribution of e. Here, we evaluate the influence of this noise level on the estimates of the probability of success.

Experiments are conducted as in the previous subsection, except for the training set size, N , which is fixed to 1000 and the noise level, σ e , which now varies over a grid of the interval [0.5, 4.0] (corresponding to a range of about 20 dB in terms of signal-to-noise ratio and reasonable values within which the submodels can be distinguished). This means that for each value of σ e on this grid, 10000 samples of the random variables are drawn to compute the estimate of the probability of success via the application of Algorithm 1 and ( 6)- [START_REF] Vidal | Recursive identification of switched ARX systems[END_REF]. These experiments are repeated for different problem dimensions (n, p) and the results are plotted in Figure 3. Note that, here, the aim is not to evaluate the range of noise levels that the k-LinReg algorithm can deal with, but instead to determine whether the curves of Figure 2 are sensitive to the noise level.

These results show that the noise level has little influence on the performance of the algorithm. Recall that here, the performance of the algorithm is evaluated as its ability to reach a value of the cost function sufficiently close to the global minimum. Of course, once a solution close to the global one has been found, the noise level influences the accuracy of the parameter estimation, as for any regression algorithm. However, these experiments support the idea that the noise level does not directly determines the level of difficulty of a switched regression problem, which rather lies in the ability of an algorithm to discriminate between the modes. It will therefore be omitted from the predictive model discussed in Section 5 which will focus on the influential parameters n and p.

Influence of the SARX system structure

This section reproduces the analysis of Sect. 4.1 for SARX system identification instead of switched regression, i.e., for a regression vector x i = [y i-1 , . . . , y i-ny , u i-na , . . . , u i-n b ] T , constrained to a manifold of R p . More precisely, X is now a deterministic function of the random variables θ, x 0 (the initial conditions), u (the input sequence), λ and e. The probability is now defined over x 0 , u, λ, e instead of X, λ, e and with uniform distributions for x 0 and u. In addition, for a given p, we uniformly draw n y in {1, . . . , p -1} and set n a = 0, n b = p -n y . Thus, we uniformly sample identification problems with various system orders. We use a simple rejection method to discard unbounded trajectories without particular assumptions on the system whose parameters θ remain uniformly distributed in [-1, 1] np (depending on the switching sequence, unstable subsystems can lead to stable trajectories and vice versa).

The results are plotted in Fig. 4 and confirm the general tendency of the probability of success with respect to N . However, these results also show that the constraints on the regression vector increase the difficulty of the problem. In particular, both the rate of increase of the probability of success and its maximal value obtained for large N are smaller than in the unconstrained case reported in Fig. 2.

Modeling the probability of success

The following presents the estimation of a model of the probability of success based on the measurements of this quantity derived in the previous section. The aim of this model is to provide a simple means to set the number of restarts for k-LinReg (Section 5.2) and an indication on the number of data with which we can expect k-LinReg to be successful on a particular task (Section 5.3).

More precisely, we are interested in obtaining these numbers from general parameters of a given problem instance summarized by the triplet (n, p, N ). In order to fulfill this goal, we require an estimate of the probability of success of k-LinReg for any given triplet of problem dimensions (n, p, N ). Since estimating this probability as in Section 4 for all possible triplets would clearly be intractable, we resort to a modeling approach. Thus, the aim is to estimate a model that can predict with sufficient accuracy the probability P success (n, p, N, ε). Irrespective of the quantity of interest, the classical approach to modeling involves several steps. First, we need to choose a particular model structure. This structure can either be parametric and based on general assumptions or nonparametric as in black-box models. Here, we consider the parametric approach and choose a particular model structure from a set of assumptions. Then, the parameters of this model are estimated from data. Here, the data consist in the estimates of the probability of success obtained in Section 4 for a finite set of triplets (n, p, N ). Therefore, in the following, these estimates, P emp success (n, p, N, ε), are interpreted as noisy measurements of the quantity of interest, P success , from which the model can be determined.

This section and the followings are based on the measurements obtained in Sect. 4 with a fixed and small value of the threshold ε = 10 -9 . Therefore, in the remaining of the paper we will simply use the notation P success (n, p, N ) to refer to P success (n, p, N, ε) for this specific value of ε.

The choice of structure for the proposed model relies on the following assumptions.

• The probability of success should be zero when N is too small. Obviously, without sufficient data, accurate estimation of the parameters w is hopeless. In particular, we aim at the estimation of all parameter vectors, {w j } n j=1 , and therefore consider that solutions leading to a low error with fewer submodels as inaccurate. More precisely, this is implemented in the data by the modification of Algorithm 1 discussed in Sect. 3 and which returns an infinite error value in such cases.

• The probability of success monotonically increases with N . This assumption is clearly supported by the observations of Section 4. It is also in line with common results in learning and estimation theory, where better estimates are obtained with more data. However, the validity of such assumptions in the context of switched regression was not obvious, since these results usually apply to local algorithms under the condition that the initialization is in the vicinity of the global minimizer (or that the problem is convex). 9) as obtained from the average curves in Fig. 2 (blue '+'), the ones in Fig. 4 (black '•') and from the proposed formulas ( 13)-( 18) in a switched regression (top row) or SARX system identification (bottom row) setting.

• The probability of success converges, when N goes to infinity, to a value smaller than one. This assumption reflects the fact that the size of the data set cannot alleviate all difficulties, in particular regarding the issue of local minima. Note that this is an issue specific to the switched regression setting, whereas classical regression algorithms can compute consistent estimates. In switched regression, consistency of an estimator formulated as the solution to a nonconvex optimization problem does not imply the computability of consistent estimates.

• The probability of success should be a decreasing function of both n and p. This assumption reflects the increasing difficulty of the problem with respect to its dimensions. In particular, with more submodels (larger n), more local minima can be generated, while increasing the dimension p increases the range of possible initializations and thus decreases the probability of drawing an initialization in the vicinity of the global optimum.

Following these assumptions, we model the probability of success, P success (n, p, N ), by the unitary step response of a first order dynamical system with delay, where the number of data N plays the role of the time variable, i.e.,

P success (n, p, N ) =    K(n, p) 1 -exp -(N -τ (n, p)) T (n, p) , if N > τ (n, p) 0, otherwise, (9) 
and where the dimensions n and p influence the parameters. In particular, K(n, p) is the "gain", τ (n, p) is the "time-delay" and T (n, p) is the "time-constant". Such models are used in Broïda's identification method [START_REF] Borne | Analyse et régulation des processus industriels: Régulation continue[END_REF], in which the constants K, τ and T are estimated on the basis of curves as the ones in Figures 2 and4. This estimation relies on the following formulas:

K(n, p) = lim N →+∞ P success (n, p, N ) = sup N P success (n, p, N ), ( 10 
)
τ (n, p) = 2.8N 1 -1.8N 2 , ( 11 
) T (n, p) = 5.5(N 2 -N 1 ), ( 12 
)
where N 1 and N 2 are the numbers of data (originally, the "times") at P success (n, p, N ) = 0.28K(n, p) and P success (n, p, N ) = 0.40K(n, p), respectively. We use linear interpolation to determine N 1 and N 2 more precisely from the curves in Fig. 2 and4 and obtain estimates of the constants K, τ and T for different numbers of modes n and dimensions p. As shown by Figure 5, these constants can be approximated by the following functions of n and p: K(n, p) = 0.99, ( 13) for switched regression, while the following approximations are suitable for SARX system identification:

τ (n, p) = 0.2 (2 n p) 1.4 , (14) 
T (n, p) = 2.22 × 2 n p, (15) 
K SARX (n, p) = 1.02 -0.023n, ( 16 
)
τ SARX (n, p) = 1.93 × 2 n p -37, (17) 
T SARX (n, p) = 52 2 n p -220. ( 18 
)
The coefficients in these equations are the least squares estimates of the generic parameters a and b in the linear regressions K(n, p) = an + b, τ = az + b and T (n, p) = az + b, where z = 2 n p, τ = log τ (n, p) and z = log z. For SARX systems, the relationships giving τ SARX and T SARX are modified as τ SARX (n, p) = az + b and

T SARX (n, p) = a √ z + b.
Finally, the model of the probability of success is given either by

P success (n, p, N ) =    0.99 1 -exp -(N -0.2(2 n p) 1.4 ) 2.22×2 n p , if N > 0.2 (2 n p) 1.4 0, otherwise, (19) 
in a regression setting or by,

P SARX success (n, p, N ) = (1.02 -0.023n) 1 -exp -(N -1.93×2 n p-37) 52 √ 2 n p-220 , if N > 1.93 × 2 n p -37 0, otherwise, (20) 
for SARX system identification. The output of these models is very close to the empirical average of P success (n, p, N ) as illustrated for n = 4 and p = 10 by Figure 6. The mean absolute error, 1/|T | (n,p,N )∈T |P success (n, p, N ) -P success (n, p, N )|, over the set of triplets, T , used for their estimation, is 0.048 for P success (n, p, N ) and 0.102 for P SARX success (n, p, N ).

Estimation of the generalization ability of the model via cross-validation

The generalization error of the models ( 19)-( 20) reflects their ability to accurately predict the probability of success for triplets (n, p, N ) not in T , i.e., for previously unseen test cases. This generalization error can be estimated from the data through a classical cross-validation procedure (see, e.g., [START_REF] Stone | Cross-validatory choice and assessment of statistical predictions[END_REF]), which iterates over K CV subsets of the data. At each iteration, the model is estimated from K CV -1 subsets and tested on the remaining subset. The average error thus obtained yields the cross-validation estimate of the generalization error.

Since the computation of each value of the constants K, τ, T (each point in Fig. 5) rely on an entire curve with respect to N , we split the data with respect to n and p: all data in a subset correspond to a curve in Fig. 2 or 4 for fixed (n, p). Then, at iteration k, the models ( 19)-( 20) are estimated without the data for the setting (n k , p k ) and the sum of absolute errors, |P success (n k , p k , N ) -P success (n k , p k , N )|, is computed over all N .

Applying this procedure leads to a cross-validation estimate of the mean absolute error of 0.050 for switched regression and 0.105 for SARX system identification. Though the model is less accurate for SARX systems, its error remains reasonable for practical purposes such as the automatic tuning of the number of restarts for k-LinReg, as proposed next.

Computing the number of restarts for k-LinReg

Consider now the algorithm restarted r times with initializations that are independently and identically drawn from a uniform distribution. The probability of drawing a successful initialization for a particular problem instance, i.e., for given θ, X, λ and e, is the conditional probability of success P cond (θ, X, λ, e) = P w|θ,X,λ,e (F (w * ) -F (θ) ≤ 10 -9 ) and the probability of not drawing a successful initialization in any of the restarts is

P f ail (r) = r k=1 (1 -P cond (θ, X, λ, e)) = (1 -P cond (θ, X, λ, e)) r . (21) 
To set the number of restarts, we consider the average probability of drawing a successful initialization, where the average is taken over all problem instances, i.e., we consider the expected value of the conditional probability of success P cond (θ, X, λ, e). This expectation corresponds to the joint probability of success, P success (n, p, N ) = P w,θ,X,λ,e (F (w * ) -F (θ) ≤ 10 -9 ), since

P success (n, p, N ) = E w,θ,X,λ,e [I(F (w * ) -F (θ) ≤ 10 -9 )] = E θ,X,λ,e E w|θ,X,λ,e [I(F (w * ) -F (θ) ≤ 10 -9 )|θ, X, λ, e] = E θ,X,λ,e [P cond (θ, X, λ, e)].
Considering the mean conditional probability, i.e., replacing P cond (θ, X, λ, e) by P success (n, p, N ) in ( 21), leads to a trade-off between optimistic estimates for difficult problems and pessimistic ones for easier problems. This trade-off allows us to build an algorithm that is both computationally efficient and sufficiently successful on average. This algorithm relies on the following estimate of the probability of failure:

P f ail (r) = (1 -P success (n, p, N )) r .
Then, the number of restarts r * required to obtain a given maximal probability of failure P * f such that P f ail (r) ≤ P * f , is computed as

r * = min r∈N * r, s.t. r ≥ log P * f log 1 -P success (n, p, N ) , (22) 
where P success (n, p, N ) is given by ( 19) or [START_REF] Stone | Cross-validatory choice and assessment of statistical predictions[END_REF].

In practice, the bound in ( 22) can be used as a stopping criterion on the restarts of the algorithm once the value of the hyperparameter P * f has been set. This leads to Algorithm 2, which can easily be cast into a parallel form by executing the line in italic multiple times in separate working threads.

The internal box bounds on the initialization vectors, [w, w], can be used to include prior knowledge on the values of the parameters, but they can also be set to quite large intervals in practice. Note that these bounds do not constrain the solution of the algorithm beyond the initialization, so that w best / ∈ [w, w] can be observed.

Estimating the sample complexity

We define the sample complexity of k-LinReg at level γ as the minimal size of the training sample, N (γ), leading to P success (n, p, N ) ≥ γ.

Algorithm 2 k-LinReg with multiple restarts Require: the data set (X, y) ∈ R N ×p × R N , the number of modes n and the probability of failure P * f . Initialize F best = +∞ and k = 0. Compute K, τ , T as in ( 13)-( 15) or ( 16)- [START_REF] Barmish | The uniform distribution: A rigorous justification for its use in robustness analysis[END_REF]. Set r * according to [START_REF] Le | Reduced-size kernel models for nonlinear hybrid system identification[END_REF] After substituting the model P success (n, p, N ) for P success (n, p, N ) in the above, this sample complexity can be estimated by using [START_REF] Ozay | Robust identification of switched affine systems via moments-based convex optimization[END_REF] as

   N (γ) ≥ τ (n, p) -T (n, p) log 1 - γ K(n, p) , if γ < K(n, p), N (γ) = +∞, otherwise. (23) 
In a given setting with n and p fixed, this can provide an indicative lower bound on the number of data required to solve the problem with probability γ by a single run of k-LinReg. The case N (γ) = +∞ reflects the impossibility to reach the probability γ, which may occur for unreasonable values of γ > 0.99 or for SARX systems with a very large number of modes n. However, note that (23) is mostly of practical use, since its analytical form depends on the particular choice of structure for (9).

Numerical experiments

This section is dedicated to the assessment of the model of the probability of success [START_REF] Borne | Analyse et régulation des processus industriels: Régulation continue[END_REF] as a means to tune the number of restarts on one hand and of the k-LinReg algorithm as an efficient method for switched linear regression on the other hand. Its time efficiency is studied in Sec. 6.1 and 6.2 with respect to the number of data and the problem dimensions, respectively. Section 6.3 analyses the ability of the method to reach global optimality, while Sec. 6.4 is dedicated to its application to hybrid dynamical systems.

The k-LinReg method is compared with the approach of [START_REF] Lauer | A continuous optimization framework for hybrid system identification[END_REF], which directly attempts to globally optimize (1) with the Multilevel Coordinate Search (MCS) algorithm [START_REF] Huyer | Global optimization by multilevel coordinate search[END_REF] and which we label ME-MCS. The second version of this approach, based on a smooth product of error terms, is also included in the comparison and labeled PE-MCS. We also consider the algebraic approach [START_REF] Vidal | An algebraic geometric approach to the identification of a class of linear hybrid systems[END_REF], which can deal efficiently with noiseless data, and the recent sparse optimization-based method [START_REF] Bako | Identification of switched linear systems via sparse optimization[END_REF]. The application of the latter is slightly different as it requires to set a threshold on the modeling error instead of the number of modes. The comparison with this approach will therefore only be conducted on the example taken from [START_REF] Bako | Identification of switched linear systems via sparse optimization[END_REF].

Three evaluation criteria are considered: the computing time, the mean squared error (MSE) computed by the cost function [START_REF] Paoletti | Identification of hybrid systems: a tutorial[END_REF], and the normalized mean squared error on the parameters (NMSE) evaluated against the true parameter values {θ j } as

NMSE = 1 n n j=1 θ j -w j 2 2 θ j 2 2 , (24) 
for the set of estimated parameter vectors {w j } ordered such that the NMSE is minimum. All numbers reported in the Tables and points in the plots are averages computed over 100 random problems generated with a different set of parameters {θ j }, except for the examples in Sect. 6.4 where the parameters are fixed and the averages are taken over 100 trials with different noise sequences.

For indicative purposes, a reference model is also included in the experiments and corresponds to the model obtained by applying n independent least-squares estimators to the data classified on the basis of the true mode (which is unknown to the other methods).

Except when mentioned otherwise, k-LinReg refers to Algorithm 2, which is stopped after completing the number of restarts r * given by [START_REF] Le | Reduced-size kernel models for nonlinear hybrid system identification[END_REF] with a maximal probability of failure P * f = 0.1% and with the model [START_REF] Borne | Analyse et régulation des processus industriels: Régulation continue[END_REF], or [START_REF] Stone | Cross-validatory choice and assessment of statistical predictions[END_REF] for the examples of Sect. 6.4. The bounds on the initialization are always set to w = -100 • 1 np and w = 100 • 1 np . The web page at http://www.loria.fr/ ~lauer/klinreg/ provides open source code for k-LinReg in addition to all the scripts used in the following experiments.

Large data sets in low dimension

The performance of the methods on large data sets is evaluated through a set of low-dimensional problems with n = 2 and p = 3, in a similar setting as in [START_REF] Lauer | A continuous optimization framework for hybrid system identification[END_REF]. The N data are generated by y i = θ T λi x i + v i , with uniformly distributed random regression vectors x i ∈ [-5, 5] p , a random switching sequence {λ i } and additive zero-mean Gaussian noise v i of standard deviation σ v = 0.2. The goal is to recover the set of true parameters {θ j } randomly drawn from a uniform distribution in the interval [-2, 2] p in each experiment. Figure 7 shows the resulting NMSE and computing times of k-LinReg, ME-MCS and PE-MCS, as averaged over 100 experiments for different numbers of data N . The computing time of the algebraic method, considered as the fastest method for such problems, is also shown for indicative purposes though this method cannot handle such a noise level (times are obtained by applying it to noiseless data). All computing times are given with respect to Matlab implementations of the methods running on a laptop with 2 CPU cores at 2.4 Ghz. The k-LinReg algorithm is much faster than the general purpose MCS algorithm and almost as fast as the algebraic method, while still leading to very accurate estimates of the parameters. In particular, the average NMSE of k-LinReg is similar to the ones obtained by the reference model and the ME-MCS. However, the ME-MCS algorithm fails to find a relevant model (with NMSE < 1) in a number of cases which are not taken into account in its average NMSE. Note that the k-LinReg estimates are found with only two random initializations since [START_REF] Le | Reduced-size kernel models for nonlinear hybrid system identification[END_REF] leads to r * = 2 in this setting.

High dimensions

Figure 8 shows the average computing times over 100 random experiments of the k-LinReg, the PE-MCS and the algebraic methods versus the dimension p. Data sets of N = 10 000 points are generated as in the previous subsection with a noise standard deviation of σ v = 0.1, except for the algebraic method which is applied to noiseless data in order to produce consistent results. The reported numbers reflect the computing times of Matlab implementations of the three methods as obtained on a computer with 8 cores running at 2.53 GHz. For low dimensions, i.e., p ≤ 5, the k-LinReg algorithm is slightly slower than the algebraic method, with however computing times that remain below 1 second. For high dimensions, p ≥ 50, the PE-MCS and the algebraic methods cannot yield a satisfactory result in a reasonable time (or run out of memory for the latter) even for the smallest number of modes n = 2. On the other hand, the k-LinReg algorithm remains efficient and can handle a dimension of p = 200 in few seconds for n = 2, despite an exponential complexity with respect to p. The knees in the curves of the k-LinReg computing time, observed for instance for n = 3 at p = 100, reflect the increase in the number of restarts given by [START_REF] Le | Reduced-size kernel models for nonlinear hybrid system identification[END_REF]. Figure 9 shows that all methods also have an exponential computing time with respect to the number of modes n, and that the algebraic approach suffers from the largest rate of increase.

Global optimality

For noiseless data, the global optimum of the cost function ( 1) is known to be zero. In such a setting, we can measure the running time and the number of restarts required by the algorithm to reach the global optimum. Table 1 shows the results of such experiments for problems of different sizes. Algorithm 1 is restarted until the criterion F (w * ) < 10 -6 is satisfied or the number of restarts exceeds 100, in which case this is interpreted as a failure. The experiments are repeated for 100 random problems for all sizes and if a failure is detected, only lower bounds on the number of restarts and the computing time are given in Table 1 (even if the global optimum was found in another experiment of the same set). The results indicate that the k-LinReg algorithm always finds the global optimum in less than 100 restarts (often just one) and few seconds, except when the numbers n and p lead to τ (n, p) > N , in which case the model [START_REF] Borne | Analyse et régulation des processus industriels: Régulation continue[END_REF] predicts the failure. Table 1 additionally shows how the dimension p can be increased without affecting the performance of k-LinReg when the number of data N is also sufficiently increased. Though the algebraic approach [START_REF] Vidal | An algebraic geometric approach to the identification of a class of linear hybrid systems[END_REF] also leads to the global optimum in noiseless cases, it is not suitable for such high-dimensional problems, as previously emphasized by Fig. 8. 

Application to hybrid dynamical system identification

The following studies two hybrid system identification examples from the recent literature and will show that these benchmark problems can be solved with few restarts of k-LinReg.

Robustness to noise

Consider the example taken from [START_REF] Vidal | Recursive identification of switched ARX systems[END_REF] and also considered in [START_REF] Lauer | A continuous optimization framework for hybrid system identification[END_REF]. The aim is to recover, from N = 1000 samples, the parameters θ 1 = [0.9, 1] T and θ 2 = [1, -1] T of a dynamical system, arbitrarily switching between n = 2 modes, with x i = [y i-1 , u i-1 ] T and a zero-mean Gaussian input with unit variance u i . Experiments with additive and centered Gaussian noise are conducted for different values of the noise standard deviation ranging from 0 to 0.3, whereas the standard deviation of the output is σ y ≈ 2.

Figure 10 shows the parametric error (NMSE) and the classification error rate of the k-LinReg, the ME-MCS, the PE-MCS and the algebraic methods as a function of the noise level and averaged over 100 experiments. All methods recover the parameters without error from the noiseless data. But only the k-LinReg and the ME-MCS methods achieve errors similar to the ones of the reference model for all noise levels. In addition, Figure 10 shows that the ME-MCS method failed in about 15% of the experiments. These failures represent the cases for which the NMSE is larger than 10 -3 and which are not taken into account in the averaged NMSE and classification error rate. The PE-MCS method benefits from much less failures, but leads to a larger average NMSE. Finally, the error of the algebraic method quickly increases with Table 2: Average parameter estimates over 100 trials for the example taken from [START_REF] Bako | Identification of switched linear systems via sparse optimization[END_REF] and discussed in Sect. 6.4.2.

θ1

-0.4 0.25 -0.15 0.08 Reference -0.3998 ± 0.0051 0.2499 ± 0.0051 -0.1516 ± 0.0083 0.0806 ± 0.0095 k-LinReg (r = 5) -0.3999 ± 0.0053 0.2499 ± 0.0053 -0.1514 ± 0.0085 0.0801 ± 0.0099 k-LinReg (r * = 3) -0.3964 ± 0.0405 0.2448 ± 0.0537 -0.1504 ± 0.0105 0.0860 ± 0.0689 Sparse optim. [START_REF] Bako | Identification of switched linear systems via sparse optimization[END_REF] 1.0033 ± 0.0296 -0.2439 ± 0.0310 -0.6504 ± 0.0100 0.3016 ± 0.0283 k-LinReg (r * = 3)

1.0111 ± 0.0677 -0.2535 ± 0.0736 -0.6573 ± 0.0434 0.3226 ± 0.1323 Sparse optim. [START_REF] Bako | Identification of switched linear systems via sparse optimization[END_REF] 0.9909 ± 0.0128 -0.2365 ± 0.0124 -0.6727 ± 0.0263 0.3102 ± 0.0271 the noise level, which leads to many failures in the high-noise regime. Note that, with a single initialization (r * = 1), the k-LinReg algorithm showed only one failure over the hundreds of trials of these experiments.

Regarding the classification errors, all methods lead to similar rates, including the reference model, which shows that these errors cannot be avoided. As discussed in Remark 1, this is due to data points that are consistent with multiple submodels and which are in a number increasing with the noise level. However, these misclassifications have a limited influence on the estimation of the parameters by k-LinReg as they correspond to small values of (y iw T j x i ) 2 in (4).

A slightly more difficult example

The next hybrid system identification example is taken from [START_REF] Bako | Identification of switched linear systems via sparse optimization[END_REF] with n = 3 modes and N = 300 data points in dimension p = 4. The signal-to-noise ratio (SNR) in this data is 30 dB. For these problem dimensions, the model (20) leads to set the number of restarts to r * = 3 in accordance with [START_REF] Le | Reduced-size kernel models for nonlinear hybrid system identification[END_REF].

We perform 100 random experiments as described in [START_REF] Bako | Identification of switched linear systems via sparse optimization[END_REF] and Table 2 shows the average value of the estimated parameters over these 100 trials. The estimates obtained by k-LinReg in less than 0.1 second are comparable with the results of the sparse optimization method reported in [START_REF] Bako | Identification of switched linear systems via sparse optimization[END_REF]. However, in order to cancel the difference between the k-LinReg average estimates and the ones of the reference model, the number of restarts needs to be slightly increased to r = 5. For few instances (out of 100 trials) of this particular example, the estimate r * in ( 22) is too optimistic and the global solution is not found with r * restarts.

Conclusions

We analyzed a k-means-like algorithm for switched linear regression and estimated a model of its expected performance. This model can be used in practice to set the main parameter of the algorithm, that is, the number of restarts or initializations. The resulting k-LinReg algorithm is very simple and can quickly identify switched linear systems from large data sets. In addition, experiments showed that the algorithm is able to yield a global solution when the number of data is sufficiently large, which corroborates the predictions of the model. This also indicates that switched linear regression problems with large data sets are not as difficult to solve as one would expect. In this respect, the k-LinReg algorithm and its model of performance offer a simple means to evaluate the difficulty of a particular problem.

While the paper focused on a simple model of the probability of success designed to provide the number of restarts, future work will further study the relationship between the sample size and the probability of success in order to produce more accurate models. Another issue concerns the determination of the validity range of the model: are predictions still accurate for much larger values of n or p? At the practical level, various enhancements of the k-LinReg algorithm can be investigated, such as the strategy to adopt when too few data points are assigned to a mode and how this could be used to estimate the number of submodels when n is overestimated. Finally, application of k-LinReg to switched nonlinear system identification with kernel submodels as proposed in [START_REF] Le | Reduced-size kernel models for nonlinear hybrid system identification[END_REF] could also be investigated.
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 1 Figure 1: Probability of success (in %) estimated for n = 4 and p = 10 by (7) over m = 10000 samples (plain line) with the error bounds given by (8) at δ = 1% (dashed lines).
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 2 Figure 2: Estimates of the probability of success, P emp success (n, p, N ), versus the number of data N . Each plot corresponds to a different dimension p and each curve corresponds to a different number of modes n.
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 3 Figure 3: Estimates of the probability of success (in %) versus the noise level σe for different settings (n, p).
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 4 Figure 4: Same curves as in Figure2, but for SARX system identification.
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 5 Figure 5: Parameters of the model (9) as obtained from the average curves in Fig.2(blue '+'), the ones in Fig.4(black '•') and from the proposed formulas (13)-(18) in a switched regression (top row) or SARX system identification (bottom row) setting.
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 6 Figure 6: Empirical estimates of the probability of success (solid line) and values predicted by the model (7) (dash line) for switched regression (left) and SARX system identification (right). These curves are obtained with n = 4 and p = 10.
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 7 Figure 7: Average NMSE (left) and computing time (right) over 100 trials versus the number of data N (plots in log-log scale).
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 8 Figure 8: Average computing time (over 100 trials) of the methods versus the dimension p for different numbers of modes n and N = 10000 data points (log-log scale). The Figure is best viewed in color.
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 9 Figure 9: Average computing time (over 100 trials) of the methods versus the number of modes n for p = 10 and N = 10000 (log scale). The Figure is best viewed in color.

Figure 10 :

 10 Figure 10: Influence of the noise level on the average NMSE and classification error rate (the standard deviations follow similar patterns) and on the percentage of failures of the methods. The average NMSEs for k-LinReg, ME-MCS and the reference model are hardly distinguishable and so are the classification error rates for all methods.

  . repeat k ← k + 1. Draw a random vector w uniformly in [w, w] ⊂ R np . Apply Algorithm 1 initialized at w to get the pair (F (w * ), w * ). if F (w * ) < F best then Update the best local minimum F best ← F (w * ) and minimizer w best ← w * . end if until k ≥ r * . return F best and w best .

Table 1 :

 1 Number of restarts and computing times (on a laptop with 2 CPUs at 2.4 GHz) required to reach global optimality. Numbers are given in the format average ± standard deviation ≤ maximum, or > lower bound for failures.

					N = 1 000					N = 10 000
	n	p	τ	# restarts	Time (s)		n	p	τ	# restarts Time (s)
	2	50 100 879 3 ± 3 ≤ 17 1.4 ± 1.0 < 5.6 333 1 ± 1 ≤ 3 0.1 ± 0.1 < 0.5 200 2320 > 100 > 98	2	100 500 1000 22076 > 100 879 1 ± 0 ≤ 1 4.2 ± 0.7 < 7.8 8365 1 ± 1 ≤ 3 70 ± 43 < 269 > 10800
	3	10 30 50	92 430 1 ± 1 ≤ 5 1 ± 1 ≤ 2 879 > 100	0.0 ± 0.0 < 0.1 0.1 ± 0.1 < 0.5 > 11	3	100 200 400 16153 > 100 2320 1 ± 0 ≤ 1 6.8 ± 1.9 < 16.4 6121 1 ± 1 ≤ 6 53 ± 45 < 290 > 5712
	4	10 20 30 1134 > 100 244 1 ± 1 ≤ 2 643 3 ± 3 ≤ 19 0.3 ± 0.2 < 1.8 0.0 ± 0.0 < 0.1 > 12	4	50 100 200 16153 > 100 2320 1 ± 0 ≤ 1 1.7 ± 0.8 < 4.8 6121 1 ± 1 ≤ 4 24 ± 16 < 94 > 2748
	5	10 20 1697 > 100 643 2 ± 2 ≤ 10 0.1 ± 0.1 < 0.4 > 11	5	10 50 100 16153 > 100 643 1 ± 0 ≤ 1 0.1 ± 0.1 < 0.4 6121 1 ± 1 ≤ 3 4.7 ± 2.8 < 15.1 > 1506
	Average NMSE	0 0 2 4 6 x 10 -4 8 Reference 0.1 Noise standard deviation 0.2 0.3 k-LinReg ME-MCS PE-MCS Algebraic	0.4	Average classification error rate	0 0 0.01 0.02 0.03 0.04 0.05 0.06	0.1 Noise standard deviation 0.2 0.3 Reference k-LinReg ME-MCS PE-MCS Algebraic	0.4	0 0 100 50	0.1 k-LinReg 0.2 Percentage of failures 0.3 ME-MCS PE-MCS Algebraic

Any data set can be arbitrarily well approximated by an unbounded set of linear models, e.g., by considering a linear model for each data point.

Multiple solutions with the same cost function value exist due to the symmetry of Problems 1 and 2. These can all be recovered from a single solution by swapping parameter vectors as w j ↔ w k .
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Appendix A. Proof of Proposition 1 (equivalence of Problems 1 and 2)

Proof. We first prove by contradiction that, for all w ∈ R np , the minimum of the cost function of Problem 1 is obtained with β ij set as in [START_REF] Vidal | An algebraic geometric approach to the identification of a class of linear hybrid systems[END_REF]. Consider a set of optimal variables {β * ij } and assume without loss of generality that it differs from β ij in (2) only for the set of points with indexes in I and that ∀i ∈ I, λ * i = λ i , β * iλ * i = 1 and β iλi = 1, while the constraints of Problem 1 are satisfied by both {β * ij } and {β ij }. Then, the cost in Problem 1 with {β * ij } is bounded from below as follows:

since, by the definition of

Thus, the values {β * ij } cannot be optimal and the minimum of the cost function is obtained for {β ij } set as in [START_REF] Vidal | An algebraic geometric approach to the identification of a class of linear hybrid systems[END_REF], except in cases where equality holds in (A.1) and in which both choices lead to similar costs.

Secondly, since the variables β ij are entirely determined by w through (2), we can rewrite Problem 1 in terms of w only. This leads to min

where the constraints of Problem 1 are automatically satisfied by [START_REF] Vidal | An algebraic geometric approach to the identification of a class of linear hybrid systems[END_REF]. Further simplifying the formulation finally yields Problem 2.

Appendix B. Proof of Proposition 2 (convergence of Algorithm 1)

Proof. At each iteration t, the classification (3) leads to

Or equivalently, by letting I j = {i ∈ {1, . . . , N } :

On the other hand, the update (4) ensures that y t j -X t j w t+1 j 2

2 is minimium for all j ∈ {1, . . . , n} and thus that 1

holds for all sequences {λ t i } N i=1 ∈ {1, . . . , n} N , we have

This completes the proof.