Sylvain Arlot 
email: sylvain.arlot@math.u-psud.fr
  
Matthieu Lerasle 
email: mlerasle@unice.fr
  
Choice of V for V -Fold Cross-Validation in Least-Squares Density Estimation

Keywords: V -fold cross-validation, Monte-Carlo cross-validation, leave-one-out, leave-pout, resampling penalties, density estimation, model selection, penalization 2

This paper studies V -fold cross-validation for model selection in least-squares density estimation. The goal is to provide theoretical grounds for choosing V in order to minimize the least-squares loss of the selected estimator. We first prove a non-asymptotic oracle inequality for V -fold cross-validation and its bias-corrected version (V -fold penalization). In particular, this result implies that V -fold penalization is asymptotically optimal in the nonparametric case. Then, we compute the variance of V -fold crossvalidation and related criteria, as well as the variance of key quantities for model selection performance. We show that these variances depend on V like 1 + 4/(V -1), at least in some particular cases, suggesting that the performance increases much from V = 2 to V = 5 or 10, and then is almost constant. Overall, this can explain the common advice to take V = 5 -at least in our setting and when the computational power is limited-, as supported by some simulation experiments. An oracle inequality and exact formulas for the variance are also proved for Monte-Carlo cross-validation, also known as repeated cross-validation, where the parameter V is replaced by the number B of random splits of the data.

Introduction

Cross-validation methods are widely used in machine learning and statistics, for estimating the risk of a given statistical estimator [START_REF] Stone | Cross-validatory choice and assessment of statistical predictions[END_REF][START_REF] Allen | The relationship between variable selection and data augmentation and a method for prediction[END_REF][START_REF] Geisser | The predictive sample reuse method with applications[END_REF] and for selecting among a family of estimators. For instance, cross-validation can be used for model selection, where a collection of linear spaces is given (the models) and the problem is to choose the best least-squares estimator over one of these models. Cross-validation is also often used for choosing hyperparameters of a given learning algorithm. We refer to [START_REF] Arlot | A survey of cross-validation procedures for model selection[END_REF] for more references about cross-validation for model selection.

Model selection can target two different goals: (i) estimation, that is, minimizing the risk of the final estimator, which is the goal of AIC and related methods, or (ii) identification, that is, identifying the smallest true model in the family considered, assuming it exists and it is unique, which is the goal of BIC for instance; see the survey by [START_REF] Arlot | A survey of cross-validation procedures for model selection[END_REF] for more details about this distinction. These two goals cannot be attained simultaneously in general [START_REF] Yang | Can the strengths of AIC and BIC be shared? A conflict between model indentification and regression estimation[END_REF].

We assume throughout the paper that the goal of model selection is estimation. We refer to [START_REF] Yang | Comparing learning methods for classification[END_REF][START_REF] Yang | Consistency of cross validation for comparing regression procedures[END_REF] and [START_REF] Celisse | Optimal cross-validation in density estimation with the L 2 -loss[END_REF] for some results and references on cross-validation methods with an identification goal.

Then, a natural question arises: which cross-validation method should be used for minimizing the risk of the final estimator? For instance, a popular family of cross-validation methods is V -fold cross-validation [START_REF] Geisser | The predictive sample reuse method with applications[END_REF], often called k-fold cross-validation), which depends on an integer parameter V , and enjoys a smaller computational cost than other classical cross-validation methods. The question becomes (1) which V is optimal, and (2) can we do almost as well as the optimal V with a small computational cost, that is, a small V ? Answering the second question is particularly useful for practical applications where the computational power is limited.

Surprisingly, few theoretical results exist for answering these two questions, especially with a non-asymptotic point of view [START_REF] Arlot | A survey of cross-validation procedures for model selection[END_REF]. In short, it is proved in least-squares regression that at first order, V -fold cross-validation is suboptimal for model selection (with an estimation goal) if V stays bounded, because V -fold cross-validation is biased [START_REF] Arlot | V -fold cross-validation improved: V -fold penalization[END_REF]. When correcting for the bias [START_REF] Burman | A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods[END_REF][START_REF] Arlot | V -fold cross-validation improved: V -fold penalization[END_REF], we recover asymptotic optimality whatever V , but without any theoretical result distinguishing among values of V in second order terms in the risk bounds [START_REF] Arlot | V -fold cross-validation improved: V -fold penalization[END_REF].

Intuitively, if there is no bias, increasing V should reduce the variance of the V -fold crossvalidation estimator of the risk, hence reduce the risk of the final estimator, as supported by some simulation experiments (Arlot, 2008, for instance). But variance computations for unbiased V -fold methods have only been made in the asymptotic framework for a fixed estimator, and they focus on risk estimation instead of model selection [START_REF] Burman | A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods[END_REF].

This paper aims at providing theoretical grounds for the choice of V by two means: a non-asymptotic oracle inequality valid for any V (Section 3) and exact variance computations shedding light on the influence of V on the variance (Section 5). In particular, we would like to understand why the common advice in the literature is to take V = 5 or 10, based on simulation experiments [START_REF] Breiman | Submodel Selection and Evaluation in Regression. The X-Random Case[END_REF]Hastie et al., 2009, for instance).

The results of the paper are proved in the least-squares density estimation framework, because we can then benefit from explicit closed-form formulas and simplifications for the Vfold criteria. In particular, we show that V -fold cross-validation and all leave-p-out methods are particular cases of V -fold penalties in least-squares density estimation (Lemma 1).

The first main contribution of the paper (Theorem 5) is an oracle inequality with leading constant 1 + ε n , with ε n → 0 as n → ∞ for unbiased V -fold methods, which holds for any value of V . To the best of our knowledge, Theorem 5 is the first non-asymptotic oracle inequality for V -fold methods enjoying such properties: the leading constant 1 + ε n is new in density estimation, and the fact that it holds whatever the value of V had never been obtained in any framework. Theorem 5 relies on a new concentration inequality for the V -fold penalty (Proposition 4). Note that Theorem 5 implicitly assumes that the oracle loss is of order n -α for some α ∈ (0, 1), that is, the setting is nonparametric; otherwise, Theorem 5 may not imply the asymptotic optimality of V -fold penalization. Let us also emphasize that the leading constant is 1+ε n whatever V for unbiased V -fold methods, with ε n independent from V in Theorem 5. So, second-order terms must be taken into account for understanding how the model selection performance depends on V . Section 4 proposes a heuristic for comparing these second order terms thanks to variance comparisons. This motivates our next result.

The second main contribution of the paper (Theorem 6) is the first non-asymptotic variance computation for V -fold criteria that allows to understand precisely how the model selection performance of V -fold cross-validation or penalization depends on V . Previous results only focused on the variance of the V -fold criterion [START_REF] Burman | A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods[END_REF][START_REF] Bengio | Bias in estimating the variance of K-fold crossvalidation[END_REF][START_REF] Celisse | Model Selection Via Cross-Validation in Density Estimation, Regression and Change-Points Detection[END_REF][START_REF] Celisse | Optimal cross-validation in density estimation with the L 2 -loss[END_REF][START_REF] Celisse | Nonparametric density estimation by exact leave-p-out cross-validation[END_REF], which is not sufficient for our purpose, as explained in Section 4. In our setting, we can explain, partly from theoretical results, partly from a heuristic argument, why taking, say, V > 10 is not necessary for getting a performance close to the optimum, as supported by experiments on synthetic data in Section 6.

An oracle inequality and exact formulas for the variance are also proved for other crossvalidation methods: Monte-Carlo cross-validation, also known as repeated cross-validation, where the parameter V is replaced by the number B of random splits of the data (Section 8.1), and hold-out penalization (Section 8.2).

Notation. For any integer k 1, k denotes {1, . . . , k}.

For any vector ξ n := (ξ 1 , . . . , ξ n ) and any B ⊂ n , ξ B denotes (ξ i ) i∈B , |B| denotes the cardinality of B and B c = n \ B.

For any real numbers t, u, we define t ∨ u := max{t, u}, u + := u ∨ 0 and u -:= (-u) ∨ 0.

All asymptotic results and notation o(•) or O(•) are for the regime when the number n of observations tends to infinity. s ∈ L ∞ (µ), which implies that s ∈ L 2 (µ). The goal is to estimate s from ξ n = (ξ 1 , . . . , ξ n ), that is, to build an estimator s = s(ξ n ) ∈ L 2 (µ) such that its loss s -s 2 is as small as possible, where for any t ∈ L 2 (µ), t 2 := X t 2 dµ.

Projection estimators are among the most classical estimators in this framework (see, for example, [START_REF] Devore | Constructive Approximation, volume 303 of Grundlehren der Mathematischen Wissenschaften[END_REF][START_REF] Devore | Constructive Approximation, volume 303 of Grundlehren der Mathematischen Wissenschaften[END_REF][START_REF] Massart | Concentration Inequalities and Model Selection[END_REF]. Given a separable linear subspace S m of L 2 (µ) (called a model), the projection estimator of s onto S m is defined by

s m := argmin t∈Sm t 2 -2P n (t) , (1) 
where P n is the empirical measure; for any t ∈ L 2 (µ), P n (t) = tdP n = 1 n n i=1 t(ξ i ). The quantity minimized in the definition of s m is often called the empirical risk, and can be denoted by

P n γ(t) = t 2 -2P n (t)
where ∀x ∈ X , ∀t ∈ L 2 (µ), γ(t; x) = t 2 -2t(x) .

The function γ is called the least-squares contrast. Note that S m ⊂ L 1 (P ) since s ∈ L 2 (µ).

Model Selection

When a finite collection of models (S m ) m∈Mn is given, following [START_REF] Massart | Concentration Inequalities and Model Selection[END_REF], we want to choose from data one among the corresponding projection estimators ( s m ) m∈Mn . The goal is to design a model selection procedure m : X n → M n so that the final estimator s := s m has a quadratic loss as small as possible, that is, comparable to the oracle loss inf m∈Mn s m -s 2 . This goal is what is called the estimation goal in the Introduction.

More precisely, we aim at proving that an oracle inequality of the form

s m -s 2 C n inf m∈Mn s m -s 2 + R n
holds with a large probability. The procedure m is called asymptotically optimal when R n is much smaller than the oracle loss and C n → 1, as n → +∞. In order to avoid trivial cases, we will always assume that |M n | 2.

In this paper, we focus on model selection procedures of the form

m := argmin m∈Mn crit(m) ,
where crit : M n → R is some data-driven criterion. Since our goal is to satisfy an oracle inequality, an ideal criterion is

crit id (m) = s m -s 2 -s 2 = -2P ( s m ) + s m 2 = P γ( s m ) .
Penalization is a popular way of designing a model selection criterion [START_REF] Barron | Risk bounds for model selection via penalization[END_REF][START_REF] Massart | Concentration Inequalities and Model Selection[END_REF] crit(m) = P n γ( s m ) + pen(m)

for some penalty function pen : M n → R, possibly data-driven. From the ideal criterion crit id , we get the ideal penalty pen id (m) := crit id (m) -P n γ( s m ) = (P -P n )γ( s m ) = 2(P n -P )( s m )

= 2(P n -P )( s m -s m ) + 2(P n -P )(s m ) = 2 s m -s m 2 + 2(P n -P )(s m ) ,

where s m := argmin t∈Sm P γ(t) = argmin t∈Sm t -s 2

is the orthogonal projection of s onto S m in L 2 (µ). Let us finally recall some useful and classical reformulations of the main term in the ideal penalty (2), that proves in particular the last equality in Eq. ( 2): If B m = {t ∈ S m s.t. t 1} and (ψ λ ) λ∈Λm denotes an orthonormal basis of S m in L 2 (µ), then

(P n -P )( s m -s m ) = λ∈Λm (P n -P )(ψ λ ) 2 = s m -s m 2 = sup t∈Bm (P n -P )(t) 2 , (3) 
where the last equality follows from Eq. ( 30) in Appendix A.

V -Fold Cross-Validation

A standard approach for model selection is cross-validation. We refer the reader to [START_REF] Arlot | A survey of cross-validation procedures for model selection[END_REF] for references and a complete survey on cross-validation for model selection.

This section only provides the minimal definitions and notation necessary for the remainder of the paper. For any subset A ⊂ n , let

P (A) n := 1 |A| i∈A δ ξ i and s (A) m := argmin t∈Sm t 2 -2P (A) n (t) .
The main idea of cross-validation is data splitting: some T ⊂ n is chosen, one first trains s m (•) with ξ T , then test the trained estimator on the remaining data ξ T c . The hold-out criterion is the estimator of crit id (m) obtained with this principle, that is, crit HO (m, T ) := P (T c )

n γ s (T ) m = -2P (T c ) n s (T ) m + s (T ) m 2 , (4) 
and all cross-validation criteria are defined as averages of hold-out criteria with various subsets T . Let V ∈ {2, . . . , n} be a positive integer and let B = B V = (B 1 , . . . , B V ) be some partition of n . The V -fold cross-validation criterion is defined by

crit VFCV (m, B) := 1 V V K=1 crit HO (m, B c K ) .
Compared to the hold-out, one expects cross-validation to be less variable thanks to the averaging over V splits of the sample into ξ B K and ξ B c K . Since crit VFCV (m, B) is known to be a biased estimator of E[crit id (m)], [START_REF] Burman | A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods[END_REF] proposed the bias-corrected V -fold cross-validation criterion crit corr,VFCV (m, B) := crit VFCV (m, B)

+ P n γ( s m ) - 1 V V K=1 P n γ s (B c K ) m .
In the particular case where V = n, this criterion is studied by Massart (2007, Section 7.2.1, p. 204-205) under the name cross-validation estimator.

Resampling-Based and V -Fold Penalties

Another approach for building general data-driven model selection criteria is penalization with a resampling-based estimator of the expectation of the ideal penalty, as proposed by [START_REF] Efron | Estimating the error rate of a prediction rule: improvement on crossvalidation[END_REF] with the bootstrap and later generalized to all resampling schemes [START_REF] Arlot | Model selection by resampling penalization[END_REF]. Let W ∼ W be some random vector of R n independent from ξ n with 1 n n i=1 W i = 1 , and denote by P W n = n -1 n i=1 W i δ ξ i the weighted empirical distribution of the sample. Then, the resampling-based penalty associated with W is defined as

pen W (m) := C W E W P n -P W n γ s W m , (5) 
where s W m ∈ argmin t∈Sm {P W n γ(t)}, E W [•] denotes the expectation with respect to W only (that is, conditionally to the sample ξ n ), and C W is some positive constant. Resamplingbased penalties have been studied recently in the least-squares density estimation framework [START_REF] Lerasle | Optimal model selection in density estimation[END_REF], assuming that W is exchangeable, that is, its distribution is invariant by any permutation of its coordinates.

Since computing exactly pen W (m) has a large computational cost in general for exchangeable W , some non-exchangeable resampling schemes were introduced by [START_REF] Arlot | V -fold cross-validation improved: V -fold penalization[END_REF], inspired by V -fold cross-validation: given some partition B = B V of n , the weight vector W is defined by

W i = (1 -Card(B J )/n) -1 1 i /
∈B J for some random variable J with uniform distribution over V . Then, P W n = P (B c J ) n so that the associated resampling penalty, called V -fold penalty, is defined by

pen VF (m, B, x) := x V V K=1 P n -P (B c K ) n γ s (B c K ) m = 2x V V K=1 P (B c K ) n -P n s (B c K ) m (6)
where x > 0 is left free for flexibility, which is quite useful according to Lemma 1 below.

Links Between V -Fold Penalties, Resampling Penalties and (Corrected) V -Fold Cross-Validation

In this paper, we focus our study on V -fold penalties because Lemma 1 below shows that formula (6) covers all V -fold and resampling-based procedures mentioned in Sections 2.3 and 2.4. First, when V = n, the only possible partition is B LOO = {{1}, . . . , {n}}, and the V -fold penalty is called the leave-one-out penalty pen LOO (m, x) := pen VF (m, B LOO , x). The associated weight vector W is exchangeable, hence Eq. ( 6) leads to all exchangeable resampling penalties since they are all equal up to a deterministic multiplicative factor in the least-squares density estimation framework when n i=1 W i = n, as proved by [START_REF] Lerasle | Optimal model selection in density estimation[END_REF].

For V -fold methods, let us assume B is a regular partition of n , that is,

V = |B| 2 divides n and ∀K ∈ V , |B K | = n V . (Reg)
Then, we get the following connection between V -fold penalization and cross-validation methods.

Lemma 1 For least-squares density estimation with projection estimators, under assumption (Reg),

crit corr,VFCV (m, B) = P n γ( s m ) + pen VF (m, B, V -1) (7) crit VFCV (m, B) = P n γ( s m ) + pen VF m, B, V - 1 2 (8) crit LPO (m, p) = P n γ( s m ) + pen LPO m, p, n p - 1 2 (9) = P n γ( s m ) + pen LOO m, (n -1) n/p -1/2 n/p -1 (10) = P n γ( s m ) + pen VF m, B LOO , (n -1) n/p -1/2 n/p -1
where for any p ∈ n -1 , the leave-p-out cross-validation criterion is defined by

crit LPO (m, p) := 1 |E p | A∈Ep P (A) n γ s (A c ) m with E p := A ⊂ n s.t. |A| = p
and the leave-p-out penalty is defined by

∀x > 0, pen LPO (m, p, x) := x |E p | A∈Ep P n -P (A c ) n γ s (A c ) m .
Lemma 1 is proved in Section A.1.

Remark 2 Eq. (7) was first proved by [START_REF] Arlot | V -fold cross-validation improved: V -fold penalization[END_REF] in a general framework that includes least-squares density estimation, assuming only (Reg). Eq. (10) follows from Lerasle (2012, Lemma A.11) since pen LPO belongs to the family of exchangeable resampling penalties, with weights

W i := (1 -p/n) -1 1 i /
∈A and A is randomly chosen uniformly over E p ; note that n i=1 W i = n for these weights. It can also be deduced from Proposition 3.1 by Celisse (2014), see Section A.1.

Remark 3 It is worth mentioning here the cross-validation estimators studied by Massart (2007, Chapter 7). First, the unbiased cross-validation criterion defined by [START_REF] Rudemo | Empirical choice of histograms and kernel density estimators[END_REF] is exactly crit corr,VFCV (m, B LOO ) (see also Massart, 2007, Section 7.2.1). Second, the penalized estimator of Massart (2007, Theorem 7.6) is the estimator selected by the penalty

pen LOO m, (1 + ) 6 (n -1) 2 2 n -(1 + ) 6
for some > 0 such that (1 + ) 6 < n (see Section A.1 for details).

So, in the least-squares density estimation framework and assuming only (Reg), Lemma 1 shows that it is sufficient to study V -fold penalization with a free multiplicative factor x in front of the penalty for studying also V -fold cross-validation (x = V -1/2), corrected V -fold cross-validation (x = V -1), the leave-p-out (V = n and x = (n -1)(n/p -1/2)/(n/p -1)) and all exchangeable resampling penalties. For any C > 0 and B some partition of n into V pieces, taking x = C(V -1), the V -fold penalization criterion is denoted by

C (C,B) (m) := P n γ( s m ) + pen VF m, B, C(V -1) . (11) 
A key quantity in our results is the bias

E[C (C,B) (m) -crit id (m)].
From Lemma 13 in Section A.2, we have

E pen VF (m, B, V -1) = E pen id (m) = 2E s m -s m 2 , ( 12 
)
so that for any C > 0,

E C (C,B) (m) -crit id (m) = 2(C -1)E s m -s m 2 . ( 13 
)
In Sections 3-7, we focus our study on V -fold methods, that is, we study the performance of the V -fold penalized estimators s m , defined by

m = m C (C,B) = argmin m∈Mn C (C,B) (m) , (14) 
for all values of V and C > 1/2. Additional results on hold-out (penalization) are given in Section 8.2 to complete the picture.

Oracle Inequalities

In this section, we state our first main result, that is, a non-asymptotic oracle inequality satisfied by V -fold procedures. This result holds for any divisor V 2 of n, any constant x = C(V -1) in front of the penalty with C > 1/2, and provides an asymptotically optimal oracle inequality for the selected estimator when C → 1 (assuming the setting is non parametric). In addition, as proved by Section 2.5, it implies oracle inequalities satisfied by leave-p-out procedures for all p.

Concentration of V -Fold Penalties

Concentration is the key property to establish oracle inequalities. Let us start with some new concentration results for V -fold penalties.

Proposition 4 Let ξ n be i.i.d. real-valued random variables with density s ∈ L ∞ (µ), B some partition of n into V pieces satisfying (Reg), S m a separable linear space of measurable functions and (ψ λ ) λ∈Λm an orthonormal basis of S m . Define

B m = t ∈ S m s.t. t 1 Ψ m = λ∈Λm ψ 2 λ = sup t∈Bm t 2 b m := Ψ m ∞ D m := P (Ψ m ) -s m 2 = nE s m -s m 2 ,
where s m is defined by Eq. (1), and for any x, > 0,

ρ 1 (m, , s, x, n) := s ∞ x n + b 2 m + s 2 x 2 3 n 2 .
Then, an absolute constant κ exists such that for any x 0, with probability at least 1-8e -x , for any ∈ (0, 1], the following two inequalities hold true

pen VF (m, B, V -1) - 2D m n D m n + κρ 1 (m, , s, x, n) (15) pen VF (m, B, V -1) -2 s m -s m 2 D m n + κρ 1 (m, , s, x, n) . ( 16 
)
Proposition 4 is proved in Section A.2. Eq. ( 15) gives the concentration of the V -fold penalty around its expectation 2D m /n = E[pen id (m)], see Eq. ( 12). Eq. ( 16) gives the concentration of the V -fold penalty around the ideal penalty, see Eq. ( 2). Optimizing over , the first order of the deviations of pen VF (m, B, V -1) around pen id (m) is driven by √ D m /n. The deviation term in Proposition 4 does not depend on V and cannot therefore help to discriminate between different values of this parameter.

Example: Histogram Models

Histograms on R provide some classical examples of collections of models. Let X be a measurable subset of R, µ denote the Lebesgue measure on X and m be some countable partition of X such that µ(λ) > 0 for any λ ∈ m. The histogram space S m based on m is the linear span of the functions (ψ λ ) λ∈Λm where Λ m = m and for every λ ∈ m, ψ λ = µ(λ) -1/2 1 λ . More precisely, we illustrate our results with the following examples.

Example 1 (Regular histograms on X = R)

M n = m h , h ∈ n where ∀h ∈ n , m h = λ h , λ + 1 h , λ ∈ Z .
In Example 1, defining d m h = h for every h ∈ n , for every m ∈ M n , D m = d m -s m 2 since Ψ m is constant and equal to d m . Therefore, Proposition 4 shows that pen VF (m, B, V -1) is asymptotically equivalent to pen dim (m) := 2d m /n when d m → ∞. Penalties of the form of pen dim are classical and have been studied for instance by [START_REF] Barron | Risk bounds for model selection via penalization[END_REF].

Example 2 (k-rupture points on X = [0, 1])

M n = m h k+1 ,x k s.t. x 1 < • • • < x k ∈ n -1 and ∀i ∈ k + 1 , h i ∈ x i -x i-1
, where x 0 = 0, x k+1 = n and for any x 1 , . . . ,

x k ∈ n -1 such that x 1 < • • • < x k and any h k+1 ∈ N k+1 , m h k+1 ,x k is defined as the union i∈ k x i-1 n + (x i -x i-1 )(λ -1) nh i , x i-1 n + (x i -x i-1 )λ nh i , λ ∈ h i .
In other words, m h k+1 ,x k splits [0, 1] into k + 1 pieces (at the x i ), and then splits the i-th piece into h i pieces of equal size.

In Example 2, the function Ψ m is constant on each interval [x i-1 , x i ), equal to h i , therefore,

D m = k+1 i=1 h i P ξ ∈ [x i-1 , x i ) -s m 2 .

Oracle Inequality for V -Fold Procedures

In order to state the main result, we introduce the following hypotheses:

• A uniform bound on the L ∞ norm of the L 2 ball of the models

∀m ∈ M n , b m √ n (H1)
where we recall that b m := sup t∈Bm t ∞ and B m := {t ∈ S m , t 1}.

• The family of the projections of s is uniformly bounded.

∃a > 0, ∀m ∈ M n , s m ∞ a , (H2) 
• The collection of models is nested.

∀(m, m ) ∈ M 2 n , S m ∪ S m ∈ {S m , S m } (H2 )
Hereafter, we define A := a ∨ s ∞ when (H2) holds and A := s ∞ when (H2 ) holds. On histogram spaces, (H1) holds if and only if inf m∈Mn inf λ∈m µ(λ) n -1 , and (H2) holds with a = s ∞ .

Theorem 5 Let ξ n be i.i.d. real-valued random variables with common density s ∈ L ∞ (µ), B some partition of n into V pieces satisfying (Reg) and (S m ) m∈Mn be a collection of separable linear spaces satisfying (H1). Assume that either (H2) or (H2 ) holds true. Let C ∈ (1/2, 2], δ := 2(C -1) and, for any x, > 0,

ρ 2 ( , s, x, n) := Ax n + 1 + s 2 n x 2 3 n and x n = x + log |M n | .
For every m ∈ M n , let s m be the estimator defined by Eq. (1) and s = s m where

m = m C (C,B)
is defined by Eq. ( 14). Then, an absolute constant κ exists such that, for any x > 0, with probability at least 1 -e -x , for any ∈ (0, 1],

1 -δ -- 1 + δ + + s -s 2 inf m∈Mn s m -s 2 + κρ 2 ( , s, x n , n) . ( 17 
)
Theorem 5 is proved in Section A.3. Taking > 0 small enough in Eq. ( 17), Theorem 5 proves that V -fold model selection procedures satisfy an oracle inequality with large probability. The remainder term can be bounded under the following classical assumption

∃a > 0, ∀n ∈ N , |M n | n a . (A3)
For instance, (A3) holds in Example 1 with a = 1 and in Example 2 with a = k. Under (A3), the remainder term in Eq. ( 17) is bounded by L(log n) 2 /( 3 n) for some L > 0, which is much smaller than the oracle loss in the nonparametric case. The leading constant in the oracle inequality ( 17) is (1 + δ + )/(1 -δ -) + o(1) by choosing = o(1), so the first-order behaviour of the upper bound on the loss is driven by δ. An asymptotic optimality result can be derived from Eq. ( 17) only if δ = o(1). The meaning of δ = 2(C -1) is the amount of bias of the V -fold penalization criterion, as shown by Eq. ( 13). Given this interpretation of δ, the model selection literature suggests that no asymptotic optimality result can be obtained in general when δ = o(1) in the nonparametric case (see, for instance, [START_REF] Shao | An asymptotic theory for linear model selection[END_REF]. Therefore, even if the leading constant (1 + δ + )/(1 -δ -) is only an upper bound, we conjecture that it cannot be taken as small as 1 + o(1) unless δ = o(1); such a result can be proved in our setting using similar arguments and assumptions as the ones of [START_REF] Arlot | V -fold cross-validation improved: V -fold penalization[END_REF] for instance.

For bias-corrected V -fold cross-validation, that is, C = 1 hence δ = 0, Theorem 5 shows a first-order optimal non-asymptotic oracle inequality, since the leading constant (1 + )/(1 -) can be taken equal to 1 + o(1), and the remainder term is small enough in the nonparametric case, under assumption (A3), for instance. Such a result valid with no upper bound on V had never been obtained before in any setting.

V -fold cross-validation is also analyzed by Theorem 5, since by Lemma 1 it corresponds to C = 1 + 1/(2(V -1)), hence δ = 1/(V -1). When V is fixed, the oracle inequality is asymptotically sub-optimal, which is consistent with the result proved in regression by [START_REF] Arlot | V -fold cross-validation improved: V -fold penalization[END_REF]. On the contrary, if B = B n has V n blocs, with V n → ∞, Theorem 5 implies under assumption (A3) the asymptotic optimality of V n -fold cross-validation in the nonparametric case.

The bound obtained in Theorem 5 can be integrated and we get

1 -δ -- 1 + δ + + E s -s 2 E inf m∈Mn s m -s 2 + κ ρ 2 , s, log |M n |
for some absolute constant κ > 0.

Assuming C > 1/2 is necessary, according to minimal penalty results proved by [START_REF] Lerasle | Optimal model selection in density estimation[END_REF]. Assuming C 2 only simplifies the presentation; if C > 2, the same proof shows that Theorem 5 holds with κ replaced by Cκ.

An oracle inequality similar to Theorem 5 holds in a more general setting, as proved in a previous version of this paper [START_REF] Arlot | V -fold cross-validation and V -fold penalization in leastsquares density estimation[END_REF], Theorem 1); we state a less general result here for simplifying the exposition, since it does not change the message of the paper. First, assumption (Reg) can be relaxed into assuming the partition B is close to regular, that is,

B is a partition of n of size V and sup k∈ V Card(B k ) - n V 1 , (Reg ) 
which can hold for any V ∈ n . Second, data ξ 1 , . . . , ξ n can belong to a general Polish space X , at the price of some additional technical assumption.

Comparison with Previous Works on V -Fold Procedures

Few non-asymptotic oracle inequalities have been proved for V -fold penalization or crossvalidation procedures. Concerning cross-validation, previous oracle inequalities are listed in the survey by [START_REF] Arlot | A survey of cross-validation procedures for model selection[END_REF]. In the least-squares density estimation framework, oracle inequalities were proved by [START_REF] Mark | Asymptotic optimality of likelihood-based cross-validation[END_REF] in the V -fold case, but compared the risk of the selected estimator with the risk of an oracle trained with n(V -1)/V data. In comparison, Theorem 5 considers the strongest possible oracle, that is, trained with n data. Optimal oracle inequalities were proved by [START_REF] Celisse | Optimal cross-validation in density estimation with the L 2 -loss[END_REF] for leave-p-out estimators with p n, a case also treated in Theorem 5 by taking V = n and C = (n/p -1/2)/(n/p -1) as shown by Lemma 1. If p n, C ∼ 1, hence δ = o(1) and we recover the result of [START_REF] Celisse | Optimal cross-validation in density estimation with the L 2 -loss[END_REF]. Concerning V -fold penalization, previous results were either valid for V = n only-by Massart (2007, Theorem 7.6) and [START_REF] Lerasle | Optimal model selection in density estimation[END_REF] for least-squares density estimation, by [START_REF] Arlot | Model selection by resampling penalization[END_REF] for regressogram estimators-, or for V bounded when n tends to infinity-by [START_REF] Arlot | V -fold cross-validation improved: V -fold penalization[END_REF] for regressogram estimators. In comparison, Theorem 5 provides a result valid for all V , except for the assumption that V divides n, which can be removed [START_REF] Arlot | V -fold cross-validation and V -fold penalization in leastsquares density estimation[END_REF]. In particular, the loss bound by [START_REF] Arlot | V -fold cross-validation improved: V -fold penalization[END_REF] deteriorates when V grows, while it remains stable in our result. Our result is therefore much closer to the typical behavior of the loss ratio s -s 2 / inf m∈Mn s m -s 2 of V -fold penalization, which usually decreases as a function of V in simulation experiments, see Section 6 and the experiments by [START_REF] Arlot | V -fold cross-validation improved: V -fold penalization[END_REF], for instance.

Theorem 5 may not satisfactorily address the parametric setting, that is, when the collection (S m ) m∈Mn contains some fixed true model. In such a case, the usual way to obtain asymptotic optimality is to use a model selection procedure targetting identification, that is, taking C → +∞ when n → +∞. For instance, Celisse (2014, Theorem 3.3) shows that log(n)

C n is a sufficient condition for such a result.

4 How to Compare Theoretically the Performances of Model Selection Procedures for Estimation?

The main goal of the paper is to compare the model selection performances of several (Vfold) cross-validation methods, when the goal is estimation, that is, minimizing the loss s m -s 2 of the final estimator. In this section, we discuss how such a comparison can be made on theoretical grounds, in a general setting.

For some data-driven function C : M n → R, the goal is to understand how s m(C) -s 2 depends on C when the selected model is

m(C) ∈ argmin m∈Mn C(m) . ( 18 
)
From now on, in this section, C is assumed to be a cross-validation estimator of the risk, but the heuristic developed here applies to the general case.

Ideal comparison. Ideally, for proving that C 1 is a better method than C 2 in some setting, we would like to prove that

s m(C 1 ) -s 2 < (1 -ε n ) s m(C 2 ) -s 2 (19)
with a large probability, for some ε n 0.

Previous works and their limits. When the goal is estimation, the classical way to analyze the performance of a model selection procedure is to prove an oracle inequality, that is, to upper bound (with a large probability or in expectation)

s m(C) -s 2 -inf m∈Mn s m -s 2 or R n (C) := s m(C) -s 2 inf m∈Mn s m -s 2 .
Alternatively, asymptotic results show that when n tends to infinity, R n (C) → 1 (asymptotic optimality of C) or R n (C 1 ) ∼ R n (C 2 ) (asymptotic equivalence of C 1 and C 2 ); see Arlot and Celisse (2010, Section 6) for a review of such results. Nevertheless, proving Eq. ( 19) requires a lower bound on R n (C) (asymptotic or not), which has been done only once for some cross-validation method, to the best of our knowledge. In some least-squares regression setting, V -fold cross-validation (C VF ) performs (asymptotically) worse than all asymptotically optimal model selection procedures since R n (C VF ) κ(V ) > 1 with a large probability [START_REF] Arlot | V -fold cross-validation improved: V -fold penalization[END_REF].

The major limitation of all these previous results is that they can only compare C 1 to C 2 at first order, that is, according to lim n→∞ R n (C 1 )/R n (C 2 ), which only depends on the bias of C i (m) (i = 1, 2) as an estimator of E[ s m -s 2 ], hence, on the asymptotic ratio between the training set size and the sample size (Arlot and Celisse, 2010, Section 6). For instance, the leave-p-out and the hold-out with a training set of size (n -p) cannot be distinguished at first order, while the leave-p-out performs much better in practice, certainly because its "variance" is much smaller.

Beyond first-order. So, we must go beyond the first-order of R n (C) and take into account the variance of C(m). Nevertheless, proving a lower bound on R n (C) is already challenging at first order-probably the reason why only one has been proved up to now, in a specific setting only-so the challenge of computing a precise lower bound on the second order term of R n (C) seems too high for the present paper. We propose instead a heuristic showing that the variances of some quantities-depending on (C i ) i=1,2 and on M n -can be used as a proxy to a proper comparison of R n (C 1 ) and R n (C 2 ) at second order. Since we focus on second-order terms, from now on, we assume that C 1 and C 2 have the same bias, that is,

∀m ∈ M n , E C 1 (m) = E C 2 (m) . (SameBias) 
In least-squares density estimation, given Lemma 1, this means that for i ∈ {1, 2},

C i = C (C,B i )
as defined by Eq. ( 11), with different partitions B i satisfying (Reg) with different V = V i , but the same constant C > 0; C = 1 corresponds to the unbiased case.

The variance of the cross-validation criteria is not the correct quantity to look at. If we were only comparing cross-validation methods C 1 , C 2 as estimators of E s m -s 2 for every single m ∈ M n , we could naturally compare them through their mean squared errors. Under assumption (SameBias), this would mean to compare their variances. This can be done from Eq. ( 23) below, but it is not sufficient to solve our problem, since it is known that the best cross-validation estimator of the risk does not necessarily yield the best model selection procedure [START_REF] Breiman | Submodel Selection and Evaluation in Regression. The X-Random Case[END_REF]. More precisely, the selected model m(C) defined by Eq. ( 18) is unchanged when C(m) is translated by any random quantity, but such a translation does change Var(C(m)) and can make it as large as desired. For model selection, what really matters is that

sign C(m 1 ) -C(m 2 ) = sign s m 1 -s 2 -s m 2 -s 2
as often as possible for every (m 1 , m 2 ) ∈ M 2 n , and that most mistakes in the ranking of models occur when s m 1 -s 2 -s m 2 -s 2 is small, so that s m(C) -s 2 cannot be much larger than inf m∈Mn { s m -s 2 }.

Heuristic. The heuristic we propose goes as follows. For simplicity, we assume that m = argmin m∈Mn E[ s m -s 2 ] is uniquely defined. If the goal was identification, we could directly state that for any C, the smaller is P(m = m(C)) for all m = m , the better should be the performance of m(C). In this paper, our goal is estimation, but a similar claim can be conjectured by considering "all m ∈ M n sufficiently far from m in terms of risk", that is, all m ∈ M n such that E[ s m -s 2 ] is significantly worse than E[ s m -s 2 ]. Indeed, for any m "close to m " in terms of risk, selecting m instead of m does not significantly change the performance of m(C); on the contrary, for any m "far from m " in terms of risk, selecting m instead of m does increase significantly the risk

E[ s m(C) -s 2 ].
Then, our idea is to find a proxy for P(m = m(C)), that is, a quantity that should behave similarly as a function of C and its "variance" properties. For all m, m ∈ M n , let ∆ C (m, m ) := C(m) -C(m ), N some standard Gaussian random variable and, for all t ∈ R, Φ(t) = P(N > t). Then, for every

m ∈ M n P m(C) = m = P ∀m = m, ∆ C (m, m ) < 0 min m =m P ∆ C (m, m ) < 0 (20) ≈ min m =m P E ∆ C (m, m ) + N Var(∆ C (m, m )) < 0 (21) = Φ SNR C (m) where SNR C (m) := max m =m E ∆ C (m, m ) Var ∆ C (m, m ) . So, if SNR C 1 (m) > SNR C 2 (m)
for all m "sufficiently far from m ", C 1 should be better than C 2 . Assuming (SameBias) holds true and that

{m } = argmin m∈Mn E C 1 (m) = argmin m∈Mn E C 2 (m) , (SameMin) 
this leads to the following heuristic

∀m = m , Var ∆ C 1 (m, m ) < Var ∆ C 2 (m, m ) ⇒ C 1 better than C 2 . ( 22 
)
Indeed, for every m = m , assumption (SameMin) implies that SNR C i (m) > 0 for i = 1, 2, hence we can restrict the max in the definition of SNR C i to all m such that E[∆ C i (m, m )] is positive. By assumption (SameBias), the numerator in the definition of SNR C i does not depend on i, hence the ratio is maximal when the denominator is minimal, which leads to Eq. ( 22). Let us make some remarks.

• The quantity ∆ C (m, m ) appears in relative bounds (Catoni, 2007, Section 1.4) which can be used as a tool for model selection [START_REF] Audibert | A better variance control for pac-bayesian classification[END_REF].

• Assumptions (SameBias) and (SameMin) hold true in particular in the unbiased case, that is, when

E[C i (m)] = E[ s m -s 2
] for all m ∈ M n and i ∈ {1, 2}.

• Assumption (SameMin) is necessary: Figure 3 shows an example where a larger variance corresponds to better performance under assumption (SameBias) alone.

• As noticed above, the heuristic ( 22) should apply when the goal is estimation and when the goal is identification, provided that (SameBias) and (SameMin) hold true. What should depend on the goal is the suitable amount of bias for C i (m) as an estimator of the risk E[ s m -s 2 ].

• Approximation ( 20) is the strongest one. Clearly, inequality holds true. The equality case occurs is for a very particular dependence setting, that is, when one among the events ({∆ C (m, m ) < 0}), m ∈ M n , is included into all the others. In general, the left-hand side is significantly smaller than the right-hand side; we conjecture that they vary similarly as a function of C.

• The Gaussian approximation (21) for ∆ C (m, m ) does not hold exactly, but it seems reasonable to make it, at first order at least.

• The validity of approximations ( 20) and ( 21) is supported by the numerical experiments of Section 6.

In the heuristic ( 22), all (m, m ) do not matter equally for explaining a quantitative difference in the performances of C. First, we can fix m = m , since intuitively, the strongest candidate against any m = m is m , which clearly holds in all our experiments, see Figures 18 and 24 in Section B.6. Second, as mentioned above, if m and m are very close, that is, s m -s 2 / s m -s 2 is smaller than the minimal order of magnitude we can expect for R n (C) with a data-driven C, taking m instead of m does not decrease the performance significantly. Third, if Φ(SNR C (m)) is very small, increasing it even by an order of magnitude will not affect the performance of m(C) significantly; hence, all m such that, say, SNR C (m) (log(n)) α for all α > 0, can also be discarded. Overall, pairs (m, m ) that really matter in ( 22) are pairs (m, m ) that are at a "moderate distance", in terms of

E[ s m -s 2 -s m -s 2 ].

Dependence on V of V -Fold Penalization and Cross-Validation

Let us now come back to the least-squares density estimation setting. Our goal is to compare the performance of cross-validation methods having the same bias, that is, according to Section 2.5, m(C (C,B) ) with the same constant C but different partitions B, where m(C (C,B) ) is defined by Eq. ( 14).

Theorem 6 Let ξ n be i.i.d. random variables with common density s ∈ L ∞ (µ), B some partition of n into V pieces satisfying (Reg), and (ψ λ ) λ∈Λm 1 , (ψ λ ) λ∈Λm 2 two orthonormal families in L 2 (µ). For any m, m ∈ {m 1 , m 2 }, we define S m the linear span of (ψ λ ) λ∈Λm , s m the orthogonal projection of s onto S m in L 2 (µ),

B m = {t ∈ S m s.t. t 1}, Ψ m := sup t∈Bm t 2 , β m, m := λ∈Λm λ ∈Λ m E ψ λ (ξ 1 ) -P ψ λ ψ λ (ξ 1 ) -P ψ λ 2 and B(m 1 , m 2 ) := β(m 1 , m 1 ) + β(m 2 , m 2 ) -2β(m 1 , m 2 ) .
Then, for every C > 0,

Var C (C,B) (m 1 ) = 2 n 2 1 + 4C 2 V -1 - (2C -1) 2 n β(m 1 , m 1 ) (23) + 4 n Var 1 + 2C -1 n s m 1 (ξ 1 ) - 2C -1 2n Ψ m 1 (ξ 1 )
and

Var C (C,B) (m 1 ) -C (C,B) (m 2 ) = 2 n 2 1 + 4C 2 V -1 - (2C -1) 2 n B(m 1 , m 2 ) (24) + 4 n Var 1 + 2C -1 n (s m 1 -s m 2 )(ξ 1 ) - 2C -1 2n (Ψ m 1 -Ψ m 2 )(ξ 1 )
where C (C,B) is defined by Eq. (11).

Theorem 6 is proved in Section A.4.

Unbiased case. When C = 1, Theorem 6 shows that Var C (1,B) (m 1 ) -C (1,B) (m 2 ) = a + 1 + 4 V -1 - 1 n b
for some a, b 0 depending on n, m 1 , m 2 but not on V . If we admit that the heuristic (22) holds true, this implies that the model selection performance of bias-corrected V -fold cross-validation improves when V increases, but the improvement is at most in a second order term as soon as V is large. In particular, even if a b, the improvement from V = 2 to 5 or 10 is much larger than from V = 10 to V = n, which can justify the commonly used principle that taking V = 5 or V = 10 is large enough.

Assuming in addition that S m 1 and S m 2 are regular histogram models (Example 1 in Section 3.2) with d m 1 that divides d m 2 , then, by Lemma 19 in Section B.1.2,

a = 4 n 1 + 1 n 2 Var s m 1 (ξ) -s m 2 (ξ) ≈ O 1 n s m 1 -s m 2 2 and b = 2 n 2 B(m 1 , m 2 ) s m 2 2 d m 2 n 2 .
When d m 2 /n is at least as large as s m 1 -s m 2 2 , we obtain that the first-order term in the variance is of the form α + β/(V -1) where α, β > 0 do not depend on V and are of the same order of magnitude, as supported by the numerical experiments of Section 6. Then, increasing V from 2 to n does reduce significantly the variance, by a constant multiplicative factor.

Let C id (m) := P n γ( s m ) + E[pen id (m)] be the criterion we could use if we knew the expectation of the ideal penalty. From Proposition 17 in Section B.1,

Var C id (m 1 ) -C id (m 2 ) = 2 n 2 1 - 1 n B(m 1 , m 2 ) + 4 n Var 1 - 1 n (s m 1 -s m 2 )(ξ 1 ) + 1 2n (Ψ m 1 -Ψ m 2 )(ξ 1 )
which easily compares to formula (24) obtained for the V -fold criterion when C = 1. Up to smaller order terms, the difference lies in the first term, where (1 + 4/(V -1) -1/n) is replaced by (1 -1/n) when using the expectation of the ideal penalty instead of a V -fold penalty. In other words, the leave-one-out penalty-that is, taking V = n-behaves like the expectation of the ideal penalty. We can also compare Eq. ( 23) with the asymptotic results obtained by [START_REF] Burman | A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods[END_REF], which imply that for any fixed model m 1

Var C (1,B) (m 1 ) -P γ( s m 1 ) = γ 0 n + V V -1 γ 1 + γ 2 1 n 2 + o 1 n 2
with γ 0 , γ 1 , γ 2 that depend on m 1 and γ 1 > 0. Here, putting C = 1 in Eq. ( 23) yields a result with a similar flavour, valid for all n 1, even if Eq. ( 23) computes the variance of a slightly different quantity.

Cross-validation criteria. V -fold cross-validation and the leave-p-out are also covered by Theorem 6, according to Lemma 1, respectively with C = 1 + 1/(2(V -1)) and with V = n and C = 1 + 1/(2(n/p -1)). As in the unbiased case, increasing V decreases the variance, and if we admit that the heuristic ( 22) holds true, V -fold cross-validation performs almost as well as the leave-(n/V )-out as soon as V is larger than 5 or 10.

Similarly, the variances of the V -fold cross-validation and leave-p-out criteria, for instance, can be derived from Eq. ( 23). In the leave-p-out case, we recover formulas obtained by [START_REF] Celisse | Optimal cross-validation in density estimation with the L 2 -loss[END_REF] and [START_REF] Celisse | Nonparametric density estimation by exact leave-p-out cross-validation[END_REF], with a different grouping of the variance components; Eq. ( 23) clearly emphasizes the influence of the bias-through (C -1)-on the variance. For V -fold cross-validation, we believe that Eq. ( 23) shows in a simpler way how the variance depends on V , compared to the result of [START_REF] Celisse | Nonparametric density estimation by exact leave-p-out cross-validation[END_REF] which was focusing on the difference between V -fold cross-validation and the leave-(n/V )-out; here the difference can be written

8 n 2 1 V -1 - 1 n -1 1 + 1 2(V -1) 2 β(m 1 , m 1 ) .
A major novelty in Eq. ( 23) is also to cover a larger set of criteria, such as bias-corrected V -fold cross-validation. Note that Var(C (C,B) (m 1 )) is generally much larger than which illustrates again why computing the former quantity might not help for understanding the model selection properties of C (C,B) , as explained in Section 4. For instance, comparing Eq. ( 23) and ( 24), changing s m 1 into s m 1 -s m 2 in the second term can reduce dramatically the variance when s m 1 and s m 2 are close, which happens for the pairs (m 1 , m 2 ) that matter for model selection according to Section 4. The variance of other criteria and their increments are computed in subsequent sections of the paper: Monte-Carlo cross-validation (Theorem 10 in Section 8.1 and Theorem 24 in Section B.2.4) and hold-out penalization (Proposition 28 in Section B.3.2).

Var C (C,B) (m 1 ) -C (C,B) (m 2 ) ,

Remark 7

The term B(m 1 , m 2 ) does not depend on the choice of particular bases of S m 1 and S m 2 : as proved by Proposition 18 in Section B.1

B(m 1 , m 2 ) = n Var ( s m 1 -s m 2 )(ξ) -(n + 1) Var (s m 1 -s m 2 )(ξ) .

Simulation Study

This section illustrates the main theoretical results of the paper with some experiments on synthetic data.

Setting

In this section, we take X = [0, 1] and µ is the Lebesgue measure on X . Two examples are considered for the target density s and for the collection of models (S m ) m∈Mn .

Two density functions s are considered, see Figure 1:

• Setting L: s(x) = 10x 3 1 0 x<1/3 + (1 + x 3 )1 1 x 1/3 .
• Setting S: s is the mixture of the piecewise linear density x → (8x -4)1 1 x 1/2 (with weight 0.8) and four truncated Gaussian densities with means (k/10) k=1,...,4 and standard deviation 1/60 (each with weight 0.05). Two collections of models are considered, both leading to histogram estimators: for every m ∈ M n , S m is the set of piecewise constant functions on some partition Λ m of X .

• "Regu" for regular histograms: M n = {1, . . . , n} where for every m ∈ M n , Λ m is the regular partition of [0, 1] into m bins.

• "Dya2" for dyadic regular histograms with two bin sizes and a variable change-point:

M n = k∈{1,..., n} {k} × 0, . . . , log 2 (k) × 0, . . . , log 2 ( n -k)
where n = n/ log(n) and for every (k, i, j) ∈ M n , Λ (k,i,j) is the union of the regular partition of [0, k/ n) into 2 i pieces and the regular partition of [k/ n, 1] into 2 j pieces.

The difference between "Regu" and "Dya2" can be visualized on Figure 2, on which the corresponding oracle estimators s m have been plotted for one sample in setting S, where

m ∈ argmin m∈Mn s m -s 2 .
While "Regu" is one of the simplest and most classical collections for density estimation, the flexibility of "Dya2" allows to adapt to the variability of the smoothness of s. Intuitively, in settings L and S, the optimal bin size is smaller on [0, 1/2] (where s is varying fastly) than on [1/2, 1] (where |s | is much smaller).

Another point of comparison of Regu and Dya2 is given by Table 1, that reports values of the quadratic risks obtained depending on the collection of models considered. Table 1 shows that in settings L and S, the collection Dya2 helps reducing the quadratic risk by approximately 20% (when comparing the best data-driven procedures of our experiment), and even more when comparing oracle estimators (30% in setting S, 59% in setting L). Therefore, in settings L and S, it is worth considering more complex collections of models (such as Dya2) than regular histograms. Let us finally remark that Dya2 does not reduce the quadratic risk in all settings as significantly as in settings L and S. We performed similar experiments with a few other density functions, sometimes leading to less important differences between Regu and Dya2 in terms of risk (results not shown). The oracle model was always better with Dya2, but in two cases, the risk of the best data-driven procedure with Dya2 was larger than with Regu by 6 to 8%.

Procedures Compared

In each setting, we consider the following model selection procedures:

• pen dim [START_REF] Barron | Risk bounds for model selection via penalization[END_REF]: penalization with pen(m) = 2 Card(Λ m )/n.

• V -fold cross-validation with V ∈ {2, 5, 10, n}, see Section 2.3.

• V -fold penalties (with leading constant x = V -1, that is, bias-corrected V -fold cross-validation), for V ∈ {2, 5, 10, n}, see Section 2.4.

• for comparison, penalization with E[pen id (m)], that is, m(C id ).

Since it is often suggested to multiply the usual penalties by some factor larger than one [START_REF] Arlot | V -fold cross-validation improved: V -fold penalization[END_REF], we consider all penalties above multiplied by a factor C ∈ [0, 10]. Complete results can be found in Section B.6.

Model Selection Performances

In each setting, all procedures are compared on N = 10 000 independent synthetic data sets of size n = 500. For measuring their respective model selection performances, for each procedure m(C) we estimate 

C or (C) := E R n (C) = E s m(C) -s Procedure L-Dya2 S-
-out', that is, V -fold with V = n = 500.
is measured by the empirical standard deviation of R n (C) divided by √ N . The results are reported in Table 2 for settings L and S, with the collection Dya2.

Results for Regu are not reported here since dimensionality-based penalties are already known to work well with Regu [START_REF] Lerasle | Optimal model selection in density estimation[END_REF], so V -fold methods cannot improve significantly their performance, with a larger computational cost. Complete results (including Regu, with n = 100 and n = 500) are given in Tables 3 and4 in Section B.6, showing that the performances of pen dim and V -fold methods indeed are very close.

Performance as a function of V . Let us first consider V -fold penalization. In both settings L and S, as suggested by our theoretical results, C or decreases when V increases. The improvement is large when V goes from 2 to 5 (27% for L, 10% for S) and small when V goes from 5 to 10 and when V goes from 10 to n = 500 (each time, 8% for L, 2% for S). Since the main influence of V is on the variance of the V -fold penalty, these experiments support our interpretation of Theorem 6 in Section 5: increasing V helps much more from 2 to 5 or 10 than from 10 to n.

The picture is less clear for V -fold cross-validation, for which almost no difference is observed among V ∈ {2, 5, 10, n}-less than 2%-, and C or is minimized for V ∈ {5, 10}. Indeed, increasing V simultaneously decreases the bias and the variance of the V -fold crossvalidation criterion, leading to various possible behaviours of C or as a function of V , depending on the setting. The same phenomenon has been observed in regression [START_REF] Arlot | V -fold cross-validation improved: V -fold penalization[END_REF].

Overpenalization. In all settings considered in this paper, V -fold penalization performs much better when multiplying the penalty by C > 1, as illustrated by Figure 3. In particular, the best overpenalization factor for pen LOO is C n ≈ 2.5 for L-Dya2 and C n ≈ 1.4 for S-Dya2, when n = 500. Such a phenomenon, which can also be observed in regression [START_REF] Arlot | V -fold cross-validation improved: V -fold penalization[END_REF], is related to the fact that some nonparametric model selection problems are Table 2 shows their order of magnitude, which is smaller than visible differences in the above graph. The performance obtained with the penalty E[pen id (m)] (not shown on the graph) is almost the same as with the leave-one-out penalty.

"practically parametric", using the terminology of [START_REF] Liu | Parametric or nonparametric? A parametricness index for model selection[END_REF], that is, BIC beats AIC and the optimal C is closer to log(n)/2 than to 1. For instance, Figure 3 shows that L-Dya2 is practically parametric, while S-Dya2 is practically nonparametric since AIC beats BIC and the optimal C is close to 1. Given an overpenalization factor C close to its optimal value C n , V -fold penalization performs significantly better than V -fold cross-validation in settings S-Dya2 and L-Dya2 (Figure 3). Since V -fold cross-validation corresponds to taking

C = C VF (V ) := 1 + 1 2(V -1)
according to Lemma 1, this mostly means that C VF (V ) is not close to C n in these settings. In addition, when C ≈ C n is fixed, increasing V always improves the performance of Vfold penalization, as predicted by the heuristic of Section 4 and the theoretical results of Section 5. Let us emphasize that this fact does not depend on the parametricness of the setting: although the value of C n is quite different for S-Dya2 and L-Dya2, in both cases, we observe qualitatively the same relationship between V and the performance of the procedure.

The results reported in Section B.6 lead to similar conclusions in several other settings, as well as unshown results in a truly parametric setting, with a true model of dimension 2. Although a wider simulation study would be necessary to get general conclusions, this suggests at least that the heuristic of Section 4 and the theoretical results of Section 5 can be applied to both parametric and nonparametric settings.

Figure 3 also helps understanding how the performance of V -fold cross-validation depends on V in Table 2. Indeed, the performance of V -fold cross-validation for each value of V can be visualized on Figure 3 by taking the point of abscissa C = C VF (V ) on the curve associated with V -fold penalization. Two phenomena are coupled when C C n , which always holds in our simulations for V -fold cross-validation since max V C VF (V ) = 1.5 and the estimated value of C n is always larger. (i) The performance improves when V is fixed and C gets closer to C n . (ii) The performance improves when C is fixed and V increases. Even if both phenomena (i) and (ii) seem quite universal, their coupling can result in various behaviours for V -fold cross-validation as a function of V , as shown by Table 3 in Section B.6 for instance.

Other comments.

• pen dim performs much worse than V -fold penalization (except V = 2 in setting L)

with the collection Dya2. On the contrary, pen dim does well with Regu (see Table 3 in Section B.6), but V -fold penalization then performs as well.

• In other settings considered in a preliminary phase of our experiments, for V -fold penalization, differences between V = 2 and V = 5 were sometimes smaller or not significant, but always with the same ordering (that is, the worse performance for V = 2 when C is fixed). In a few settings, for which the "change-point" in the smoothness of s was close to the median of sdµ, we found pen dim among the best procedures with collection Dya2; then, V -fold penalization and cross-validation always had a performance very close to pen dim . Both phenomena lead us to discard all settings for which there were no significant difference to comment.

Variance as a Function of V

We now illustrate the results of Section 5 about the variance of V -fold penalization and the heuristic of Section 4 about its influence on model selection. We focus on the unbiased case, that is, criteria C (1,B) with partitions B satisfying (Reg). Since the distribution of (C (1,B) (m)) m∈Mn then only depends on V = |B|, we write C V instead of C (1,B) by abuse of notation. All results presented in this subsection have been obtained from N = 10 000 independent samples in setting S with a sample size n = 100 and the collection Regu-for which models are naturally indexed by their dimension. First, Figure 4 shows the variance of

∆ C V (m, m ) = C V (m) -C V (m )
as a function of the dimension m of S m , illustrating the conclusions of Theorem 6: the variance decreases when V increases. More precisely, the variance decrease is significant between V = 2 and V = 5, an order of magnitude smaller between V = 5 and V = 10 and between V = 10 and V = n, while the leave-one-out C n is hard to distinguish from the ideal penalized criterion C id . On Figure 4, we can remark that for m > m 

Var(∆ C V (m, m )) ≈ 1 n 2 K 1 1 + K 2 V -1 + K 3 1 + K 4 V -1 (m -m )
-2 [29(1 + 0.81 V -1 ) + 3.7(1 + 3.8 V -1 )(m -m )] for m > m .
with K 1 ≈ 29, K 2 ≈ 0.81, K 3 ≈ 3.7 and K 4 ≈ 3.8. The shape of the dependence on V already appears in Theorem 6, the above formula clarifies the relative importance of the terms called a and b in Section 5, and their dependence on the dimension m of S m . Remark that the same behaviour holds when n = 500 with very close values for K 3 and K 4 (see Figure 25 7 Fast Algorithm for Computing V-Fold Penalties for Least-

Squares Density Estimation

Since the use of V -fold algorithms is motivated by computational reasons, it is important to discuss the actual computational cost of V -fold penalization and cross-validation as a function of V . In the least-squares density estimation framework, two approaches are possible: a naive one-valid for all other frameworks-, and a faster one-specific to least-squares density estimation. For clarifying the exposition, we assume in this section that (Reg) holds true-so, V divides n. The general algorithm for computing the V -fold penalized criterion and/or the V -fold cross-validation criterion consists in training the estimator with data sets (ξ i ) i / ∈B j for j = 1, . . . , V and then testing each trained estimator on the data sets (ξ i ) i∈B j and/or (ξ i ) i / ∈B j . In the least-squares density estimation framework, for any model S m given through an orthonormal family (ψ λ ) λ∈Λm of elements of L 2 (µ), we get the "naive" algorithm described and analysed more precisely in Section B.4.1, whose complexity is of order nV Card(Λ m ).

Several simplifications occur in the least-squares density estimation framework, that allow to avoid a significant part of the computations made in the naive algorithm.

Algorithm 1

Input: B some partition of {1, . . . , n} satisfying (Reg), ξ 1 , . . . , ξ n ∈ X and (ψ λ ) λ∈Λm a finite orthonormal family of L 2 (µ).

1. For i ∈ {1, . . . , V } and λ ∈ Λ m , compute A i,λ := V n j∈B i ψ λ (ξ j ).
2. For i, j ∈ {1, . . . , V }, compute C i,j := λ∈Λm A i,λ A j,λ .

3. Compute S := 1 i,j V C i,j and T := tr(C).

Output:

Empirical risk : P n γ( s m ) = -S V 2 ; V -fold cross-validation criterion: crit VFCV (m) = T V (V -1) - S -T (V -1) 2 ; V -fold penalty: pen VF (m) = crit VFCV (m) -P n γ( s m ) V -1/2 V -1 .
To the best of our knowledge, Algorithm 1 is new, even for computing the V -fold crossvalidation criterion. Its correctness and complexity are analyzed with the following proposition.

Proposition 8 Algorithm 1 is correct and has a computational complexity of order

n + V 2 Card(Λ m ) .
In the histogram case, that is, when Λ m is a partition of X and ∀λ ∈ Λ m , ψ λ = µ(λ) -1/2 1 λ , the computational complexity of Algorithm 1 can be reduced to the order of n+V 2 Card(Λ m ).

Proposition 8 is proved in Section B.4.2. It shows that Algorithm 1 is significantly faster than the "naive" Algorithm 2 described in Section B.4.1, by a factor of order

nV n + V 2 = 1 V + V n -1 1 if 1 V n .
Note that closed-form formulas are available for the leave-p-out criterion in least-squares density estimation [START_REF] Celisse | Optimal cross-validation in density estimation with the L 2 -loss[END_REF], allowing to compute it with a complexity of order n Card(Λ m ) in general, and smaller in some particular cases-for instance, n for histograms.

Discussion

Before discussing how to choose V when using V -fold methods for model selection-or more generally for choosing among a given family of estimators-, we state some additional results and we discuss the model selection literature in least-squares density estimation.

Monte-Carlo Cross-Validation

Our analysis of V -fold procedures for model selection can be extended to some other crossvalidation procedures. We here present results for Monte-Carlo cross-validation (MCCV, [START_REF] Picard | Cross-validation of regression models[END_REF], also known as repeated cross-validation, where B training samples of the same size n -p are chosen independently and uniformly (see also Arlot and Celisse, 2010, Section 4.3.2). Formally, we consider the criterion

crit CV m, (T K ) 1 K B := 1 B B K=1 crit HO (m, T K ) , (25) 
where T 1 , . . . , T B are subsets of n and we recall that the hold-out criterion is defined by Eq. ( 4). We make the following three assumptions throughout this subsection

∃p ∈ n -1 , ∀j ∈ B , |T j | = n -p = nτ n , (SameSize) 
(T K ) 1 K B is independent from D n , (Ind) 
T 1 , . . . , T B are independent with uniform distribution over E n-p , (MCCV)

where we recall that E n-p = {A ⊂ n s.t. |A| = n -p}. Under these assumptions, we write C MCCV (m) as a shortcut for crit CV (m, (T K ) 1 K B ).

Similarly to Theorem 5, we prove in Section B.2.3 the following oracle inequality for MCCV.

Theorem 9 Let ξ n be i.i.d. real-valued random variables with common density s ∈ L ∞ (µ), (T K ) 1 K B some sequence of subsets of n satisfying (SameSize), (Ind) and (MCCV) and (S m ) m∈Mn be a collection of separable linear spaces satisfying (H1). Assume that either (H2) or (H2 ) holds true. For every m ∈ M n , let s m be the estimator defined by Eq. (1), and s = s m where

m ∈ argmin m∈Mn crit CV m, (T K ) 1 K B
and crit CV is defined by Eq. (25). Let us define, for any x, y, > 0,

x n = x + log |M n | and ρ 3 ( , x, y, n, τ n , B, A) := 1 nτ 2 n 1 + B ∧ (log n + y) B(1 -τ n ) α Ax τ n + (A ∨ 1)x 2 3
with α = 1 under assumption (H2) and α = 2 under assumption (H2 ). Then, an absolute constant κ > 0 exists such that, for any x, y 0, with probability at least 1 -e -x -e -y , for any ∈ (0, κ -1 ),

1 - τ n s -s 2 1 + τ n inf m∈Mn s m -s 2 + κρ 3 ( , x n , y, n, τ n , B, A) . ( 26 
)
Theorem 9 actually is a corollary of a more general result (Theorem 23 in Section B.2.3), which is valid without assumption (MCCV) and extends therefore our previous results on V -fold cross-validation).

Very few results exist in the literature about the model selection performance of MCCV with an estimation goal. Some asymptotic optimality result has been obtained by [START_REF] Burman | Estimation of optimal transformations using v-fold cross validation and repeated learning-testing methods[END_REF] for spline regression, and some oracle inequalities comparing the risk of the selected estimator with the risk of an oracle trained with τ n n < n data have been proved by van der [START_REF] Mark | Unified cross-validation methodology for selection among estimators and a general cross-validated adaptive epsilon-net estimator: Finite sample oracle inequalities and examples[END_REF] in a general framework and by van der Laan et al. ( 2004) for density estimation with the Kullback-Leibler loss. In comparison, Theorem 9 provides a precise non-asymptotic comparison to an oracle trained with n data.

As in Theorem 5, the leading constant of the oracle inequality ( 26) is directly related to the bias, which is here quantified by τ -1 n -1 0 instead of δ. The remainder term ρ 3 is also comparable to ρ 2 in Theorem 5: they differ by a factor between τ -2 n (when B is large enough) and τ -2 n (1 -τ n ) -α (when B is small). In particular, let V 2 and assume that p = n/V in Theorem 9, hence τ n = 1 -V -1 ∈ [1/2, 1). Then, for the hold-out (B = 1), ρ 3 is larger than ρ 2 by a factor V α with α ∈ {1, 2}. For B = V , MCCV with τ n = 1 -V -1 can be called "Monte-Carlo V -fold" (MCVF); then, with y ≈ log n, we loose a factor at most log n for MCVF compared to V -fold cross-validation. Finally, when B is large enough, that is, larger than V log n, ρ 3 and ρ 2 are of the same order.

The above comparison of remainder terms suggests a hierarchy between several crossvalidation methods with a common training sample size n-p = nτ n : from the (presumably) worse to the (presumably) best procedure, the hold-out, Monte-Carlo CV with B = V , Vfold CV, Monte-Carlo CV with B large and the leave-p-out. Nevertheless, upper bounds comparison can be misleading, so, following the heuristics (22) presented in Section 4, we compute below the variance of ∆ C (m, m ) when C is a Monte-Carlo CV criterion.

Theorem 10 We consider the setting and notation of Theorem 6, and we assume that (SameSize), (MCCV) and (Ind) hold true. We recall that C MCCV (m) is defined above at the beginning of Section 8.1. Then, for regular histogram models m 1 , m 2 (Example 1 in Section 3.2), we have

Var C MCCV (m 1 ) -C MCCV (m 2 ) = C MC 1 (B, n, τ n ) 2 n 2 B(m 1 , m 2 ) (27) + C MC 2 (B, n, τ n ) 4 n Var s m 1 (ξ 1 ) -s m 2 (ξ 1 )
where

C MC 1 (B, n, τ n ) = 1 B 1 τ 2 n + 2 τ n (1 -τ n ) - 1 nτ 3 n + 1 - 1 B 1 + 1 n -1 1 τ n + 1 2 - 1 nτ 2 n C MC 2 (B, n, τ n ) = 1 B 1 n 2 τ 3 n + 1 1 -τ n + 1 - 1 B 1 + 1 nτ n 2 and we recall that τ n = |T K |/n = 1 -(p/n).
Theorem 10 is proved in Section B.2.4, as a corollary of a more general result, Theorem 24, which holds for all models m 1 , m 2 -not only regular histograms-and provides a formula for the variance of the criterion itself-not its increments. Let us make a few comments.

Eq. ( 27) is similar to the formula obtained for bias-corrected V -fold and V -fold penalization, see Eq. ( 24) in Theorem 6. In the particular case of regular histogram models, Eq. ( 24) even fits the general form of Eq. ( 27), with constants

C penVF i (V, n, C) instead of C MC i (B, n, τ n ).
Assuming the heuristics of Section 4 is valid, for m 1 , m 2 which matter for model selection, the two terms 2n -2 B(m 1 , m 2 ) and 4n -1 Var(s m 1 (ξ 1 ) -s m 2 (ξ 1 )) are of the same order of magnitude (see Section 5). Then, we can compare model selection performance of several cross-validation methods by comparing the values of the constants C i only.

In order to get a variance of the same order of magnitude as the one of bias-corrected V -fold CV-that is, constants C i of order 1-, MCCV requires to take τ n far enough from 0 and 1, hence training and sample sets of comparable sizes, unless B is large enough.

Eq. ( 27) allows to compare the hold-out (B = 1) with the leave-p-out (B → +∞), for a given value nτ n = n -p of the training sample size. Let us assume for simplicity that n → +∞ and τ n n -1/2 . Then,

C MC 1 (1, n, τ n ) ∼ 1 τ 2 n + 2 τ n (1 -τ n ) > 11 and C MC 2 (1, n, τ n ) ∼ 1 1 -τ n 1 whereas C MC 1 (∞, n, τ n ) → 1 and C MC 2 (∞, n, τ n ) → 1
which shows an improvement at least by a constant factor in general. When τ n tends to zero-leave-most-out-or 1-such as for the leave-one-out-, the improvement is by an order of magnitude. The fact that the leave-p-out has a smaller variance than the hold-out is not surprising at all-it holds in full generality, as a consequence of Jensen's inequality-, but the exact quantification of the improvement given by Theorem 10 is new and can be useful in practice for choosing the number of splits B when using Monte-Carlo cross-validation. Eq. ( 27) also allows to compare V -fold cross-validation, given by Theorem 6 with

C = 1 + 1 2(V -1)
,

with MCCV with B = V and τ n = (V -1)/V , which can be named "Monte-Carlo Vfold" cross-validation. The only difference between the two methods is that the V splits are chosen independently for "Monte-Carlo V -fold", whereas the usual V -fold makes a balanced use of each observation-putting it exactly (V -1) times in the training set. Let us assume for simplicity that n → +∞ while V = V n can vary with n. Then, we have

C MCVF 1 (V n , n) := C MC 1 V n , n, V n -1 V n ∼ 3 + 2V n + 1 V n (V n -1) + 1 (V n -1) 2 C VF 1 (V n , n) := C penVF 1 V n , n, 1 + 1 2(V n -1) ∼ 1 + 4 V n -1 + 4 (V n -1) 2 + 1 (V n -1) 3 hence C MCVF 1 (V n , ∞) C VF 1 (V n , ∞) > 1 if V n 3 , C MCVF 1 (V n , n) C VF 1 (V n , n) -------→ n,Vn→+∞ 3 , C MCVF 2 (V n , n) := C MC 2 V n , n, V n -1 V n ∼ 2 - 1 V n ∈ 3 2 , 2 and C VF 2 (V n , n) := C penVF 2 V n , n, 1 + 1 2(V n -1) → 1 .
Overall, we get that V -fold cross-validation has a smaller variance than "Monte-Carlo Vfold" for V 3, at least for n large enough, and that the improvement is by a constant factor between 3/2 and 3. Since increasing V cannot decrease the variance of (bias-corrected) VFCV by more than a small constant factor, the above difference between two methods with the same computational complexity is quite important. This supports strongly the use of V -fold CV methods instead of "Monte-Carlo V -fold". Such an improvement was previously noticed in the asymptotic computations of [START_REF] Burman | A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods[END_REF]; here we show that it holds in a non-asymptotic framework, where the models m 1 , m 2 can depend on n.

Hold-Out Criteria

Our analysis of cross-validation procedures for model selection can also be extended to hold-out criteria. First, let us emphasize that the hold-out criterion defined by Eq. ( 4) corresponds to taking B = 1 in the results of Section 8.1, since choosing T uniformly over E n-p , independently from D n , is equivalent to choosing some arbitrary T of size n -p before seeing the data D n .

Second, similarly to the definition of the hold-out criterion in Eq. ( 4), we can define the hold-out penalty by ∀x 0, pen HO (m, T, x) := 2x P (T )

n -P n s (T ) m -s m , (28) 
that is, the hold-out estimator of E[2(P n -P )( s m -s m )] which is equal to the expectation of the ideal penalty, see Eq. (2). We do not define pen HO by Eq. ( 6) with V = 1 and T = B c 1 -that is, the hold-out estimator of E[(P -P n )γ( s m )], which amounts to removing the centering term -s m in Eq. ( 28)-because this would dramatically increase its variability. Note that adding such a term -s m in Eq. ( 6) does not change the value of the V -fold penalty under (Reg) since V K=1 (P

(B c K ) n -P n ) = 0.
Denoting by τ n = |T |/n as in Section 8.1, it comes from Lemma 26 in Section B.3.1 that

E pen HO (m, T, x) = x 1 -τ n τ n E pen id (m) .
In the following, we choose x = Cτ n /(1 -τ n ) so that C = 1 corresponds to the unbiased case, as in the previous sections for the V -fold penalty.

Remark 11 Since P n = τ n P (T ) n

+ (1 -τ n )P (T c ) n
, by linearity of the estimator s m , pen HO (m, T, x) Then, an absolute constant κ exists such that, for any x > 0, defining x n = x + log |M n |, with probability at least 1 -e -x , for any ∈ (0, 1],

:= 2x(1 -τ n ) 2 P (T ) n -P (T c ) n s (T ) m -s (T c )
1 -δ -- 1 + δ + + s HO -s 2 inf m∈Mn s m -s 2 + κ Ax n n + τ 2 n + (1 -τ n ) 2 τ n (1 -τ n ) x 2 n 3 n . ( 29 
)
Theorem 12 is proved in Section B.3.1. Theorem 12 extends Theorem 5 to hold-out penalties, under similar assumptions. As in Theorem 5, δ quantifies the bias of the hold-out penalized criterion, and plays the same role in the leading constant of the oracle inequality (29).

We can compare the results obtained for hold-out and V -fold penalization in Theorems 5 and 12. For this comparison, let V be some divisor of n, T ⊂ n such that |T | = n -n/V and choose the same C so that both criteria have the same bias δ. Then, the only difference lies in the remainder term, the one in Eq. ( 29) is larger than the one of Eq. ( 17) in Theorem 5 by a factor of order V when V is large. These only are upper bounds, but at least they are consistent with the common intuition about the stabilizing effect of averaging over V folds. We can also compare the results obtained for hold-out penalization in Theorem 12 and for the hold-out criterion in Theorem 9. First, hold-out penalization gives a flexibility to choose an unbiased criterion and therefore to obtain asymptotically optimal oracle inequalities while hold-out criteria are always biased for fixed τ n , hence a leading constant τ -1 n > 1 in the oracle inequality. The loss in the remainder term is also smaller in Eq. ( 29) than in Eq. ( 26) by a factor of order τ -1 n (1 -τ n ) -1 under assumption (H2 ). Similarly to Theorems 6 and 10, the variance terms can be computed for the hold-out penalty in order to understand separately the roles of the training sample size and of averaging over the V splits, in the V -fold criteria. Detailed results are given by Proposition 28 in Section B.3.2.

Other Oracle Inequalities for Least-Squares Density Estimation

Although the primary topic of the paper is the study of V -fold procedures, let us compare briefly our results to other oracle inequalities that have been proved in the least-squares density estimation setting. For projection estimators, Massart (2007, Section 7.2) proves an oracle inequality for some penalization procedures, which are suboptimal since the leading constant C n does not tend to 1 as n goes to +∞. Oracle inequalities have also been proved for other estimators: blockwise Stein estimators [START_REF] Rigollet | Adaptive density estimation using the blockwise Stein method[END_REF], linear estimators [START_REF] Goldenshluger | Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality[END_REF]) and some T -estimators [START_REF] Birgé | Model selection for density estimation with L 2 -loss[END_REF]. The models considered by [START_REF] Birgé | Model selection for density estimation with L 2 -loss[END_REF] are more general than ours, but the corresponding estimators are not computable in practice, and the oracle inequality by Birgé ( 2013) also has a suboptimal constant C n . Some aggregation procedures also satisfy oracle inequalities [START_REF] Rigollet | Linear and convex aggregation of density estimators[END_REF][START_REF] Bunea | Spades and mixture models[END_REF]. Overall, under our assumptions, none of these results imply strictly better bounds than ours.

Let us finally mention that [START_REF] Birgé | How many bins should be put in a regular histogram[END_REF] propose a precise evaluation of the penalty term in the case of regular histogram models and the log-likelihood contrast. Their final penalty is a function of the dimension, only slightly modified compared to pen dim , performing very well on regular histograms. These performances are likely to become much worse on the collection Dya2 presented in Section 6. This can be seen, for example, in Table 3 in Section B.6, where we present the performances of pen dim with different overpenalizing constants.

Conclusion on the Choice of V

This section summarizes the results of the paper in order to address the main question we would like to answer: How to choose a V -fold procedure for model selection?

Generality of the results. The results of the paper only hold for projection estimators in least-squares density estimation, but we conjecture that most of the statements below are valid much more generally. At least, they have been observed experimentally for projection estimators in least-squares regression [START_REF] Arlot | V -fold cross-validation improved: V -fold penalization[END_REF] and they are supported by theoretical results for kernel density estimators (Magalhães, 2015, Chapters 3-4). Nevertheless, it is reported in the literature that V -fold cross-validation can behave differently in other settings [START_REF] Arlot | A survey of cross-validation procedures for model selection[END_REF], so we must keep in mind that the statements below may not be universal.

Let us also recall that we focus here on model selection with an estimation goal, that is, minimizing the risk of the final estimator; see [START_REF] Yang | Comparing learning methods for classification[END_REF][START_REF] Yang | Consistency of cross validation for comparing regression procedures[END_REF] and [START_REF] Celisse | Optimal cross-validation in density estimation with the L 2 -loss[END_REF] for results when the goal is identification.

Choice of a model selection procedure. Choosing among procedures of the form m(C), as defined by Eq. ( 18), requires to take into account three quantities:

• the bias of C(m) as an estimator of the risk of s m for every m ∈ M n , or equivalently, the overpenalization factor C, which usually drives the performance at first order when n → +∞, as in Theorem 5. The simulation experiments of Section 6 also show that varying C can strongly change the performance of the procedure. In all settings considered in the paper, some C n exists (the optimal overpenalization constant) such that the performance decreases for C ∈ [0, C n ] and increases for C > C n (Figure 3).

Note that C n strongly depends on the setting, and can also vary with V when using V -fold penalization (in particular from V = 2 to V 5). In the nonparametric case, when n → +∞, Theorem 5 shows that C n ∼ 1. On the contrary, in the parametric case, when n → +∞, it is known that a BIC-type penalty performs better, hence C n → +∞. For a finite sample size, Section 6 and [START_REF] Liu | Parametric or nonparametric? A parametricness index for model selection[END_REF] show that some nonparametric settings can be "practically parametric", that is, C n can be much larger than 1.

• the variance of increments C(m)-C(m ) drives the performance m(C) at second order, according to the heuristic of Section 4, which suggests that this variance should be minimized, at least for a given "good enough" value of the overpenalization factor C.

• the computational complexity of the procedure m(C), that we want to minimize-for a given statistical performance-, or on which some upper bound is given-fixed budget.

V -fold cross-validation. The paper analyzes how the aboves three terms depend on V when C = C VFCV V is a V -fold cross-validation procedure, under assumption (Reg). First, by Lemma 1, its overpenalization factor is

C VF (V ) = 1 + 1/[2(V -1)] ∈ [1, 3/2]
, which decreases to 1 as V increases to +∞. Second, by Theorem 6, its variance decreases as V increases. Theoretical and empirical arguments in Sections 5 and 6 show that the variance almost reaches its minimal value by taking, say, V = 5 or V = 10. Third, by Section 7, its computational complexity is proportional to V in general; in the least-squares density estimation setting, it can be reduced to (n + V 2 ) Card(Λ m ) .

These three results can explain why the most common advices for choosing V in the literature (for instance [START_REF] Breiman | Submodel Selection and Evaluation in Regression. The X-Random Case[END_REF]Hastie et al., 2009, Section 7.10.1) are between V = 5 and V = 10. Indeed, taking V larger does not reduce the variance significantly-with almost no impact on the risk of the final estimator-, and it reduces the overpenalization factor although C n is often larger than C VF (10) = 19/18 or C VF (5) = 9/8. So, if C n is not much larger than 1 + 1/8, which is likely to occur in many nonparametric settings, taking V = 5 or 10 can be close to be optimal.

Nevertheless, other situations can occur, for instance in (practically) parametric settings where C n is much larger, possibly leading to the failure of the heuristic "5 V 10 is almost optimal". More generally, understanding precisely how C VFCV V performs as a function of V seems to be a difficult question: V influences the performance in two opposite directions simultaneously, through the bias and the variance, so that various behaviours can result from this coupling of bias and variance, as shown in the simulation experiments.

V -fold penalization. Lemma 1 shows that a natural way to solve this difficulty is to consider instead a V -fold penalization procedure C pen VF (C,V ) , with overpenalization factor C > 0. The value C = C VF (V ) corresponds to V -fold cross-validation, but any other value of C can also be considered, making it easier to understand. Indeed, the overpenalization factor is directly given by C, while the variance and computational complexity of C pen VF (C,V ) vary with V -independently from C-exactly as for V -fold cross-validation. So, V should be taken as large as possible-depending on the maximal computational budget available-, while C should be taken as close as possible to C n .

Compared to V -fold cross-validation, another interest of V -fold penalization is the improvement of the performance for a given computational cost, that is, a given value of V , because it is then possible to take C closer to C n than C VF (V ). This is especially true in (practically) parametric settings for which C n > 3/2 C VF (V ) for all V 2.

Data-driven overpenalization factor C. Although the paper shows that choosing well C is a key practical problem, making an optimal data-driven choice of C remains an open question which deserves to be studied, even independently from the analysis of crossvalidation procedures. We postpone such a study to future works, but we can already make two suggestions. First, an external cross-validation loop can be used for choosing C, if the computational power is not a limitation. Second, a procedure built for choosing between AIC and BIC can be used in order to detect whether C should be close to 1 or significantly larger (see, for instance, Liu and Yang, 2011 and references therein).

A Proofs

Before proving the main results stated in the paper, let us recall two simple results that we use repeatedly in the paper. First, if (b λ ) λ∈Λm is a family of real numbers such that

λ∈Λm b 2 λ < ∞, then sup λ∈Λm a 2 λ 1 λ∈Λm a λ b λ 2 = λ∈Λm b 2 λ . (30) 
The left-hand side is smaller than the right-hand side by Cauchy-Schwarz inequality, and considering a λ = b λ /( λ ∈Λm b 2 λ ) 1/2 shows that the converse inequality holds true. Second, for any probability distribution Q on X ,

λ∈Λm (Qψ λ )ψ λ ∈ argmin t∈Sm Qγ(t) , (31) 
a result which provides in particular a formula for s m and for s m , by taking Q = P n and Q = P , respectively.

A.1 Proof of Lemma 1

Let us first recall here the proof of Eq. ( 7)-coming from Arlot (2008)-for the sake of completeness. By (Reg),

P n -P (B c K ) n = 1 V P (B K ) n -P (B c K ) n and P (B K ) n -P n = V -1 V P (B K ) n -P (B c K ) n , so that C 1,B (m) := P n γ( s m ) + pen VF (m, B, V -1) = P n γ( s m ) + V -1 V 2 V K=1 P (B K ) n -P (B c K ) n γ s (B c K ) m = P n γ( s m ) + 1 V V K=1 P (B K ) n -P n γ s (B c K ) m = crit corr,VFCV (m, B) .
Eq. ( 8) and ( 9) follow simultaneously from Eq. ( 35) below. Let E be a set of subsets of n such that ∀A ∈ E, |A| = p and 1

|E| A∈E P (A c ) n = P n . (32) 
Let us consider the associated penalty

pen E (m, C) = C |E| A∈E P n -P (A c ) n γ s (A c ) m = 2C |E| A∈E P (A c ) n -P n s (A c ) m and the associated cross-validation criterion crit E (m) = 1 |E| A∈E P (A) n γ s (A c ) m
.

When E = B, we get the V -fold penalty pen VF = pen E and the V -fold cross-validation criterion crit VFCV = crit E , and Eq. ( 32) holds true with p = n/V under assumption (Reg). When E = E p := {A ⊂ n s.t. |A| = p}, Eq. ( 32) always holds true and we get the leave-pout penalty pen LPO = pen E and the leave-p-out cross-validation criterion crit LPO = crit E .

Let (ψ λ ) λ∈Λm be some orthonormal basis of S m in L 2 (µ). On the one hand, using Eq. ( 32), we get

pen E (m, C) = 2C |E| A∈E P (A c ) n -P n s (A c ) m = 2C |E| A∈E λ∈Λm P (A c ) n (ψ λ ) -P n (ψ λ ) P (A c ) n (ψ λ ) = 2C |E| λ∈Λm A∈E P (A c ) n (ψ λ ) 2 -P n (ψ λ ) A∈E P (A c ) n (ψ λ ) = 2C |E| λ∈Λm A∈E P (A c ) n (ψ λ ) 2 -(P n (ψ λ )) 2 . ( 33 
)
On the other hand, using that P

(A) n = n p P n -n-p p P (A c ) n
by Eq. ( 32),

crit E (m) -P n γ( s m ) = 1 |E| A∈E P (A) n γ s (A c ) m -P n γ( s m ) = 1 |E| A∈E s (A c ) m 2 -2P (A) n s (A c ) m -s m 2 + 2P n ( s m ) = 1 |E| A∈E λ∈Λm P (A c ) n (ψ λ ) 2 -2P (A) n (ψ λ )P (A c ) n (ψ λ ) + P n (ψ λ ) 2 = 1 |E| λ∈Λm A∈E 2n p -1 P (A c ) n (ψ λ ) 2 - 2n p P n (ψ λ )P (A c ) n (ψ λ ) + P n (ψ λ ) 2 = 2n p -1 1 |E| λ∈Λm A∈E P (A c ) n (ψ λ ) 2 -P n (ψ λ ) 2 , ( 34 
)
where we used again Eq. ( 32). Comparing Eq. ( 33) and ( 34)

gives crit E (m) = P n γ( s m ) + pen E m, n p - 1 2 (35)
which implies Eq. ( 8) and ( 9). Eq. ( 10) follows by Lemma A.11 of [START_REF] Lerasle | Optimal model selection in density estimation[END_REF].

We now prove the statements made in Remarks 2-3 below Lemma 1.

Proof of Remark 2

We first note that Eq. ( 10) can also be deduced from Celisse (2014, Proposition 2.1), which proves

crit LPO (m, p) = 1 n(n -p) λ∈Λm   n i=1 ψ λ (ξ i ) 2 - n -p + 1 n -1 1 i =j n ψ λ (ξ i )ψ λ (ξ j )   .
Elementary algebraic computations then show that crit LPO (m, p) -

P n γ( s m ) = 2n -p n 2 (n -p) λ∈Λm   n i=1 ψ λ (ξ i ) 2 - 1 n -1 1 i =j n ψ λ (ξ i )ψ λ (ξ j )   (36) hence for any p, p ∈ n , n/p -1 n/p -1/2 crit LPO (m, p) -P n γ( s m ) = n/p -1 n/p -1/2 crit LPO m, p -P n γ( s m ) .
In particular, when p = 1, from Eq. ( 9), since pen LPO (m, 1, C) = pen LOO (m, C),

pen LPO m, p, n p - 1 2 = n/p -1/2 n/p -1 n -1 n -1/2 pen LPO m, 1, n - 1 2 = pen LOO m, (n -1) n/p -1/2 n/p -1 .
Proof of Remark 3 Note first that the CV estimator of Massart (2007, Sec. 7.2.1, p. 204-205) is defined as the minimizer of

s m 2 - 2 n(n -1) 1 i =j n λ∈Λm ψ λ (ξ i )ψ λ (ξ j ) = P n γ( s m ) + 2 n 2 λ∈Λm   n i=1 ψ λ (ξ i ) 2 - 1 n -1 1 i =j n ψ λ (ξ i )ψ λ (ξ j )   . (37)
On the other hand, from Eq. ( 36) and ( 9) with p = 1, we have

pen LOO (m, n -1) = 2 n 2 λ∈Λm   n i=1 ψ λ (ξ i ) 2 - 1 n -1 1 i =j n ψ λ (ξ i )ψ λ (ξ j )   .
Hence, from Eq. ( 37), the CV estimator is the minimizer of crit corr,VFCV (m, B LOO ). Massart (2007, Theorem 7.6) studies the minimizers of the criterion

P n γ( s m ) + C n 2 n i=1 λ∈Λm ψ λ (ξ i ) 2 , ( 38 
)
where C = (1 + ) 6 for any > 0. Let α = C/n, so that α = (C -α)/(n -1). Then, the criterion ( 38) is equal to

(1 -α)P n γ( s m ) + C -α n 2 λ∈Λm n i=1 ψ λ (ξ i ) 2 - α n 2 λ∈Λm 1 i =j n ψ λ (ξ i )ψ λ (ξ j ) = (1 -α)P n γ( s m ) + C -α n 2 λ∈Λm   n i=1 ψ λ (ξ i ) 2 - 1 n -1 λ∈Λm 1 i =j n ψ λ (ξ i )ψ λ (ξ j )   = (1 -α) P n γ( s m ) + C -α 2(1 -α) pen LOO (m, n -1) = (1 -α) P n γ( s m ) + pen LOO m, C(n -1) 2 2(n -C) .

A.2 Proof of Proposition 4

Note that the two formulas given for Ψ m in the statement of Proposition 4 coincide by Eq. ( 30). The proof is decomposed into 3 lemmas.

Lemma 13 Let ξ n denote i.i.d. random variables taking value in a Polish space X , B V some partition of n satisfying (Reg), S m some separable linear subspace of L 2 (µ) with orthonormal basis (ψ λ ) λ∈Λm and

U (m) := 1 n 2 1 k =k V i∈B k j∈B k λ∈Λm ψ λ (ξ i ) -P ψ λ ψ λ (ξ j ) -P ψ λ . (39) 
Then, the V -fold penalty is equal to

pen VF (m, B, C) = 2C V -1 s m -s m 2 - 2V C (V -1) 2 U (m) ( 40 
)
and

E pen VF m, B, V -1 2 = E s m -s m 2 = D m 2n . ( 41 
)
Proof Let W i = V V -1 1 i / ∈B J and use the formulation (5) of the V -fold penalty as a resampling penalty. Then,

pen VF (m, B, C) = C E W P n -P W n γ s W m = 2C E W P W n -P n s W m = 2C E W P W n -P n s W m -s m by (Reg) = 2C λ∈Λm E W P W n -P n (ψ λ ) 2 = 2C λ∈Λm E W P W n -P n (ψ λ -P ψ λ ) 2 = 2C n 2 λ∈Λm 1 i,j n e (VF) i,j ψ λ (ξ i ) -P ψ λ ψ λ (ξ j ) -P ψ λ ( 42 
)
where e

(VF) i,j

:= E[(W i -1)(W j -1)]. Since E[W i ] = 1 by (Reg)
and

W i W j = V V -1 2 1 J / ∈{J 0 ,J 1 } if i ∈ B J 0 and j ∈ B J 1 ,
we get that e (VF) i,j = (V -1) -1 if i and j belong to the same block and e

(VF) i,j = -(V -1) -2 otherwise. So, pen VF (m, B, C) = 2C n 2 (V -1) λ∈Λm V k=1 (i,j)∈B k ψ λ (ξ i ) -P ψ λ ψ λ (ξ j ) -P ψ λ - 2C (V -1) 2 U (m) = 2C V -1 λ∈Λm (P n -P )ψ λ 2 - 2CV (V -1) 2 U (m)
and Eq. ( 40) follows by Eq. ( 3). Eq. ( 41) directly follows from Eq. ( 40).

Lemma 14 Let ξ n be i.i.d. random variables taking values in a Polish space X with common density s ∈ L ∞ (µ), S m a separable linear subspace of L 2 (µ) and denote by

(ψ λ ) λ∈Λm an orthonormal basis of S m . Let B m = {t ∈ S m s.t. t 1}, D m = λ∈Λm P ψ 2 λ -s m 2
and assume that b m = sup t∈Bm t ∞ < ∞. An absolute constant κ exists such that, for any x > 0, with probability larger than 1 -2e -x , we have for every > 0,

s m -s m 2 - D m n D m n + κ s ∞ x ( ∧ 1)n + b 2 m x 2 ( ∧ 1) 3 n 2 .
Proof By Eq. ( 3), s m -s m 2 = sup t∈Bm [(P n -P )(t)] 2 has expectation D m /n. In addition, for any t ∈ B m ,

Var t(ξ 1 ) R t 2 s dµ s ∞ t 2 s ∞ , (43) 
which gives the conclusion thanks to Proposition 29 in Section B.5.

Lemma 15 Assume that ξ n is a sequence of i.i.d. real-valued random variables with common density s ∈ L ∞ (µ) and B V is some partition of n satisfying (Reg). Let S m denote a separable subspace of L 2 (µ) with orthonormal basis (ψ λ ) λ∈Λm such that

b m := sup t∈Sm, t 1 t ∞ < +∞ .
Let U (m) be the U -statistics defined by Eq. (39). Using the notations of Lemma 14, an absolute constant κ exists such that, with probability larger than 1 -6e -x ,

U (m) 3 (V -1) s ∞ D m x √ V n + κ s ∞ x n + b 2 m + s 2 x 2 n 2 .
Hence, an absolute constant κ exists such that, for any x > 0, with probability larger than 1 -6e -x , for any θ ∈ (0, 1],

U (m) θ D m n + κ s ∞ x θn + b 2 m + s 2 x 2 n 2 .
Proof For any x, y ∈ R and i, j ∈ n , let us define

U m (x, y) = λ∈Λm ψ λ (x) -P ψ λ ψ λ (y) -P ψ λ and g i,j (x, y) = U m (x, y)1 {∃k,k ∈ V s.t. k =k , i∈B k , j∈B k } so that U (m) = 2 n 2 n i=2 i-1 j=1 g i,j (ξ i , ξ j ) = 2 n 2 V k=2 k-1 k =1 i∈B k ,j∈B k U m (ξ i , ξ j ) .
From Houdré and Reynaud-Bouret (2003, Theorem 3.4), an absolute constant κ exists such that, for any x > 0 and ∈ (0, 1],

P |U (m)| 1 n 2 (4 + )A √ x + κ Bx + Cx 3/2 3 + Dx 2 3 6e -x . (44) 
A 2 = n i=2 i-1 j=1 E g i,j (ξ i , ξ j ) 2 , B = sup    E   n i=2 i-1 j=1 a i (ξ i )b j (ξ j )g i,j (ξ i , ξ j )   such that E n i=1 a 2 i (ξ i ) 1 and E n i=1 b 2 i (ξ i ) 1 , C 2 = sup x∈R n i=2 E g i,1 (ξ i , x) 2 and D = sup
x,y g i,j (x, y) .

It remains to upper bound these different terms for proving the first inequality, and the second inequality follows. First,

E U m (ξ 1 , ξ 2 ) 2 = λ∈Λm,λ ∈Λm E ψ λ (ξ 1 ) -P ψ λ ψ λ (ξ 1 ) -P ψ λ 2 = λ∈Λm   sup λ ∈Λm a 2 λ 1 E ψ λ (ξ 1 ) -P ψ λ λ ∈Λm a λ ψ λ (ξ 1 ) -P ψ λ   2 = λ∈Λm sup t∈Bm E ψ λ (ξ 1 ) -P ψ λ t(ξ 1 ) -P (t) 2 D m sup t∈Bm E t(ξ 1 ) -P (t) 2 s ∞ D m by Eq. (43) (45) so that A 2 = V k=2 k-1 k =1 i∈B k ,j∈B k E U m (ξ i , ξ j ) 2 n 2 (V -1) 2V × s ∞ D m .
Second, let a 1 , . . . , a n , b 1 , . . . , b n be functions in L 2 (µ) such that

E n i=1 a 2 i (ξ i ) 1 and E n i=1 b 2 i (ξ i ) 1 .
Using successively the independence of the ξ i and that αβ (α 2 + β 2 )/2 for every α, β ∈ R, for every i = j,

E a i (ξ i )b j (ξ j )U m (ξ i , ξ j ) = λ∈Λm E a i (ξ i ) ψ λ (ξ i ) -P ψ λ E b j (ξ j ) ψ λ (ξ j ) -P ψ λ 1 2 λ∈Λm E a i (ξ i ) ψ λ (ξ i ) -P ψ λ 2 + E b j (ξ j ) ψ λ (ξ j ) -P ψ λ 2 . ( 46 
)
Now, we have, for every i ∈ n , using Eq. ( 30), Cauchy-Schwarz inequality and the fact that for every t ∈ L 2 (µ), Var(t(ξ 1 ))

s ∞ t 2 , λ∈Λm E a i (ξ i ) ψ λ (ξ i ) -P ψ λ 2 = sup λ∈Λm t 2 λ 1   E   a i (ξ i ) λ∈Λm t λ ψ λ (ξ i ) -P (t λ ψ λ )     2 = sup t∈Bm E a i (ξ i ) t(ξ i ) -P (t) 2 E a i (ξ i ) 2 sup t∈Bm Var t(ξ 1 ) E a i (ξ i ) 2 s ∞ .
Plugging this bound in ( 46) yields

E a i (ξ i )b j (ξ j )U m (ξ i , ξ j ) s ∞ 2 E a i (ξ i ) 2 + E b j (ξ j ) 2 (47) hence B n s ∞ .
Third, for every x, y ∈ R, let g x (y) = λ∈Λm (ψ λ (x) -P ψ λ )ψ λ (y) so that

g x 2 = λ∈Λm ψ λ (x) -P ψ λ 2 2 λ∈Λm ψ λ (x) 2 + 2 λ∈Λm (P ψ λ ) 2 = 2Ψ m (x) 2 + 2 s m 2 2 b 2 m + s m 2 .
Then,

E U m (ξ i , x) 2 = Var g x (ξ 1 ) g x 2 s ∞ 2 b 2 m + s m 2 s ∞ (48)
and, using (Reg), we get that

C 2 2n(V -1) V b 2 m + s m 2 s ∞ .
Fourth, from Cauchy-Schwarz inequality, for every x, y ∈ X ,

U m (x, y) sup x∈R λ∈Λm ψ λ (x) -P ψ λ 2 2 b 2 m + s m 2 . ( 49 
)
Hence,

D 2 b 2 m + s m 2
and we get the desired result.

Let us conclude the proof of Proposition 4. From Lemmas 13 and 15, an absolute constant κ exists such that, with probability larger than 1 -6e -x , for every ∈ (0, 1],

pen VF (m, V, V -1) -2 s m -s m 2 = 2V V -1 U (m) D m n + κ s ∞ x n + b 2 m + s 2 x 2 n 2 . ( 50 
)
Using in addition Lemma 14, we get that an absolute constant κ exists such that with probability larger than 1 -8e -x , for every ∈ (0, 1], Eq. ( 50) holds true and

pen VF (m, V, V -1) - 2D m n D m n + κ s ∞ x n + b 2 m -3 + s 2 x 2
n 2 , which implies Eq. ( 15) and ( 16).

A.3 Proof of Theorem 5

By construction, the penalized estimator satisfies, for any m ∈ M n ,

s m -s 2 -pen id ( m) -pen VF m, V, C(V -1) s m -s 2 + pen VF m, V, C(V -1) -pen id (m) .
Now, by Eq. ( 2) and ( 3), pen id (m) = 2 s m -s m 2 + 2(P n -P )(s m ), hence

s m -s 2 s m -s 2 + pen VF m, V, C(V -1) -2 s m -s m 2 -pen VF m, V, C(V -1) -2 s m -s m 2 + 2(P n -P )(s m -s m ) = s m -s 2 + pen VF m, V, C(V -1) -2C s m -s m 2 -pen VF m, V, C(V -1) -2C s m -s m 2 + 2(P n -P )(s m -s m ) + 2(C -1) s m -s m 2 -s m -s m 2 . ( 51 
)
Let x > 0 and x n = log(|M n |) + x. A union bound in Proposition 4 gives

P ∃m ∈ M n , ∈ (0, 1] s.t. pen VF (m, V, V -1) -2 s m -s m 2 > D m n + κρ 1 (m, , s, x n , n) 8 m∈Mn e -xn = 8e -x m∈Mn 1 |M n | = 8e -x (52)
and a union bound in Lemma 14 gives

P ∃m ∈ M n , ∈ (0, 1] s.t. s m -s m 2 - D m n > D m n + κρ 1 (m, , s, x n , n) 2 m∈Mn e -xn = 2e -x . ( 53 
)
It remains to bound 2(P n -P )(s m -s m ) uniformly over m and m in M n . In order to apply Bernstein's inequality, we first bound the variance and the sup norm of s m -s m for some m, m

∈ M n . Since s ∈ L ∞ (µ), Var (s m -s m )(ξ 1 ) s ∞ s m -s m 2 .
Under assumption (H2)

s m -s m ∞ s m ∞ + s m ∞ 2a .
Under assumption (H2 ), s m -s m ∈ S m for some m ∈ {m, m }, hence by (H1) we have

s m -s m ∞ b m s m -s m √ n s m -s m .
Therefore, by Bernstein's inequality, for any x > 0, for any m, m , with probability larger than 1 -e -x , for any ∈ (0, 1],

(P n -P )(s m -s m ) 2x Var (s m -s m )(ξ 1 ) n + s m -s m ∞ x 3n s m -s m 2 + κ Ax + x 2 n .
for some absolute constant κ, where the last inequality is obtained by considering separately the cases (H2) and (H2 ), and by using that for every α, β, > 0, αβ α 2 + (β 2 )/(4 ). A union bound gives that for any x > 0, with probability at least 1 -|M n | 2 e -x , for every m, m ∈ M n and every ∈ (0, 1],

(P n -P )(s m -s m ) s m -s m 2 + κ Ax + x 2 n ( 54 
)
for some absolute constant κ. Plugging Eq. ( 52), ( 53) and (54) into Eq. ( 51) and using that C ∈ (1/2, 2] yields that, with probability 1 -(|M n | 2 + 10)e -x , for any ∈ (0, 1/2],

(

1 -4 ) s m -s 2 (1 + 4 ) s m -s 2 + (δ + + 4 ) D m n + (δ -+ 3 ) D m n + κ ρ 1 (m, , s, x, n) + ρ 1 ( m, , s, x, n) + Ax + x 2 n (1 + δ + + 16 ) s m -s 2 + (δ -+ 8 ) s m -s m 2 + κ ρ 1 (m, , s, x, n) + ρ 1 ( m, , s, x, n) + Ax + x 2 n for some absolute constants κ, κ > 0. Since b m √ n for all m ∈ M n , we get 2 sup m∈Mn ρ 1 (m, , s, x, n) + Ax + x 2 n 2 s ∞ + A x n + 3 + 2 s 2 n x 2 3 n
for every ∈ (0, 1]. Hence, with probability larger than 1 -

(|M n | 2 + 10)e -x , for any ∈ (0, 1], 1 -δ -- 1 + δ + + s m -s 2 s m -s 2 + κ s ∞ + A x n + 1 + s 2 n x 2 3 n (55) 
for some absolute constant κ > 0. To conclude, we remark that Eq. ( 17) clearly holds true when |M n | = 1, so we can assume that |M n | 2. Therefore, for every x > 0, Eq. ( 55) holds true with probability at least

1 -|M n | 2 + 10 e -x 1 -|M n | 4 e -x 1 -e -x+4 log |Mn| .
So, if we replace x by 4x n x + 4 log |M n | in Eq. ( 55), we get that Eq. ( 17) holds true with probability at least 1 -e -x for some absolute constant κ > 0, slightly larger than the one appearing in Eq. (55).

A.4 Proof of Theorem 6

For every x, y ∈ X and m ∈ {m 1 , m 2 }, let K m (x, y) := λ∈Λm ψ λ (x)ψ λ (y) and remark that

U m (x, y) = λ∈Λm ψ λ (x) -P ψ λ ψ λ (y) -P ψ λ = K m (x, y) -s m (x) -s m (y) + s m 2 . (56) For every x ∈ X , K m (x, x) = Ψ m (x) by Eq. (30), U m (x, x) = Ψ m (x) -2s m (x) + s m 2 and, by independence, for every m, m ∈ {m 1 , m 2 } Cov U m (ξ 1 , ξ 2 ), U m (ξ 1 , ξ 2 ) = λ∈Λm,λ ∈Λ m E ψ λ (ξ 1 ) -P ψ λ ψ λ (ξ 2 ) -P ψ λ ψ λ (ξ 1 ) -P ψ λ ψ λ (ξ 2 ) -P ψ λ = λ∈Λm,λ ∈Λ m E ψ λ (ξ 1 ) -P ψ λ ψ λ (ξ 1 ) -P ψ λ 2 = β m, m , hence, Var(U m 1 (ξ 1 , ξ 2 ) -U m 2 (ξ 1 , ξ 2 )) = B(m 1 , m 2 ).
For every m ∈ {m 1 , m 2 }, by Eq. ( 56),

P n γ( s m ) = - λ∈Λm (P n ψ λ ) 2 = - 1 n 2 1 i,j n K m (ξ i , ξ j ) (57) = - 1 n 2 1 i,j n U m (ξ i , ξ j ) - 2 n n i=1 s m (ξ i ) + s m 2 .
Moreover, by Eq. ( 42) in the proof of Lemma 13,

pen VF m, B, C(V -1) = 2C n 2 1 i,j n E (VF) i,j U m (ξ i , ξ j )
where

∀I, J ∈ {1, . . . , V }, ∀i ∈ B I , ∀j ∈ B J , E (VF) i,j = 1 - V 1 I =J V -1 = (V -1)e (VF) i,j
.

It follows that

C C,B (m) = 1 i,j n 2CE (VF) i,j -1 n 2 U m (ξ i , ξ j ) + n i=1 -2s m (ξ i ) n + s m 2 . (58) 
Hence, up to the deterministic term s m 2 , C C,B (m) has the form of a function C m defined in Lemma 16 below with

ω i,j = 2CE (VF) i,j -1 n 2 , f m = -2s m n and σ i = 1 .
It remains to evaluate the quantities appearing in Lemma 16 for these weights and function. First,

n i=1 E (VF) i,i = n and n i=1 E (VF) i,i 2 = n .
Second, by (Reg),

1 i =j n E (VF) i,j = n n V -1 + -1 (V -1) × n 2 (V -1) V = -n and 
1 i =j n E (VF) i,j 2 = n n V -1 + n V (V -1) = n 2 V -1 -n .
It follows that

1 i n ω 2 i,i = (2C -1) 2 n 3 , n i=1 ω i,i σ i = 2C -1 n + n i=1 σ 2 i Cov f m (ξ 1 ), f m (ξ 1 ) .
Proof We develop the covariance to get

Cov(C m , C m ) = 1 i,j,k, n ω i,j ω k, Cov U m (ξ i , ξ j ), U m (ξ k , ξ ) + 1 i,j,k n ω i,j σ k Cov U m (ξ i , ξ j ), f m (ξ k ) + 1 i,j,k n ω i,j σ k Cov U m (ξ i , ξ j ), f m (ξ k ) + 1 i,j n σ i σ j Cov f m (ξ i ), f m (ξ j ) .
The proof is then concluded with the following remarks, which rely on the fact that the random variables ξ n are independent and identically distributed.

1. Cov f m (ξ i ), f m (ξ j ) = 0 unless i = j, therefore 1 i,j n σ i σ j Cov f m (ξ i ), f m (ξ j ) = n i=1 σ 2 i Cov f m (ξ 1 ), f m (ξ 1 ) . 2. By definition (56) of U m , Cov U m (ξ i , ξ j ), f m (ξ k ) = 0 unless i = j = k, hence 1 i,j,k n ω i,j σ k Cov U m (ξ i , ξ j ), f m (ξ k ) = n i=1 ω i,i σ i Cov U m (ξ 1 , ξ 1 ), f m (ξ 1 ) . 3. By definition (56) of U m , Cov U m (ξ i , ξ j ), U m (ξ k , ξ l ) = 0 unless i = j = k = or i = k = j = or i = = j = k. It follows that 1 i,j,k, n ω i,j ω k, Cov U m (ξ i , ξ j ), U m (ξ k , ξ ) =   1 i =j n ω 2 i,j + ω i,j ω j,i   Cov U m (ξ 1 , ξ 2 ), U m (ξ 1 , ξ 2 ) + n i=1 ω 2 i,i Cov U m (ξ 1 , ξ 1 ), U m (ξ 1 , ξ 1 ) .

B.1.1 Evaluation of the Terms in the Variance Formula

The following proposition gives a formula for the terms appearing in Theorem 6 and Proposition 17 which does not depend on the basis (ψ λ ) λ∈Λm .

Proposition 18 For any m 1 , m 2 ∈ M n , we have

β(m 1 , m 2 ) = n Cov s m 1 (ξ), s m 2 (ξ) -(n + 1) Cov s m 1 (ξ), s m 2 (ξ) B(m 1 , m 2 ) = n Var ( s m 1 -s m 2 )(ξ) -(n + 1) Var (s m 1 -s m 2 )(ξ) , (59) 
where ξ denotes a copy of ξ 1 , independent of ξ n .

Proof By definition, we have

β(m 1 , m 2 ) = λ∈Λm 1 λ ∈Λm 2 Cov(ψ λ (ξ 1 ), ψ λ (ξ 1 )) 2 = λ∈Λm 1 λ ∈Λm 2 P (ψ λ ψ λ ) -P ψ λ P ψ λ 2 = λ∈Λm 1 λ ∈Λm 2 P (ψ λ ψ λ ) 2 -2 λ∈Λm 1 λ ∈Λm 2 P ψ λ P ψ λ P (ψ λ ψ λ ) + λ∈Λm 1 λ ∈Λm 2 (P ψ λ P ψ λ ) 2 = λ∈Λm 1 λ ∈Λm 2 P (ψ λ ψ λ ) 2 -2P (s m 1 s m 2 ) + s m 1 2 s m 2 2 .
Now, by Eq. ( 31), we have

Cov s m 1 (ξ), s m 2 (ξ) = 1 n 2 1 i,j n λ∈Λm 1 λ ∈Λm 2 Cov ψ λ (ξ i )ψ λ (ξ), ψ λ (ξ j )ψ λ (ξ) = 1 n λ∈Λm 1 λ ∈Λm 2 P (ψ λ ψ λ ) 2 -(P ψ λ P ψ λ ) 2 + n -1 n λ∈Λm 1 λ ∈Λm 2 P (ψ λ ψ λ ) -P ψ λ P ψ λ P ψ λ P ψ λ = 1 n λ∈Λm 1 λ ∈Λm 2 P (ψ λ ψ λ ) 2 - 1 n s m 1 2 s m 2 2 + n -1 n Cov s m 1 (ξ), s m 2 (ξ) .
It follows that

λ∈Λm 1 λ ∈Λm 2 P (ψ λ ψ λ ) 2 = n Cov s m 1 (ξ), s m 2 (ξ) + s m 1 2 s m 2 2 -(n -1) Cov s m 1 (ξ), s m 2 (ξ) .
Thus,

β(m 1 , m 2 ) = n Cov s m 1 (ξ), s m 2 (ξ) -(n + 1) Cov s m 1 (ξ), s m 2 (ξ) . 52 
Eq. ( 59) follows.

B.1.2 Evaluation of the Variance in the Regular Histogram Case

The following lemma gives the value of the terms appearing in Theorem 6 for two nested regular histogram models.

Lemma 19

Let m 1 = Λ m 1 and m 2 = Λ m 2 be two regular partitions of R, as defined by Example 1 in Section 3.2, so that for i ∈ {1, 2}, for any λ ∈ m i , µ(λ) = d -1 m i . We assume that m 2 is a subpartition of m 1 , that is, any element of m 2 is a subset of an element of m 1 . For any m ∈ {m 1 , m 2 }, we define

T m (x) = λ∈m (ψ λ (x) -P ψ λ ) 2 = sup t∈B m t(x) -P t 2
where we recall that B m = {t ∈ S m / t 1} and for any λ ∈ m 1 ∪m 2 , ψ λ = (µ(λ)) -1/2 1 λ . Then, we have

β(m 1 , m 2 ) = d m 1 s m 2 2 -2P (s m 1 s m 2 ) + s m 1 2 s m 2 2 = P (T m 1 s m 2 ) (60) 
and

B(m 1 , m 2 ) = P T m 1 (s m 1 -s m 2 ) + (T m 2 -T m 1 )s m 2 = (d m 2 -d m 1 ) s m 2 2 + d m 1 s m 1 -s m 2 2 -2 Var P (s m 1 -s m 2 ) -s m 1 -s m 2 4 .
Proof On the one hand, by definition,

β(m 1 , m 2 ) = λ∈m 1 λ ∈m 2 E ψ λ (ξ 1 ) -P ψ λ ψ λ (ξ 1 ) -P ψ λ 2 = λ∈m 1 λ ∈m 2 P (ψ λ ψ λ ) 2 -2P (ψ λ ψ λ )P ψ λ P ψ λ + (P ψ λ ) 2 (P ψ λ ) 2 = λ∈m 1 λ ∈m 2 P (ψ λ ψ λ ) 2 -2P λ∈m 1 (P ψ λ )ψ λ =sm 1 λ∈m 2 (P ψ λ )ψ λ =sm 2 + λ∈m 1 (P ψ λ ) 2 = sm 1 2 λ∈m 2 (P ψ λ ) 2 = sm 2 2 .
For computing the first term, we use that

ψ λ ψ λ = 0 if λ ∩ λ = ∅ and m 2 is a subpartition of m 1 , so that λ∈m 1 λ ∈m 2 P (ψ λ ψ λ ) 2 = λ∈m 1 λ ∈m 2 λ ⊂λ P (ψ λ ψ λ ) 2 53 = λ∈m 1 1 µ(λ) λ ∈m 2 λ ⊂λ (P ψ λ ) 2 = d m 1 λ ∈m 2 (P ψ λ ) 2 = d m 1 s m 2 2 hence β(m 1 , m 2 ) = d m 1 s m 2 2 -2P (s m 1 s m 2 ) + s m 1 2 s m 2 2 .
On the other hand, by definition of T m ,

P (T m 1 s m 2 ) = λ∈m 1 λ ∈m 2 P (ψ λ -P ψ λ ) 2 ψ λ P (ψ λ ) = λ∈m 1 λ ∈m 2 P (ψ 2 λ ψ λ )(P ψ λ ) -2P (ψ λ ψ λ )(P ψ λ )(P ψ λ ) + (P ψ λ ) 2 (P ψ λ ) 2 = P λ∈m 1 ψ 2 λ =dm 1 λ ∈m 2 (P ψ λ )ψ λ =sm 2 -2P (s m 1 s m 2 ) + s m 1 2 s m 2 2
which proves Eq. ( 60) since

P (s m 2 ) = s m 2 2 .
Now, we remark that Eq. ( 60) also gives formulas for β(m i , m i ), i ∈ {1, 2}, since m i is a subpartition of itself. So, the second formula for β(m i , m j ) in Eq. ( 60) yields

B(m 1 , m 2 ) = P T m 1 s m 1 + T m 2 s m 2 -2T m 1 s m 2 = P T m 1 (s m 1 -s m 2 ) + (T m 2 -T m 1 )s m 2 .
Similarly, the first formula for β(m i , m j ) in Eq. ( 60) gives

B(m 1 , m 2 ) = d m 1 s m 1 2 -s m 2 2 + (d m 2 -d m 1 ) s m 2 2 -2P (s m 1 -s m 2 ) 2 + s m 1 2 -s m 2 2 2 = (d m 2 -d m 1 ) s m 2 2 + d m 1 s m 1 -s m 2 2 -2 Var P (s m 1 -s m 2 ) -s m 1 -s m 2 4 ,
where we used that

P (s m ) = s m 2 and s m 1 -s m 2 2 = s m 1 2 -s m 2 2 .

B.2 Results on MCCV and Some Other Cross-Validation Criteria

We prove here the results stated in Section 8.1. Note that we here prove slightly more general results (Theorems 23 and 24), from which Theorems 9 and 10 are corollaries. In particular, we do not always restrict to MCCV criteria: we always assume (SameSize) and (Ind) hold true, but we sometimes do not need to have (MCCV) satisfied.

B.2.1 Preliminary Computations

Our proofs rely on a simple closed-form formula for cross-validation criteria. Let us start by the hold-out criterion. Let T ⊂ n with |T | = n -p, independent from D n . Then,

crit HO (m, T ) = P (T c ) n γ s (T ) m = s (T ) m 2 -2P (T c ) n s (T ) m = s (T ) m -s m 2 + s m 2 + 2 s (T ) m -s m , s m -2 P (T c ) n -P s (T ) m -s m -2P s (T ) m -s m -2P (T c ) n (s m ) = s (T ) m -s m 2 -2 P (T c ) n -P s (T ) m -s m -2P (T c ) n (s m ) + s m 2 (61) 
where the last equality uses that

P s (T ) m -s m = s (T ) m -s m , s = s (T ) m -s m , s m since s m is the orthogonal projection in L 2 (µ) of s m onto S m and s (T )
m -s m ∈ S m . The last two terms in the right-hand side of Eq. ( 61) can be rewritten as

-2P (T c ) n (s m ) + s m 2 = -2 P (T c ) n -P (s m ) -2P (s m ) + s m 2 = -2 P (T c ) n -P (s m ) -s m 2 since s m 2 = P (s m ).
For the first two terms, we write that

s (T ) m -s m 2 -2 P (T c ) n -P s (T ) m -s m = λ∈Λm (P (T ) n -P )(ψ λ ) 2 -2 P (T c ) n -P (ψ λ ) P (T ) n -P (ψ λ ) = λ∈Λm 1 (n -p) 2 1 i,j n 1 i∈T, j∈T ψ λ (ξ i ) -P ψ λ ψ λ (ξ j ) -P ψ λ - 2 p(n -p) 1 i,j n 1 i∈T c , j∈T ψ λ (ξ i ) -P ψ λ ψ λ (ξ j ) -P ψ λ = 1 i,j n 1 j∈T n -p 1 i∈T n -p - 21 i∈T c p U m (ξ i , ξ j )
where we recall that for any x, y ∈ X ,

U m (x, y) = λ∈Λm ψ λ (x) -P ψ λ ψ λ (y) -P ψ λ = λ∈Λm ψ λ (x)ψ λ (y) -s m (x) -s m (y) + s m 2
is defined by Eq. ( 56), and that

U m (x, x) = Ψ m (x) -2s m (x) + s m 2 . so that ω i,i Ψ m (ξ i ) max 1 i n ω i,i × Ψ m ∞ 2 b 2 m + s m 2 (n -p) 2 almost surely.
Second, using (SameSize), we have

n i=1 ω 2 i,i max 1 i n ω i,i × n i=1 ω i,i 1 (n -p) 3
and using Eq. ( 49) again,

E Ψ m (ξ i ) 2 Ψ m ∞ × P (Ψ m ) = Ψ m ∞ × D m 2 b 2 m + s m 2 D m , so that n i=1 ω 2 i,i E Ψ m (ξ i ) 2 2 b 2 m + s m 2 D m (n -p) 3 .
Then, by Bernstein's inequality (Boucheron et al., 2013, Theorem 2.10), conditionally to (ω i,i ) 1 i n , an event of probability at least 1 -2e -x exists on which

n i=1 ω i,i Ψ m (ξ i ) -D m 2 x b 2 m + s m 2 D m (n -p) 3 + 2 b 2 m + s m 2 (n -p) 2
x 3

D m n -p + 2 3 + 1 x b 2 m + s m 2 (n -p) 2 D m n -p + 5 3 x(n + A) (n -p) 2
for any ∈ (0, 1], where we used that b 2 m n by (H1), and that s m 2 s 2 s ∞ A. The result follows by integrating this conditional concentration inequality with respect to (ω i,i ) 1 i n .

Concentration of

n i=1 (-2ω i,i + σ i )(s m (ξ i ) -P s m ).
Lemma 21 Assume that (SameSize) and (Ind) hold true. Then, for any x > 0, an event of probability at least 1 -e -x exists on which the following holds true: for any ∈ (0, 1],

n i=1 (-2ω i,i + σ i ) s m (ξ i ) -P s m -s m (ξ i ) -P s m s m -s m 2 + R 21 n (x, , π * , A) (65) 
where the remainder term depends on the additional assumption that we make. If (H2) holds true, then

R 21 n (x, , π * , A) := 16Ax 3 1 (n -p) 2 + π p .
If (H1) and (H2 ) hold true, then, some numerical constant κ > 0 exists such that

R 21 n (x, , π * , A) := κ Ax 1 (n -p) 2 + π p + x 2 n 1 (n -p) 2 + π p 2 .
Before proving Lemma 21, let us introduce some useful notation: given a sequence T 1 , . . . , T B of subsets of n , for every i, j ∈ n , we define

π i = 1 B B K=1 1 i∈T c K π i,j = 1 B B K=1 1 i∈T c K 1 j∈T c K and π * = max i=1,...,n π i .
Note that, assuming (SameSize), we have

0 π i,j min(π i , π j ) π * 1 n i=1 π i = p n i=1
π i,j = pπ j pπ * and

1 i,j n π i,j = p 2 . ( 66 
)
Proof of Lemma 21 By (Ind), conditionally to (-2ω i,i

+ σ i ) 1 i n , n i=1 ω i,i Ψ m (ξ i ) -D m
is a sum of independent real-valued random variables. So, we can apply Bernstein's inequality.

First, we notice that for every i ∈ n ,

-2ω i,i + σ i = 1 B B K=1 -2 (n -p) 2 1 i∈T K - 2 p 1 i / ∈T K = -2 1 (n -p) 2 (1 -π i ) + π i p hence |-2ω i,i + σ i | = 2 1 (n -p) 2 (1 -π i ) + π i p 2 1 (n -p) 2 + π * p since 0 π i π * 1. So, for every i ∈ n , (-2ω i,i + σ i ) s m (ξ i ) -s m (ξ i ) 2 1 (n -p) 2 + π * p s m -s m ∞ almost surely. Second, n i=1 (-2ω i,i + σ i ) 2 2 1 (n -p) 2 + π * p n i=1 |-2ω i,i + σ i | = 2 1 (n -p) 2 + π * p 2 1 n -p + 1 59 1 (n -p) 2 + π * p and E s m (ξ) -s m (ξ) 2 s ∞ s m -s m 2 A s m -s m 2 so that n i=1 E (-2ω i,i + σ i ) s m (ξ) -s m (ξ) 2 8A 1 (n -p) 2 + π * p s m -s m 2 .
Then, by Bernstein's inequality (Boucheron et al., 2013, Theorem 2.10), conditionally to (-2ω i,i + σ i ) 1 i n , an event of probability at least 1 -e -x exists on which

n i=1 (-2ω i,i + σ i ) s m (ξ i ) -P s m -s m (ξ i ) -P s m R 0 (m, m ) R 0 (m, m ) := 16xA 1 (n -p) 2 + π * p s m -s m 2 + 2x s m -s m ∞ 3 1 (n -p) 2 + π * p .
Since 1 -2e -x is deterministic, the same inequality holds unconditionally on an event of probability at least 1 -2e -x . We now upperbound R 0 (m, m ), differently depending on the assumption we make. On the one hand, if (H2) holds true,

s m -s m ∞ s m ∞ + s m ∞ 2A
and we get

R 0 (m, m ) 16Ax 1 (n -p) 2 + π * p s m -s m 2 + 4Ax 3 1 (n -p) 2 + π * p s m -s m 2 + 16Ax 3 1 (n -p) 2 + π p
for any ∈ (0, 1], which proves Eq. ( 65). On the other hand, if (H1) and (H2 ) hold true, s m -s m ∈ S m with m ∈ {m, m }, so that

s m -s m ∞ b m s m -s m √ n s m -s m and we get R 0 (m, m ) 16xA 1 (n -p) 2 + π * p s m -s m 2 + 2x √ n s m -s m 3 1 (n -p) 2 + π * p s m -s m 2 + 1 8Ax 1 (n -p) 2 + π p + 2 9 x 2 n 1 (n -p) 2 + π p 2
for any ∈ (0, 1], which proves Eq. ( 65) with κ = 8.

Concentration of

1 i =j n ω i,j U m (ξ i , ξ j ).
Lemma 22 Suppose that assumptions (SameSize), (Ind) and (H1) hold true. Then, an absolute constant κ > 0 exists such that, for any x > 1, with probability larger than 1-6e -x , for any ∈ (0, 1],

1 i =j n ω i,j U m (ξ i , ξ j ) D m n -p + κn (n -p) 2 1 + nπ * p nAx (n -p) + 1 + A n x 2 . ( 67 
)
Proof We start with the following symmetrization trick

1 i =j n ω i,j U m (ξ i , ξ j ) = 1 i<j n ω i,j U m (ξ i , ξ j ) + ω j,i U m (ξ j , ξ i ) = 1 i<j n (ω i,j + ω j,i )U m (ξ i , ξ j ) = 1 i =j n ω i,j U m (ξ i , ξ j ) ,
where

ω i,j = ω i,j + ω j,i 2 = 1 (n -p) 2 1 -(π i + π j ) n p + 2n p -1 π i,j = 1 (n -p) 2 (1 -π i,j ) + n p (π i,j -π i ) + n p (π i,j -π j ) .
From the last formula for ω i,j , using Eq. ( 66), we get that

(ω i,j ) 2 1 (n -p) 4 1 + n 2 p 2 (π i + π j ) 2 (68) 
and max i,j∈ n

|ω i,j | 1 (n -p) 2 1 + 2n p π * . ( 69 
)
The concentration of the U -statistics follows from Houdré and Reynaud-Bouret (2003, Theorem 3.4), that is Eq. ( 44) with g i,j (ξ i , ξ j ) = ω i,j U m (ξ i , ξ j ). To apply this result, it remains to compute the terms A, B, C, D. First,

2A 2 = 1 i =j n (ω i,j ) 2 E U m (ξ i , ξ j ) 2 s ∞ D m 1 i =j n (ω i,j ) 2
by Eq (45). Algebraic computations and Eq. ( 68) and (66) show that

1 i =j n (ω i,j ) 2 1 (n -p) 4 1 i =j n 1 + n 2 p 2 (π i + π j ) 2 1 (n -p) 4 1 i,j n 1 + n 2 p 2 (π * π i + π * π j + 2π i π j ) = n 2 (n -p) 4 3 + 2π * n p Hence, A n (n -p) 2 3 2 + π * n p s ∞ D m .
Second, let a i and b j be functions such that n i=1 E a i (ξ) 2 1 and n i=1 E b i (ξ) 2 1. Eq (47) shows that

E a i (ξ)b j (ξ )U m (ξ, ξ ) s ∞ 2 E a i (ξ) 2 + E b j (ξ) 2 ,
hence, using Eq. ( 69),

B = 1 i =j n ω i,j E a i (ξ)b j (ξ )U m (ξ, ξ ) max 1 i =j n ω i,j s ∞ 2 1 i =j n E a i (ξ) 2 + E b j (ξ) 2 n s ∞ (n -p) 2 1 + 2n p π * .
Third, Eq (48) shows that, for any x > 0,

E U m (ξ, x) 2 2 b 2 m + s m 2 s ∞
and by Eq. ( 68) we have n i=2

(ω i,1 ) 2 1 (n -p) 4 n i=2 1 + (π i + π 1 ) 2 n 2 p 2 n (n -p) 4 1 + 2π * n p 2 .
So, for any x > 0,

n i=2 (ω i,1 ) 2 E U m (ξ, x) 2 2 b 2 m + s m 2 s ∞ × 1 (n -p) 4 1 + 2π * n p 2 hence C 1 + 2π * n p n (n -p) 2 2 b 2 m + s m 2 s ∞ n .
Fourth, using Eq ( 49) and ( 69),

D max i,j∈ n ω i,j sup x,y U m (x, y) 1 + 2n p π * n (n -p) 2 2 b 2 m + s m 2 n .
Now, we remark that b 2 m n by (H1), and s m 2 s 2 s ∞ A, and we can plug this two inequalities in the upper bounds above. By (Ind), we can apply Houdré and Reynaud-Bouret (2003, Theorem 3.4), conditionally on the weights ω i,j . We obtain that an absolute constant κ > 0 exists such that, for any x > 1, with probability larger than 1 -6e -x , for any ∈ (0, 1], Eq. ( 67) holds true.

B.2.3 Oracle Inequality (Proof of Theorem 9)

Theorem 9 actually is a corollary of the following general result.

Theorem 23 Let ξ n be i.i.d. real-valued random variables with common density s ∈ L ∞ (µ), (T K ) 1 K B some sequence of subsets of n satisfying (SameSize) and (Ind), and (S m ) m∈Mn be a collection of separable linear spaces satisfying (H1). Assume that either (H2) or (H2 ) holds true. For every m ∈ M n , let s m be the estimator defined by Eq. 

ρ 4 ( , x, κ, n, τ n , π * , A) := κ nτ 2 n 1 + π * 1 -τ n α Ax τ n + (A ∨ 1)x 2 3
with α = 1 under assumption (H2) and α = 2 under assumption (H2 ). Then, an absolute constant κ > 0 exists such that, for any x 0, with probability at least 1 -12|M n | 2 e -x , for any ∈ (0, κ -1 ),

1 - τ n s -s 2 1 + τ n inf m∈Mn s m -s 2 + ρ 4 ( , x, κ, n, τ n , π * , A) .
The oracle inequality of Theorem 23 is similar to the one of Theorem 5, with δ replaced by 1/τ n -1 (both quantities correspond to the bias of the criterion as an estimator of the risk) and a slightly different remainder term. In addition to the remarks already made about Theorem 5, we can make the following comments.

• The remainder term ρ 4 is of order x 2 /n, as in Theorem 5 under the following sufficient conditions: (i) τ n stays away from 0, (ii) π * /(1 -τ n ) is bounded.

• For V -fold criteria, τ n = (V -1)/V 1/2 and π * /(1 -τ n ) = 1, so conditions (i) and (ii) are satisfied and we recover an oracle inequality for V -fold cross-validation similar to Theorem 5.

• The leading constant in front of the oracle inequality of Theorem 23 is of order 1/τ n , so we can get asymptotic optimality only if τ n → 1, that is, p n. This is consistent with the fact that the bias of the cross-validation criterion is negligible at first order if and only if τ n → 1.

• For hold-out criteria, π * = 1 so the remainder term is of order x 2 /(n(1 -τ n ) α ) x 2 /p which is large when τ n is close to 1, that is, when p is small. Hence, for such criteria, we cannot get a leading constant close to 1 and a "small" remainder term.

Let us now explain why Theorem 9 is also a corollary of Theorem 23.

Proof of Theorem 9

We only have to prove some upper bound on π * under assumption (MCCV), thanks to which Theorem 9 is a straightforward corollary of Theorem 23. By (SameSize) and (MCCV), for any i ∈ n , π i is the empirical mean of K independent Bernoulli random variables with common parameter P(i ∈ T c K ) = p/n. Then, by Bernstein's inequality (Boucheron et al., 2013, Theorem 2.10)

∀y > 0, ∀i ∈ n , P π i - p n > 2p(n -p)y n 2 B + x 3B e -y .
A union bound over i ∈ n yields that for any x > 0,

P π * 1 ∧ 2p n + log n + x B 1 -e -x ,
where we used also that π * 1 almost surely. Theorem 9 follows.

We finally prove Theorem 23.

Proof of Theorem 23 Throughout the proof, L denotes some positive numerical constant, whose value may change from line to line. Given Eq. ( 64), the proof relies on concentration inequalities that are detailed in Section B.2.2. Let us fix x 0 and define for every κ 1 the event Ω good (κ, x) where all the following inequalities hold for any m, m ∈ M n and any

∈ (0, 1] n i=1 ω i,i Ψ m (ξ i ) -D m D m n -p + κ (n + A)x (n -p) 2 n i=1 (-2ω i,i + σ i ) s m (ξ i ) -P s m -s m (ξ i ) -P s m s m -s m 2 + R 21 n (x, , π * , A) 1 i =j n ω i,j U m (ξ i , ξ j ) D m n -p + κ n (n -p) 2 1 + π * n p nAx (n -p) + (n + A) x 2 n s m -s m 2 - D m n D m n + κ Ax 2 3 n .
It follows from Lemmas 14, 20, 21 and 22 that an absolute constant κ > 0 exists such that P(Ω good (κ, x))

1 -|M n | 2 e -x -10|M n |e -x .
Let us remark that we can assume x log(11) 1 in the following, since otherwise the above probability bound is negative.

On Ω good (κ, x), for every m ∈ M n and ∈ (0, 1),

D m n 1 1 - s m -s m 2 + LAx 2 3 (1 -)n . ( 70 
)
By definition of m, for every m ∈ M n ,

s m -s 2 s m -s 2 + crit CV (m) -s m -s 2 -crit CV ( m) -s m -s 2 . (71) max 1 1 - 1 τ n -1 + + 2 τ n + , 2 s m -s 2 + max 1 1 - 1 - 1 τ n + + 2 τ n + , 2 s m -s 2 + R 21 n (x, , π * , A) + L nτ 2 n 1 + π * 1 -τ n Ax τ n + (A ∨ 1)x 2 3 1 τ n -1 + L τ n s m -s 2 + 4 τ n s m -s 2 + R 21 n (x, , π * , A) + L nτ 2 n 1 + π * 1 -τ n Ax τ n + (A ∨ 1)x 2 3
where we used Eq. ( 70) for the second inequality. Note also that by Lemma 21,

R 21 n (x, , π * , A) κ n Ax 1 nτ 2 n + π 1 -τ n + x 2 1 nτ 2 n + π 1 -τ n 2 κ n Ax 1 τ n + π 1 -τ n + x 2 1 τ n + π 1 -τ n 2 κ n Ax τ n 1 + π 1 -τ n + x 2 τ 2 n 1 + π 1 -τ n 2
Proof of Theorem 24 First note that the variance of the CV criterion at model m 1 can be deduced from the variance of the increment between the CV criterion at model m 1 and CV criterion at model m 0 with S m 0 = {0} the null model. So, Eq. ( 73) directly follows from Eq. ( 72).

For proving Eq. ( 72), we apply Lemma 25 with

F (D n , T ) = F HO,m 1 ,m 2 (D n , T ) := crit HO (m 1 , T ) -crit HO (m 2 , T ) so that F lpo HO,m 1 ,m 2 (D n , p) = C n/p-1/2 n/p-1 ,B LOO (m 1 ) -C n/p-1/2 n/p-1 ,B LOO (m 2 )
by Eq. ( 10) in Lemma 1.

The variance of F lpo HO,m 1 ,m 2 (D n , p) is given by Theorem 6: by Eq. ( 24) with V = n and

C = n/p -1/2 n/p -1 = 1 + p 2(n -p) , we get Var F lpo HO,m 1 ,m 2 (D n , p) = 2 n 2 1 + 4 n -1 1 + p 2(n -p) 2 - n (n -p) 2 B(m 1 , m 2 ) (77) + 4 n Var 1 + 1 n -p (s m 1 -s m 2 )(ξ 1 ) - 1 2(n -p) (Ψ m 1 -Ψ m 2 )(ξ 1 ) = 1 + 1 n -1 1 τ n + 1 2 - 1 nτ 2 n 2 n 2 B(m 1 , m 2 ) (78) + 4 n Var 1 + 1 nτ n (s m 1 -s m 2 )(ξ 1 ) - 1 2nτ n (Ψ m 1 -Ψ m 2 )(ξ 1 )
where we recall that

τ n = |T |/n = 1 -(p/n).
It now remains to compute the variance of

F HO,m 1 ,m 2 (D n , T ) := crit HO (m 1 , T ) -crit HO (m 2 , T ) .
By Eq. ( 62), F HO,m 1 ,m 2 (D n , T ) has the same variance as C m 1 -C m 2 where C m is defined as in Lemma 16 with

ω i,j = ω HO i,j (T ) σ i = σ HO i (T ) and f m = s m .
Since |T | = n -p, we have

1 i =j n ω 2 i,j + ω i,j ω j,i = i,j∈T, i =j ω 2 i,j + ω i,j ω j,i + 1 i n,j∈T c ,i =j ω 2 i,j + ω i,j ω j,i =0 + i∈T c , j∈T ω 2 i,j + ω i,j ω j,i =0 
Lemma 26 For all m ∈ M n , we have

pen HO (m, T, x) = 2x(1 -τ n ) 2 s (T ) m -s m 2 + s (T c ) m -s m 2 -2 P (T ) n -P s (T c ) m -s m .
In particular, we have

E pen HO (m, T, x) = 2x 1 -τ n τ n D m n . Proof By definition pen HO (m, T, x) = 2x(1 -τ n ) 2 λ∈Λm P (T c ) n -P (ψ λ ) 2 + P (T ) n -P (ψ λ ) 2 -2x(1 -τ n ) 2 λ∈Λm 2 P (T c ) n -P (ψ λ ) P (T ) n -P (ψ λ ) = 2x(1 -τ n ) 2 s (T c ) m -s m 2 + s (T ) m -s m 2 -2 P (T ) n -P λ∈Λm P (T c ) n -P ψ λ ψ λ .
Lemma 27 For all m ∈ M n and x > 0, with probability larger than 1 -2e -x , for all η > 0, we have

P (T ) n -P s (T c ) m -s m η 2 s (T c ) m -s m 2 + 2 s ∞ x ητ n n + b 2 m x 2 9η(τ n n) 2 .
Proof Let us apply Bernstein's inequality to the function ( s

(T c ) m -s m ), conditionally to (ξ i ) i / ∈T . Recall that v 2
Therefore, for all x > 0, with probability larger than 1 -2e -x , conditionally to (ξ i ) i / ∈T ,

P (T ) n -P s (T c ) m -s m s (T c ) m -s m   2 s ∞ x τ n n + b m x 3τ n n   η 2 s (T c ) m -s m 2 + 1 η 2 s ∞ x τ n n + b 2 m x 2 9(τ n n) 2 .
As the bound on the probability does not depend on (ξ i ) i / ∈T , the same inequality holds unconditionally.

= 2x n 2 n i,j=1 E (HO) i,j U m 1 (ξ i , ξ j ) , (81) 
where, for all i, j ∈ {1 . . . , n}, we recall that

U m 1 (ξ i , ξ j ) = λ∈Λm 1 ψ λ (ξ i ) -P ψ λ ψ λ (ξ j ) -P ψ λ and E (HO) i,j = 1 τ n 1 i∈T -1 1 τ n 1 j∈T -1 .
Therefore, from Eq. ( 57), if x = Cτ n /(1 -τ n ), we have

C HO (C,T ) (m 1 ) := P n γ( s m 1 ) + pen HO (m 1 , T, x) = 1 i,j n 2xE (HO) i,j -1 n 2 U m 1 (ξ i , ξ j ) - n i=1 2 n s m 1 (ξ i ) + s m 1 2 .
By definition

E (HO) i,j = 1 -τ n τ n 2 1 i,j∈T - 1 -τ n τ n 1 i∈T, j / ∈T - 1 -τ n τ n 1 i / ∈T, j∈T + 1 i,j / ∈T .
Therefore, we can compute

n i=1 E (HO) i,i = n τ n 1 -τ n τ n 2 + 1 -τ n = n 1 -τ n τ n , ( 82 
) n i=1 E (HO) i,i 2 = n τ n 1 -τ n τ n 4 + 1 -τ n = n(1 -τ n ) (1 -τ n ) 3 + τ 3 n τ 3 n . (83) 
Moreover, the E (HO) i,j

satisfy 1 i,j n E (HO) i,j = E   n i=1 1 τ n 1 i∈T -1 2   = 0 ,
so Eq. ( 82) implies that

1 i =j n E (HO) i,j = - n i=1 E (HO) i,i = -n 1 -τ n τ n . (84) 
In addition, we compute

1 i =j n E (HO) i,j 2 = 2n 2 τ n (1 -τ n ) 1 -τ n τ n 2 + nτ n (nτ n -1) 1 -τ n τ n = n 2 (1 -τ n ) 2 2 1 -τ n τ n + 1 -τ n τ n 2 + 1 -n(1 -τ n ) 1 -τ n τ n 3 + 1 = n 2 1 -τ n τ n 2 -n(1 -τ n ) (1 -τ n ) 3 + τ 3 n τ 3 n . (85) 
According to Eq. ( 81) and ( 57), Var(C HO (C,T ) (m 1 )) can be computed using Lemma 16 with ∀i, j ∈ {1, . . . , n}, ω

i,j = 1 n 2 2xE (HO) i,j -1 f m 1 = -2s m 1 n and σ i = 1 .
So, using Eq. ( 82), ( 83), ( 84) and ( 85), we have

n i=1 ω 2 i,i = 1 n 4 4x 2 n i=1 E (HO) i,i 2 -4x n i=1 E (HO) i,i + n = 1 n 3 4x 2 (1 -τ n ) (1 -τ n ) 3 + τ 3 n τ 3 n -4x 1 -τ n τ n + 1 1 i,j n i =j ω 2 i,j = 1 n 4   4x 2 1 i =j n E (HO) i,j 2 -4x 1 i =j n E (HO) i,j + n(n -1)   = 1 n 4 4x 2 n 2 1 -τ n τ n 2 -n(1 -τ n ) (1 -τ n ) 3 + τ 3 n τ 3 n + 4xn 1 -τ n τ n + n(n -1) n i=1 ω i,i σ i = 1 n 2x 1 -τ n τ n -1 .
Therefore, by Lemma 16 with m = m = m 1 , we deduce

Var C HO (C,T ) (m 1 ) = 1 n 3 4C 2 (1 -2τ n ) 2 τ n (1 -τ n ) + (2C -1) 2 Var Ψ m 1 (ξ) -2s m 1 (ξ) + 2 n 2 1 + 4C 2 - 1 n 4C 2 (1 -2τ n ) 2 τ n (1 -τ n ) + (2C -1) 2 β(m 1 , m 1 ) - 4 n 2 (2C -1) Cov Ψ m 1 (ξ) -2s m 1 (ξ), s m 1 (ξ) + 4 n Var s m 1 (ξ) = 4 n Var 1 + 2C -1 n s m 1 (ξ) - 2C -1 2n Ψ m 1 (ξ) + 2 n 2 1 + 4C 2 - (2C -1) 2 n β(Λ m 1 , Λ m 1 ) + 4C 2 n 3 (1 -2τ n ) 2 τ n (1 -τ n ) Var Ψ m 1 (ξ) -2s m 1 (ξ) -2β(m 1 , m 1 ) .
Eq (80) follows from similar computations.

B.4 Additional Comments on Computational Issues

This section is an appendix to Section 7. We first detail a naive algorithm for computing V -fold criteria, Algorithm 2. Then, we prove Proposition 8 which shows that Algorithm 1 also computes correctly the V -fold criteria, much faster than Algorithm 2.

B.4.1 Naive Implementation

Algorithm 2

Input: B some partition of {1, ..., n} satisfying (Reg), ξ 1 , . . . , ξ n ∈ X and (ψ λ ) λ∈Λm a finite orthonormal family of L 2 (µ), with Card(m) = d m .

1. For j ∈ {1, . . . , V }, (a) train s m (•) with the data set

(ξ i ) i / ∈B j , that is, for all λ ∈ Λ m , compute α λ,j := P (-B j ) n (ψ λ ) = V (V -1)n i / ∈B j ψ λ (ξ i ) so that s (-B j ) m = λ∈Λm α λ,j ψ λ ; (b) compute the norm of s (-B j ) m : N j := λ∈Λm α 2 λ,j ; (c) compute Q j := P (B j ) n s (-B j ) m = V n λ∈Λm i∈B j α λ,j ψ λ (ξ i ); (d) compute R j := P (-B j ) n s (-B j ) m = V n(V -1) λ∈Λm i / ∈B j α λ,j ψ λ (ξ i ).
2. Compute the V -fold cross-validation criterion: C = V -1 V j=1 (N j -2Q j ).

Compute the empirical risk :

(a) train s m (•) with the data set (ξ i ) 1 i n , that is, for all λ ∈ Λ m , compute

α λ := P n (ψ λ ) = 1 n n i=1 ψ λ (ξ i ) so that s m = λ∈Λm α λ ψ λ ; (b) compute the norm of s m : N := λ∈Λm α 2 λ ; (c) compute R := 1 n λ∈Λm n i=1 α λ ψ λ (ξ i ).
4. Compute the V -fold penalty:

D := 2(V -1)V -2 V j=1 (Q j -R j ). Output: Empirical risk : N -2R V -fold cross-validation estimator of the risk of s m : crit VFCV (m) = C V -fold penalty: pen VF (m) = D.
Assuming that the computational cost of evaluating ψ λ at some point ξ ∈ Ξ is of order 1, the computational cost of this naive algorithm 2 is as follows: n(V -1)d m for step 1, V for steps 2 and 4, nd m for step 3. So the overall cost of computing the V -fold penalization criterion for m is of order nV d m . 

B.6 Additional Simulation Results

This section provides simulation results in addition to the ones of Section 6. Table 3 is an extended version of Table 2, with more procedures compared and two additional settings (L-Regu and S-Regu). E[pen id ] 1.77 ± 0.21 1.59 ± 0.00 2.09 ± 0.01 1.63 ± 0.00 pen LOO 1.76 ± 0.27 1.60 ± 0.00 2.09 ± 0.01 1.64 ± 0.00 pen 10F 1.90 ± 0.26 1.60 ± 0.00 2.21 ± 0.01 1.62 ± 0.00 pen 5F 2.09 ± 0.34 1.60 ± 0.00 2.34 ± 0.02 1.60 ± 0.00 pen 2F

3.10 ± 0.50 1.61 ± 0.01 2.92 ± 0.02 1.65 ± 0.01 E[pen id ] 1.33 ± 0.11 1.62 ± 0.00 1.75 ± 0.01 2.11 ± 0.00 pen LOO 1.32 ± 0.10 1.62 ± 0.00 1.75 ± 0.01 2.11 ± 0.00 pen 10F 1.36 ± 0.09 1.61 ± 0.00 1.77 ± 0.01 2.05 ± 0.00 pen 5F

1.39 ± 0.08 1.61 ± 0.00 1.80 ± 0.01 2.01 ± 0.00 pen 2F

1.63 ± 0.23 1.62 ± 0.00 2.01 ± 0.01 1.81 ± 0.01 

Figure 1 :

 1 Figure 1: The two densities considered. Left: setting L. Right: setting S.

Figure 2 :

 2 Figure 2: Oracle estimator for one sample of size n = 500, in setting S. Left: Regu. Right: Dya2.

Figure 3 :

 3 Figure 3: Overpenalization in settings S-Dya2 (left) and L-Dya2 (right), with n = 500 in both cases. Each plot represents the estimated model selection performance C or (C (C,B) ) of several penalization procedures, as a function of the overpenalization constant C; unbiased risk estimation (C = 1) is materialized by a vertical red line. For each value of V , the estimated optimal value of C is shown on the graph; some arrows also show the performance of V -fold cross-validation, that is, C = 1+1/[2(V -1)]. Error bars are not shown for clarity; Table2shows their order of magnitude, which is smaller than visible differences in the above graph. The performance obtained with the penalty E[pen id (m)] (not shown on the graph) is almost the same as with the leave-one-out penalty.

Figure 4 :

 4 Figure 4: Illustration of the variance heuristic: Var(∆ C (m, m )) as a function of m for five different C. Setting S-Regu, n = 100. The black diamond shows m = 7. The black lines show the linear approximation n -2 [29(1 + 0.81V -1 ) + 3.7(1 + 3.8 V -1 )(m -m )] for m > m .

Figures 5

 5 Figures 5 and 6 respectively show P( m(C) = m) and its proxy Φ(SNR C (m)) as a function of m for C = C V with V ∈ {2, 5, 10, n} and for C = C id . First, we remark that both quantities behave similarly as a function of m and C-see also Figure16in Section B.6supporting empirically the heuristic of Section 4. The decrease of the variance observed on Figure4when V increases here translates into a better concentration of the distribution of m(C V ) around m , which can explain the performance improvement observed in Section 6.3. Figures5-6actually show how the decrease of the variance quantitatively influences the distribution of m(C V ): m(C 5 ) is significantly more concentrated than m(C 2 ), while the difference between V = 10 and V = 5 is much smaller and comparable to the difference between V = n and V = 10; C n is hard to distinguish from C id . Similar experiments with n = 500 and in setting L are reported in Section B.6, leading to similar conclusions.

Figure 5 :Figure 6 :

 56 Figure 5: P( m(C) = m) as a function of m for five different C. Setting S-Regu, n = 100. The black diamond shows m = 7.

m

  which is symmetric in T and T c , hence pen HO (m, T c , x) = pen HO (m, T, x). In particular, if |T | = n/2, the 2-fold penalty computed on the partition B = {T, T c } and the hold-out penalty coincide∀x > 0, pen VF m, {T, T c }, x = pen HO (m, T, x) .Theorem 12 Let ξ n be i.i.d. real-valued random variables, s ∈ L ∞ (µ) their common density, T ⊂ n with τ n = |T |/n ∈ (0, 1) and (S m ) m∈Mn be a collection of separable linear spaces satisfying (H1). Assume that either (H2) or (H2 ) holds true. Let C ∈ (1/2, 2] and δ := 2(C -1). For every m ∈ M n , let s m be the projection estimator onto S m defined by Eq. (1), and s HO = s m HO where m HO = argmin m∈Mn P n γ( s m ) + pen HO m, T, Cτ n 1 -τ n .

  (1), and s = s m where m ∈ argmin m∈Mn crit CV m, (T K ) 1 K B and crit CV is defined by Eq. (25). Define π * = max i=1,...

Figure 7

 7 Figure 7 is an analogous of Figure 2 in setting L, that illustrates the difference between the model collections Regu and Dya2.Table3is an extended version of Table2, with more procedures compared and two additional settings (L-Regu and S-Regu). Table4provides a similar comparison of model selection performances with a reduced sample size n = 100, again from N = 10 000 independent samples.

  ].The influence of overpenalization is considered in Figures 8-15. As on Figure3, the top graph represents the estimated model selection performance C or (C (C,B) ) as a function of C, for various values of V = |B|. Error bars are not shown on these graphs for clarity; all visible differences on the graph correspond to significant differences, as can be seen in Tables3-4for instance. The bottom tables in Figures 8-15 show the estimated model selection performance for three key values of C: the optimal one C n , the unbiased case (C = 1, which corresponds to an AIC-type penalty) and the value C = log(n)/2 (which corresponds to a BIC-type penalty). The estimated value of the optimal overpenalizing constant C n was obtained by minimizing over C ∈ [0, 10] the estimated value of C or (C (C,B) ). Error bars on C n show the maximum of |C n -C| over the set of values of C that are "not significantly worse than C n ", where we define by convention "significantly worse" as having a |C or (C (C n ,B) ) -C or (C (C,B) )| larger than the sum of the corresponding error bars. or (C = C n ) C or (C = 1) C or (C = 2.30)

Figure 8 :

 8 Figure 8: Overpenalization in setting L-Dya2, n = 100. Top: same as Figure 3 (estimated loss ratio as a function of the overpenalization constant C). Bottom: Table showing the estimated optimal overpenalization constant C n as well as the estimated loss ratio for several values of C: C = C n (optimal value), C = 1 (AIC-type penalty) and C = log(n)/2 (BIC-type penalty). See text for details.

Figure 9 :

 9 Figure 9: Overpenalization in setting L-Dya2, n = 500. Top: same as Figure 3 (estimated loss ratio as a function of the overpenalization constant C). Bottom: Table showing the estimated optimal overpenalization constant C n as well as the estimated loss ratio for several values of C: C = C n (optimal value), C = 1 (AIC-type penalty) and C = log(n)/2 (BIC-type penalty). See text for details.

Figure 10 :

 10 Figure 10: Overpenalization in setting L-Regu, n = 100. Top: same as Figure 3 (estimated loss ratio as a function of the overpenalization constant C). Bottom: Table showing the estimated optimal overpenalization constant C n as well as the estimated loss ratio for several values of C: C = C n (optimal value), C = 1 (AIC-type penalty) and C = log(n)/2 (BIC-type penalty). See text for details.

Figure 11 :

 11 Figure 11: Overpenalization in setting L-Regu, n = 500. Top: same as Figure 3 (estimated loss ratio as a function of the overpenalization constant C). Bottom: Table showing the estimated optimal overpenalization constant C n as well as the estimated loss ratio for several values of C: C = C n (optimal value), C = 1 (AIC-type penalty) and C = log(n)/2 (BIC-type penalty). See text for details.

Figure 12 :

 12 Figure 12: Overpenalization in setting S-Dya2, n = 100. Top: same as Figure 3 (estimated loss ratio as a function of the overpenalization constant C). Bottom: Table showing the estimated optimal overpenalization constant C n as well as the estimated loss ratio for several values of C: C = C n (optimal value), C = 1 (AIC-type penalty) and C = log(n)/2 (BIC-type penalty). See text for details.

Figure 13 :

 13 Figure 13: Overpenalization in setting S-Dya2, n = 500. Top: same as Figure 3 (estimated loss ratio as a function of the overpenalization constant C). Bottom: Table showing the estimated optimal overpenalization constant C n as well as the estimated loss ratio for several values of C: C = C n (optimal value), C = 1 (AIC-type penalty) and C = log(n)/2 (BIC-type penalty). See text for details.

Figure 14 :

 14 Figure 14: Overpenalization in setting S-Regu, n = 100. Top: same as Figure 3 (estimated loss ratio as a function of the overpenalization constant C). Bottom: Table showing the estimated optimal overpenalization constant C n as well as the estimated loss ratio for several values of C: C = C n (optimal value), C = 1 (AIC-type penalty) and C = log(n)/2 (BIC-type penalty). See text for details.

Figure 15 :Figure 16 :Figure 17 :

 151617 Figure 15: Overpenalization in setting S-Regu, n = 500. Top: same as Figure 3 (estimated loss ratio as a function of the overpenalization constant C). Bottom: Table showing the estimated optimal overpenalization constant C n as well as the estimated loss ratio for several values of C: C = C n (optimal value), C = 1 (AIC-type penalty) and C = log(n)/2 (BIC-type penalty). See text for details.
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 2021 Figure 20: L-Regu, n = 100. Φ(SNR C (m)) as a function of m.

Figure 22 :

 22 Figure 22: L-Regu, n = 100. P( m(C) = m) as a function of Φ(SNR C (m)).

Figure 23

 23 Figure 23: L-Regu, n = 100. P( m(C) = m) as a function of m.

Figure 26 :

 26 Figure 26: S-Regu, n = 500. Φ(SNR C V (m)) as a function of m.

Figure 27

 27 Figure 27: S-Regu, n = 500. P( m = m) as a function of m.

Figure 28 :

 28 Figure 28: S-Regu, n = 500. P( m(C) = m) as a function of Φ(SNR(m)).

Figure 29

 29 Figure 29: S-Regu, n = 500. P( m = m) as a function of m.

Figure 30 :

 30 Figure 30: L-Regu, n = 500. Var(∆ C V (m, m )) as a function of m. The black lines show the linear approximation n-2 [28(1 + 0.06 V -1 ) + 2.1(1 + 4.2 V -1 )(m -m )] for m > m = 7.

Figure 31 :

 31 Figure 31: L-Regu, n = 500. Φ(SNR C V (m)) as a function of m.

Figure 32 :Figure 33

 3233 Figure 32: L-Regu, n = 500. P( m = m) as a function of m.

Figure 34 :

 34 Figure 34: L-Regu, n = 500. P( m = m) as a function of m.

Table 1 :

 1 Comparison of Regu and Dya2: quadratic risks E[ s m -s 2 ] of "Oracle" and "Best" estimators (multiplied by 10 3 ) with the two collections of models. "Best" means that m is the data-driven procedure minimizing E[ s m -s 2 ] among all the data-driven procedures we considered in our experiments (see Section 6.2). "Oracle" means that m ∈ argmin m∈Mn s m -s 2 is the oracle model for each sample.

	Setting Oracle(Regu) Oracle(Dya2)	Best(Regu)	Best(Dya2)
	L	13.4 ± 0.1	5.46 ± 0.02	25.8 ± 0.1	19.4 ± 0.1
	S	62.4 ± 0.1	43.9 ± 0.1	100.9 ± 0.2	83.4 ± 0.2

Table 2 :

 2 

	Dya2

Estimated model selection performances, see text. 'LOO' is a shortcut for 'leaveone

  Figure 7: Oracle model for some sample of size n = 500, in setting L. Left: Regu. Right: Dya2.
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 4 

	provides a similar comparison of model

Table 3 :

 3 Simulation results: settings L and S, n = 500. The best procedures (up to standarddeviations) are bolded, where the data-driven procedures are considered separately from the procedures using the knowledge of E[pen id ].

	Experiment	L-Dya2	L-Regu	S-Dya2	S-Regu
	E[pen id ]	8.38 ± 0.08 3.29 ± 0.03	1.97 ± 0.01	2.09 ± 0.01
	1.25 × E[pen id ]	6.53 ± 0.07 2.61 ± 0.02	1.93 ± 0.01	1.72 ± 0.01
	1.5 × E[pen id ]	5.59 ± 0.06 2.46 ± 0.02 1.92 ± 0.01	1.61 ± 0.01
	2 × E[pen id ]	4.72 ± 0.05 2.57 ± 0.01	1.94 ± 0.005 1.60 ± 0.004
	pen dim	9.67 ± 0.09 3.28 ± 0.03	2.17 ± 0.01	2.09 ± 0.01
	1.25 × pen dim	7.85 ± 0.08 2.62 ± 0.02	2.10 ± 0.01	1.72 ± 0.01
	1.5 × pen dim	6.74 ± 0.07 2.48 ± 0.02	2.05 ± 0.01	1.62 ± 0.01
	2 × pen dim	5.70 ± 0.06 2.60 ± 0.01	2.00 ± 0.01	1.61 ± 0.004
	pen LOO	8.10 ± 0.08 3.29 ± 0.03	1.97 ± 0.01	2.09 ± 0.01
	1.25 × pen LOO	6.20 ± 0.06 2.62 ± 0.02	1.92 ± 0.01	1.72 ± 0.01
	1.5 × pen LOO	5.18 ± 0.05 2.49 ± 0.02	1.91 ± 0.01	1.62 ± 0.01
	2 × pen LOO	4.44 ± 0.04 2.59 ± 0.01	1.94 ± 0.005	1.61 ± 0.004
	pen VF (V =10)	8.61 ± 0.08 3.54 ± 0.04	1.97 ± 0.01	2.21 ± 0.01
	1.25 × pen VF (V =10) 6.76 ± 0.07 2.76 ± 0.02	1.92 ± 0.01	1.78 ± 0.01
	1.5 × pen VF (V =10)	5.77 ± 0.06 2.52 ± 0.02	1.90 ± 0.01	1.64 ± 0.01
	2 × pen VF (V =10)	4.81 ± 0.05 2.57 ± 0.01	1.91 ± 0.01	1.60 ± 0.004
	pen VF (V =5)	9.14 ± 0.08 3.92 ± 0.04	1.98 ± 0.01	2.34 ± 0.02
	1.25 × pen VF (V =5)	7.38 ± 0.07 2.90 ± 0.03	1.93 ± 0.01	1.85 ± 0.01
	1.5 × pen VF (V =5)	6.31 ± 0.06 2.60 ± 0.02	1.91 ± 0.01	1.68 ± 0.01
	2 × pen VF (V =5)	5.21 ± 0.05 2.56 ± 0.02	1.90 ± 0.01	1.60 ± 0.005
	pen VF (V =2)	11.15 ± 0.09 6.14 ± 0.08	2.01 ± 0.01	2.92 ± 0.02
	1.25 × pen VF (V =2)	9.61 ± 0.08 4.05 ± 0.05	1.97 ± 0.01	2.24 ± 0.01
	1.5 × pen VF (V =2)	8.60 ± 0.07 3.30 ± 0.03	1.94 ± 0.01	1.94 ± 0.01
	2 × pen VF (V =2)	7.30 ± 0.07 2.80 ± 0.02	1.91 ± 0.01	1.70 ± 0.01
	LOO	8.04 ± 0.08 3.26 ± 0.03	1.97 ± 0.01	2.07 ± 0.01
	10-fold CV	8.11 ± 0.08 3.28 ± 0.03	1.95 ± 0.01	2.06 ± 0.01
	5-fold CV	8.15 ± 0.08 3.28 ± 0.03	1.95 ± 0.01	2.01 ± 0.01
	2-fold CV	8.60 ± 0.07 3.30 ± 0.03	1.94 ± 0.01	1.94 ± 0.01
	Oracle: 10 -3 ×	12.66 ± 0.05 33.58 ± 0.16 118.21 ± 0.25 133.04 ± 0.28
	Best: 10 -3 ×	56.15 ± 0.53 83.42 ± 0.51 224.09 ± 0.63 212.84 ± 0.61

Table 4 :

 4 Simulation results: settings L and S, n = 100. The best procedures (up to standarddeviations) are bolded, where the data-driven procedures are considered separately from the procedures using the knowledge of E[pen id

  E[pen id ] 1.66 ± 0.21 2.44 ± 0.01 3.29 ± 0.03 2.77 ± 0.01 pen LOO 1.60 ± 0.18 2.47 ± 0.01 3.29 ± 0.03 2.81 ± 0.01 pen 10F 1.71 ± 0.22 2.49 ± 0.02 3.54 ± 0.04 2.71 ± 0.02 pen 5F1.79 ± 0.31 2.53 ± 0.02 3.92 ± 0.04 2.67 ± 0.02 pen 2F2.86 ± 0.58 2.70 ± 0.02 6.14 ± 0.08 2.74 ± 0.02

  93 ± 0.01 2.33 ± 0.01 2.20 ± 0.01 pen LOO 1.61 ± 0.23 1.93 ± 0.01 2.33 ± 0.01 2.21 ± 0.01 pen 10F 1.79 ± 0.26 1.92 ± 0.01 2.42 ± 0.02 2.16 ± 0.01 pen 5F 1.88 ± 0.29 1.92 ± 0.01 2.55 ± 0.02 2.11 ± 0.01 pen 2F 2.15 ± 0.34 1.97 ± 0.01 3.37 ± 0.03 2.07 ± 0.01

  E[pen id ] 1.54 ± 0.28 1.91 ± 0.01 1.97 ± 0.01 1.97 ± 0.00 pen LOO 1.55 ± 0.32 1.91 ± 0.01 1.97 ± 0.01 1.96 ± 0.00

	pen 10F 1.60 ± 0.31 1.90 ± 0.01	1.97 ± 0.01	1.93 ± 0.01
	pen 5F	1.76 ± 0.39 1.89 ± 0.01	1.98 ± 0.01	1.91 ± 0.01
	pen 2F	2.33 ± 1.09 1.90 ± 0.01	2.01 ± 0.01	1.90 ± 0.01

  E[pen id ] 1.44 ± 0.15 1.92 ± 0.01 2.07 ± 0.01 2.58 ± 0.01 pen LOO 1.42 ± 0.19 1.90 ± 0.01 2.06 ± 0.01 2.56 ± 0.01 pen 10F 1.53 ± 0.19 1.92 ± 0.01 2.11 ± 0.01

				2.47 ± 0.01
	pen 5F	1.63 ± 0.21 1.93 ± 0.01 2.16 ± 0.01	2.42 ± 0.01
	pen 2F	1.75 ± 0.23 2.02 ± 0.01	2.39 ± 0.01	2.28 ± 0.01

inf m∈Mn s m -s 2 by the corresponding average over the N simulated data sets; C or (C) represents the constant that would appear in front of an oracle inequality. The uncertainty of estimation of C or (C)

+ n(1 -τ n ) n(1 -τ n ) -1
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and

Hence, from Lemma 16, for every m, m ∈ {m 1 , m 2 },

Therefore,

which concludes the proof.

Lemma 16 Let C m = 1 i,j n ω i,j U m (ξ i , ξ j ) + n i=1 σ i f m (ξ i ), where U m is defined by Eq. (56) and f m ∈ L 2 (µ). For every m, m , we have

B Supplementary Material

The supplementary material is organized as follows. Section B.1 gives complementary computations of variances. Then, results concerning hold-out penalization are detailed in Section B.3, with the proof of the oracle inequality stated in Section 8.2 (Theorem 12) and an exact computation of the variance. Section B.4 provides complements on the computational aspects stated in Section 7. In particular, we state and analyse the basic algorithm for computing the V -fold criteria and we give the proof of Proposition 8. A useful concentration inequality is recalled in Section B.5. Finally, some simulation results are detailed in Section B.6, as a supplement to the ones of Section 6.

B.1 Additional Variance Computations

Proposition 17 Let (ψ λ ) λ∈Λm 1 and (ψ λ ) λ∈Λm 2 be two finite orthonormal families of vectors of L 4 (µ). Assume that B satisfies (Reg) and, for any m ∈ {m 1 , m 2 }, let

Then, with the notation of Theorem 6,

We also have

Proof Simply notice that Var C id (m 1 ) = Var P n γ( s m 1 ) .

Therefore, from (57), the variance of C id (m 1 ) is the one of

so that, by Lemma 16,

The variance of the increments follows from the same computations.

Therefore, Eq. ( 61) can be rewritten as crit HO (m, T ) =

with

As a consequence, under assumption (SameSize), crit CV m, (T j )

with

Note that Eq. ( 63) is consistent with previously obtained formulas. For V -fold crossvalidation, under assumption (Reg), Eq. ( 63) holds with

if i and j belong to the same block

which can also be obtained from the combination of Eq. ( 8) in Lemma 1 and Eq. ( 58). For the leave-p-out, Eq. ( 63) holds with

which can also be obtained from Eq. ( 10) in Lemma 1 and Eq. ( 58).

Using that U m (x, x) = Ψ m (x) -2s m (x) + s m 2 , Eq. ( 63) can be rewritten as

Using (SameSize) we have

and we get

B.2.2 Concentration Inequalities

In the proof of Theorem 9 in Section B.2.3, given formula (64) for the cross-validation criterion, we need concentration inequalities for the three random sums appearing in Eq. ( 64). These are stated and proved in three lemmas below.

Concentration of

Lemma 20 Assume that (SameSize), (Ind) and (H1) hold true. Then, for any x > 0, an event of probability at least 1 -2e -x exists on which the following holds true: for any

Proof By (Ind), conditionally to (ω i,i

is a sum of independent real-valued random variables. So, we can apply Bernstein's inequality.

First, for any i ∈ n , using (SameSize),

and using Eq. ( 49),

In addition, by Eq. ( 64),

So, on Ω good (κ, x), for every m, m ∈ M n and ∈ (0, 1/5),

where the term

under assumption (H2), so that R 21 n (x, , π * , A) ρ 4 ( , x, κ, n, τ n , π * , A) whatever the assumption among (H2) and (H2 ).

Therefore, Eq. ( 71) yields that, on Ω good (κ, x), for every m, m ∈ M n and ∈ (0, 1/5),

hence the result by changing into /L.

B.2.4 Variance (Proof of Theorem 10)

We prove in this section the variance computation of Theorem 10, which is a straightforward corollary of the following result, since Ψ m 1 and Ψ m 2 are constant for regular histogram models.

Theorem 24 We consider the setting and notation of Theorem 6. We recall that

for some sequence T 1 , . . . , T B of subsets of n satisfying (SameSize), (MCCV) and (Ind), where crit CV is defined by Eq. ( 25) Then, we have

and

where

Theorem 24 is proved below. Note that a similar argument can be used for computing the variance of Monte-Carlo penalized criteria, where the Monte-Carlo penalty is defined from hold-out penalties similarly to MCCV. Indeed, given Lemma 25, we only need to compute the variance of hold-out penalized criteria (as done by Proposition 28) and the variance of leave-p-out criteria (as done by combining Lemma 1 and Theorem 6).

Before proving Theorem 24, we state and prove a general result that relates the variance of (increments of) Monte-Carlo CV criteria to the variance of (increments of) hold-out and leave-p-out criteria.

Lemma 25 Let n p 1 and F : X n × P( n ) → R be some mesurable function. Let D n denote some sample of n independent variables with common distribution P . Assume that (SameSize), (Ind) and (MCCV) hold true, as well as

Let B 1 and T 1 , . . . , T B be some random sequence of subsets of n . Let us define

Then, we have

Proof of Lemma 25 By (74), Z B admits a finite variance. Then, we can write that

By (SameSize), (MCCV) and (Ind),

which proves Eq. ( 75). Eq. ( 76) follows by remarking that Z B = F (D n , T 1 ) when B = 1.

We can now prove Theorem 24. The idea is to apply Lemma 25 when F (D n , T ) is the hold-out estimator of the risk of s m , so that F lpo (D n , p) corresponds to some leave-p-out estimator of the risk. Similarly, Lemma 25 applies when F (D n , T ) is the difference between the hold-out estimators of the risks of s m 1 and

Therefore, by Lemma 16,

where we used that Var(U m 1 (ξ 1 , ξ 2 ) -U m 2 (ξ 1 , ξ 2 )) = B(m 1 , m 2 ) as proved at the beginning of Section A.4, and that U m (ξ 1 , ξ 1 ) = Ψ m (ξ 1 ) -2s m (ξ 1 ) + s m 2 .

Combining Eq. ( 79) and ( 78) with Lemma 25, we get Eq. ( 72).

B.3 Results on Hold-Out Penalization

This section gathers the proof of Theorem 12 (oracle inequality for hold-out penalization) and the variance computations we can make for hold-penalization.

B.3.1 Proof of Theorem 12

The hold-out penalty is equal to

where we recall that τ n = |T |/n. As for Theorem 5, the oracle inequality is based on a concentration result for pen HO (m, T, x). Let us start with an exact formula for the hold-out penalty (Lemma 26, analogous to Lemma 13).

Proof of Theorem 12 From Lerasle (2011, Theorem 4.1)-a result recalled with Proposition 29 in Section B.5-, Lemma 26 and Lemma 27, an absolute constant κ exists such that, for all x > 0, with probability larger than 1 -8e -x , for all ∈ (0, 1], we have

We can then conclude the proof as in Theorem 5.

B.3.2 Variance

Proposition 28 Let (ψ λ ) λ∈Λm 1 and (ψ λ ) λ∈Λm 2 denote two orthonormal families in L 4 (µ).

Assume that |T | ∈ n -1 and denote for any

Then, with the notations introduced in Theorem 6, we have

and

Proof By definition pen HO (m 1 , T, x) = 2x

Let us first note that for every i ∈ {1, . . . , V } and λ ∈ Λ m , A i,λ = P

(ψ λ ). So, at step 2, for every i, j ∈ {1, . . . , V }, we have

and by symmetry C i,j = C j,i = P

Correctness of Algorithm 1. By assumption (Reg), we have

Therefore,

T -1 (V -1) 2 (S -T ) , so the formula for crit VFCV is correct. Lemma 1 implies the formula for pen VF is also correct.

Computational cost of Algorithm 1.

Step 1 has a cost of order

Step 2 has a cost of order V 2 Card(Λ m ).

Step 3 has a cost of order V 2 . Summing the three steps yields the result.

Computational cost for histograms. In the histogram case, step 1 can be performed with a cost of order V Card(Λ m ) + n. Indeed, one can initialize the V × Card(Λ m ) matrix A with zeros (cost: V Card(Λ m )), and then go sequentially through the data set: for j = 1, . . . , n, find the unique i(j) ∈ {1, . . . , V } such that j ∈ B i(j) , the unique λ(j) ∈ Λ m such that ξ j ∈ λ(j), and add (V /n)ψ λ (ξ j ) to A (i(j),λ(j)) . Since the partitions B and Λ m can be coded so that finding i(j) and λ(j) has a cost of order 1, the resulting cost of step 1 is V Card(Λ m ) + n, hence the overall cost is of order V 2 Card(Λ m ) + n.

B.5 Probabilistic Tool

Proposition 29 [START_REF] Lerasle | Optimal model selection for stationary data under various mixing conditions[END_REF] Let ξ N be iid random variables valued in a measurable space (X, X ), with common distribution P . Let S be a symmetric class of functions bounded by b. For all t ∈ S, let us define

There exists an absolute constant κ such that, for all x > 0, with probability larger than 1 -2e -x , for all ∈ (0, 1],

For instance, taking S = B m , by Eq. ( 3), this result applies to