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91405 Orsay, France

Matthieu Lerasle
mlerasle@unice.fr

CNRS
Univ. Nice Sophia Antipolis LJAD CNRS UMR 7351

06100 Nice France

October 9, 2015

Abstract

This paper studies V -fold cross-validation for model selection in least-squares density
estimation. The goal is to provide theoretical grounds for choosing V in order to min-
imize the least-squares loss of the selected estimator. We first prove a non-asymptotic
oracle inequality for V -fold cross-validation and its bias-corrected version (V -fold pe-
nalization). In particular, this result implies that V -fold penalization is asymptotically
optimal in the nonparametric case. Then, we compute the variance of V -fold cross-
validation and related criteria, as well as the variance of key quantities for model se-
lection performance. We show that these variances depend on V like 1 + 4/(V − 1),
at least in some particular cases, suggesting that the performance increases much from
V = 2 to V = 5 or 10, and then is almost constant. Overall, this can explain the com-
mon advice to take V = 5 —at least in our setting and when the computational power
is limited—, as supported by some simulation experiments. An oracle inequality and
exact formulas for the variance are also proved for Monte-Carlo cross-validation, also
known as repeated cross-validation, where the parameter V is replaced by the number
B of random splits of the data.

Keywords: V -fold cross-validation, Monte-Carlo cross-validation, leave-one-out, leave-p-
out, resampling penalties, density estimation, model selection, penalization

1 Introduction

Cross-validation methods are widely used in machine learning and statistics, for estimating
the risk of a given statistical estimator (Stone, 1974; Allen, 1974; Geisser, 1975) and for
selecting among a family of estimators. For instance, cross-validation can be used for model
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selection, where a collection of linear spaces is given (the models) and the problem is to
choose the best least-squares estimator over one of these models. Cross-validation is also
often used for choosing hyperparameters of a given learning algorithm. We refer to Arlot
and Celisse (2010) for more references about cross-validation for model selection.

Model selection can target two different goals: (i) estimation, that is, minimizing the risk
of the final estimator, which is the goal of AIC and related methods, or (ii) identification,
that is, identifying the smallest true model in the family considered, assuming it exists and
it is unique, which is the goal of BIC for instance; see the survey by Arlot and Celisse (2010)
for more details about this distinction. These two goals cannot be attained simultaneously
in general (Yang, 2005).

We assume throughout the paper that the goal of model selection is estimation. We refer
to Yang (2006, 2007) and Celisse (2014) for some results and references on cross-validation
methods with an identification goal.

Then, a natural question arises: which cross-validation method should be used for min-
imizing the risk of the final estimator? For instance, a popular family of cross-validation
methods is V -fold cross-validation (Geisser, 1975, often called k-fold cross-validation), which
depends on an integer parameter V , and enjoys a smaller computational cost than other
classical cross-validation methods. The question becomes (1) which V is optimal, and (2)
can we do almost as well as the optimal V with a small computational cost, that is, a
small V ? Answering the second question is particularly useful for practical applications
where the computational power is limited.

Surprisingly, few theoretical results exist for answering these two questions, especially
with a non-asymptotic point of view (Arlot and Celisse, 2010). In short, it is proved in
least-squares regression that at first order, V -fold cross-validation is suboptimal for model
selection (with an estimation goal) if V stays bounded, because V -fold cross-validation is
biased (Arlot, 2008). When correcting for the bias (Burman, 1989; Arlot, 2008), we recover
asymptotic optimality whatever V , but without any theoretical result distinguishing among
values of V in second order terms in the risk bounds (Arlot, 2008).

Intuitively, if there is no bias, increasing V should reduce the variance of the V -fold cross-
validation estimator of the risk, hence reduce the risk of the final estimator, as supported
by some simulation experiments (Arlot, 2008, for instance). But variance computations for
unbiased V -fold methods have only been made in the asymptotic framework for a fixed
estimator, and they focus on risk estimation instead of model selection (Burman, 1989).

This paper aims at providing theoretical grounds for the choice of V by two means: a
non-asymptotic oracle inequality valid for any V (Section 3) and exact variance computa-
tions shedding light on the influence of V on the variance (Section 5). In particular, we
would like to understand why the common advice in the literature is to take V = 5 or
10, based on simulation experiments (Breiman and Spector, 1992; Hastie et al., 2009, for
instance).

The results of the paper are proved in the least-squares density estimation framework,
because we can then benefit from explicit closed-form formulas and simplifications for the V -
fold criteria. In particular, we show that V -fold cross-validation and all leave-p-out methods
are particular cases of V -fold penalties in least-squares density estimation (Lemma 1).

The first main contribution of the paper (Theorem 5) is an oracle inequality with leading
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constant 1 + εn, with εn → 0 as n→∞ for unbiased V -fold methods, which holds for any
value of V . To the best of our knowledge, Theorem 5 is the first non-asymptotic oracle
inequality for V -fold methods enjoying such properties: the leading constant 1 + εn is new
in density estimation, and the fact that it holds whatever the value of V had never been
obtained in any framework. Theorem 5 relies on a new concentration inequality for the
V -fold penalty (Proposition 4). Note that Theorem 5 implicitly assumes that the oracle
loss is of order n−α for some α ∈ (0, 1), that is, the setting is nonparametric; otherwise,
Theorem 5 may not imply the asymptotic optimality of V -fold penalization. Let us also
emphasize that the leading constant is 1+εn whatever V for unbiased V -fold methods, with
εn independent from V in Theorem 5. So, second-order terms must be taken into account
for understanding how the model selection performance depends on V . Section 4 proposes
a heuristic for comparing these second order terms thanks to variance comparisons. This
motivates our next result.

The second main contribution of the paper (Theorem 6) is the first non-asymptotic
variance computation for V -fold criteria that allows to understand precisely how the model
selection performance of V -fold cross-validation or penalization depends on V . Previous
results only focused on the variance of the V -fold criterion (Burman, 1989; Bengio and
Grandvalet, 2005; Celisse, 2008, 2014; Celisse and Robin, 2008), which is not sufficient for
our purpose, as explained in Section 4. In our setting, we can explain, partly from theoretical
results, partly from a heuristic argument, why taking, say, V > 10 is not necessary for
getting a performance close to the optimum, as supported by experiments on synthetic
data in Section 6.

An oracle inequality and exact formulas for the variance are also proved for other cross-
validation methods: Monte-Carlo cross-validation, also known as repeated cross-validation,
where the parameter V is replaced by the number B of random splits of the data (Sec-
tion 8.1), and hold-out penalization (Section 8.2).

Notation. For any integer k > 1, JkK denotes {1, . . . , k}.
For any vector ξJnK := (ξ1, . . . , ξn) and any B ⊂ JnK, ξB denotes (ξi)i∈B, |B| denotes the

cardinality of B and Bc = JnK \B.

For any real numbers t, u, we define t∨u := max{t, u}, u+ := u∨ 0 and u− := (−u)∨ 0.

All asymptotic results and notation o(·) or O(·) are for the regime when the number n
of observations tends to infinity.

2 Least-Squares Density Estimation and Definition of V -Fold
Procedures

This section introduces the framework of the paper, the main procedures studied, and some
useful notation.

2.1 General Statistical Framework

Let ξ, ξ1, ..., ξn be independent random variables taking value in a Polish space X , with
common distribution P and density s with respect to some known measure µ. Suppose that
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s ∈ L∞(µ), which implies that s ∈ L2(µ). The goal is to estimate s from ξJnK = (ξ1, . . . , ξn),

that is, to build an estimator ŝ = ŝ(ξJnK) ∈ L2(µ) such that its loss ‖ŝ− s‖2 is as small as
possible, where for any t ∈ L2(µ), ‖t‖2 :=

∫
X t

2 dµ.
Projection estimators are among the most classical estimators in this framework (see, for

example, DeVore and Lorentz, 1993 and Massart, 2007). Given a separable linear subspace
Sm of L2(µ) (called a model), the projection estimator of s onto Sm is defined by

ŝm := argmin
t∈Sm

{
‖t‖2 − 2Pn(t)

}
, (1)

where Pn is the empirical measure; for any t ∈ L2(µ), Pn(t) =
∫
tdPn = 1

n

∑n
i=1 t(ξi). The

quantity minimized in the definition of ŝm is often called the empirical risk, and can be
denoted by

Pnγ(t) = ‖t‖2 − 2Pn(t) where ∀x ∈ X , ∀t ∈ L2(µ), γ(t;x) = ‖t‖2 − 2t(x) .

The function γ is called the least-squares contrast. Note that Sm ⊂ L1(P ) since s ∈ L2(µ).

2.2 Model Selection

When a finite collection of models (Sm)m∈Mn is given, following Massart (2007), we want
to choose from data one among the corresponding projection estimators (ŝm)m∈Mn . The
goal is to design a model selection procedure m̂ : X n 7→ Mn so that the final estimator
s̃ := ŝm̂ has a quadratic loss as small as possible, that is, comparable to the oracle loss
infm∈Mn‖ŝm − s‖2. This goal is what is called the estimation goal in the Introduction.
More precisely, we aim at proving that an oracle inequality of the form

‖ŝm̂ − s‖2 6 Cn inf
m∈Mn

{
‖ŝm − s‖2

}
+Rn

holds with a large probability. The procedure m̂ is called asymptotically optimal when Rn
is much smaller than the oracle loss and Cn → 1, as n → +∞. In order to avoid trivial
cases, we will always assume that |Mn| > 2.

In this paper, we focus on model selection procedures of the form

m̂ := argmin
m∈Mn

{
crit(m)

}
,

where crit : Mn 7→ R is some data-driven criterion. Since our goal is to satisfy an oracle
inequality, an ideal criterion is

critid(m) = ‖ŝm − s‖2 − ‖s‖2 = −2P (ŝm) + ‖ŝm‖2 = Pγ(ŝm) .

Penalization is a popular way of designing a model selection criterion (Barron et al.,
1999; Massart, 2007)

crit(m) = Pnγ(ŝm) + pen(m)

for some penalty function pen : Mn → R, possibly data-driven. From the ideal criterion
critid, we get the ideal penalty

penid(m) := critid(m)− Pnγ(ŝm) = (P − Pn)γ(ŝm) = 2(Pn − P )(ŝm) (2)
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= 2(Pn − P )(ŝm − sm) + 2(Pn − P )(sm) = 2‖ŝm − sm‖2 + 2(Pn − P )(sm) ,

where sm := argmin
t∈Sm

{
Pγ(t)

}
= argmin

t∈Sm

{
‖t− s‖2

}
is the orthogonal projection of s onto Sm in L2(µ). Let us finally recall some useful and
classical reformulations of the main term in the ideal penalty (2), that proves in particular
the last equality in Eq. (2): If Bm = {t ∈ Sm s.t. ‖t‖ 6 1} and (ψλ)λ∈Λm denotes an
orthonormal basis of Sm in L2(µ), then

(Pn − P )(ŝm − sm) =
∑
λ∈Λm

[
(Pn − P )(ψλ)

]2
= ‖ŝm − sm‖2 = sup

t∈Bm

[
(Pn − P )(t)

]2
,

(3)

where the last equality follows from Eq. (30) in Appendix A.

2.3 V -Fold Cross-Validation

A standard approach for model selection is cross-validation. We refer the reader to Arlot and
Celisse (2010) for references and a complete survey on cross-validation for model selection.
This section only provides the minimal definitions and notation necessary for the remainder
of the paper.

For any subset A ⊂ JnK, let

P (A)
n :=

1

|A|
∑
i∈A

δξi and ŝ(A)
m := argmin

t∈Sm

{
‖t‖2 − 2P (A)

n (t)
}
.

The main idea of cross-validation is data splitting: some T ⊂ JnK is chosen, one first trains
ŝm(·) with ξT , then test the trained estimator on the remaining data ξT c . The hold-out
criterion is the estimator of critid(m) obtained with this principle, that is,

critHO(m,T ) := P (T c)
n γ

(
ŝ(T )
m

)
= −2P (T c)

n

(
ŝ(T )
m

)
+
∥∥ŝ(T )

m

∥∥2
, (4)

and all cross-validation criteria are defined as averages of hold-out criteria with various
subsets T .

Let V ∈ {2, . . . , n} be a positive integer and let B = BJV K = (B1, . . . ,BV ) be some
partition of JnK. The V -fold cross-validation criterion is defined by

critVFCV(m,B) :=
1

V

V∑
K=1

critHO(m,BcK) .

Compared to the hold-out, one expects cross-validation to be less variable thanks to the
averaging over V splits of the sample into ξBK and ξBcK .

Since critVFCV(m,B) is known to be a biased estimator of E[critid(m)], Burman (1989)
proposed the bias-corrected V -fold cross-validation criterion

critcorr,VFCV(m,B) := critVFCV(m,B) + Pnγ(ŝm)− 1

V

V∑
K=1

Pnγ
(
ŝ

(BcK)
m

)
.

In the particular case where V = n, this criterion is studied by Massart (2007, Section 7.2.1,
p. 204–205) under the name cross-validation estimator.
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2.4 Resampling-Based and V -Fold Penalties

Another approach for building general data-driven model selection criteria is penalization
with a resampling-based estimator of the expectation of the ideal penalty, as proposed by
Efron (1983) with the bootstrap and later generalized to all resampling schemes (Arlot,
2009). Let W ∼ W be some random vector of Rn independent from ξJnK with

1

n

n∑
i=1

Wi = 1 ,

and denote by PWn = n−1
∑n

i=1Wiδξi the weighted empirical distribution of the sample.
Then, the resampling-based penalty associated with W is defined as

penW(m) := CWEW
[(
Pn − PWn

)
γ
(
ŝWm
)]

, (5)

where ŝWm ∈ argmint∈Sm{P
W
n γ(t)}, EW [·] denotes the expectation with respect to W only

(that is, conditionally to the sample ξJnK), and CW is some positive constant. Resampling-
based penalties have been studied recently in the least-squares density estimation framework
(Lerasle, 2012), assuming that W is exchangeable, that is, its distribution is invariant by
any permutation of its coordinates.

Since computing exactly penW(m) has a large computational cost in general for ex-
changeable W , some non-exchangeable resampling schemes were introduced by Arlot (2008),
inspired by V -fold cross-validation: given some partition B = BJV K of JnK, the weight vector
W is defined by Wi = (1− Card(BJ)/n)−11i/∈BJ for some random variable J with uniform

distribution over JV K. Then, PWn = P
(BcJ )
n so that the associated resampling penalty, called

V -fold penalty, is defined by

penVF(m,B, x) :=
x

V

V∑
K=1

[(
Pn − P

(BcK)
n

)
γ
(
ŝ

(BcK)
m

)]

=
2x

V

V∑
K=1

(
P

(BcK)
n − Pn

)(
ŝ

(BcK)
m

)
(6)

where x > 0 is left free for flexibility, which is quite useful according to Lemma 1 below.

2.5 Links Between V -Fold Penalties, Resampling Penalties and (Cor-
rected) V -Fold Cross-Validation

In this paper, we focus our study on V -fold penalties because Lemma 1 below shows that
formula (6) covers all V -fold and resampling-based procedures mentioned in Sections 2.3
and 2.4.

First, when V = n, the only possible partition is BLOO = {{1}, . . . , {n}}, and the
V -fold penalty is called the leave-one-out penalty penLOO(m,x) := penVF(m,BLOO, x).
The associated weight vector W is exchangeable, hence Eq. (6) leads to all exchangeable
resampling penalties since they are all equal up to a deterministic multiplicative factor in
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the least-squares density estimation framework when
∑n

i=1Wi = n, as proved by Lerasle
(2012).

For V -fold methods, let us assume B is a regular partition of JnK, that is,

V = |B| > 2 divides n and ∀K ∈ JV K , |BK | =
n

V
. (Reg)

Then, we get the following connection between V -fold penalization and cross-validation
methods.

Lemma 1 For least-squares density estimation with projection estimators, under assump-
tion (Reg),

critcorr,VFCV(m,B) = Pnγ(ŝm) + penVF(m,B, V − 1) (7)

critVFCV(m,B) = Pnγ(ŝm) + penVF

(
m,B, V − 1

2

)
(8)

critLPO(m, p) = Pnγ(ŝm) + penLPO

(
m, p,

n

p
− 1

2

)
(9)

= Pnγ(ŝm) + penLOO

(
m, (n− 1)

n/p− 1/2

n/p− 1

)
(10)

= Pnγ(ŝm) + penVF

(
m,BLOO, (n− 1)

n/p− 1/2

n/p− 1

)
where for any p ∈ Jn− 1K, the leave-p-out cross-validation criterion is defined by

critLPO(m, p) :=
1

|Ep|
∑
A∈Ep

P (A)
n γ

(
ŝ(Ac)
m

)
with Ep :=

{
A ⊂ JnK s.t. |A| = p

}
and the leave-p-out penalty is defined by

∀x > 0, penLPO(m, p, x) :=
x

|Ep|
∑
A∈Ep

(
Pn − P (Ac)

n

)
γ
(
ŝ(Ac)
m

)
.

Lemma 1 is proved in Section A.1.

Remark 2 Eq. (7) was first proved by Arlot (2008) in a general framework that includes
least-squares density estimation, assuming only (Reg). Eq. (10) follows from Lerasle (2012,
Lemma A.11) since penLPO belongs to the family of exchangeable resampling penalties, with
weights Wi := (1 − p/n)−11i/∈A and A is randomly chosen uniformly over Ep; note that∑n

i=1Wi = n for these weights. It can also be deduced from Proposition 3.1 by Celisse
(2014), see Section A.1.

Remark 3 It is worth mentioning here the cross-validation estimators studied by Massart
(2007, Chapter 7). First, the unbiased cross-validation criterion defined by Rudemo (1982)
is exactly critcorr,VFCV(m,BLOO) (see also Massart, 2007, Section 7.2.1). Second, the pe-
nalized estimator of Massart (2007, Theorem 7.6) is the estimator selected by the penalty

penLOO

(
m,

(1 + ε)6(n− 1)2

2
[
n− (1 + ε)6

] )
for some ε > 0 such that (1 + ε)6 < n (see Section A.1 for details).
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So, in the least-squares density estimation framework and assuming only (Reg), Lemma 1
shows that it is sufficient to study V -fold penalization with a free multiplicative factor x in
front of the penalty for studying also V -fold cross-validation (x = V −1/2), corrected V -fold
cross-validation (x = V − 1), the leave-p-out (V = n and x = (n− 1)(n/p− 1/2)/(n/p− 1))
and all exchangeable resampling penalties. For any C > 0 and B some partition of JnK into
V pieces, taking x = C(V − 1), the V -fold penalization criterion is denoted by

C(C,B)(m) := Pnγ(ŝm) + penVF

(
m,B, C(V − 1)

)
. (11)

A key quantity in our results is the bias E[C(C,B)(m) − critid(m)]. From Lemma 13 in
Section A.2, we have

E
[
penVF(m,B, V − 1)

]
= E

[
penid(m)

]
= 2E

[
‖ŝm − sm‖2

]
, (12)

so that for any C > 0,

E
[
C(C,B)(m)− critid(m)

]
= 2(C − 1)E

[
‖ŝm − sm‖2

]
. (13)

In Sections 3–7, we focus our study on V -fold methods, that is, we study the performance
of the V -fold penalized estimators ŝm̂, defined by

m̂ = m̂
(
C(C,B)

)
= argmin

m∈Mn

{
C(C,B)(m)

}
, (14)

for all values of V and C > 1/2. Additional results on hold-out (penalization) are given in
Section 8.2 to complete the picture.

3 Oracle Inequalities

In this section, we state our first main result, that is, a non-asymptotic oracle inequality
satisfied by V -fold procedures. This result holds for any divisor V > 2 of n, any constant
x = C(V −1) in front of the penalty with C > 1/2, and provides an asymptotically optimal
oracle inequality for the selected estimator when C → 1 (assuming the setting is non
parametric). In addition, as proved by Section 2.5, it implies oracle inequalities satisfied by
leave-p-out procedures for all p.

3.1 Concentration of V -Fold Penalties

Concentration is the key property to establish oracle inequalities. Let us start with some
new concentration results for V -fold penalties.

Proposition 4 Let ξJnK be i.i.d. real-valued random variables with density s ∈ L∞(µ),
B some partition of JnK into V pieces satisfying (Reg), Sm a separable linear space of
measurable functions and (ψλ)λ∈Λm an orthonormal basis of Sm. Define

Bm =
{
t ∈ Sm s.t. ‖t‖ 6 1

}
Ψm =

∑
λ∈Λm

ψ2
λ = sup

t∈Bm
t2 bm := ‖

√
Ψm‖∞

Dm := P (Ψm)− ‖sm‖2 = nE
[
‖sm − ŝm‖2

]
,
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where ŝm is defined by Eq. (1), and for any x, ε > 0,

ρ1(m, ε, s, x, n) :=
‖s‖∞x
εn

+

(
b2m + ‖s‖2

)
x2

ε3n2
.

Then, an absolute constant κ exists such that for any x > 0, with probability at least 1−8e−x,
for any ε ∈ (0, 1], the following two inequalities hold true∣∣∣∣penVF(m,B, V − 1)− 2Dm

n

∣∣∣∣ 6 ε
Dm
n

+ κρ1(m, ε, s, x, n) (15)∣∣penVF(m,B, V − 1)− 2‖sm − ŝm‖2
∣∣ 6 ε

Dm
n

+ κρ1(m, ε, s, x, n) . (16)

Proposition 4 is proved in Section A.2. Eq. (15) gives the concentration of the V -fold
penalty around its expectation 2Dm/n = E[penid(m)], see Eq. (12). Eq. (16) gives the
concentration of the V -fold penalty around the ideal penalty, see Eq. (2). Optimizing over
ε, the first order of the deviations of penVF(m,B, V − 1) around penid(m) is driven by√
Dm/n. The deviation term in Proposition 4 does not depend on V and cannot therefore

help to discriminate between different values of this parameter.

3.2 Example: Histogram Models

Histograms on R provide some classical examples of collections of models. Let X be a
measurable subset of R, µ denote the Lebesgue measure on X and m be some countable
partition of X such that µ(λ) > 0 for any λ ∈ m. The histogram space Sm based on m is the
linear span of the functions (ψλ)λ∈Λm where Λm = m and for every λ ∈ m, ψλ = µ(λ)−1/21λ.
More precisely, we illustrate our results with the following examples.

Example 1 (Regular histograms on X = R)

Mn =
{
mh, h ∈ JnK

}
where ∀h ∈ JnK , mh =

{[
λ

h
,
λ+ 1

h

)
, λ ∈ Z

}
.

In Example 1, defining dmh = h for every h ∈ JnK, for everym ∈Mn, Dm = dm−‖sm‖2 since
Ψm is constant and equal to dm. Therefore, Proposition 4 shows that penVF(m,B, V − 1)
is asymptotically equivalent to pendim(m) := 2dm/n when dm →∞. Penalties of the form
of pendim are classical and have been studied for instance by Barron et al. (1999).

Example 2 (k-rupture points on X = [0, 1])

Mn =
{
mhJk+1K,xJkK s.t. x1 < · · · < xk ∈ Jn− 1K and∀i ∈ Jk + 1K , hi ∈ Jxi − xi−1K

}
,

where x0 = 0, xk+1 = n and for any x1, . . . , xk ∈ Jn− 1K such that x1 < · · · < xk and any
hJk+1K ∈ Nk+1, mhJk+1K,xJkK is defined as the union⋃

i∈JkK

{[
xi−1

n
+

(xi − xi−1)(λ− 1)

nhi
,
xi−1

n
+

(xi − xi−1)λ

nhi

)
, λ ∈ JhiK

}
.

In other words, mhJk+1K,xJkK splits [0, 1] into k+ 1 pieces (at the xi), and then splits the i-th
piece into hi pieces of equal size.
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In Example 2, the function Ψm is constant on each interval [xi−1, xi), equal to hi, therefore,

Dm =
k+1∑
i=1

hiP
(
ξ ∈ [xi−1, xi)

)
− ‖sm‖2 .

3.3 Oracle Inequality for V -Fold Procedures

In order to state the main result, we introduce the following hypotheses:

• A uniform bound on the L∞ norm of the L2 ball of the models

∀m ∈Mn, bm 6
√
n (H1)

where we recall that bm := supt∈Bm‖t‖∞ and Bm := {t ∈ Sm, ‖t‖ 6 1}.

• The family of the projections of s is uniformly bounded.

∃a > 0, ∀m ∈Mn, ‖sm‖∞ 6 a , (H2)

• The collection of models is nested.

∀(m,m′) ∈M2
n, Sm ∪ Sm′ ∈ {Sm, Sm′} (H2′)

Hereafter, we define A := a∨‖s‖∞ when (H2) holds and A := ‖s‖∞ when (H2′) holds. On
histogram spaces, (H1) holds if and only if infm∈Mn infλ∈m µ(λ) > n−1, and (H2) holds
with a = ‖s‖∞.

Theorem 5 Let ξJnK be i.i.d. real-valued random variables with common density s ∈
L∞(µ), B some partition of JnK into V pieces satisfying (Reg) and (Sm)m∈Mn be a collec-
tion of separable linear spaces satisfying (H1). Assume that either (H2) or (H2′) holds
true. Let C ∈ (1/2, 2], δ := 2(C − 1) and, for any x, ε > 0,

ρ2(ε, s, x, n) :=
Ax

εn
+

(
1 +
‖s‖2

n

)
x2

ε3n
and xn = x+ log |Mn| .

For every m ∈Mn, let ŝm be the estimator defined by Eq. (1) and s̃ = ŝm̂ where

m̂ = m̂
(
C(C,B)

)
is defined by Eq. (14). Then, an absolute constant κ exists such that, for any x > 0, with
probability at least 1− e−x, for any ε ∈ (0, 1],

1− δ− − ε
1 + δ+ + ε

‖s̃− s‖2 6 inf
m∈Mn

‖ŝm − s‖2 + κρ2(ε, s, xn, n) . (17)

Theorem 5 is proved in Section A.3.
Taking ε > 0 small enough in Eq. (17), Theorem 5 proves that V -fold model selection

procedures satisfy an oracle inequality with large probability. The remainder term can be
bounded under the following classical assumption

∃a′ > 0, ∀n ∈ N?, |Mn| 6 na
′
. (A3)

10



For instance, (A3) holds in Example 1 with a′ = 1 and in Example 2 with a′ = k. Under
(A3), the remainder term in Eq. (17) is bounded by L(log n)2/(ε3n) for some L > 0, which
is much smaller than the oracle loss in the nonparametric case.

The leading constant in the oracle inequality (17) is (1+δ+)/(1−δ−)+o(1) by choosing
ε = o(1), so the first-order behaviour of the upper bound on the loss is driven by δ. An
asymptotic optimality result can be derived from Eq. (17) only if δ = o(1). The meaning of
δ = 2(C−1) is the amount of bias of the V -fold penalization criterion, as shown by Eq. (13).
Given this interpretation of δ, the model selection literature suggests that no asymptotic
optimality result can be obtained in general when δ 6= o(1) in the nonparametric case (see,
for instance, Shao, 1997). Therefore, even if the leading constant (1 + δ+)/(1− δ−) is only
an upper bound, we conjecture that it cannot be taken as small as 1 + o(1) unless δ = o(1);
such a result can be proved in our setting using similar arguments and assumptions as the
ones of Arlot (2008) for instance.

For bias-corrected V -fold cross-validation, that is, C = 1 hence δ = 0, Theorem 5
shows a first-order optimal non-asymptotic oracle inequality, since the leading constant
(1 + ε)/(1 − ε) can be taken equal to 1 + o(1), and the remainder term is small enough in
the nonparametric case, under assumption (A3), for instance. Such a result valid with no
upper bound on V had never been obtained before in any setting.

V -fold cross-validation is also analyzed by Theorem 5, since by Lemma 1 it corresponds
to C = 1 + 1/(2(V − 1)), hence δ = 1/(V − 1). When V is fixed, the oracle inequality is
asymptotically sub-optimal, which is consistent with the result proved in regression by Arlot
(2008). On the contrary, if B = Bn has Vn blocs, with Vn → ∞, Theorem 5 implies under
assumption (A3) the asymptotic optimality of Vn-fold cross-validation in the nonparametric
case.

The bound obtained in Theorem 5 can be integrated and we get

1− δ− − ε
1 + δ+ + ε

E
[
‖s̃− s‖2

]
6 E

[
inf

m∈Mn

‖ŝm − s‖2
]

+ κ′ρ2

(
ε, s, log

(
|Mn|

))
for some absolute constant κ′ > 0.

Assuming C > 1/2 is necessary, according to minimal penalty results proved by Lerasle
(2012). Assuming C 6 2 only simplifies the presentation; if C > 2, the same proof shows
that Theorem 5 holds with κ replaced by Cκ.

An oracle inequality similar to Theorem 5 holds in a more general setting, as proved
in a previous version of this paper (Arlot and Lerasle, 2012, Theorem 1); we state a less
general result here for simplifying the exposition, since it does not change the message of
the paper. First, assumption (Reg) can be relaxed into assuming the partition B is close
to regular, that is,

B is a partition of JnK of size V and sup
k∈JV K

∣∣∣Card(Bk)−
n

V

∣∣∣ 6 1 , (Reg′)

which can hold for any V ∈ JnK. Second, data ξ1, . . . , ξn can belong to a general Polish
space X , at the price of some additional technical assumption.
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3.4 Comparison with Previous Works on V -Fold Procedures

Few non-asymptotic oracle inequalities have been proved for V -fold penalization or cross-
validation procedures.

Concerning cross-validation, previous oracle inequalities are listed in the survey by Arlot
and Celisse (2010). In the least-squares density estimation framework, oracle inequalities
were proved by van der Laan et al. (2004) in the V -fold case, but compared the risk of the
selected estimator with the risk of an oracle trained with n(V − 1)/V data. In comparison,
Theorem 5 considers the strongest possible oracle, that is, trained with n data. Optimal
oracle inequalities were proved by Celisse (2014) for leave-p-out estimators with p � n, a
case also treated in Theorem 5 by taking V = n and C = (n/p− 1/2)/(n/p− 1) as shown
by Lemma 1. If p� n, C ∼ 1, hence δ = o(1) and we recover the result of Celisse (2014).

Concerning V -fold penalization, previous results were either valid for V = n only—by
Massart (2007, Theorem 7.6) and Lerasle (2012) for least-squares density estimation, by
Arlot (2009) for regressogram estimators—, or for V bounded when n tends to infinity—by
Arlot (2008) for regressogram estimators. In comparison, Theorem 5 provides a result valid
for all V , except for the assumption that V divides n, which can be removed (Arlot and
Lerasle, 2012). In particular, the loss bound by Arlot (2008) deteriorates when V grows,
while it remains stable in our result. Our result is therefore much closer to the typical
behavior of the loss ratio ‖s̃− s‖2/ infm∈Mn‖ŝm− s‖2 of V -fold penalization, which usually
decreases as a function of V in simulation experiments, see Section 6 and the experiments
by Arlot (2008), for instance.

Theorem 5 may not satisfactorily address the parametric setting, that is, when the
collection (Sm)m∈Mn contains some fixed true model. In such a case, the usual way to
obtain asymptotic optimality is to use a model selection procedure targetting identification,
that is, taking C → +∞ when n → +∞. For instance, Celisse (2014, Theorem 3.3) shows
that log(n)� C � n is a sufficient condition for such a result.

4 How to Compare Theoretically the Performances of Model
Selection Procedures for Estimation?

The main goal of the paper is to compare the model selection performances of several (V -
fold) cross-validation methods, when the goal is estimation, that is, minimizing the loss
‖ŝm̂ − s‖2 of the final estimator. In this section, we discuss how such a comparison can be
made on theoretical grounds, in a general setting.

For some data-driven function C :Mn → R, the goal is to understand how ‖ŝm̂(C)− s‖2
depends on C when the selected model is

m̂(C) ∈ argmin
m∈Mn

{
C(m)

}
. (18)

From now on, in this section, C is assumed to be a cross-validation estimator of the risk,
but the heuristic developed here applies to the general case.
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Ideal comparison. Ideally, for proving that C1 is a better method than C2 in some setting,
we would like to prove that∥∥ŝm̂(C1) − s

∥∥2
< (1− εn)

∥∥ŝm̂(C2) − s
∥∥2

(19)

with a large probability, for some εn > 0.

Previous works and their limits. When the goal is estimation, the classical way to
analyze the performance of a model selection procedure is to prove an oracle inequality,
that is, to upper bound (with a large probability or in expectation)

∥∥ŝm̂(C) − s
∥∥2 − inf

m∈Mn

{
‖ŝm − s‖2

}
or Rn(C) :=

∥∥ŝm̂(C) − s
∥∥2

infm∈Mn

{
‖ŝm − s‖2

} .

Alternatively, asymptotic results show that when n tends to infinity, Rn(C)→ 1 (asymptotic
optimality of C) or Rn(C1) ∼ Rn(C2) (asymptotic equivalence of C1 and C2); see Arlot
and Celisse (2010, Section 6) for a review of such results. Nevertheless, proving Eq. (19)
requires a lower bound on Rn(C) (asymptotic or not), which has been done only once
for some cross-validation method, to the best of our knowledge. In some least-squares
regression setting, V -fold cross-validation (CVF) performs (asymptotically) worse than all
asymptotically optimal model selection procedures since Rn(CVF) > κ(V ) > 1 with a large
probability (Arlot, 2008).

The major limitation of all these previous results is that they can only compare C1 to C2

at first order, that is, according to limn→∞Rn(C1)/Rn(C2), which only depends on the bias
of Ci(m) (i = 1, 2) as an estimator of E[‖ŝm − s‖2], hence, on the asymptotic ratio between
the training set size and the sample size (Arlot and Celisse, 2010, Section 6). For instance,
the leave-p-out and the hold-out with a training set of size (n− p) cannot be distinguished
at first order, while the leave-p-out performs much better in practice, certainly because its
“variance” is much smaller.

Beyond first-order. So, we must go beyond the first-order of Rn(C) and take into ac-
count the variance of C(m). Nevertheless, proving a lower bound on Rn(C) is already
challenging at first order—probably the reason why only one has been proved up to now, in
a specific setting only—so the challenge of computing a precise lower bound on the second
order term of Rn(C) seems too high for the present paper. We propose instead a heuristic
showing that the variances of some quantities—depending on (Ci)i=1,2 and onMn—can be
used as a proxy to a proper comparison of Rn(C1) and Rn(C2) at second order. Since we
focus on second-order terms, from now on, we assume that C1 and C2 have the same bias,
that is,

∀m ∈Mn, E
[
C1(m)

]
= E

[
C2(m)

]
. (SameBias)

In least-squares density estimation, given Lemma 1, this means that for i ∈ {1, 2},

Ci = C(C,Bi)

as defined by Eq. (11), with different partitions Bi satisfying (Reg) with different V = Vi,
but the same constant C > 0; C = 1 corresponds to the unbiased case.
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The variance of the cross-validation criteria is not the correct quantity to
look at. If we were only comparing cross-validation methods C1, C2 as estimators of
E
[
‖ŝm − s‖2

]
for every single m ∈ Mn, we could naturally compare them through their

mean squared errors. Under assumption (SameBias), this would mean to compare their
variances. This can be done from Eq. (23) below, but it is not sufficient to solve our problem,
since it is known that the best cross-validation estimator of the risk does not necessarily
yield the best model selection procedure (Breiman and Spector, 1992). More precisely, the
selected model m̂(C) defined by Eq. (18) is unchanged when C(m) is translated by any
random quantity, but such a translation does change Var(C(m)) and can make it as large
as desired. For model selection, what really matters is that

sign
(
C(m1)− C(m2)

)
= sign

(
‖ŝm1 − s‖

2 − ‖ŝm2 − s‖
2
)

as often as possible for every (m1,m2) ∈ M2
n, and that most mistakes in the ranking of

models occur when ‖ŝm1 − s‖2 − ‖ŝm2 − s‖2 is small, so that ‖ŝm̂(C) − s‖2 cannot be much
larger than infm∈Mn{‖ŝm − s‖2}.

Heuristic. The heuristic we propose goes as follows. For simplicity, we assume that
m? = argminm∈Mn

E[‖ŝm−s‖2] is uniquely defined. If the goal was identification, we could
directly state that for any C, the smaller is P(m = m̂(C)) for all m 6= m?, the better should
be the performance of m̂(C). In this paper, our goal is estimation, but a similar claim can
be conjectured by considering “all m ∈ Mn sufficiently far from m? in terms of risk”, that
is, all m ∈ Mn such that E[‖ŝm − s‖2] is significantly worse than E[‖ŝm? − s‖2]. Indeed,
for any m “close to m?” in terms of risk, selecting m instead of m? does not significantly
change the performance of m̂(C); on the contrary, for any m “far from m?” in terms of risk,
selecting m instead of m? does increase significantly the risk E[‖ŝm̂(C) − s‖2].

Then, our idea is to find a proxy for P(m = m̂(C)), that is, a quantity that should
behave similarly as a function of C and its “variance” properties. For all m,m′ ∈ Mn, let
∆C(m,m

′) := C(m)−C(m′), N some standard Gaussian random variable and, for all t ∈ R,
Φ(t) = P(N > t). Then, for every m ∈Mn

P
(
m̂(C) = m

)
= P

(
∀m′ 6= m, ∆C(m,m

′) < 0
)

� min
m′ 6=m

P
(
∆C(m,m

′) < 0
)

(20)

≈ min
m′ 6=m

P
(
E
[
∆C(m,m

′)
]

+N
√

Var(∆C(m,m′)) < 0
)

(21)

= Φ
(
SNR C(m)

)
where SNR C(m) := max

m′ 6=m

E
[
∆C(m,m

′)
]√

Var
(
∆C(m,m′)

) .

So, if SNR C1(m) > SNR C2(m) for all m “sufficiently far from m?”, C1 should be better than
C2. Assuming (SameBias) holds true and that

{m?} = argmin
m∈Mn

E
[
C1(m)

]
= argmin

m∈Mn

E
[
C2(m)

]
, (SameMin)

this leads to the following heuristic

∀m 6= m′, Var
(
∆C1(m,m′)

)
< Var

(
∆C2(m,m′)

)
⇒ C1 better than C2 . (22)
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Indeed, for every m 6= m′, assumption (SameMin) implies that SNR Ci(m) > 0 for i = 1, 2,
hence we can restrict the max in the definition of SNR Ci to all m′ such that E[∆Ci(m,m

′)]
is positive. By assumption (SameBias), the numerator in the definition of SNR Ci does not
depend on i, hence the ratio is maximal when the denominator is minimal, which leads to
Eq. (22). Let us make some remarks.

• The quantity ∆C(m,m
′) appears in relative bounds (Catoni, 2007, Section 1.4) which

can be used as a tool for model selection (Audibert, 2004).

• Assumptions (SameBias) and (SameMin) hold true in particular in the unbiased
case, that is, when E[Ci(m)] = E[‖ŝm − s‖2] for all m ∈Mn and i ∈ {1, 2}.

• Assumption (SameMin) is necessary: Figure 3 shows an example where a larger
variance corresponds to better performance under assumption (SameBias) alone.

• As noticed above, the heuristic (22) should apply when the goal is estimation and
when the goal is identification, provided that (SameBias) and (SameMin) hold
true. What should depend on the goal is the suitable amount of bias for Ci(m) as an
estimator of the risk E[‖ŝm − s‖2].

• Approximation (20) is the strongest one. Clearly, inequality 6 holds true. The equal-
ity case occurs is for a very particular dependence setting, that is, when one among
the events ({∆C(m,m′) < 0}), m′ ∈ Mn, is included into all the others. In general,
the left-hand side is significantly smaller than the right-hand side; we conjecture that
they vary similarly as a function of C.

• The Gaussian approximation (21) for ∆C(m,m
′) does not hold exactly, but it seems

reasonable to make it, at first order at least.

• The validity of approximations (20) and (21) is supported by the numerical experi-
ments of Section 6.

In the heuristic (22), all (m,m′) do not matter equally for explaining a quantitative differ-
ence in the performances of C. First, we can fix m′ = m?, since intuitively, the strongest
candidate against any m 6= m? is m?, which clearly holds in all our experiments, see Fig-
ures 18 and 24 in Section B.6. Second, as mentioned above, if m and m? are very close,
that is, ‖ŝm−s‖2/‖ŝm?−s‖2 is smaller than the minimal order of magnitude we can expect
for Rn(C) with a data-driven C, taking m instead of m? does not decrease the performance
significantly. Third, if Φ(SNR C(m)) is very small, increasing it even by an order of mag-
nitude will not affect the performance of m̂(C) significantly; hence, all m such that, say,
SNR C(m) � (log(n))α for all α > 0, can also be discarded. Overall, pairs (m,m′) that
really matter in (22) are pairs (m,m?) that are at a “moderate distance”, in terms of
E[‖ŝm − s‖2 − ‖ŝm? − s‖2].

5 Dependence on V of V -Fold Penalization and Cross-Validation

Let us now come back to the least-squares density estimation setting. Our goal is to compare
the performance of cross-validation methods having the same bias, that is, according to
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Section 2.5, m̂(C(C,B)) with the same constant C but different partitions B, where m̂(C(C,B))
is defined by Eq. (14).

Theorem 6 Let ξJnK be i.i.d. random variables with common density s ∈ L∞(µ), B some
partition of JnK into V pieces satisfying (Reg), and (ψλ)λ∈Λm1

, (ψλ)λ∈Λm2
two orthonormal

families in L2(µ). For any m,m′ ∈ {m1,m2}, we define Sm the linear span of (ψλ)λ∈Λm,
sm the orthogonal projection of s onto Sm in L2(µ),

Bm = {t ∈ Sm s.t. ‖t‖ 6 1}, Ψm := supt∈Bm t
2,

β
(
m,m′

)
:=

∑
λ∈Λm

∑
λ′∈Λm′

(
E
[(
ψλ(ξ1)− Pψλ

)(
ψλ′(ξ1)− Pψλ′

)])2

and B(m1,m2) := β(m1,m1) + β(m2,m2)− 2β(m1,m2) .

Then, for every C > 0,

Var
(
C(C,B)(m1)

)
=

2

n2

(
1 +

4C2

V − 1
− (2C − 1)2

n

)
β(m1,m1) (23)

+
4

n
Var

((
1 +

2C − 1

n

)
sm1(ξ1)− 2C − 1

2n
Ψm1(ξ1)

)
and Var

(
C(C,B)(m1)− C(C,B)(m2)

)
=

2

n2

(
1 +

4C2

V − 1
− (2C − 1)2

n

)
B(m1,m2) (24)

+
4

n
Var

((
1 +

2C − 1

n

)
(sm1 − sm2)(ξ1)− 2C − 1

2n
(Ψm1 −Ψm2)(ξ1)

)
where C(C,B) is defined by Eq. (11).

Theorem 6 is proved in Section A.4.

Unbiased case. When C = 1, Theorem 6 shows that

Var
(
C(1,B)(m1)− C(1,B)(m2)

)
= a+

(
1 +

4

V − 1
− 1

n

)
b

for some a, b > 0 depending on n,m1,m2 but not on V . If we admit that the heuristic
(22) holds true, this implies that the model selection performance of bias-corrected V -fold
cross-validation improves when V increases, but the improvement is at most in a second
order term as soon as V is large. In particular, even if a� b, the improvement from V = 2
to 5 or 10 is much larger than from V = 10 to V = n, which can justify the commonly used
principle that taking V = 5 or V = 10 is large enough.

Assuming in addition that Sm1 and Sm2 are regular histogram models (Example 1 in
Section 3.2) with dm1 that divides dm2 , then, by Lemma 19 in Section B.1.2,

a =
4

n

(
1 +

1

n

)2

Var
(
sm1(ξ)− sm2(ξ)

)
≈ O

(
1

n
‖sm1 − sm2‖2

)
and b =

2

n2
B(m1,m2) � ‖sm2‖2

dm2

n2
.
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When dm2/n is at least as large as ‖sm1 − sm2‖2, we obtain that the first-order term in the
variance is of the form α + β/(V − 1) where α, β > 0 do not depend on V and are of the
same order of magnitude, as supported by the numerical experiments of Section 6. Then,
increasing V from 2 to n does reduce significantly the variance, by a constant multiplicative
factor.

Let Cid(m) := Pnγ(ŝm) + E[penid(m)] be the criterion we could use if we knew the
expectation of the ideal penalty. From Proposition 17 in Section B.1,

Var
(
Cid(m1)− Cid(m2)

)
=

2

n2

(
1− 1

n

)
B(m1,m2)

+
4

n
Var

((
1− 1

n

)
(sm1 − sm2)(ξ1) +

1

2n
(Ψm1 −Ψm2)(ξ1)

)
which easily compares to formula (24) obtained for the V -fold criterion when C = 1. Up
to smaller order terms, the difference lies in the first term, where (1 + 4/(V − 1)− 1/n) is
replaced by (1 − 1/n) when using the expectation of the ideal penalty instead of a V -fold
penalty. In other words, the leave-one-out penalty—that is, taking V = n—behaves like
the expectation of the ideal penalty.

We can also compare Eq. (23) with the asymptotic results obtained by Burman (1989),
which imply that for any fixed model m1

Var
(
C(1,B)(m1)− Pγ(ŝm1)

)
=
γ0

n
+

(
V

V − 1
γ1 + γ2

)
1

n2
+ o

(
1

n2

)
with γ0, γ1, γ2 that depend on m1 and γ1 > 0. Here, putting C = 1 in Eq. (23) yields a
result with a similar flavour, valid for all n > 1, even if Eq. (23) computes the variance of
a slightly different quantity.

Cross-validation criteria. V -fold cross-validation and the leave-p-out are also covered
by Theorem 6, according to Lemma 1, respectively with C = 1 + 1/(2(V − 1)) and with
V = n and C = 1 + 1/(2(n/p − 1)). As in the unbiased case, increasing V decreases the
variance, and if we admit that the heuristic (22) holds true, V -fold cross-validation performs
almost as well as the leave-(n/V )-out as soon as V is larger than 5 or 10.

Similarly, the variances of the V -fold cross-validation and leave-p-out criteria, for in-
stance, can be derived from Eq. (23). In the leave-p-out case, we recover formulas obtained
by Celisse (2014) and Celisse and Robin (2008), with a different grouping of the variance
components; Eq. (23) clearly emphasizes the influence of the bias—through (C−1)—on the
variance. For V -fold cross-validation, we believe that Eq. (23) shows in a simpler way how
the variance depends on V , compared to the result of Celisse and Robin (2008) which was
focusing on the difference between V -fold cross-validation and the leave-(n/V )-out; here
the difference can be written

8

n2

(
1

V − 1
− 1

n− 1

)(
1 +

1

2(V − 1)

)2

β(m1,m1) .

A major novelty in Eq. (23) is also to cover a larger set of criteria, such as bias-corrected
V -fold cross-validation. Note that Var(C(C,B)(m1)) is generally much larger than

Var
(
C(C,B)(m1)− C(C,B)(m2)

)
,
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Figure 1: The two densities considered. Left: setting L. Right: setting S.

which illustrates again why computing the former quantity might not help for understanding
the model selection properties of C(C,B), as explained in Section 4. For instance, comparing
Eq. (23) and (24), changing sm1 into sm1 − sm2 in the second term can reduce dramatically
the variance when sm1 and sm2 are close, which happens for the pairs (m1,m2) that matter
for model selection according to Section 4.

The variance of other criteria and their increments are computed in subsequent sections
of the paper: Monte-Carlo cross-validation (Theorem 10 in Section 8.1 and Theorem 24 in
Section B.2.4) and hold-out penalization (Proposition 28 in Section B.3.2).

Remark 7 The term B(m1,m2) does not depend on the choice of particular bases of Sm1

and Sm2 : as proved by Proposition 18 in Section B.1

B(m1,m2) = nVar
(
(ŝm1 − ŝm2)(ξ)

)
− (n+ 1) Var

(
(sm1 − sm2)(ξ)

)
.

6 Simulation Study

This section illustrates the main theoretical results of the paper with some experiments on
synthetic data.

6.1 Setting

In this section, we take X = [0, 1] and µ is the Lebesgue measure on X . Two examples are
considered for the target density s and for the collection of models (Sm)m∈Mn .

Two density functions s are considered, see Figure 1:

• Setting L: s(x) = 10x
3 106x<1/3 + (1 + x

3 )11>x>1/3.

• Setting S: s is the mixture of the piecewise linear density x 7→ (8x − 4)11>x>1/2

(with weight 0.8) and four truncated Gaussian densities with means (k/10)k=1,...,4

and standard deviation 1/60 (each with weight 0.05).
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Figure 2: Oracle estimator for one sample of size n = 500, in setting S. Left: Regu. Right:
Dya2.

Two collections of models are considered, both leading to histogram estimators: for
every m ∈Mn, Sm is the set of piecewise constant functions on some partition Λm of X .

• “Regu” for regular histograms: Mn = {1, . . . , n} where for every m ∈Mn, Λm is the
regular partition of [0, 1] into m bins.

• “Dya2” for dyadic regular histograms with two bin sizes and a variable change-point:

Mn =
⋃

k∈{1,...,ñ}

{k} ×
{

0, . . . ,
⌊
log2(k)

⌋}
×
{

0, . . . ,
⌊
log2(ñ− k)

⌋}
where ñ = bn/ log(n)c and for every (k, i, j) ∈Mn, Λ(k,i,j) is the union of the regular
partition of [0, k/ñ) into 2i pieces and the regular partition of [k/ñ, 1] into 2j pieces.

The difference between “Regu” and “Dya2” can be visualized on Figure 2, on which the
corresponding oracle estimators ŝm̂? have been plotted for one sample in setting S, where

m̂? ∈ argmin
m∈Mn

‖ŝm − s‖2 .

While “Regu” is one of the simplest and most classical collections for density estimation, the
flexibility of “Dya2” allows to adapt to the variability of the smoothness of s. Intuitively,
in settings L and S, the optimal bin size is smaller on [0, 1/2] (where s is varying fastly)
than on [1/2, 1] (where |s′| is much smaller).

Another point of comparison of Regu and Dya2 is given by Table 1, that reports values
of the quadratic risks obtained depending on the collection of models considered. Table 1
shows that in settings L and S, the collection Dya2 helps reducing the quadratic risk by
approximately 20% (when comparing the best data-driven procedures of our experiment),
and even more when comparing oracle estimators (30% in setting S, 59% in setting L).
Therefore, in settings L and S, it is worth considering more complex collections of models
(such as Dya2) than regular histograms.
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Setting Oracle(Regu) Oracle(Dya2) Best(Regu) Best(Dya2)

L 13.4± 0.1 5.46± 0.02 25.8± 0.1 19.4± 0.1
S 62.4± 0.1 43.9 ± 0.1 100.9± 0.2 83.4± 0.2

Table 1: Comparison of Regu and Dya2: quadratic risks E[‖ŝm̂ − s‖2] of “Oracle” and
“Best” estimators (multiplied by 103) with the two collections of models. “Best” means
that m̂ is the data-driven procedure minimizing E[‖ŝm̂ − s‖2] among all the data-driven
procedures we considered in our experiments (see Section 6.2). “Oracle” means that m̂ ∈
argminm∈Mn

‖ŝm − s‖2 is the oracle model for each sample.

Let us finally remark that Dya2 does not reduce the quadratic risk in all settings as
significantly as in settings L and S. We performed similar experiments with a few other
density functions, sometimes leading to less important differences between Regu and Dya2
in terms of risk (results not shown). The oracle model was always better with Dya2, but in
two cases, the risk of the best data-driven procedure with Dya2 was larger than with Regu
by 6 to 8%.

6.2 Procedures Compared

In each setting, we consider the following model selection procedures:

• pendim (Barron et al., 1999): penalization with pen(m) = 2 Card(Λm)/n.

• V -fold cross-validation with V ∈ {2, 5, 10, n}, see Section 2.3.

• V -fold penalties (with leading constant x = V − 1, that is, bias-corrected V -fold
cross-validation), for V ∈ {2, 5, 10, n}, see Section 2.4.

• for comparison, penalization with E[penid(m)], that is, m̂(Cid).

Since it is often suggested to multiply the usual penalties by some factor larger than one
(Arlot, 2008), we consider all penalties above multiplied by a factor C ∈ [0, 10]. Complete
results can be found in Section B.6.

6.3 Model Selection Performances

In each setting, all procedures are compared on N = 10 000 independent synthetic data
sets of size n = 500. For measuring their respective model selection performances, for each
procedure m̂(C) we estimate

Cor(C) := E
[
Rn(C)

]
= E

[ ∥∥ŝm̂(C) − s
∥∥2

infm∈Mn‖ŝm − s‖
2

]

by the corresponding average over the N simulated data sets; Cor(C) represents the constant
that would appear in front of an oracle inequality. The uncertainty of estimation of Cor(C)
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Procedure L–Dya2 S–Dya2

pendim 8.27± 0.07 3.21± 0.01

pen2F 10.21± 0.08 2.39± 0.01
pen5F 7.47± 0.06 2.16± 0.01
pen10F 6.89± 0.06 2.11± 0.01
penLOO 6.35± 0.05 2.06± 0.01

2FCV 6.41± 0.05 2.05± 0.01
5FCV 6.27± 0.05 2.05± 0.01
10FCV 6.24± 0.05 2.05± 0.01
LOO 6.34± 0.05 2.06± 0.01

E[penid] 6.52± 0.05 2.07± 0.01

Table 2: Estimated model selection performances, see text. ‘LOO’ is a shortcut for ‘leave-
one-out’, that is, V -fold with V = n = 500.

is measured by the empirical standard deviation of Rn(C) divided by
√
N . The results are

reported in Table 2 for settings L and S, with the collection Dya2.

Results for Regu are not reported here since dimensionality-based penalties are already
known to work well with Regu (Lerasle, 2012), so V -fold methods cannot improve signif-
icantly their performance, with a larger computational cost. Complete results (including
Regu, with n = 100 and n = 500) are given in Tables 3 and 4 in Section B.6, showing that
the performances of pendim and V -fold methods indeed are very close.

Performance as a function of V . Let us first consider V -fold penalization. In both
settings L and S, as suggested by our theoretical results, Cor decreases when V increases.
The improvement is large when V goes from 2 to 5 (27% for L, 10% for S) and small when
V goes from 5 to 10 and when V goes from 10 to n = 500 (each time, 8% for L, 2% for S).
Since the main influence of V is on the variance of the V -fold penalty, these experiments
support our interpretation of Theorem 6 in Section 5: increasing V helps much more from
2 to 5 or 10 than from 10 to n.

The picture is less clear for V -fold cross-validation, for which almost no difference is
observed among V ∈ {2, 5, 10, n}—less than 2%—, and Cor is minimized for V ∈ {5, 10}.
Indeed, increasing V simultaneously decreases the bias and the variance of the V -fold cross-
validation criterion, leading to various possible behaviours of Cor as a function of V , de-
pending on the setting. The same phenomenon has been observed in regression (Arlot,
2008).

Overpenalization. In all settings considered in this paper, V -fold penalization performs
much better when multiplying the penalty by C > 1, as illustrated by Figure 3. In par-
ticular, the best overpenalization factor for penLOO is C?n ≈ 2.5 for L-Dya2 and C?n ≈ 1.4
for S-Dya2, when n = 500. Such a phenomenon, which can also be observed in regression
(Arlot, 2008), is related to the fact that some nonparametric model selection problems are
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Figure 3: Overpenalization in settings S-Dya2 (left) and L-Dya2 (right), with n = 500 in
both cases. Each plot represents the estimated model selection performance Cor(C(C,B)) of
several penalization procedures, as a function of the overpenalization constant C; unbiased
risk estimation (C = 1) is materialized by a vertical red line. For each value of V , the
estimated optimal value of C is shown on the graph; some arrows also show the performance
of V -fold cross-validation, that is, C = 1+1/[2(V −1)]. Error bars are not shown for clarity;
Table 2 shows their order of magnitude, which is smaller than visible differences in the above
graph. The performance obtained with the penalty E[penid(m)] (not shown on the graph)
is almost the same as with the leave-one-out penalty.

“practically parametric”, using the terminology of Liu and Yang (2011), that is, BIC beats
AIC and the optimal C is closer to log(n)/2 than to 1. For instance, Figure 3 shows that
L-Dya2 is practically parametric, while S-Dya2 is practically nonparametric since AIC beats
BIC and the optimal C is close to 1.

Given an overpenalization factor C close to its optimal value C?n, V -fold penalization
performs significantly better than V -fold cross-validation in settings S-Dya2 and L-Dya2
(Figure 3). Since V -fold cross-validation corresponds to taking

C = CVF(V ) := 1 +
1

2(V − 1)

according to Lemma 1, this mostly means that CVF(V ) is not close to C?n in these settings.
In addition, when C ≈ C?n is fixed, increasing V always improves the performance of V -
fold penalization, as predicted by the heuristic of Section 4 and the theoretical results
of Section 5. Let us emphasize that this fact does not depend on the parametricness of
the setting: although the value of C?n is quite different for S-Dya2 and L-Dya2, in both
cases, we observe qualitatively the same relationship between V and the performance of the
procedure.

The results reported in Section B.6 lead to similar conclusions in several other settings,
as well as unshown results in a truly parametric setting, with a true model of dimension 2.
Although a wider simulation study would be necessary to get general conclusions, this
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suggests at least that the heuristic of Section 4 and the theoretical results of Section 5 can
be applied to both parametric and nonparametric settings.

Figure 3 also helps understanding how the performance of V -fold cross-validation de-
pends on V in Table 2. Indeed, the performance of V -fold cross-validation for each value of
V can be visualized on Figure 3 by taking the point of abscissa C = CVF(V ) on the curve
associated with V -fold penalization. Two phenomena are coupled when C 6 C?n, which
always holds in our simulations for V -fold cross-validation since maxV C

VF(V ) = 1.5 and
the estimated value of C?n is always larger. (i) The performance improves when V is fixed
and C gets closer to C?n. (ii) The performance improves when C is fixed and V increases.
Even if both phenomena (i) and (ii) seem quite universal, their coupling can result in various
behaviours for V -fold cross-validation as a function of V , as shown by Table 3 in Section B.6
for instance.

Other comments.

• pendim performs much worse than V -fold penalization (except V = 2 in setting L)
with the collection Dya2. On the contrary, pendim does well with Regu (see Table 3
in Section B.6), but V -fold penalization then performs as well.

• In other settings considered in a preliminary phase of our experiments, for V -fold
penalization, differences between V = 2 and V = 5 were sometimes smaller or not
significant, but always with the same ordering (that is, the worse performance for
V = 2 when C is fixed). In a few settings, for which the “change-point” in the
smoothness of s was close to the median of sdµ, we found pendim among the best
procedures with collection Dya2; then, V -fold penalization and cross-validation always
had a performance very close to pendim. Both phenomena lead us to discard all settings
for which there were no significant difference to comment.

6.4 Variance as a Function of V

We now illustrate the results of Section 5 about the variance of V -fold penalization and
the heuristic of Section 4 about its influence on model selection. We focus on the unbiased
case, that is, criteria C(1,B) with partitions B satisfying (Reg). Since the distribution of
(C(1,B)(m))m∈Mn then only depends on V = |B|, we write CV instead of C(1,B) by abuse
of notation. All results presented in this subsection have been obtained from N = 10 000
independent samples in setting S with a sample size n = 100 and the collection Regu—for
which models are naturally indexed by their dimension.

First, Figure 4 shows the variance of ∆CV (m,m?) = CV (m) − CV (m?) as a function of
the dimension m of Sm, illustrating the conclusions of Theorem 6: the variance decreases
when V increases. More precisely, the variance decrease is significant between V = 2 and
V = 5, an order of magnitude smaller between V = 5 and V = 10 and between V = 10 and
V = n, while the leave-one-out Cn is hard to distinguish from the ideal penalized criterion
Cid. On Figure 4, we can remark that for m > m?

Var(∆CV (m,m?)) ≈ 1

n2

[
K1

(
1 +

K2

V − 1

)
+K3

(
1 +

K4

V − 1

)
(m−m?)

]
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Figure 4: Illustration of the variance heuristic: Var(∆C(m,m
?)) as a function of m for five

different C. Setting S-Regu, n = 100. The black diamond shows m? = 7. The black lines
show the linear approximation n−2[29(1 + 0.81

V−1) + 3.7(1 + 3.8
V−1)(m−m?)] for m > m?.

with K1 ≈ 29, K2 ≈ 0.81, K3 ≈ 3.7 and K4 ≈ 3.8. The shape of the dependence on V
already appears in Theorem 6, the above formula clarifies the relative importance of the
terms called a and b in Section 5, and their dependence on the dimension m of Sm. Remark
that the same behaviour holds when n = 500 with very close values for K3 and K4 (see
Figure 25 in Section B.6), as well as in setting L with n = 100 or n = 500 with K3 ≈ 2.1
and K4 ≈ 4.2 (see Figures 19 and 30 in Section B.6). The fact that K4 is close to 4 in
both settings supports that the term 1 + 4/(V − 1) appearing Theorem 6 indeed drives how
Var(∆CV (m,m?)) depends on V .

Figures 5 and 6 respectively show P(m̂(C) = m) and its proxy Φ(SNR C(m)) as a function
of m for C = CV with V ∈ {2, 5, 10, n} and for C = Cid. First, we remark that both
quantities behave similarly as a function of m and C—see also Figure 16 in Section B.6—
supporting empirically the heuristic of Section 4. The decrease of the variance observed on
Figure 4 when V increases here translates into a better concentration of the distribution of
m̂(CV ) around m?, which can explain the performance improvement observed in Section 6.3.
Figures 5–6 actually show how the decrease of the variance quantitatively influences the
distribution of m̂(CV ): m̂(C5) is significantly more concentrated than m̂(C2), while the
difference between V = 10 and V = 5 is much smaller and comparable to the difference
between V = n and V = 10; Cn is hard to distinguish from Cid. Similar experiments with
n = 500 and in setting L are reported in Section B.6, leading to similar conclusions.
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Figure 5: P(m̂(C) = m) as a function of m for five different C. Setting S-Regu, n = 100.
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Figure 6: Illustration of the variance heuristic: Φ(SNR C(m)) as a function of m for five
different C. Setting S-Regu, n = 100. The black diamond shows m? = 7.
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7 Fast Algorithm for Computing V-Fold Penalties for Least-
Squares Density Estimation

Since the use of V -fold algorithms is motivated by computational reasons, it is important to
discuss the actual computational cost of V -fold penalization and cross-validation as a func-
tion of V . In the least-squares density estimation framework, two approaches are possible:
a naive one—valid for all other frameworks—, and a faster one—specific to least-squares
density estimation. For clarifying the exposition, we assume in this section that (Reg)
holds true—so, V divides n. The general algorithm for computing the V -fold penalized
criterion and/or the V -fold cross-validation criterion consists in training the estimator with
data sets (ξi)i/∈Bj for j = 1, . . . , V and then testing each trained estimator on the data sets
(ξi)i∈Bj and/or (ξi)i/∈Bj . In the least-squares density estimation framework, for any model

Sm given through an orthonormal family (ψλ)λ∈Λm of elements of L2(µ), we get the “naive”
algorithm described and analysed more precisely in Section B.4.1, whose complexity is of
order nV Card(Λm).

Several simplifications occur in the least-squares density estimation framework, that
allow to avoid a significant part of the computations made in the naive algorithm.

Algorithm 1

Input : B some partition of {1, . . . , n} satisfying (Reg), ξ1, . . . , ξn ∈ X and (ψλ)λ∈Λm

a finite orthonormal family of L2(µ).

1. For i ∈ {1, . . . , V } and λ ∈ Λm, compute Ai,λ := V
n

∑
j∈Bi ψλ(ξj).

2. For i, j ∈ {1, . . . , V }, compute Ci,j :=
∑

λ∈Λm
Ai,λAj,λ.

3. Compute S :=
∑

16i,j6V Ci,j and T := tr(C).

Output :

Empirical risk : Pnγ(ŝm) =
−S
V 2

;

V -fold cross-validation criterion: critVFCV(m) =
T

V (V − 1)
− S − T

(V − 1)2
;

V -fold penalty : penVF(m) =
(
critVFCV(m)− Pnγ(ŝm)

)V − 1/2

V − 1
.

To the best of our knowledge, Algorithm 1 is new, even for computing the V -fold cross-
validation criterion. Its correctness and complexity are analyzed with the following propo-
sition.

Proposition 8 Algorithm 1 is correct and has a computational complexity of order(
n+ V 2

)
Card(Λm) .

In the histogram case, that is, when Λm is a partition of X and ∀λ ∈ Λm, ψλ = µ(λ)−1/21λ,
the computational complexity of Algorithm 1 can be reduced to the order of n+V 2 Card(Λm).
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Proposition 8 is proved in Section B.4.2. It shows that Algorithm 1 is significantly faster
than the “naive” Algorithm 2 described in Section B.4.1, by a factor of order

nV

n+ V 2
=

(
1

V
+
V

n

)−1

� 1 if 1� V � n .

Note that closed-form formulas are available for the leave-p-out criterion in least-squares
density estimation (Celisse, 2014), allowing to compute it with a complexity of order
nCard(Λm) in general, and smaller in some particular cases—for instance, n for histograms.

8 Discussion

Before discussing how to choose V when using V -fold methods for model selection—or
more generally for choosing among a given family of estimators—, we state some additional
results and we discuss the model selection literature in least-squares density estimation.

8.1 Monte-Carlo Cross-Validation

Our analysis of V -fold procedures for model selection can be extended to some other cross-
validation procedures. We here present results for Monte-Carlo cross-validation (MCCV,
Picard and Cook, 1984), also known as repeated cross-validation, where B training samples
of the same size n− p are chosen independently and uniformly (see also Arlot and Celisse,
2010, Section 4.3.2). Formally, we consider the criterion

critCV

(
m, (TK)16K6B

)
:=

1

B

B∑
K=1

critHO(m,TK) , (25)

where T1, . . . , TB are subsets of JnK and we recall that the hold-out criterion is defined by
Eq. (4). We make the following three assumptions throughout this subsection

∃p ∈ Jn− 1K , ∀j ∈ JBK , |Tj | = n− p = nτn , (SameSize)

(TK)16K6B is independent from Dn , (Ind)

T1, . . . , TB are independent with uniform distribution over En−p , (MCCV)

where we recall that En−p = {A ⊂ JnK s.t. |A| = n− p}. Under these assumptions, we write
CMCCV(m) as a shortcut for critCV(m, (TK)16K6B).

Similarly to Theorem 5, we prove in Section B.2.3 the following oracle inequality for
MCCV.

Theorem 9 Let ξJnK be i.i.d. real-valued random variables with common density s ∈
L∞(µ), (TK)16K6B some sequence of subsets of JnK satisfying (SameSize), (Ind) and
(MCCV) and (Sm)m∈Mn be a collection of separable linear spaces satisfying (H1). As-
sume that either (H2) or (H2′) holds true. For every m ∈ Mn, let ŝm be the estimator
defined by Eq. (1), and s̃ = ŝm̂ where

m̂ ∈ argmin
m∈Mn

{
critCV

(
m, (TK)16K6B

)}
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and critCV is defined by Eq. (25). Let us define, for any x, y, ε > 0, xn = x+ log |Mn| and

ρ3(ε, x, y, n, τn, B,A) :=
1

nτ2
n

(
1 +

B ∧ (log n+ y)

B(1− τn)

)α(Ax
τnε

+
(A ∨ 1)x2

ε3

)
with α = 1 under assumption (H2) and α = 2 under assumption (H2′). Then, an absolute
constant κ > 0 exists such that, for any x, y > 0, with probability at least 1− e−x− e−y, for
any ε ∈ (0, κ−1),(

1− ε

τn

)
‖s̃− s‖2 6

1 + ε

τn
inf

m∈Mn

{
‖ŝm − s‖2

}
+ κρ3(ε, xn, y, n, τn, B,A) . (26)

Theorem 9 actually is a corollary of a more general result (Theorem 23 in Section B.2.3),
which is valid without assumption (MCCV) and extends therefore our previous results on
V -fold cross-validation).

Very few results exist in the literature about the model selection performance of MCCV
with an estimation goal. Some asymptotic optimality result has been obtained by Burman
(1990) for spline regression, and some oracle inequalities comparing the risk of the selected
estimator with the risk of an oracle trained with τnn < n data have been proved by van
der Laan and Dudoit (2003) in a general framework and by van der Laan et al. (2004) for
density estimation with the Kullback-Leibler loss. In comparison, Theorem 9 provides a
precise non-asymptotic comparison to an oracle trained with n data.

As in Theorem 5, the leading constant of the oracle inequality (26) is directly related
to the bias, which is here quantified by τ−1

n − 1 > 0 instead of δ. The remainder term ρ3 is
also comparable to ρ2 in Theorem 5: they differ by a factor between τ−2

n (when B is large
enough) and τ−2

n (1 − τn)−α (when B is small). In particular, let V > 2 and assume that
p = n/V in Theorem 9, hence τn = 1− V −1 ∈ [1/2, 1). Then, for the hold-out (B = 1), ρ3

is larger than ρ2 by a factor V α with α ∈ {1, 2}. For B = V , MCCV with τn = 1−V −1 can
be called “Monte-Carlo V -fold” (MCVF); then, with y ≈ log n, we loose a factor at most
log n for MCVF compared to V -fold cross-validation. Finally, when B is large enough, that
is, larger than V log n, ρ3 and ρ2 are of the same order.

The above comparison of remainder terms suggests a hierarchy between several cross-
validation methods with a common training sample size n−p = nτn: from the (presumably)
worse to the (presumably) best procedure, the hold-out, Monte-Carlo CV with B = V , V -
fold CV, Monte-Carlo CV with B large and the leave-p-out. Nevertheless, upper bounds
comparison can be misleading, so, following the heuristics (22) presented in Section 4, we
compute below the variance of ∆C(m,m

′) when C is a Monte-Carlo CV criterion.

Theorem 10 We consider the setting and notation of Theorem 6, and we assume that
(SameSize), (MCCV) and (Ind) hold true. We recall that CMCCV(m) is defined above
at the beginning of Section 8.1. Then, for regular histogram models m1,m2 (Example 1 in
Section 3.2), we have

Var
(
CMCCV(m1)− CMCCV(m2)

)
= CMC

1 (B,n, τn)
2

n2
B(m1,m2) (27)

+ CMC
2 (B,n, τn)

4

n
Var
(
sm1(ξ1)− sm2(ξ1)

)
28



where

CMC
1 (B,n, τn) =

1

B

(
1

τ2
n

+
2

τn(1− τn)
− 1

nτ3
n

)
+

(
1− 1

B

)[
1 +

1

n− 1

(
1

τn
+ 1

)2

− 1

nτ2
n

]

CMC
2 (B,n, τn) =

1

B

(
1

n2τ3
n

+
1

1− τn

)
+

(
1− 1

B

)(
1 +

1

nτn

)2

and we recall that τn = |TK |/n = 1− (p/n).

Theorem 10 is proved in Section B.2.4, as a corollary of a more general result, Theorem 24,
which holds for all models m1,m2—not only regular histograms—and provides a formula
for the variance of the criterion itself—not its increments. Let us make a few comments.

Eq. (27) is similar to the formula obtained for bias-corrected V -fold and V -fold penal-
ization, see Eq. (24) in Theorem 6. In the particular case of regular histogram models,
Eq. (24) even fits the general form of Eq. (27), with constants CpenVF

i (V, n, C) instead of
CMC
i (B,n, τn).

Assuming the heuristics of Section 4 is valid, form1,m2 which matter for model selection,
the two terms 2n−2B(m1,m2) and 4n−1 Var(sm1(ξ1) − sm2(ξ1)) are of the same order of
magnitude (see Section 5). Then, we can compare model selection performance of several
cross-validation methods by comparing the values of the constants Ci only.

In order to get a variance of the same order of magnitude as the one of bias-corrected
V -fold CV—that is, constants Ci of order 1—, MCCV requires to take τn far enough from
0 and 1, hence training and sample sets of comparable sizes, unless B is large enough.

Eq. (27) allows to compare the hold-out (B = 1) with the leave-p-out (B → +∞), for
a given value nτn = n − p of the training sample size. Let us assume for simplicity that
n→ +∞ and τn � n−1/2. Then,

CMC
1 (1, n, τn) ∼ 1

τ2
n

+
2

τn(1− τn)
> 11 and CMC

2 (1, n, τn) ∼ 1

1− τn
> 1

whereas CMC
1 (∞, n, τn)→ 1 and CMC

2 (∞, n, τn)→ 1

which shows an improvement at least by a constant factor in general. When τn tends to
zero—leave-most-out—or 1—such as for the leave-one-out—, the improvement is by an order
of magnitude. The fact that the leave-p-out has a smaller variance than the hold-out is not
surprising at all—it holds in full generality, as a consequence of Jensen’s inequality—, but
the exact quantification of the improvement given by Theorem 10 is new and can be useful
in practice for choosing the number of splits B when using Monte-Carlo cross-validation.

Eq. (27) also allows to compare V -fold cross-validation, given by Theorem 6 with

C = 1 +
1

2(V − 1)
,

with MCCV with B = V and τn = (V − 1)/V , which can be named “Monte-Carlo V -
fold” cross-validation. The only difference between the two methods is that the V splits are
chosen independently for “Monte-Carlo V -fold”, whereas the usual V -fold makes a balanced
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use of each observation—putting it exactly (V − 1) times in the training set. Let us assume
for simplicity that n→ +∞ while V = Vn can vary with n. Then, we have

CMCVF
1 (Vn, n) := CMC

1

(
Vn, n,

Vn − 1

Vn

)
∼ 3 +

2Vn + 1

Vn(Vn − 1)
+

1

(Vn − 1)2

CVF
1 (Vn, n) := CpenVF

1

(
Vn, n, 1 +

1

2(Vn − 1)

)
∼ 1 +

4

Vn − 1
+

4

(Vn − 1)2
+

1

(Vn − 1)3

hence
CMCVF

1 (Vn,∞)

CVF
1 (Vn,∞)

> 1 if Vn > 3 ,
CMCVF

1 (Vn, n)

CVF
1 (Vn, n)

−−−−−−−→
n,Vn→+∞

3 ,

CMCVF
2 (Vn, n) := CMC

2

(
Vn, n,

Vn − 1

Vn

)
∼ 2− 1

Vn
∈
[

3

2
, 2

]
and CVF

2 (Vn, n) := CpenVF
2

(
Vn, n, 1 +

1

2(Vn − 1)

)
→ 1 .

Overall, we get that V -fold cross-validation has a smaller variance than “Monte-Carlo V -
fold” for V > 3, at least for n large enough, and that the improvement is by a constant factor
between 3/2 and 3. Since increasing V cannot decrease the variance of (bias-corrected)
VFCV by more than a small constant factor, the above difference between two methods
with the same computational complexity is quite important. This supports strongly the
use of V -fold CV methods instead of “Monte-Carlo V -fold”. Such an improvement was
previously noticed in the asymptotic computations of Burman (1989); here we show that it
holds in a non-asymptotic framework, where the models m1,m2 can depend on n.

8.2 Hold-Out Criteria

Our analysis of cross-validation procedures for model selection can also be extended to
hold-out criteria. First, let us emphasize that the hold-out criterion defined by Eq. (4)
corresponds to taking B = 1 in the results of Section 8.1, since choosing T uniformly over
En−p, independently from Dn, is equivalent to choosing some arbitrary T of size n−p before
seeing the data Dn.

Second, similarly to the definition of the hold-out criterion in Eq. (4), we can define the
hold-out penalty by

∀x > 0, penHO(m,T, x) := 2x
(
P (T )
n − Pn

)(
ŝ(T )
m − ŝm

)
, (28)

that is, the hold-out estimator of E[2(Pn − P )(ŝm − sm)] which is equal to the expectation
of the ideal penalty, see Eq. (2). We do not define penHO by Eq. (6) with V = 1 and
T = Bc1—that is, the hold-out estimator of E[(P − Pn)γ(ŝm)], which amounts to removing
the centering term −ŝm in Eq. (28)—because this would dramatically increase its variability.
Note that adding such a term −ŝm in Eq. (6) does not change the value of the V -fold penalty

under (Reg) since
∑V

K=1(P
(BcK)
n − Pn) = 0.

Denoting by τn = |T |/n as in Section 8.1, it comes from Lemma 26 in Section B.3.1 that

E
[
penHO(m,T, x)

]
= x

1− τn
τn

E
[
penid(m)

]
.
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In the following, we choose x = Cτn/(1 − τn) so that C = 1 corresponds to the unbiased
case, as in the previous sections for the V -fold penalty.

Remark 11 Since Pn = τnP
(T )
n + (1− τn)P

(T c)
n , by linearity of the estimator ŝm,

penHO(m,T, x) := 2x(1− τn)2
(
P (T )
n − P (T c)

n

)(
ŝ(T )
m − ŝ(T c)

m

)
which is symmetric in T and T c, hence penHO(m,T c, x) = penHO(m,T, x). In particular,
if |T | = n/2, the 2-fold penalty computed on the partition B = {T, T c} and the hold-out
penalty coincide

∀x > 0, penVF

(
m, {T, T c}, x

)
= penHO(m,T, x) .

Theorem 12 Let ξJnK be i.i.d. real-valued random variables, s ∈ L∞(µ) their common
density, T ⊂ JnK with τn = |T |/n ∈ (0, 1) and (Sm)m∈Mn be a collection of separable linear
spaces satisfying (H1). Assume that either (H2) or (H2′) holds true. Let C ∈ (1/2, 2] and
δ := 2(C − 1). For every m ∈ Mn, let ŝm be the projection estimator onto Sm defined by
Eq. (1), and s̃HO = ŝm̂HO

where

m̂HO = argmin
m∈Mn

{
Pnγ(ŝm) + penHO

(
m,T,

Cτn
1− τn

)}
.

Then, an absolute constant κ exists such that, for any x > 0, defining xn = x + log |Mn|,
with probability at least 1− e−x, for any ε ∈ (0, 1],

1− δ− − ε
1 + δ+ + ε

‖s̃HO − s‖2 6 inf
m∈Mn

‖ŝm − s‖2 + κ

(
Axn
εn

+
τ2
n + (1− τn)2

τn(1− τn)

x2
n

ε3n

)
. (29)

Theorem 12 is proved in Section B.3.1.
Theorem 12 extends Theorem 5 to hold-out penalties, under similar assumptions. As

in Theorem 5, δ quantifies the bias of the hold-out penalized criterion, and plays the same
role in the leading constant of the oracle inequality (29).

We can compare the results obtained for hold-out and V -fold penalization in Theorems 5
and 12. For this comparison, let V be some divisor of n, T ⊂ JnK such that |T | = n− n/V
and choose the same C so that both criteria have the same bias δ. Then, the only difference
lies in the remainder term, the one in Eq. (29) is larger than the one of Eq. (17) in Theorem 5
by a factor of order V when V is large. These only are upper bounds, but at least they are
consistent with the common intuition about the stabilizing effect of averaging over V folds.
We can also compare the results obtained for hold-out penalization in Theorem 12 and for
the hold-out criterion in Theorem 9. First, hold-out penalization gives a flexibility to choose
an unbiased criterion and therefore to obtain asymptotically optimal oracle inequalities
while hold-out criteria are always biased for fixed τn, hence a leading constant τ−1

n > 1 in
the oracle inequality. The loss in the remainder term is also smaller in Eq. (29) than in
Eq. (26) by a factor of order τ−1

n (1− τn)−1 under assumption (H2′).
Similarly to Theorems 6 and 10, the variance terms can be computed for the hold-out

penalty in order to understand separately the roles of the training sample size and of aver-
aging over the V splits, in the V -fold criteria. Detailed results are given by Proposition 28
in Section B.3.2.
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8.3 Other Oracle Inequalities for Least-Squares Density Estimation

Although the primary topic of the paper is the study of V -fold procedures, let us compare
briefly our results to other oracle inequalities that have been proved in the least-squares
density estimation setting. For projection estimators, Massart (2007, Section 7.2) proves
an oracle inequality for some penalization procedures, which are suboptimal since the lead-
ing constant Cn does not tend to 1 as n goes to +∞. Oracle inequalities have also been
proved for other estimators: blockwise Stein estimators (Rigollet, 2006), linear estimators
(Goldenshluger and Lepski, 2011) and some T -estimators (Birgé, 2013). The models con-
sidered by Birgé (2013) are more general than ours, but the corresponding estimators are
not computable in practice, and the oracle inequality by Birgé (2013) also has a subopti-
mal constant Cn. Some aggregation procedures also satisfy oracle inequalities (Rigollet and
Tsybakov, 2007; Bunea et al., 2010). Overall, under our assumptions, none of these results
imply strictly better bounds than ours.

Let us finally mention that Birgé and Rozenholc (2006) propose a precise evaluation of
the penalty term in the case of regular histogram models and the log-likelihood contrast.
Their final penalty is a function of the dimension, only slightly modified compared to pendim,
performing very well on regular histograms. These performances are likely to become much
worse on the collection Dya2 presented in Section 6. This can be seen, for example, in
Table 3 in Section B.6, where we present the performances of pendim with different over-
penalizing constants.

8.4 Conclusion on the Choice of V

This section summarizes the results of the paper in order to address the main question we
would like to answer: How to choose a V -fold procedure for model selection?

Generality of the results. The results of the paper only hold for projection estimators
in least-squares density estimation, but we conjecture that most of the statements below are
valid much more generally. At least, they have been observed experimentally for projection
estimators in least-squares regression (Arlot, 2008) and they are supported by theoretical
results for kernel density estimators (Magalhães, 2015, Chapters 3–4). Nevertheless, it is
reported in the literature that V -fold cross-validation can behave differently in other settings
(Arlot and Celisse, 2010), so we must keep in mind that the statements below may not be
universal.

Let us also recall that we focus here on model selection with an estimation goal, that
is, minimizing the risk of the final estimator; see Yang (2006, 2007) and Celisse (2014) for
results when the goal is identification.

Choice of a model selection procedure. Choosing among procedures of the form m̂(C),
as defined by Eq. (18), requires to take into account three quantities:

• the bias of C(m) as an estimator of the risk of ŝm for every m ∈Mn, or equivalently,
the overpenalization factor C, which usually drives the performance at first order
when n→ +∞, as in Theorem 5. The simulation experiments of Section 6 also show
that varying C can strongly change the performance of the procedure. In all settings
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considered in the paper, some C?n exists (the optimal overpenalization constant) such
that the performance decreases for C ∈ [0, C?n] and increases for C > C?n (Figure 3).

Note that C?n strongly depends on the setting, and can also vary with V when using
V -fold penalization (in particular from V = 2 to V > 5). In the nonparametric case,
when n → +∞, Theorem 5 shows that C?n ∼ 1. On the contrary, in the parametric
case, when n → +∞, it is known that a BIC-type penalty performs better, hence
C?n → +∞. For a finite sample size, Section 6 and Liu and Yang (2011) show that
some nonparametric settings can be “practically parametric”, that is, C?n can be much
larger than 1.

• the variance of increments C(m)−C(m′) drives the performance m̂(C) at second order,
according to the heuristic of Section 4, which suggests that this variance should be
minimized, at least for a given “good enough” value of the overpenalization factor C.

• the computational complexity of the procedure m̂(C), that we want to minimize—for a
given statistical performance—, or on which some upper bound is given—fixed budget.

V -fold cross-validation. The paper analyzes how the aboves three terms depend on V
when C = CVFCV

V is a V -fold cross-validation procedure, under assumption (Reg). First,
by Lemma 1, its overpenalization factor is CVF(V ) = 1 + 1/[2(V − 1)] ∈ [1, 3/2], which
decreases to 1 as V increases to +∞. Second, by Theorem 6, its variance decreases as V
increases. Theoretical and empirical arguments in Sections 5 and 6 show that the variance
almost reaches its minimal value by taking, say, V = 5 or V = 10. Third, by Section 7,
its computational complexity is proportional to V in general; in the least-squares density
estimation setting, it can be reduced to (n+ V 2) Card(Λm) .

These three results can explain why the most common advices for choosing V in the
literature (for instance Breiman and Spector, 1992; Hastie et al., 2009, Section 7.10.1)
are between V = 5 and V = 10. Indeed, taking V larger does not reduce the variance
significantly—with almost no impact on the risk of the final estimator—, and it reduces the
overpenalization factor although C?n is often larger than CVF(10) = 19/18 or CVF(5) = 9/8.
So, if C?n is not much larger than 1 + 1/8, which is likely to occur in many nonparametric
settings, taking V = 5 or 10 can be close to be optimal.

Nevertheless, other situations can occur, for instance in (practically) parametric settings
where C?n is much larger, possibly leading to the failure of the heuristic “5 6 V 6 10 is almost
optimal”. More generally, understanding precisely how CVFCV

V performs as a function of V
seems to be a difficult question: V influences the performance in two opposite directions
simultaneously, through the bias and the variance, so that various behaviours can result
from this coupling of bias and variance, as shown in the simulation experiments.

V -fold penalization. Lemma 1 shows that a natural way to solve this difficulty is to
consider instead a V -fold penalization procedure CpenVF

(C,V ) , with overpenalization factor C > 0.

The value C = CVF(V ) corresponds to V -fold cross-validation, but any other value of C
can also be considered, making it easier to understand. Indeed, the overpenalization factor
is directly given by C, while the variance and computational complexity of CpenVF

(C,V ) vary with
V—independently from C—exactly as for V -fold cross-validation. So, V should be taken
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as large as possible—depending on the maximal computational budget available—, while C
should be taken as close as possible to C?n.

Compared to V -fold cross-validation, another interest of V -fold penalization is the im-
provement of the performance for a given computational cost, that is, a given value of V ,
because it is then possible to take C closer to C?n than CVF(V ). This is especially true in
(practically) parametric settings for which C?n > 3/2 > CVF(V ) for all V > 2.

Data-driven overpenalization factor C. Although the paper shows that choosing
well C is a key practical problem, making an optimal data-driven choice of C remains an
open question which deserves to be studied, even independently from the analysis of cross-
validation procedures. We postpone such a study to future works, but we can already make
two suggestions. First, an external cross-validation loop can be used for choosing C, if the
computational power is not a limitation. Second, a procedure built for choosing between
AIC and BIC can be used in order to detect whether C should be close to 1 or significantly
larger (see, for instance, Liu and Yang, 2011 and references therein).
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A Proofs

Before proving the main results stated in the paper, let us recall two simple results that
we use repeatedly in the paper. First, if (bλ)λ∈Λm is a family of real numbers such that∑

λ∈Λm
b2λ <∞, then

sup∑
λ∈Λm

a2
λ61

( ∑
λ∈Λm

aλbλ

)2

=
∑
λ∈Λm

b2λ . (30)
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The left-hand side is smaller than the right-hand side by Cauchy-Schwarz inequality, and
considering aλ = bλ/(

∑
λ′∈Λm

b2λ′)
1/2 shows that the converse inequality holds true. Second,

for any probability distribution Q on X ,∑
λ∈Λm

(Qψλ)ψλ ∈ argmin
t∈Sm

{
Qγ(t)

}
, (31)

a result which provides in particular a formula for ŝm and for sm, by taking Q = Pn and
Q = P , respectively.

A.1 Proof of Lemma 1

Let us first recall here the proof of Eq. (7)—coming from Arlot (2008)—for the sake of
completeness. By (Reg),

Pn − P
(BcK)
n =

1

V

(
P (BK)
n − P (BcK)

n

)
and P (BK)

n − Pn =
V − 1

V

(
P (BK)
n − P (BcK)

n

)
,

so that

C1,B(m) := Pnγ(ŝm) + penVF(m,B, V − 1)

= Pnγ(ŝm) +
V − 1

V 2

V∑
K=1

[(
P (BK)
n − P (BcK)

n

)
γ
(
ŝ

(BcK)
m

)]
= Pnγ(ŝm) +

1

V

V∑
K=1

[(
P (BK)
n − Pn

)
γ
(
ŝ

(BcK)
m

)]
= critcorr,VFCV(m,B) .

Eq. (8) and (9) follow simultaneously from Eq. (35) below. Let E be a set of subsets of
JnK such that

∀A ∈ E , |A| = p and
1

|E|
∑
A∈E

P (Ac)
n = Pn . (32)

Let us consider the associated penalty

penE(m,C) =
C

|E|
∑
A∈E

(
Pn − P (Ac)

n

)
γ
(
ŝ(Ac)
m

)
=

2C

|E|
∑
A∈E

(
P (Ac)
n − Pn

)(
ŝ(Ac)
m

)
and the associated cross-validation criterion

critE(m) =
1

|E|
∑
A∈E

P (A)
n γ

(
ŝ(Ac)
m

)
.

When E = B, we get the V -fold penalty penVF = penE and the V -fold cross-validation
criterion critVFCV = critE , and Eq. (32) holds true with p = n/V under assumption (Reg).
When E = Ep := {A ⊂ JnK s.t. |A| = p}, Eq. (32) always holds true and we get the leave-p-
out penalty penLPO = penE and the leave-p-out cross-validation criterion critLPO = critE .
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Let (ψλ)λ∈Λm be some orthonormal basis of Sm in L2(µ). On the one hand, using
Eq. (32), we get

penE(m,C) =
2C

|E|
∑
A∈E

(
P (Ac)
n − Pn

)(
ŝ(Ac)
m

)
=

2C

|E|
∑
A∈E

∑
λ∈Λm

[(
P (Ac)
n (ψλ)− Pn(ψλ)

)
P (Ac)
n (ψλ)

]
=

2C

|E|
∑
λ∈Λm

[∑
A∈E

(
P (Ac)
n (ψλ)

)2
− Pn(ψλ)

∑
A∈E

P (Ac)
n (ψλ)

]

=
2C

|E|
∑
λ∈Λm

∑
A∈E

[(
P (Ac)
n (ψλ)

)2
− (Pn(ψλ))2

]
. (33)

On the other hand, using that P
(A)
n = n

pPn −
n−p
p P

(Ac)
n by Eq. (32),

critE(m)− Pnγ(ŝm)

=
1

|E|
∑
A∈E

[
P (A)
n γ

(
ŝ(Ac)
m

)
− Pnγ(ŝm)

]
=

1

|E|
∑
A∈E

[∥∥ŝ(Ac)
m

∥∥2 − 2P (A)
n

(
ŝ(Ac)
m

)
− ‖ŝm‖2 + 2Pn(ŝm)

]
=

1

|E|
∑
A∈E

∑
λ∈Λm

[(
P (Ac)
n (ψλ)

)2
− 2P (A)

n (ψλ)P (Ac)
n (ψλ) +

(
Pn(ψλ)

)2]
=

1

|E|
∑
λ∈Λm

∑
A∈E

[(
2n

p
− 1

)(
P (Ac)
n (ψλ)

)2
− 2n

p
Pn(ψλ)P (Ac)

n (ψλ) +
(
Pn(ψλ)

)2]
=

(
2n

p
− 1

)
1

|E|
∑
λ∈Λm

∑
A∈E

[(
P (Ac)
n (ψλ)

)2
−
(
Pn(ψλ)

)2]
, (34)

where we used again Eq. (32). Comparing Eq. (33) and (34) gives

critE(m) = Pnγ(ŝm) + penE

(
m,

n

p
− 1

2

)
(35)

which implies Eq. (8) and (9). Eq. (10) follows by Lemma A.11 of Lerasle (2012).

We now prove the statements made in Remarks 2–3 below Lemma 1.

Proof of Remark 2 We first note that Eq. (10) can also be deduced from Celisse (2014,
Proposition 2.1), which proves

critLPO(m, p) =
1

n(n− p)
∑
λ∈Λm

 n∑
i=1

ψλ(ξi)
2 − n− p+ 1

n− 1

∑
16i 6=j6n

ψλ(ξi)ψλ(ξj)

 .
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Elementary algebraic computations then show that

critLPO(m, p)− Pnγ(ŝm)

=
2n− p

n2(n− p)
∑
λ∈Λm

 n∑
i=1

ψλ(ξi)
2 − 1

n− 1

∑
16i 6=j6n

ψλ(ξi)ψλ(ξj)

 (36)

hence for any p, p′ ∈ JnK,

n/p− 1

n/p− 1/2

(
critLPO(m, p)− Pnγ(ŝm)

)
=

n/p′ − 1

n/p′ − 1/2

(
critLPO

(
m, p′

)
− Pnγ(ŝm)

)
.

In particular, when p′ = 1, from Eq. (9), since penLPO(m, 1, C) = penLOO(m,C),

penLPO

(
m, p,

n

p
− 1

2

)
=
n/p− 1/2

n/p− 1

n− 1

n− 1/2
penLPO

(
m, 1, n− 1

2

)
= penLOO

(
m, (n− 1)

n/p− 1/2

n/p− 1

)
.

Proof of Remark 3 Note first that the CV estimator of Massart (2007, Sec. 7.2.1, p.
204–205) is defined as the minimizer of

‖ŝm‖2 −
2

n(n− 1)

∑
16i 6=j6n

∑
λ∈Λm

ψλ(ξi)ψλ(ξj)

= Pnγ(ŝm) +
2

n2

∑
λ∈Λm

 n∑
i=1

ψλ(ξi)
2 − 1

n− 1

∑
16i 6=j6n

ψλ(ξi)ψλ(ξj)

 . (37)

On the other hand, from Eq. (36) and (9) with p = 1, we have

penLOO(m,n− 1) =
2

n2

∑
λ∈Λm

 n∑
i=1

ψλ(ξi)
2 − 1

n− 1

∑
16i 6=j6n

ψλ(ξi)ψλ(ξj)

 .

Hence, from Eq. (37), the CV estimator is the minimizer of critcorr,VFCV(m,BLOO). Massart
(2007, Theorem 7.6) studies the minimizers of the criterion

Pnγ(ŝm) +
C

n2

n∑
i=1

∑
λ∈Λm

ψλ(ξi)
2 , (38)

where C = (1 + ε)6 for any ε > 0. Let α = C/n, so that α = (C − α)/(n − 1). Then, the
criterion (38) is equal to

(1− α)Pnγ(ŝm) +
C − α
n2

∑
λ∈Λm

n∑
i=1

ψλ(ξi)
2 − α

n2

∑
λ∈Λm

∑
16i 6=j6n

ψλ(ξi)ψλ(ξj)
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= (1− α)Pnγ(ŝm) +
C − α
n2

∑
λ∈Λm

 n∑
i=1

ψλ(ξi)
2 − 1

n− 1

∑
λ∈Λm

∑
16i 6=j6n

ψλ(ξi)ψλ(ξj)


= (1− α)

[
Pnγ(ŝm) +

C − α
2(1− α)

penLOO(m,n− 1)

]
= (1− α)

[
Pnγ(ŝm) + penLOO

(
m,

C(n− 1)2

2(n− C)

)]
.

A.2 Proof of Proposition 4

Note that the two formulas given for Ψm in the statement of Proposition 4 coincide by
Eq. (30). The proof is decomposed into 3 lemmas.

Lemma 13 Let ξJnK denote i.i.d. random variables taking value in a Polish space X , BJV K
some partition of JnK satisfying (Reg), Sm some separable linear subspace of L2(µ) with
orthonormal basis (ψλ)λ∈Λm and

U(m) :=
1

n2

∑
16k 6=k′6V

∑
i∈Bk

∑
j∈Bk′

∑
λ∈Λm

(
ψλ(ξi)− Pψλ

)(
ψλ(ξj)− Pψλ

)
. (39)

Then, the V -fold penalty is equal to

penVF(m,B, C) =
2C

V − 1
‖sm − ŝm‖2 −

2V C

(V − 1)2
U(m) (40)

and E
[
penVF

(
m,B, V − 1

2

)]
= E

[
‖sm − ŝm‖2

]
=
Dm
2n

. (41)

Proof LetWi = V
V−11i/∈BJ and use the formulation (5) of the V -fold penalty as a resampling

penalty. Then,

penVF(m,B, C) = C EW
[(
Pn − PWn

)(
γ
(
ŝWm
))]

= 2C EW
[(
PWn − Pn

)(
ŝWm
)]

= 2C EW
[(
PWn − Pn

)(
ŝWm − ŝm

)]
by (Reg)

= 2C
∑
λ∈Λm

EW
[((

PWn − Pn
)
(ψλ)

)2
]

= 2C
∑
λ∈Λm

EW
[((

PWn − Pn
)
(ψλ − Pψλ)

)2
]

=
2C

n2

∑
λ∈Λm

∑
16i,j6n

e
(VF)
i,j

(
ψλ(ξi)− Pψλ

)(
ψλ(ξj)− Pψλ

)
(42)
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where e
(VF)
i,j := E[(Wi − 1)(Wj − 1)]. Since E[Wi] = 1 by (Reg) and

WiWj =

(
V

V − 1

)2

1J /∈{J0,J1} if i ∈ BJ0 and j ∈ BJ1 ,

we get that e
(VF)
i,j = (V − 1)−1 if i and j belong to the same block and e

(VF)
i,j = −(V − 1)−2

otherwise. So,

penVF(m,B, C)

=
2C

n2(V − 1)

∑
λ∈Λm

V∑
k=1

∑
(i,j)∈Bk

(
ψλ(ξi)− Pψλ

)(
ψλ(ξj)− Pψλ

)
− 2C

(V − 1)2
U(m)

=
2C

V − 1

∑
λ∈Λm

(
(Pn − P )ψλ

)2 − 2CV

(V − 1)2
U(m)

and Eq. (40) follows by Eq. (3). Eq. (41) directly follows from Eq. (40).

Lemma 14 Let ξJnK be i.i.d. random variables taking values in a Polish space X with
common density s ∈ L∞(µ), Sm a separable linear subspace of L2(µ) and denote by (ψλ)λ∈Λm

an orthonormal basis of Sm. Let Bm = {t ∈ Sm s.t. ‖t‖ 6 1}, Dm =
∑

λ∈Λm
P
(
ψ2
λ

)
−‖sm‖2

and assume that bm = supt∈Bm‖t‖∞ <∞. An absolute constant κ exists such that, for any
x > 0, with probability larger than 1− 2e−x, we have for every ε > 0,∣∣∣∣‖sm − ŝm‖2 − Dmn

∣∣∣∣ 6 ε
Dm
n

+ κ

(
‖s‖∞x
(ε ∧ 1)n

+
b2mx

2

(ε ∧ 1)3n2

)
.

Proof By Eq. (3), ‖sm−ŝm‖2 = supt∈Bm [(Pn − P )(t)]2 has expectation Dm/n. In addition,
for any t ∈ Bm,

Var
(
t(ξ1)

)
6
∫
R
t2sdµ 6 ‖s‖∞‖t‖2 6 ‖s‖∞ , (43)

which gives the conclusion thanks to Proposition 29 in Section B.5.

Lemma 15 Assume that ξJnK is a sequence of i.i.d. real-valued random variables with
common density s ∈ L∞(µ) and BJV K is some partition of JnK satisfying (Reg). Let Sm
denote a separable subspace of L2(µ) with orthonormal basis (ψλ)λ∈Λm such that

bm := sup
t∈Sm,‖t‖61

‖t‖∞ < +∞ .

Let U(m) be the U -statistics defined by Eq. (39). Using the notations of Lemma 14, an
absolute constant κ exists such that, with probability larger than 1− 6e−x,

∣∣U(m)
∣∣ 6 3

√
(V − 1)‖s‖∞Dmx√

V n
+ κ

(
‖s‖∞x
n

+

(
b2m + ‖s‖2

)
x2

n2

)
.
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Hence, an absolute constant κ′ exists such that, for any x > 0, with probability larger than
1− 6e−x, for any θ ∈ (0, 1],

∣∣U(m)
∣∣ 6 θ

Dm
n

+ κ′

(
‖s‖∞x
θn

+

(
b2m + ‖s‖2

)
x2

n2

)
.

Proof For any x, y ∈ R and i, j ∈ JnK, let us define

Um(x, y) =
∑
λ∈Λm

(
ψλ(x)− Pψλ

)(
ψλ(y)− Pψλ

)
and gi,j(x, y) = Um(x, y)1{∃k,k′∈JV K s.t. k 6=k′, i∈Bk, j∈Bk′}

so that U(m) =
2

n2

n∑
i=2

i−1∑
j=1

gi,j(ξi, ξj) =
2

n2

V∑
k=2

k−1∑
k′=1

∑
i∈Bk,j∈Bk′

Um(ξi, ξj) .

From Houdré and Reynaud-Bouret (2003, Theorem 3.4), an absolute constant κ exists such
that, for any x > 0 and ε ∈ (0, 1],

P

(
|U(m)| > 1

n2

[
(4 + ε)A

√
x+ κ

(
Bx

ε
+
Cx3/2

ε3
+
Dx2

ε3

)])
6 6e−x . (44)

A
2

=

n∑
i=2

i−1∑
j=1

E
[
gi,j(ξi, ξj)

2
]
,

B = sup

E

 n∑
i=2

i−1∑
j=1

ai(ξi)bj(ξj)gi,j(ξi, ξj)


such that E

[
n∑
i=1

a2
i (ξi)

]
6 1 and E

[
n∑
i=1

b2i (ξi)

]
6 1

}
,

C
2

= sup
x∈R

{
n∑
i=2

E
[
gi,1(ξi, x)2

]}
and D = sup

x,y

∣∣gi,j(x, y)
∣∣ .

It remains to upper bound these different terms for proving the first inequality, and the
second inequality follows. First,

E
[
Um(ξ1, ξ2)2

]
=

∑
λ∈Λm,λ′∈Λm

E
[(
ψλ(ξ1)− Pψλ

)(
ψλ′(ξ1)− Pψλ′

)]2

=
∑
λ∈Λm

 sup∑
λ′∈Λm

a2
λ′61

E

[(
ψλ(ξ1)− Pψλ

) ∑
λ′∈Λm

aλ′
(
ψλ′(ξ1)− Pψλ′

)]2

=
∑
λ∈Λm

(
sup
t∈Bm

E
[(
ψλ(ξ1)− Pψλ

)(
t(ξ1)− P (t)

)])2
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6 Dm sup
t∈Bm

E
[(
t(ξ1)− P (t)

)2]
6 ‖s‖∞Dm by Eq. (43) (45)

so that

A
2

=
V∑
k=2

k−1∑
k′=1

∑
i∈Bk,j∈Bk′

E
[
Um(ξi, ξj)

2
]
6
n2(V − 1)

2V
× ‖s‖∞Dm .

Second, let a1, . . . , an, b1, . . . , bn be functions in L2(µ) such that

E

[
n∑
i=1

a2
i (ξi)

]
6 1 and E

[
n∑
i=1

b2i (ξi)

]
6 1 .

Using successively the independence of the ξi and that αβ 6 (α2 +β2)/2 for every α, β ∈ R,
for every i 6= j,∣∣∣E[ai(ξi)bj(ξj)Um(ξi, ξj)

]∣∣∣
=

∣∣∣∣∣ ∑
λ∈Λm

E
[
ai(ξi)

(
ψλ(ξi)− Pψλ

)]
E
[
bj(ξj)

(
ψλ(ξj)− Pψλ

)]∣∣∣∣∣
6

1

2

∑
λ∈Λm

(
E
[
ai(ξi)

(
ψλ(ξi)− Pψλ

)]2
+ E

[
bj(ξj)

(
ψλ(ξj)− Pψλ

)]2
)
. (46)

Now, we have, for every i ∈ JnK, using Eq. (30), Cauchy-Schwarz inequality and the fact
that for every t ∈ L2(µ), Var(t(ξ1)) 6 ‖s‖∞‖t‖2,

∑
λ∈Λm

E
[
ai(ξi)

(
ψλ(ξi)− Pψλ

)]2
= sup∑

λ∈Λm
t2λ61

E

ai(ξi) ∑
λ∈Λm

tλψλ(ξi)− P (tλψλ)

2

= sup
t∈Bm

(
E
[
ai(ξi)

(
t(ξi)− P (t)

)])2

6 E
[
ai(ξi)

2
]

sup
t∈Bm

Var
(
t(ξ1)

)
6 E

[
ai(ξi)

2
]
‖s‖∞ .

Plugging this bound in (46) yields∣∣∣E[ai(ξi)bj(ξj)Um(ξi, ξj)
]∣∣∣ 6 ‖s‖∞

2

(
E
[
ai(ξi)

2
]

+ E
[
bj(ξj)

2
])

(47)

hence
B 6 n‖s‖∞ .

Third, for every x, y ∈ R, let gx(y) =
∑

λ∈Λm
(ψλ(x)− Pψλ)ψλ(y) so that

‖gx‖2 =
∑
λ∈Λm

(
ψλ(x)− Pψλ

)2
6 2

∑
λ∈Λm

(
ψλ(x)

)2
+ 2

∑
λ∈Λm

(Pψλ)2
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= 2Ψm(x)2 + 2‖sm‖2 6 2
(
b2m + ‖sm‖2

)
.

Then,

E
[
Um(ξi, x)2

]
= Var

(
gx(ξ1)

)
6 ‖gx‖2‖s‖∞ 6 2

(
b2m + ‖sm‖2

)
‖s‖∞ (48)

and, using (Reg), we get that

C
2
6

2n(V − 1)

V

(
b2m + ‖sm‖2

)
‖s‖∞ .

Fourth, from Cauchy-Schwarz inequality, for every x, y ∈ X ,

Um(x, y) 6 sup
x∈R

∑
λ∈Λm

(
ψλ(x)− Pψλ

)2
6 2
(
b2m + ‖sm‖2

)
. (49)

Hence,

D 6 2
(
b2m + ‖sm‖2

)
and we get the desired result.

Let us conclude the proof of Proposition 4. From Lemmas 13 and 15, an absolute
constant κ exists such that, with probability larger than 1− 6e−x, for every ε ∈ (0, 1],∣∣∣penVF(m,V, V − 1)− 2‖sm − ŝm‖2

∣∣∣
=

2V

V − 1

∣∣U(m)
∣∣ 6 ε

Dm
n

+ κ

(
‖s‖∞x
εn

+

(
b2m + ‖s‖2

)
x2

n2

)
. (50)

Using in addition Lemma 14, we get that an absolute constant κ′ exists such that with
probability larger than 1− 8e−x, for every ε ∈ (0, 1], Eq. (50) holds true and∣∣∣∣penVF(m,V, V − 1)− 2Dm

n

∣∣∣∣ 6 ε
Dm
n

+ κ

(
‖s‖∞x
εn

+

(
b2mε

−3 + ‖s‖2
)
x2

n2

)
,

which implies Eq. (15) and (16).

A.3 Proof of Theorem 5

By construction, the penalized estimator satisfies, for any m ∈Mn,

‖ŝm̂ − s‖2 −
(

penid(m̂)− penVF

(
m̂, V, C(V − 1)

))
6 ‖ŝm − s‖2 +

(
penVF

(
m,V,C(V − 1)

)
− penid(m)

)
.

Now, by Eq. (2) and (3), penid(m) = 2‖ŝm − sm‖2 + 2(Pn − P )(sm), hence

‖ŝm̂ − s‖2 6 ‖ŝm − s‖2 +
[
penVF

(
m,V,C(V − 1)

)
− 2‖sm − ŝm‖2

]
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−
[
penVF

(
m̂, V, C(V − 1)

)
− 2‖sm̂ − ŝm̂‖2

]
+ 2(Pn − P )(sm − sm̂)

= ‖ŝm − s‖2 +
[
penVF

(
m,V,C(V − 1)

)
− 2C‖sm − ŝm‖2

]
−
[
penVF

(
m̂, V, C(V − 1)

)
− 2C‖sm̂ − ŝm̂‖2

]
+ 2(Pn − P )(sm − sm̂)

+ 2(C − 1)
(
‖ŝm − sm‖2 − ‖ŝm̂ − sm̂‖2

)
. (51)

Let x > 0 and xn = log(|Mn|) + x. A union bound in Proposition 4 gives

P
(
∃m ∈Mn, ε ∈ (0, 1] s.t.

∣∣penVF(m,V, V − 1)− 2‖sm − ŝm‖2
∣∣

> ε
Dm
n

+ κρ1(m, ε, s, xn, n)

)
6 8

∑
m∈Mn

e−xn = 8e−x
∑

m∈Mn

1

|Mn|
= 8e−x

(52)

and a union bound in Lemma 14 gives

P
(
∃m ∈Mn, ε ∈ (0, 1] s.t.

∣∣∣∣‖ŝm − sm‖2 − Dmn
∣∣∣∣ > ε

Dm
n

+ κρ1(m, ε, s, xn, n)

)
6 2

∑
m∈Mn

e−xn = 2e−x . (53)

It remains to bound 2(Pn − P )(sm − sm′) uniformly over m and m′ in Mn. In order to
apply Bernstein’s inequality, we first bound the variance and the sup norm of sm − sm′ for
some m,m′ ∈Mn. Since s ∈ L∞(µ),

Var
(
(sm − sm′)(ξ1)

)
6 ‖s‖∞‖sm − sm′‖2 .

Under assumption (H2)

‖sm − sm′‖∞ 6 ‖sm‖∞ + ‖sm′‖∞ 6 2a .

Under assumption (H2′), sm − sm′ ∈ Sm′′ for some m′′ ∈ {m,m′}, hence by (H1) we have

‖sm − sm′‖∞ 6 bm′′‖sm − sm′‖ 6
√
n‖sm − sm′‖ .

Therefore, by Bernstein’s inequality, for any x > 0, for any m,m′, with probability larger
than 1− e−x, for any ε ∈ (0, 1],

(Pn − P )(sm − sm′) 6

√
2xVar

(
(sm − sm′)(ξ1)

)
n

+
‖sm − sm′‖∞x

3n

6 ε‖sm − sm′‖2 +
κ
(
Ax+ x2

)
εn

.

for some absolute constant κ, where the last inequality is obtained by considering separately
the cases (H2) and (H2′), and by using that for every α, β, ε > 0, αβ 6 εα2 + (β2)/(4ε).
A union bound gives that for any x > 0, with probability at least 1− |Mn|2e−x, for every
m,m′ ∈Mn and every ε ∈ (0, 1],

(Pn − P )(sm − sm′) 6 ε‖sm − sm′‖2 +
κ
(
Ax+ x2

)
εn

(54)
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for some absolute constant κ. Plugging Eq. (52), (53) and (54) into Eq. (51) and using that
C ∈ (1/2, 2] yields that, with probability 1− (|Mn|2 + 10)e−x, for any ε ∈ (0, 1/2],

(1− 4ε)‖ŝm̂ − s‖2 6 (1 + 4ε)‖ŝm − s‖2 + (δ+ + 4ε)
Dm
n

+ (δ− + 3ε)
Dm̂
n

+ κ

(
ρ1(m, ε, s, x, n) + ρ1(m̂, ε, s, x, n) +

Ax+ x2

εn

)
6 (1 + δ+ + 16ε)‖ŝm − s‖2 + (δ− + 8ε)‖ŝm̂ − sm‖2

+ κ′
(
ρ1(m, ε, s, x, n) + ρ1(m̂, ε, s, x, n) +

Ax+ x2

εn

)
for some absolute constants κ, κ′ > 0. Since bm 6

√
n for all m ∈Mn, we get

2 sup
m∈Mn

ρ1(m, ε, s, x, n) +
Ax+ x2

εn
6

(
2‖s‖∞ +A

)
x

εn
+

(
3 +

2‖s‖2

n

)
x2

ε3n

for every ε ∈ (0, 1]. Hence, with probability larger than 1 − (|Mn|2 + 10)e−x, for any
ε ∈ (0, 1],

1− δ− − ε
1 + δ+ + ε

‖ŝm̂ − s‖2 6 ‖ŝm − s‖2 + κ

[(
‖s‖∞ +A

)
x

εn
+

(
1 +
‖s‖2

n

)
x2

ε3n

]
(55)

for some absolute constant κ > 0. To conclude, we remark that Eq. (17) clearly holds true
when |Mn| = 1, so we can assume that |Mn| > 2. Therefore, for every x > 0, Eq. (55)
holds true with probability at least

1−
(
|Mn|2 + 10

)
e−x > 1− |Mn|4e−x > 1− e−x+4 log |Mn| .

So, if we replace x by 4xn > x+4 log |Mn| in Eq. (55), we get that Eq. (17) holds true with
probability at least 1 − e−x for some absolute constant κ > 0, slightly larger than the one
appearing in Eq. (55).

A.4 Proof of Theorem 6

For every x, y ∈ X and m ∈ {m1,m2}, let Km(x, y) :=
∑

λ∈Λm
ψλ(x)ψλ(y) and remark that

Um(x, y) =
∑
λ∈Λm

(
ψλ(x)− Pψλ

)(
ψλ(y)− Pψλ

)
= Km(x, y)− sm(x)− sm(y) + ‖sm‖2 . (56)

For every x ∈ X , Km(x, x) = Ψm(x) by Eq. (30), Um(x, x) = Ψm(x)− 2sm(x) + ‖sm‖2 and,
by independence, for every m,m′ ∈ {m1,m2}

Cov
(
Um(ξ1, ξ2), Um′(ξ1, ξ2)

)
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=
∑

λ∈Λm,λ′∈Λm′

E
[(
ψλ(ξ1)− Pψλ

)(
ψλ(ξ2)− Pψλ

)(
ψλ′(ξ1)− Pψλ′

)(
ψλ′(ξ2)− Pψλ′

)]
=

∑
λ∈Λm,λ′∈Λm′

E
[(
ψλ(ξ1)− Pψλ

)(
ψλ′(ξ1)− Pψλ′

)]2
= β

(
m,m′

)
,

hence, Var(Um1(ξ1, ξ2)− Um2(ξ1, ξ2)) = B(m1,m2). For every m ∈ {m1,m2}, by Eq. (56),

Pnγ(ŝm) = −
∑
λ∈Λm

(Pnψλ)2 = − 1

n2

∑
16i,j6n

Km(ξi, ξj) (57)

= − 1

n2

∑
16i,j6n

Um(ξi, ξj)−
2

n

n∑
i=1

sm(ξi) + ‖sm‖2 .

Moreover, by Eq. (42) in the proof of Lemma 13,

penVF

(
m,B, C(V − 1)

)
=

2C

n2

∑
16i,j6n

E
(VF)
i,j Um(ξi, ξj)

where ∀I, J ∈ {1, . . . , V }, ∀i ∈ BI , ∀j ∈ BJ , E
(VF)
i,j = 1−

V 1I 6=J
V − 1

= (V − 1)e
(VF)
i,j .

It follows that

CC,B(m) =
∑

16i,j6n

2CE
(VF)
i,j − 1

n2
Um(ξi, ξj) +

n∑
i=1

−2sm(ξi)

n
+ ‖sm‖2 . (58)

Hence, up to the deterministic term ‖sm‖2, CC,B(m) has the form of a function Cm defined
in Lemma 16 below with

ωi,j =
2CE

(VF)
i,j − 1

n2
, fm =

−2sm
n

and σi = 1 .

It remains to evaluate the quantities appearing in Lemma 16 for these weights and function.
First,

n∑
i=1

E
(VF)
i,i = n and

n∑
i=1

(
E

(VF)
i,i

)2
= n .

Second, by (Reg), ∑
16i 6=j6n

(
E

(VF)
i,j

)
= n

( n
V
− 1
)

+
−1

(V − 1)
× n2(V − 1)

V
= −n

and
∑

16i 6=j6n

(
E

(VF)
i,j

)2
= n

[( n
V
− 1
)

+
n

V (V − 1)

]
=

n2

V − 1
− n .

It follows that ∑
16i6n

ω2
i,i =

(2C − 1)2

n3
,

n∑
i=1

ωi,iσi =
2C − 1

n
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and
∑

16i 6=j6n
ωi,jωj,i =

∑
16i 6=j6n

ω2
i,j =

1

n2

(
1 +

4C2

V − 1
− (2C − 1)2

n

)
.

Hence, from Lemma 16, for every m,m′ ∈ {m1,m2},

Cov
(
CC,B(m), CC,B(m′)

)
=

2

n2

(
1 +

4C2

V − 1
− (2C − 1)2

n

)
β
(
m,m′

)
+

(2C − 1)2

n3
Cov

(
Um(ξ, ξ), Um′(ξ, ξ)

)
+

4

n
Cov

(
sm(ξ), sm′(ξ)

)
− 2(2C − 1)

n2

[
Cov

(
Um(ξ, ξ), sm′(ξ)

)
+ Cov

(
Um′(ξ, ξ), sm(ξ)

)]
=

2

n2

(
1 +

4C2

V − 1
− (2C − 1)2

n

)
β
(
m,m′

)
+

1

n
Cov

(
2C − 1

n
Um(ξ, ξ)− 2sm(ξ),

2C − 1

n
Um′(ξ, ξ)− 2sm′(ξ)

)
.

Therefore,

Var
(
CC,B(m1)

)
=

2

n2

(
1 +

4C2

V − 1
− (2C − 1)2

n

)
β(m1,m1)

+
1

n
Var

(
2C − 1

n
Um1(ξ, ξ)− 2sm1(ξ)

)
and Var(CC,B(m1)− CC,B(m2)) =

2

n2

(
1 +

4C2

V − 1
− (2C − 1)2

n

)
B(m1,m2)

+
1

n
Var

(
2(sm1 − sm2)(ξ)− 2C − 1

n

(
Um1(ξ, ξ)− Um2(ξ, ξ)

))
=

2

n2

(
1 +

4C2

V − 1
− (2C − 1)2

n

)
Var
(
Um1(ξ, ξ)− Um2(ξ1, ξ2)

)
+

4

n
Var

((
1 +

2C − 1

n

)
(sm1 − sm2)(ξ)− 2C − 1

2n

(
Ψm1(ξ)−Ψm2(ξ)

))
,

which concludes the proof.

Lemma 16 Let Cm =
∑

16i,j6n ωi,jUm(ξi, ξj) +
∑n

i=1 σifm(ξi), where Um is defined by

Eq. (56) and fm ∈ L2(µ). For every m,m′, we have

Cov(Cm, Cm′) =

 ∑
16i 6=j6n

ω2
i,j + ωi,jωj,i

Cov
(
Um(ξ1, ξ2), Um′(ξ1, ξ2)

)
+

(
n∑
i=1

ω2
i,i

)
Cov

(
Um(ξ1, ξ1), Um′(ξ1, ξ1)

)
+

(
n∑
i=1

ωi,iσi

)[
Cov

(
Um(ξ1, ξ1), fm′(ξ1)

)
+ Cov

(
Um′(ξ1, ξ1), fm(ξ1)

)]
46



+

(
n∑
i=1

σ2
i

)
Cov

(
fm(ξ1), fm′(ξ1)

)
.

Proof We develop the covariance to get

Cov(Cm, Cm′) =
∑

16i,j,k,`6n

ωi,jωk,` Cov
(
Um(ξi, ξj), Um′(ξk, ξ`)

)
+

∑
16i,j,k6n

ωi,jσk Cov
(
Um(ξi, ξj), fm′(ξk)

)
+

∑
16i,j,k6n

ωi,jσk Cov
(
Um′(ξi, ξj), fm(ξk)

)
+

∑
16i,j6n

σiσj Cov
(
fm(ξi), fm′(ξj)

)
.

The proof is then concluded with the following remarks, which rely on the fact that the
random variables ξJnK are independent and identically distributed.

1. Cov
(
fm(ξi), fm′(ξj)

)
= 0 unless i 6= j, therefore

∑
16i,j6n

σiσj Cov
(
fm(ξi), fm′(ξj)

)
=

(
n∑
i=1

σ2
i

)
Cov

(
fm(ξ1), fm′(ξ1)

)
.

2. By definition (56) of Um, Cov
(
Um(ξi, ξj), fm′(ξk)

)
= 0 unless i = j = k, hence

∑
16i,j,k6n

ωi,jσk Cov
(
Um(ξi, ξj), fm′(ξk)

)
=

(
n∑
i=1

ωi,iσi

)
Cov

(
Um(ξ1, ξ1), fm′(ξ1)

)
.

3. By definition (56) of Um, Cov
(
Um(ξi, ξj), Um(ξk, ξl)

)
= 0 unless i = j = k = ` or

i = k 6= j = ` or i = ` 6= j = k. It follows that∑
16i,j,k,`6n

ωi,jωk,` Cov
(
Um(ξi, ξj), Um′(ξk, ξ`)

)

=

 ∑
16i 6=j6n

ω2
i,j + ωi,jωj,i

Cov
(
Um(ξ1, ξ2), Um′(ξ1, ξ2)

)
+

(
n∑
i=1

ω2
i,i

)
Cov

(
Um(ξ1, ξ1), Um′(ξ1, ξ1)

)
.
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Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration Inequalities: A
Nonasymptotic Theory of Independence. Oxford University Press, Oxford, 2013.

Leo Breiman and Philip Spector. Submodel Selection and Evaluation in Regression. The
X-Random Case. International Statistical Review, 60(3):291–319, 1992.

Florentina Bunea, Alexandre B. Tsybakov, Marten H. Wegkamp, and Adrian Barbu. Spades
and mixture models. The Annals of Statistics, 38(4):2525–2558, 2010.

Prabir Burman. A comparative study of ordinary cross-validation, v-fold cross-validation
and the repeated learning-testing methods. Biometrika, 76(3):503–514, 1989.

Prabir Burman. Estimation of optimal transformations using v-fold cross validation and
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B Supplementary Material

The supplementary material is organized as follows. Section B.1 gives complementary com-
putations of variances. Then, results concerning hold-out penalization are detailed in Sec-
tion B.3, with the proof of the oracle inequality stated in Section 8.2 (Theorem 12) and
an exact computation of the variance. Section B.4 provides complements on the computa-
tional aspects stated in Section 7. In particular, we state and analyse the basic algorithm
for computing the V -fold criteria and we give the proof of Proposition 8. A useful concen-
tration inequality is recalled in Section B.5. Finally, some simulation results are detailed in
Section B.6, as a supplement to the ones of Section 6.

B.1 Additional Variance Computations

Proposition 17 Let (ψλ)λ∈Λm1
and (ψλ)λ∈Λm2

be two finite orthonormal families of vectors

of L4(µ). Assume that B satisfies (Reg) and, for any m ∈ {m1,m2}, let

Cid(m) = Pnγ(ŝm) + E
[
penid(m)

]
.

Then, with the notation of Theorem 6,

Var
(
Cid(m1)

)
=

2(n− 1)

n3
β(m1,m1) +

2

n
Var

((
1− 1

n

)
sm1(ξ) +

1

2n
Ψm1(ξ)

)
.

We also have

Var
(
Cid(m1)− Cid(m2)

)
=

2(n− 1)

n3
B(m1,m2)

+
2

n
Var

((
1− 1

n

)(
sm1(ξ)− sm2(ξ)

)
+

1

2n

(
Ψm1(ξ)−Ψm2(ξ)

))
.

Proof Simply notice that

Var
(
Cid(m1)

)
= Var

(
Pnγ(ŝm1)

)
.

Therefore, from (57), the variance of Cid(m1) is the one of

− 1

n2

∑
16i,j6n

Um1(ξi, ξj)−
n∑
i=1

2sm1(ξi)

n
.

so that, by Lemma 16,

Var
(
Cid(m1)

)
=

2(n− 1)

n3
β(m1,m1) +

1

n3
Var
(
Ψm1(ξ)− 2sm1(ξ)

)
+

4

n2

n∑
i=1

Cov
(
Ψm1(ξ)− 2sm1(ξ), sm1(ξ)

)
+

4

n
Var
(
sm1(ξ)

)
=

2(n− 1)

n3
β(m1,m1) +

2

n
Var

((
1− 1

n

)
sm1(ξ) +

1

n
Ψm1(ξ)

)
.

The variance of the increments follows from the same computations.
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B.1.1 Evaluation of the Terms in the Variance Formula

The following proposition gives a formula for the terms appearing in Theorem 6 and Propo-
sition 17 which does not depend on the basis (ψλ)λ∈Λm .

Proposition 18 For any m1,m2 ∈Mn, we have

β(m1,m2) = nCov
(
ŝm1(ξ), ŝm2(ξ)

)
− (n+ 1) Cov

(
sm1(ξ), sm2(ξ)

)
B(m1,m2) = nVar

(
(ŝm1 − ŝm2)(ξ)

)
− (n+ 1) Var

(
(sm1 − sm2)(ξ)

)
, (59)

where ξ denotes a copy of ξ1, independent of ξJnK.

Proof By definition, we have

β(m1,m2) =
∑

λ∈Λm1

∑
λ′∈Λm2

Cov(ψλ(ξ1), ψλ′(ξ1))2

=
∑

λ∈Λm1

∑
λ′∈Λm2

(
P (ψλψλ′)− PψλPψλ′

)2
=

∑
λ∈Λm1

∑
λ′∈Λm2

(
P (ψλψλ′)

)2 − 2
∑

λ∈Λm1

∑
λ′∈Λm2

PψλPψλ′P (ψλψλ′)

+
∑

λ∈Λm1

∑
λ′∈Λm2

(PψλPψλ′)
2

=
∑

λ∈Λm1

∑
λ′∈Λm2

(
P (ψλψλ′)

)2 − 2P (sm1sm2) + ‖sm1‖2‖sm2‖2.

Now, by Eq. (31), we have

Cov
(
ŝm1(ξ), ŝm2(ξ)

)
=

1

n2

∑
16i,j6n

∑
λ∈Λm1

∑
λ′∈Λm2

Cov
(
ψλ(ξi)ψλ(ξ), ψλ′(ξj)ψλ′(ξ)

)
=

1

n

∑
λ∈Λm1

∑
λ′∈Λm2

(
P (ψλψλ′)

)2 − (PψλPψλ′)
2

+
n− 1

n

∑
λ∈Λm1

∑
λ′∈Λm2

(
P (ψλψλ′)− PψλPψλ′

)
PψλPψλ′

=
1

n

∑
λ∈Λm1

∑
λ′∈Λm2

(
P (ψλψλ′)

)2 − 1

n
‖sm1‖2‖sm2‖2 +

n− 1

n
Cov

(
sm1(ξ), sm2(ξ)

)
.

It follows that∑
λ∈Λm1

∑
λ′∈Λm2

(
P (ψλψλ′)

)2
= nCov

(
ŝm1(ξ), ŝm2(ξ)

)
+ ‖sm1‖2‖sm2‖2

− (n− 1) Cov
(
sm1(ξ), sm2(ξ)

)
.

Thus,

β(m1,m2) = nCov
(
ŝm1(ξ), ŝm2(ξ)

)
− (n+ 1) Cov

(
sm1(ξ), sm2(ξ)

)
.

52



Eq. (59) follows.

B.1.2 Evaluation of the Variance in the Regular Histogram Case

The following lemma gives the value of the terms appearing in Theorem 6 for two nested
regular histogram models.

Lemma 19 Let m1 = Λm1 and m2 = Λm2 be two regular partitions of R, as defined by
Example 1 in Section 3.2, so that for i ∈ {1, 2}, for any λ ∈ mi, µ(λ) = d−1

mi . We assume
that m2 is a subpartition of m1, that is, any element of m2 is a subset of an element of m1.
For any m? ∈ {m1,m2}, we define

Tm?(x) =
∑
λ∈m?

(ψλ(x)− Pψλ)2 = sup
t∈Bm?

(
t(x)− Pt

)2
where we recall that Bm? = {t ∈ Sm? / ‖t‖ 6 1} and for any λ ∈ m1∪m2, ψλ = (µ(λ))−1/21λ.
Then, we have

β(m1,m2) = dm1‖sm2‖2 − 2P (sm1sm2) + ‖sm1‖2‖sm2‖2 = P (Tm1sm2) (60)

and B(m1,m2) = P
(
Tm1(sm1 − sm2) + (Tm2 − Tm1)sm2

)
= (dm2 − dm1)‖sm2‖2 + dm1‖sm1 − sm2‖2

− 2 VarP (sm1 − sm2)− ‖sm1 − sm2‖4 .

Proof On the one hand, by definition,

β(m1,m2)

=
∑
λ∈m1

∑
λ′∈m2

(
E
[(
ψλ(ξ1)− Pψλ

)(
ψλ′(ξ1)− Pψλ′

)])2

=
∑
λ∈m1

∑
λ′∈m2

([
P (ψλψλ′)

]2 − 2P (ψλψλ′)PψλPψλ′ + (Pψλ)2(Pψλ′)
2
)

=
∑
λ∈m1

∑
λ′∈m2

[
P (ψλψλ′)

]2 − 2P

((∑
λ∈m1

(Pψλ)ψλ

)
︸ ︷︷ ︸

=sm1

(∑
λ∈m2

(Pψλ)ψλ

)
︸ ︷︷ ︸

=sm2

)

+
∑
λ∈m1

(Pψλ)2

︸ ︷︷ ︸
=‖sm1‖2

∑
λ∈m2

(Pψλ)2

︸ ︷︷ ︸
=‖sm2‖2

.

For computing the first term, we use that ψλψλ′ = 0 if λ ∩ λ′ = ∅ and m2 is a subpartition
of m1, so that∑

λ∈m1

∑
λ′∈m2

[
P (ψλψλ′)

]2
=
∑
λ∈m1

∑
λ′∈m2

λ′⊂λ

[
P (ψλψλ′)

]2
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=
∑
λ∈m1

1

µ(λ)

∑
λ′∈m2

λ′⊂λ

(Pψλ′)
2 = dm1

∑
λ′∈m2

(Pψλ′)
2 = dm1‖sm2‖2

hence

β(m1,m2) = dm1‖sm2‖2 − 2P (sm1sm2) + ‖sm1‖2‖sm2‖2 .

On the other hand, by definition of Tm,

P (Tm1sm2) =
∑
λ∈m1

∑
λ′∈m2

P
(
(ψλ − Pψλ)2ψλ′P (ψλ′)

)
=
∑
λ∈m1

∑
λ′∈m2

(
P (ψ2

λψλ′)(Pψλ′)− 2P (ψλψλ′)(Pψλ)(Pψλ′) + (Pψλ)2(Pψλ′)
2
)

= P

(∑
λ∈m1

ψ2
λ︸ ︷︷ ︸

=dm1

∑
λ′∈m2

(Pψλ′)ψλ′︸ ︷︷ ︸
=sm2

)
− 2P (sm1sm2) + ‖sm1‖2‖sm2‖2

which proves Eq. (60) since P (sm2) = ‖sm2‖2.

Now, we remark that Eq. (60) also gives formulas for β(mi,mi), i ∈ {1, 2}, since mi is
a subpartition of itself. So, the second formula for β(mi,mj) in Eq. (60) yields

B(m1,m2) = P
(
Tm1sm1 + Tm2sm2 − 2Tm1sm2

)
= P

(
Tm1(sm1 − sm2) + (Tm2 − Tm1)sm2

)
.

Similarly, the first formula for β(mi,mj) in Eq. (60) gives

B(m1,m2)

= dm1

(
‖sm1‖2 − ‖sm2‖2

)
+ (dm2 − dm1)‖sm2‖2 − 2P

(
(sm1 − sm2)2

)
+
(
‖sm1‖2 − ‖sm2‖2

)2
= (dm2 − dm1)‖sm2‖2 + dm1‖sm1 − sm2‖2 − 2 VarP (sm1 − sm2)− ‖sm1 − sm2‖4 ,

where we used that P (sm) = ‖sm‖2 and ‖sm1 − sm2‖2 = ‖sm1‖2 − ‖sm2‖2.

B.2 Results on MCCV and Some Other Cross-Validation Criteria

We prove here the results stated in Section 8.1. Note that we here prove slightly more
general results (Theorems 23 and 24), from which Theorems 9 and 10 are corollaries. In
particular, we do not always restrict to MCCV criteria: we always assume (SameSize) and
(Ind) hold true, but we sometimes do not need to have (MCCV) satisfied.
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B.2.1 Preliminary Computations

Our proofs rely on a simple closed-form formula for cross-validation criteria. Let us start
by the hold-out criterion. Let T ⊂ JnK with |T | = n− p, independent from Dn. Then,

critHO(m,T ) = P (T c)
n γ

(
ŝ(T )
m

)
=
∥∥ŝ(T )

m

∥∥2 − 2P (T c)
n

(
ŝ(T )
m

)
=
∥∥ŝ(T )

m − sm
∥∥2

+ ‖sm‖2 + 2
〈
ŝ(T )
m − sm, sm

〉
− 2
(
P (T c)
n − P

)(
ŝ(T )
m − sm

)
− 2P

(
ŝ(T )
m − sm

)
− 2P (T c)

n (sm)

=
∥∥ŝ(T )

m − sm
∥∥2 − 2

(
P (T c)
n − P

)(
ŝ(T )
m − sm

)
− 2P (T c)

n (sm) + ‖sm‖2 (61)

where the last equality uses that

P
(
ŝ(T )
m − sm

)
=
〈
ŝ(T )
m − sm, s

〉
=
〈
ŝ(T )
m − sm, sm

〉
since sm is the orthogonal projection in L2(µ) of sm onto Sm and ŝ

(T )
m − sm ∈ Sm.

The last two terms in the right-hand side of Eq. (61) can be rewritten as

−2P (T c)
n (sm) + ‖sm‖2 = −2

(
P (T c)
n − P

)
(sm)− 2P (sm) + ‖sm‖2

= −2
(
P (T c)
n − P

)
(sm)− ‖sm‖2

since ‖sm‖2 = P (sm). For the first two terms, we write that

‖ŝ(T )
m − sm‖2 − 2

(
P (T c)
n − P

)(
ŝ(T )
m − sm

)
=
∑
λ∈Λm

[(
(P (T )

n − P )(ψλ)
)2 − 2

(
P (T c)
n − P

)
(ψλ)

(
P (T )
n − P

)
(ψλ)

]
=
∑
λ∈Λm

[
1

(n− p)2

∑
16i,j6n

1i∈T, j∈T
(
ψλ(ξi)− Pψλ

)(
ψλ(ξj)− Pψλ

)
− 2

p(n− p)
∑

16i,j6n

1i∈T c, j∈T
(
ψλ(ξi)− Pψλ

)(
ψλ(ξj)− Pψλ

)]

=
∑

16i,j6n

[
1j∈T
n− p

(
1i∈T
n− p

− 21i∈T c

p

)
Um(ξi, ξj)

]

where we recall that for any x, y ∈ X ,

Um(x, y) =
∑
λ∈Λm

(
ψλ(x)−Pψλ

)(
ψλ(y)−Pψλ

)
=
∑
λ∈Λm

ψλ(x)ψλ(y)− sm(x)− sm(y) + ‖sm‖2

is defined by Eq. (56), and that Um(x, x) = Ψm(x)− 2sm(x) + ‖sm‖2.
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Therefore, Eq. (61) can be rewritten as

critHO(m,T ) =
∑

16i,j6n

[
1j∈T
n− p

(
1i∈T
n− p

− 21i∈T c

p

)
Um(ξi, ξj)

]
− 2
(
P (T c)
n − P

)
(sm)− ‖sm‖2

=
∑

16i,j6n

ωHO
i,j (T )Um(ξi, ξj) +

n∑
i=1

σHO
i (T )

(
sm(ξi)− P (sm)

)
− ‖sm‖2 (62)

with

ωHO
i,j (T ) =

1j∈T
n− p

(
1i∈T
n− p

− 21i∈T c

p

)
σHO
i (T ) =

−2

p
1i∈T c .

As a consequence, under assumption (SameSize),

critCV

(
m, (Tj)16j6K

)
=

∑
16i,j6n

ωi,jUm(ξi, ξj) +

n∑
i=1

σi
(
sm(ξi)− P (sm)

)
− ‖sm‖2 (63)

with

ωi,j =
1

B

B∑
K=1

[
1j∈TK
n− p

(
1i∈TK
n− p

−
21i∈T cK
p

)]

σi =
−2

pB

B∑
K=1

1i∈T cK .

Note that Eq. (63) is consistent with previously obtained formulas. For V -fold cross-
validation, under assumption (Reg), Eq. (63) holds with

ωi,j = ωVF
i,j :=

1

n2


V
V−1 if i and j belong to the same block

−
(

V
V−1

)2
otherwise

σi = σVF
i :=

−2

n
,

which can also be obtained from the combination of Eq. (8) in Lemma 1 and Eq. (58). For
the leave-p-out, Eq. (63) holds with

ωi,j = ωLPO
i,j :=

{
1

n(n−p) if i 6= j
−(n−p+1)
n(n−1)(n−p) otherwise

σi = σLPO
i :=

−2

n
,

which can also be obtained from Eq. (10) in Lemma 1 and Eq. (58).
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Using that Um(x, x) = Ψm(x)− 2sm(x) + ‖sm‖2, Eq. (63) can be rewritten as

critC
(
m, (Tj)16j6K

)
=

(
n∑
i=1

ωi,i

)(
Dm − ‖sm‖2

)
− ‖sm‖2 +

n∑
i=1

ωi,i
(
Ψm(ξi)−Dm

)
+

n∑
i=1

(−2ωi,i + σi)
(
sm(ξi)− Psm

)
+

∑
16i 6=j6n

ωi,jUm(ξi, ξj) .

Using (SameSize) we have

n∑
i=1

ωi,i =
1

B(n− p)2

B∑
K=1

n∑
i=1

1i∈TK =
1

n− p
,

and we get

critC
(
m, (Tj)16j6K

)
=
Dm − ‖sm‖2

n− p
− ‖sm‖2 +

n∑
i=1

ωi,i
(
Ψm(ξi)−Dm

)
+

n∑
i=1

(−2ωi,i + σi)
(
sm(ξi)− Psm

)
+

∑
16i 6=j6n

ωi,jUm(ξi, ξj) .

(64)

B.2.2 Concentration Inequalities

In the proof of Theorem 9 in Section B.2.3, given formula (64) for the cross-validation cri-
terion, we need concentration inequalities for the three random sums appearing in Eq. (64).
These are stated and proved in three lemmas below.

Concentration of
∑n

i=1 ωi,i(Ψm(ξi)−Dm).

Lemma 20 Assume that (SameSize), (Ind) and (H1) hold true. Then, for any x > 0,
an event of probability at least 1 − 2e−x exists on which the following holds true: for any
ε ∈ (0, 1], ∣∣∣∣∣

n∑
i=1

ωi,i
(
Ψm(ξi)−Dm

)∣∣∣∣∣ 6 ε
Dm
n− p

+
5x(n+A)

3ε(n− p)2
.

Proof By (Ind), conditionally to (ωi,i)16i6n,
∑n

i=1 ωi,i
(
Ψm(ξi)−Dm

)
is a sum of indepen-

dent real-valued random variables. So, we can apply Bernstein’s inequality.

First, for any i ∈ JnK, using (SameSize),

ωi,i =
1

B

B∑
K=1

1i∈TK
(n− p)2

6
1

(n− p)2

and using Eq. (49),

‖Ψm‖∞ 6 ‖Um‖∞ 6 2
(
b2m + ‖sm‖2

)
,
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so that

ωi,iΨm(ξi) 6 max
16i6n

ωi,i × ‖Ψm‖∞ 6
2
(
b2m + ‖sm‖2

)
(n− p)2

almost surely.
Second, using (SameSize), we have

n∑
i=1

ω2
i,i 6 max

16i6n
ωi,i ×

n∑
i=1

ωi,i 6
1

(n− p)3

and using Eq. (49) again,

E
[
Ψm(ξi)

2
]
6 ‖Ψm‖∞ × P (Ψm) = ‖Ψm‖∞ ×Dm 6 2

(
b2m + ‖sm‖2

)
Dm ,

so that
n∑
i=1

ω2
i,iE
[
Ψm(ξi)

2
]
6

2
(
b2m + ‖sm‖2

)
Dm

(n− p)3
.

Then, by Bernstein’s inequality (Boucheron et al., 2013, Theorem 2.10), conditionally
to (ωi,i)16i6n, an event of probability at least 1− 2e−x exists on which

∣∣∣∣∣
n∑
i=1

ωi,i
(
Ψm(ξi)−Dm

)∣∣∣∣∣ 6 2

√√√√x
(
b2m + ‖sm‖2

)
Dm

(n− p)3
+

2
(
b2m + ‖sm‖2

)
(n− p)2

x

3

6 ε
Dm
n− p

+

(
2

3
+

1

ε

)x(b2m + ‖sm‖2
)

(n− p)2

6 ε
Dm
n− p

+
5

3ε

x(n+A)

(n− p)2

for any ε ∈ (0, 1], where we used that b2m 6 n by (H1), and that ‖sm‖2 6 ‖s‖2 6 ‖s‖∞ 6 A.
The result follows by integrating this conditional concentration inequality with respect to
(ωi,i)16i6n.

Concentration of
∑n

i=1(−2ωi,i + σi)(sm(ξi)− Psm).

Lemma 21 Assume that (SameSize) and (Ind) hold true. Then, for any x > 0, an event
of probability at least 1− e−x exists on which the following holds true: for any ε ∈ (0, 1],

n∑
i=1

(−2ωi,i + σi)
(
sm(ξi)− Psm − sm′(ξi)− Psm′

)
6 ε‖sm − sm′‖2 +R21

n (x, ε, π∗, A)

(65)

where the remainder term depends on the additional assumption that we make. If (H2)
holds true, then

R21
n (x, ε, π∗, A) :=

16Ax

3ε

(
1

(n− p)2
+
π?

p

)
.
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If (H1) and (H2′) hold true, then, some numerical constant κ > 0 exists such that

R21
n (x, ε, π∗, A) :=

κ

ε

[
Ax

(
1

(n− p)2
+
π?

p

)
+ x2n

(
1

(n− p)2
+
π?

p

)2
]
.

Before proving Lemma 21, let us introduce some useful notation: given a sequence T1, . . . , TB
of subsets of JnK, for every i, j ∈ JnK, we define

πi =
1

B

B∑
K=1

1i∈T cK πi,j =
1

B

B∑
K=1

1i∈T cK1j∈T
c
K

and π∗ = max
i=1,...,n

πi .

Note that, assuming (SameSize), we have

0 6 πi,j 6 min(πi, πj) 6 π∗ 6 1
n∑
i=1

πi = p

n∑
i=1

πi,j = pπj 6 pπ∗ and
∑

16i,j6n

πi,j = p2 .

(66)

Proof of Lemma 21 By (Ind), conditionally to (−2ωi,i + σi)16i6n,

n∑
i=1

ωi,i
(
Ψm(ξi)−Dm

)
is a sum of independent real-valued random variables. So, we can apply Bernstein’s in-
equality.

First, we notice that for every i ∈ JnK,

−2ωi,i + σi =
1

B

B∑
K=1

(
−2

(n− p)2
1i∈TK −

2

p
1i/∈TK

)
= −2

(
1

(n− p)2
(1− πi) +

πi
p

)
hence

|−2ωi,i + σi| = 2

(
1

(n− p)2
(1− πi) +

πi
p

)
6 2

(
1

(n− p)2
+
π∗

p

)
since 0 6 πi 6 π∗ 6 1. So, for every i ∈ JnK,

(−2ωi,i + σi)
(
sm(ξi)− sm′(ξi)

)
6 2

(
1

(n− p)2
+
π∗

p

)
‖sm − sm′‖∞

almost surely. Second,

n∑
i=1

(−2ωi,i + σi)
2 6 2

(
1

(n− p)2
+
π∗

p

) n∑
i=1

|−2ωi,i + σi|

= 2

(
1

(n− p)2
+
π∗

p

)
2

(
1

n− p
+ 1

)
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6 8

(
1

(n− p)2
+
π∗

p

)
and

E
[(
sm(ξ)− sm′(ξ)

)2]
6 ‖s‖∞‖sm − sm′‖2 6 A‖sm − sm′‖2

so that

n∑
i=1

E
[(

(−2ωi,i + σi)
(
sm(ξ)− sm′(ξ)

))2
]
6 8A

(
1

(n− p)2
+
π∗

p

)
‖sm − sm′‖2 .

Then, by Bernstein’s inequality (Boucheron et al., 2013, Theorem 2.10), conditionally
to (−2ωi,i + σi)16i6n, an event of probability at least 1− e−x exists on which

n∑
i=1

(−2ωi,i + σi)
(
sm(ξi)− Psm − sm′(ξi)− Psm′

)
6 R0(m,m′)

R0(m,m′) :=

√
16xA

(
1

(n− p)2
+
π∗

p

)
‖sm − sm′‖2 +

2x‖sm − sm′‖∞
3

(
1

(n− p)2
+
π∗

p

)
.

Since 1 − 2e−x is deterministic, the same inequality holds unconditionally on an event of
probability at least 1− 2e−x.

We now upperbound R0(m,m′), differently depending on the assumption we make. On
the one hand, if (H2) holds true,

‖sm − sm′‖∞ 6 ‖sm‖∞ + ‖sm′‖∞ 6 2A

and we get

R0(m,m′) 6

√
16Ax

(
1

(n− p)2
+
π∗

p

)
‖sm − sm′‖2 +

4Ax

3

(
1

(n− p)2
+
π∗

p

)
6 ε‖sm − sm′‖2 +

16Ax

3ε

(
1

(n− p)2
+
π?

p

)
for any ε ∈ (0, 1], which proves Eq. (65). On the other hand, if (H1) and (H2′) hold true,
sm − sm′ ∈ Sm′′ with m′′ ∈ {m,m′}, so that

‖sm − sm′‖∞ 6 bm′′‖sm − sm′‖ 6
√
n‖sm − sm′‖

and we get

R0(m,m′) 6

√
16xA

(
1

(n− p)2
+
π∗

p

)
‖sm − sm′‖2 +

2x
√
n‖sm − sm′‖

3

(
1

(n− p)2
+
π∗

p

)

6 ε‖sm − sm′‖2 +
1

ε

[
8Ax

(
1

(n− p)2
+
π?

p

)
+

2

9
x2n

(
1

(n− p)2
+
π?

p

)2
]

for any ε ∈ (0, 1], which proves Eq. (65) with κ = 8.
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Concentration of
∑

16i 6=j6n ωi,jUm(ξi, ξj).

Lemma 22 Suppose that assumptions (SameSize), (Ind) and (H1) hold true. Then, an
absolute constant κ > 0 exists such that, for any x > 1, with probability larger than 1−6e−x,
for any ε ∈ (0, 1],∣∣∣∣∣∣

∑
16i 6=j6n

ωi,jUm(ξi, ξj)

∣∣∣∣∣∣ 6 εDm
n− p

+
κn

(n− p)2

(
1 +

nπ∗

p

)[
nAx

(n− p)ε
+

(
1 +

A

n

)
x2

]
. (67)

Proof We start with the following symmetrization trick∑
16i 6=j6n

ωi,jUm(ξi, ξj) =
∑

16i<j6n

ωi,jUm(ξi, ξj) + ωj,iUm(ξj , ξi)

=
∑

16i<j6n

(ωi,j + ωj,i)Um(ξi, ξj)

=
∑

16i 6=j6n
ω′i,jUm(ξi, ξj) ,

where

ω′i,j =
ωi,j + ωj,i

2
=

1

(n− p)2

[
1− (πi + πj)

n

p
+

(
2n

p
− 1

)
πi,j

]
=

1

(n− p)2

[
(1− πi,j) +

n

p
(πi,j − πi) +

n

p
(πi,j − πj)

]
.

From the last formula for ω′i,j , using Eq. (66), we get that

(ω′i,j)
2 6

1

(n− p)4

[
1 +

n2

p2
(πi + πj)

2

]
(68)

and max
i,j∈JnK

|ω′i,j | 6
1

(n− p)2

(
1 +

2n

p
π∗
)
. (69)

The concentration of the U -statistics follows from Houdré and Reynaud-Bouret (2003, The-
orem 3.4), that is Eq. (44) with gi,j(ξi, ξj) = ω′i,jUm(ξi, ξj). To apply this result, it remains

to compute the terms A, B, C, D. First,

2A
2

=
∑

16i 6=j6n
(ω′i,j)

2E
[
Um(ξi, ξj)

2
]
6 ‖s‖∞Dm

∑
16i 6=j6n

(ω′i,j)
2

by Eq (45). Algebraic computations and Eq. (68) and (66) show that

∑
16i 6=j6n

(ω′i,j)
2 6

1

(n− p)4

∑
16i 6=j6n

[
1 +

n2

p2
(πi + πj)

2

]

6
1

(n− p)4

∑
16i,j6n

[
1 +

n2

p2
(π∗πi + π∗πj + 2πiπj)

]
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=
n2

(n− p)4

(
3 +

2π∗n

p

)
Hence,

A 6
n

(n− p)2

√(
3

2
+
π∗n

p

)
‖s‖∞Dm .

Second, let ai and bj be functions such that
∑n

i=1 E
[
ai(ξ)

2
]
6 1 and

∑n
i=1 E

[
bi(ξ)

2
]
6 1.

Eq (47) shows that∣∣∣E[ai(ξ)bj(ξ′)Um(ξ, ξ′)
]∣∣∣ 6 ‖s‖∞

2

(
E
[
ai(ξ)

2
]

+ E
[
bj(ξ)

2
])

,

hence, using Eq. (69),

B =
∑

16i 6=j6n
ω′i,jE

[
ai(ξ)bj(ξ

′)Um(ξ, ξ′)
]

6 max
16i 6=j6n

∣∣ω′i,j∣∣‖s‖∞2

∑
16i 6=j6n

(
E
[
ai(ξ)

2
]

+ E
[
bj(ξ)

2
])

6
n‖s‖∞

(n− p)2

(
1 +

2n

p
π∗
)
.

Third, Eq (48) shows that, for any x > 0,

E
[
Um(ξ, x)2

]
6 2
(
b2m + ‖sm‖2

)
‖s‖∞

and by Eq. (68) we have

n∑
i=2

(ω′i,1)2 6
1

(n− p)4

n∑
i=2

(
1 + (πi + π1)2n

2

p2

)
6

n

(n− p)4

(
1 + 2π∗

n

p

)2

.

So, for any x > 0,

n∑
i=2

(ω′i,1)2E
[
Um(ξ, x)2

]
6 2
(
b2m + ‖sm‖2

)
‖s‖∞ ×

1

(n− p)4

(
1 + 2π∗

n

p

)2

hence

C 6

(
1 + 2π∗

n

p

)
n

(n− p)2

√
2
(
b2m + ‖sm‖2

)
‖s‖∞

n
.

Fourth, using Eq (49) and (69),

D 6 max
i,j∈JnK

∣∣ω′i,j∣∣ sup
x,y

∣∣Um(x, y)
∣∣ 6 (1 +

2n

p
π∗
)

n

(n− p)2

2
(
b2m + ‖sm‖2

)
n

.

Now, we remark that b2m 6 n by (H1), and ‖sm‖2 6 ‖s‖2 6 ‖s‖∞ 6 A, and we can
plug this two inequalities in the upper bounds above. By (Ind), we can apply Houdré and
Reynaud-Bouret (2003, Theorem 3.4), conditionally on the weights ωi,j . We obtain that
an absolute constant κ > 0 exists such that, for any x > 1, with probability larger than
1− 6e−x, for any ε ∈ (0, 1], Eq. (67) holds true.
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B.2.3 Oracle Inequality (Proof of Theorem 9)

Theorem 9 actually is a corollary of the following general result.

Theorem 23 Let ξJnK be i.i.d. real-valued random variables with common density s ∈
L∞(µ), (TK)16K6B some sequence of subsets of JnK satisfying (SameSize) and (Ind), and
(Sm)m∈Mn be a collection of separable linear spaces satisfying (H1). Assume that either
(H2) or (H2′) holds true. For every m ∈ Mn, let ŝm be the estimator defined by Eq. (1),
and s̃ = ŝm̂ where

m̂ ∈ argmin
m∈Mn

{
critCV

(
m, (TK)16K6B

)}
and critCV is defined by Eq. (25). Define π∗ = maxi=1,...,n

1
B

∑B
K=1 1i∈T cK and for any

x, ε, κ > 0,

ρ4(ε, x, κ, n, τn, π
∗, A) :=

κ

nτ2
n

(
1 +

π∗

1− τn

)α[Ax
τnε

+
(A ∨ 1)x2

ε3

]
with α = 1 under assumption (H2) and α = 2 under assumption (H2′). Then, an absolute
constant κ > 0 exists such that, for any x > 0, with probability at least 1− 12|Mn|2e−x, for
any ε ∈ (0, κ−1),(

1− ε

τn

)
‖s̃− s‖2 6

1 + ε

τn
inf

m∈Mn

{
‖ŝm − s‖2

}
+ ρ4(ε, x, κ, n, τn, π

∗, A) .

The oracle inequality of Theorem 23 is similar to the one of Theorem 5, with δ replaced
by 1/τn − 1 (both quantities correspond to the bias of the criterion as an estimator of the
risk) and a slightly different remainder term. In addition to the remarks already made
about Theorem 5, we can make the following comments.

• The remainder term ρ4 is of order x2/n, as in Theorem 5 under the following sufficient
conditions: (i) τn stays away from 0, (ii) π∗/(1− τn) is bounded.

• For V -fold criteria, τn = (V − 1)/V > 1/2 and π∗/(1− τn) = 1, so conditions (i) and
(ii) are satisfied and we recover an oracle inequality for V -fold cross-validation similar
to Theorem 5.

• The leading constant in front of the oracle inequality of Theorem 23 is of order 1/τn,
so we can get asymptotic optimality only if τn → 1, that is, p� n. This is consistent
with the fact that the bias of the cross-validation criterion is negligible at first order
if and only if τn → 1.

• For hold-out criteria, π∗ = 1 so the remainder term is of order x2/(n(1−τn)α) > x2/p
which is large when τn is close to 1, that is, when p is small. Hence, for such criteria,
we cannot get a leading constant close to 1 and a “small” remainder term.

Let us now explain why Theorem 9 is also a corollary of Theorem 23.
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Proof of Theorem 9 We only have to prove some upper bound on π∗ under assumption
(MCCV), thanks to which Theorem 9 is a straightforward corollary of Theorem 23.

By (SameSize) and (MCCV), for any i ∈ JnK, πi is the empirical mean of K inde-
pendent Bernoulli random variables with common parameter P(i ∈ T cK) = p/n. Then, by
Bernstein’s inequality (Boucheron et al., 2013, Theorem 2.10)

∀y > 0, ∀i ∈ JnK , P

(
πi −

p

n
>

√
2p(n− p)y

n2B
+

x

3B

)
6 e−y .

A union bound over i ∈ JnK yields that for any x > 0,

P
(
π∗ 6 1 ∧

(
2p

n
+

log n+ x

B

))
> 1− e−x ,

where we used also that π∗ 6 1 almost surely. Theorem 9 follows.

We finally prove Theorem 23.

Proof of Theorem 23 Throughout the proof, L denotes some positive numerical constant,
whose value may change from line to line. Given Eq. (64), the proof relies on concentration
inequalities that are detailed in Section B.2.2. Let us fix x > 0 and define for every κ > 1
the event Ωgood(κ, x) where all the following inequalities hold for any m,m′ ∈Mn and any
ε ∈ (0, 1]∣∣∣∣∣

n∑
i=1

ωi,i
(
Ψm(ξi)−Dm

)∣∣∣∣∣ 6 ε
Dm
n− p

+ κ
(n+A)x

ε(n− p)2

n∑
i=1

(−2ωi,i + σi)
(
sm(ξi)− Psm − sm′(ξi)− Psm′

)
6 ε‖sm − sm′‖2 +R21

n (x, ε, π∗, A)∣∣∣∣∣∣
∑

16i 6=j6n
ωi,jUm(ξi, ξj)

∣∣∣∣∣∣ 6 ε
Dm
n− p

+ κ
n

(n− p)2

(
1 + π∗

n

p

)[
nAx

(n− p)ε
+ (n+A)

x2

n

]
∣∣∣∣‖ŝm − sm‖2 − Dmn

∣∣∣∣ 6 ε
Dm
n

+ κ
Ax2

ε3n
.

It follows from Lemmas 14, 20, 21 and 22 that an absolute constant κ > 0 exists such
that P(Ωgood(κ, x)) > 1 − |Mn|2e−x − 10|Mn|e−x. Let us remark that we can assume
x > log(11) > 1 in the following, since otherwise the above probability bound is negative.
On Ωgood(κ, x), for every m ∈Mn and ε ∈ (0, 1),

Dm
n

6
1

1− ε
‖ŝm − sm‖2 +

LAx2

ε3(1− ε)n
. (70)

By definition of m̂, for every m ∈Mn,

‖ŝm̂ − s‖2 6 ‖ŝm − s‖2 +
(

critCV(m)− ‖ŝm − s‖2
)
−
(

critCV(m̂)− ‖ŝm̂ − s‖2
)
. (71)
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In addition, by Eq. (64),

critCV(m)− ‖ŝm − s‖2 =
Dm − ‖sm‖2

n− p
−
(
‖sm‖2 + ‖sm − s‖2

)︸ ︷︷ ︸
=‖s‖2

−Dm
n

+
n∑
i=1

ωi,i
(
Ψm(ξi)−Dm

)
+

n∑
i=1

(−2ωi,i + σi)
(
sm(ξi)− Psm

)
+

∑
16i 6=j6n

ωi,jUm(ξi, ξj)−
(
‖ŝm − s‖2 −

Dm
n

)
.

So, on Ωgood(κ, x), for every m,m′ ∈Mn and ε ∈ (0, 1/5),

critCV(m)− ‖ŝm − s‖2 −
(

critCV(m′)− ‖ŝm′ − s‖2
)

6 Dm
(

1 + 2ε

n− p
− 1− ε

n

)
+

+Dm′
(

1 + ε

n
− 1− 2ε

n− p

)
+

+ ε‖sm − sm′‖2

+R21
n (x, ε, π∗, A) +

Ln

(n− p)2

(
1 + π∗

n

p

)(
nAx

(n− p)ε
+

(A ∨ 1)x2

ε3

)
+
‖sm′‖2

n− p

6
n

1− ε

(
1 + 2ε

n− p
− 1− ε

n

)
+

‖ŝm − sm‖2 +
n

1− ε

(
1 + ε

n
− 1− 2ε

n− p

)
+

‖ŝm′ − sm′‖2

+ 2ε‖sm − s‖2 + 2ε‖sm′ − s‖2

+R21
n (x, ε, π∗, A) +

Ln

(n− p)2

(
1 + π∗

n

p

)(
nAx

(n− p)ε
+

(A ∨ 1)x2

ε3

)
6 max

{
1

1− ε

(
1

τn
− 1 + ε+

2ε

τn

)
+

, 2ε

}
‖ŝm − s‖2

+ max

{
1

1− ε

(
1− 1

τn
+ ε+

2ε

τn

)
+

, 2ε

}
‖ŝm′ − s‖2

+R21
n (x, ε, π∗, A) +

L

nτ2
n

(
1 +

π∗

1− τn

)(
Ax

τnε
+

(A ∨ 1)x2

ε3

)
6

(
1

τn
− 1 +

Lε

τn

)
‖ŝm − s‖2 +

4ε

τn
‖ŝm′ − s‖2

+R21
n (x, ε, π∗, A) +

L

nτ2
n

(
1 +

π∗

1− τn

)(
Ax

τnε
+

(A ∨ 1)x2

ε3

)
where we used Eq. (70) for the second inequality. Note also that by Lemma 21,

R21
n (x, ε, π∗, A) 6

κ

nε

[
Ax

(
1

nτ2
n

+
π?

1− τn

)
+ x2

(
1

nτ2
n

+
π?

1− τn

)2
]

6
κ

nε

[
Ax

(
1

τn
+

π?

1− τn

)
+ x2

(
1

τn
+

π?

1− τn

)2
]

6
κ

nε

[
Ax

τn

(
1 +

π?

1− τn

)
+
x2

τ2
n

(
1 +

π?

1− τn

)2
]
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where the term x2

τ2
n

(1 + π?

1−τn )2 is not present in R21
n (x, ε, π∗, A) under assumption (H2),

so that R21
n (x, ε, π∗, A) 6 ρ4(ε, x, κ, n, τn, π

∗, A) whatever the assumption among (H2) and
(H2′).

Therefore, Eq. (71) yields that, on Ωgood(κ, x), for every m,m′ ∈Mn and ε ∈ (0, 1/5),(
1− 4ε

τn

)
‖ŝm̂ − s‖2 6

1 + Lε

τn
‖ŝm − s‖2 +R21

n (x, ε, π∗, A)

+
L

nτ2
n

(
1 +

π∗

1− τn

)(
Ax

τnε
+

(A ∨ 1)x2

ε3

)
hence the result by changing ε into ε/L.

B.2.4 Variance (Proof of Theorem 10)

We prove in this section the variance computation of Theorem 10, which is a straightforward
corollary of the following result, since Ψm1 and Ψm2 are constant for regular histogram
models.

Theorem 24 We consider the setting and notation of Theorem 6. We recall that

CMCCV(m) = critCV(m, (TK)16K6B)

for some sequence T1, . . . , TB of subsets of JnK satisfying (SameSize), (MCCV) and
(Ind), where critCV is defined by Eq. (25) Then, we have

Var
(
CMCCV(m1)− CMCCV(m2)

)
= CMC

1 (B,n, τn)
2

n2
B(m1,m2) (72)

+
4

Bn

1

n2τ3
n

Var

(
(sm1 − sm2)(ξ1)− 1

2
(Ψm1 −Ψm2)(ξ1)

)
+

4

Bn

1

1− τn
Var
(
sm1(ξ1)− sm2(ξ1)

)
+

(
1− 1

B

)
4

n
Var

((
1 +

1

nτn

)
(sm1 − sm2)(ξ1)− 1

2nτn
(Ψm1 −Ψm2)(ξ1)

)
and

Var
(
CMCCV(m1)

)
= CMC

1 (B,n, τn)
2

n2
β(m1,m1) (73)

+
1

B

4

n

[
1

n2τ3
n

Var

(
sm1(ξ1)− 1

2
Ψm1(ξ1)

)
+

1

1− τn
Var
(
sm1(ξ1)

)]
+

(
1− 1

B

)
4

n
Var

((
1 +

1

nτn

)
sm1(ξ1)− 1

2nτn
Ψm1(ξ1)

)
where

CMC
1 (B,n, τn) =

1

B

(
1

τ2
n

+
2

τn(1− τn)
− 1

nτ3
n

)
+

(
1− 1

B

)[
1 +

1

n− 1

(
1

τn
+ 1

)2

− 1

nτ2
n

]
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and we recall that τn = |TK |/n = 1− (p/n).

Theorem 24 is proved below. Note that a similar argument can be used for computing the
variance of Monte-Carlo penalized criteria, where the Monte-Carlo penalty is defined from
hold-out penalties similarly to MCCV. Indeed, given Lemma 25, we only need to compute
the variance of hold-out penalized criteria (as done by Proposition 28) and the variance of
leave-p-out criteria (as done by combining Lemma 1 and Theorem 6).

Before proving Theorem 24, we state and prove a general result that relates the variance
of (increments of) Monte-Carlo CV criteria to the variance of (increments of) hold-out and
leave-p-out criteria.

Lemma 25 Let n > p > 1 and F : X n ×P(JnK)→ R be some mesurable function. Let Dn

denote some sample of n independent variables with common distribution P . Assume that
(SameSize), (Ind) and (MCCV) hold true, as well as

∀T ∈ En−p, E
[
F (Dn, T )2

]
< +∞ . (74)

Let B > 1 and T1, . . . , TB be some random sequence of subsets of JnK. Let us define

ZB :=
1

B

B∑
K=1

F (Dn, TK) and F lpo(Dn, p) :=
1(
n
p

) ∑
T∈En−p

F (Dn, T ) .

Then, we have

Var(ZB) = Var
(
F lpo(Dn, p)

)
+

1

B
E
[
Var
(
F (Dn, T1) |Dn

)]
(75)

= Var
(
F lpo(Dn, p)

)
+

1

B

[
Var
(
F (Dn, T1)

)
−Var

(
F lpo(Dn, p)

)]
(76)

=

(
1− 1

B

)
Var
(
F lpo(Dn, p)

)
+

1

B
Var
(
F (Dn, T1)

)
.

Proof of Lemma 25 By (74), ZB admits a finite variance. Then, we can write that

Var(ZB) = Var
(
E[ZB |Dn]

)
+ E

[
Var(ZB |Dn)

]
.

By (SameSize), (MCCV) and (Ind),

E[ZB |Dn] = F lpo(Dn, p) and Var(ZB |Dn) =
1

B
Var
(
F (Dn, T1) |Dn

)
which proves Eq. (75). Eq. (76) follows by remarking that ZB = F (Dn, T1) when B = 1.

We can now prove Theorem 24. The idea is to apply Lemma 25 when F (Dn, T ) is the
hold-out estimator of the risk of ŝm, so that F lpo(Dn, p) corresponds to some leave-p-out
estimator of the risk. Similarly, Lemma 25 applies when F (Dn, T ) is the difference between
the hold-out estimators of the risks of ŝm1 and ŝm2 .

67



Proof of Theorem 24 First note that the variance of the CV criterion at model m1 can
be deduced from the variance of the increment between the CV criterion at model m1 and
CV criterion at model m0 with Sm0 = {0} the null model. So, Eq. (73) directly follows
from Eq. (72).

For proving Eq. (72), we apply Lemma 25 with

F (Dn, T ) = FHO,m1,m2(Dn, T ) := critHO(m1, T )− critHO(m2, T )

so that
F lpo

HO,m1,m2
(Dn, p) = C(n/p−1/2

n/p−1
,BLOO

)(m1)− C(n/p−1/2
n/p−1

,BLOO

)(m2)

by Eq. (10) in Lemma 1.

The variance of F lpo
HO,m1,m2

(Dn, p) is given by Theorem 6: by Eq. (24) with V = n and

C =
n/p− 1/2

n/p− 1
= 1 +

p

2(n− p)
,

we get

Var
(
F lpo

HO,m1,m2
(Dn, p)

)
=

2

n2

[
1 +

4

n− 1

(
1 +

p

2(n− p)

)2

− n

(n− p)2

]
B(m1,m2) (77)

+
4

n
Var

((
1 +

1

n− p

)
(sm1 − sm2)(ξ1)− 1

2(n− p)
(Ψm1 −Ψm2)(ξ1)

)
=

[
1 +

1

n− 1

(
1

τn
+ 1

)2

− 1

nτ2
n

]
2

n2
B(m1,m2) (78)

+
4

n
Var

((
1 +

1

nτn

)
(sm1 − sm2)(ξ1)− 1

2nτn
(Ψm1 −Ψm2)(ξ1)

)
where we recall that τn = |T |/n = 1− (p/n).

It now remains to compute the variance of

FHO,m1,m2(Dn, T ) := critHO(m1, T )− critHO(m2, T ) .

By Eq. (62), FHO,m1,m2(Dn, T ) has the same variance as Cm1 − Cm2 where Cm is defined as
in Lemma 16 with

ωi,j = ωHO
i,j (T ) σi = σHO

i (T ) and fm = sm .

Since |T | = n− p, we have∑
16i 6=j6n

(
ω2
i,j + ωi,jωj,i

)
=

∑
i,j∈T, i6=j

(
ω2
i,j + ωi,jωj,i

)
+

∑
16i6n,j∈T c,i 6=j

(
ω2
i,j + ωi,jωj,i︸ ︷︷ ︸

=0

)
+

∑
i∈T c, j∈T

(
ω2
i,j + ωi,j ωj,i︸︷︷︸

=0

)
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=
2(n− p− 1)

(n− p)3
+

4

p(n− p)

and
n∑
i=1

ω2
i,i =

1

(n− p)3

n∑
i=1

ωi,iσi = 0
n∑
i=1

σ2
i =

4

p
.

Therefore, by Lemma 16,

Var
(
critHO(m1, T )− critHO(m2, T )

)
=

(
2(n− p− 1)

(n− p)3
+

4

p(n− p)

)
Var
(
Um1(ξ1, ξ2)− Um2(ξ1, ξ2)

)
+

1

(n− p)3
Var
(
Um1(ξ1, ξ1)− Um2(ξ1, ξ1)

)
+

4

p
Var
(
sm1(ξ1)− sm2(ξ1)

)
=

(
2(n− p− 1)

(n− p)3
+

4

p(n− p)

)
B(m1,m2)

+
1

(n− p)3
Var
(
(Ψm1 −Ψm2)(ξ1)− 2(sm1 − sm2)(ξ1)

)
+

4

p
Var
(
sm1(ξ1)− sm2(ξ1)

)
=

(
1

τ2
n

+
2

τn(1− τn)
− 1

nτ3
n

)
2

n2
B(m1,m2) (79)

+
4

n

1

n2τ3
n

Var
(
(sm1 − sm2)(ξ1)− 1

2
(Ψm1 −Ψm2)(ξ1)

)
+

4

n

1

1− τn
Var
(
sm1(ξ1)− sm2(ξ1)

)
where we used that Var(Um1(ξ1, ξ2)− Um2(ξ1, ξ2)) = B(m1,m2) as proved at the beginning
of Section A.4, and that Um(ξ1, ξ1) = Ψm(ξ1)− 2sm(ξ1) + ‖sm‖2.

Combining Eq. (79) and (78) with Lemma 25, we get Eq. (72).

B.3 Results on Hold-Out Penalization

This section gathers the proof of Theorem 12 (oracle inequality for hold-out penalization)
and the variance computations we can make for hold-penalization.

B.3.1 Proof of Theorem 12

The hold-out penalty is equal to

penHO(m,T, x) = 2x(1− τn)2
(
P (T )
n − P (T c)

n

)(
ŝ(T )
m − ŝ(T c)

m

)
= 2x(1− τn)2

∑
λ∈Λm

[(
P (T )
n − P (T c)

n

)
(ψλ)

]2
,

where we recall that τn = |T |/n. As for Theorem 5, the oracle inequality is based on a
concentration result for penHO(m,T, x). Let us start with an exact formula for the hold-out
penalty (Lemma 26, analogous to Lemma 13).
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Lemma 26 For all m ∈Mn, we have

penHO(m,T, x) = 2x(1− τn)2
[∥∥ŝ(T )

m − sm
∥∥2

+
∥∥ŝ(T c)

m − sm
∥∥2 − 2

(
P (T )
n − P

)(
ŝ(T c)
m − sm

)]
.

In particular, we have

E
[
penHO(m,T, x)

]
= 2x

1− τn
τn

Dm
n

.

Proof By definition

penHO(m,T, x) = 2x(1− τn)2
∑
λ∈Λm

{((
P (T c)
n − P

)
(ψλ)

)2
+
((
P (T )
n − P

)
(ψλ)

)2
}

− 2x(1− τn)2
∑
λ∈Λm

{
2
((
P (T c)
n − P

)
(ψλ)

)((
P (T )
n − P

)
(ψλ)

)}
= 2x(1− τn)2

[∥∥ŝ(T c)
m − sm

∥∥2
+
∥∥ŝ(T )

m − sm
∥∥2

− 2
(
P (T )
n − P

)( ∑
λ∈Λm

((
P (T c)
n − P

)
ψλ

)
ψλ

)]
.

Lemma 27 For all m ∈Mn and x > 0, with probability larger than 1−2e−x, for all η > 0,
we have ∣∣∣(P (T )

n − P
)(
ŝ(T c)
m − sm

)∣∣∣ 6 η

2

∥∥ŝ(T c)
m − sm

∥∥2
+

2‖s‖∞x
ητnn

+
b2mx

2

9η(τnn)2
.

Proof Let us apply Bernstein’s inequality to the function (ŝ
(T c)
m − sm), conditionally to

(ξi)i/∈T . Recall that v2
m 6 ‖s‖∞, hence∥∥ŝ(T c)

m − sm
∥∥
∞ 6

∥∥ŝ(T c)
m − sm

∥∥bm
and Var

(
ŝ(T c)
m (ξ)− sm(ξ)

∣∣ (ξi)i/∈T) 6
∥∥ŝ(T c)

m − sm
∥∥2
v2
m 6

∥∥ŝ(T c)
m − sm

∥∥2‖s‖∞ .

Therefore, for all x > 0, with probability larger than 1− 2e−x, conditionally to (ξi)i/∈T ,

∣∣∣(P (T )
n − P

)(
ŝ(T c)
m − sm

)∣∣∣ 6 ∥∥ŝ(T c)
m − sm

∥∥√2‖s‖∞x
τnn

+
bmx

3τnn


6
η

2

∥∥ŝ(T c)
m − sm

∥∥2
+

1

η

(
2‖s‖∞x
τnn

+
b2mx

2

9(τnn)2

)
.

As the bound on the probability does not depend on (ξi)i/∈T , the same inequality holds
unconditionally.
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Proof of Theorem 12 From Lerasle (2011, Theorem 4.1)—a result recalled with Propo-
sition 29 in Section B.5—, Lemma 26 and Lemma 27, an absolute constant κ exists such
that, for all x > 0, with probability larger than 1− 8e−x, for all ε ∈ (0, 1], we have

∀m ∈Mn,

∣∣∣∣penHO

(
m,T,

τn
1− τn

)
− ‖ŝm − sm‖2

∣∣∣∣
6 ε‖ŝm − sm‖2 + κ

(
‖s‖∞xn
εn

+
b2mx

2
n

ε3n2

τ2
n + (1− τn)2

τn(1− τn)

)
.

We can then conclude the proof as in Theorem 5.

B.3.2 Variance

Proposition 28 Let (ψλ)λ∈Λm1
and (ψλ)λ∈Λm2

denote two orthonormal families in L4(µ).
Assume that |T | ∈ Jn− 1K and denote for any m ∈ {m1,m2},

CHO
(C,T )(m) = Pnγ(ŝm) + penHO

(
m,T,Cτn/(1− τn)

)
.

Then, with the notations introduced in Theorem 6, we have

Var
(
CHO

(C,T )(m1)
)

=
4

n
Var

((
1 +

2C − 1

n

)
sm1(ξ)− 2C − 1

2n
Ψm1(ξ)

)
+

2

n2

[
1 + 4C2 − (2C − 1)2

n

]
β(Λm1 ,Λm1)

+
4C2

n3

(1− 2τn)2

τn(1− τn)

(
Var
(
Ψm1(ξ)− 2sm1(ξ)

)
− 2β(m,m)

)
and

Var
(
CHO

(C,T )(m1)− CHO
(C,T )(m2)

)
=

4

n
Var

((
1 +

2C − 1

n

)(
sm1(ξ)− sm2(ξ)

)
− 2C − 1

2n

(
Ψm1(ξ)−Ψm2(ξ)

))
+

2

n2

(
1 + 4C2 − (2C − 1)2

n

)
B(m1,m2) (80)

+
4C2

n3

(1− 2τn)2

τn(1− τn)

(
Var
((

Ψm1(ξ)−Ψm2(ξ)
)
− 2
(
sm1(ξ)− sm2(ξ)

))
− 2B(m1,m2)

)
.

Proof By definition

penHO(m1, T, x) = 2x
∑

λ∈Λm1

[(
P (T )
n − Pn

)
ψλ

]2

=
2x

n2

∑
λ∈Λm1

(
n∑
i=1

(
1

τn
1i∈T − 1

)
ψλ(ξi)

)2
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=
2x

n2

n∑
i,j=1

E
(HO)
i,j Um1(ξi, ξj) , (81)

where, for all i, j ∈ {1 . . . , n}, we recall that

Um1(ξi, ξj) =
∑

λ∈Λm1

(
ψλ(ξi)− Pψλ

)(
ψλ(ξj)− Pψλ

)
and E

(HO)
i,j =

(
1

τn
1i∈T − 1

)(
1

τn
1j∈T − 1

)
.

Therefore, from Eq. (57), if x = Cτn/(1− τn), we have

CHO
(C,T )(m1) := Pnγ(ŝm1) + penHO(m1, T, x)

=
∑

16i,j6n

2xE
(HO)
i,j − 1

n2
Um1(ξi, ξj)−

n∑
i=1

2

n
sm1(ξi) + ‖sm1‖2 .

By definition

E
(HO)
i,j =

(
1− τn
τn

)2

1i,j∈T −
1− τn
τn

1i∈T, j /∈T −
1− τn
τn

1i/∈T, j∈T + 1i,j /∈T .

Therefore, we can compute

n∑
i=1

E
(HO)
i,i = n

[
τn

(
1− τn
τn

)2

+ 1− τn

]
= n

1− τn
τn

, (82)

n∑
i=1

(
E

(HO)
i,i

)2
= n

[
τn

(
1− τn
τn

)4

+ 1− τn

]
= n(1− τn)

(1− τn)3 + τ3
n

τ3
n

. (83)

Moreover, the E
(HO)
i,j satisfy

∑
16i,j6n

E
(HO)
i,j = E

( n∑
i=1

(
1

τn
1i∈T − 1

))2
 = 0 ,

so Eq. (82) implies that

∑
16i 6=j6n

E
(HO)
i,j = −

n∑
i=1

E
(HO)
i,i = −n1− τn

τn
. (84)

In addition, we compute

∑
16i 6=j6n

(
E

(HO)
i,j

)2
= 2n2τn(1− τn)

(
1− τn
τn

)2

+ nτn(nτn − 1)

(
1− τn
τn

)4

+ n(1− τn)
[
n(1− τn)− 1

]
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= n2(1− τn)2

[
2

1− τn
τn

+

(
1− τn
τn

)2

+ 1

]

− n(1− τn)

[(
1− τn
τn

)3

+ 1

]

= n2

(
1− τn
τn

)2

− n(1− τn)
(1− τn)3 + τ3

n

τ3
n

. (85)

According to Eq. (81) and (57), Var(CHO
(C,T )(m1)) can be computed using Lemma 16 with

∀i, j ∈ {1, . . . , n}, ωi,j =
1

n2

(
2xE

(HO)
i,j − 1

)
fm1 =

−2sm1

n
and σi = 1 .

So, using Eq. (82), (83), (84) and (85), we have

n∑
i=1

ω2
i,i =

1

n4

[
4x2

n∑
i=1

(
E

(HO)
i,i

)2
− 4x

n∑
i=1

E
(HO)
i,i + n

]

=
1

n3

[
4x2(1− τn)

(1− τn)3 + τ3
n

τ3
n

− 4x
1− τn
τn

+ 1

]
∑

16i,j6n
i 6=j

ω2
i,j =

1

n4

4x2
∑

16i 6=j6n

(
E

(HO)
i,j

)2
− 4x

∑
16i 6=j6n

E
(HO)
i,j + n(n− 1)



=
1

n4

[
4x2

(
n2

(
1− τn
τn

)2

− n(1− τn)
(1− τn)3 + τ3

n

τ3
n

)
+ 4xn

1− τn
τn

+ n(n− 1)

]
n∑
i=1

ωi,iσi =
1

n

(
2x

1− τn
τn

− 1

)
.

Therefore, by Lemma 16 with m = m′ = m1, we deduce

Var
(
CHO

(C,T )(m1)
)

=
1

n3

(
4C2 (1− 2τn)2

τn(1− τn)
+ (2C − 1)2

)
Var
(
Ψm1(ξ)− 2sm1(ξ)

)
+

2

n2

[
1 + 4C2 − 1

n

(
4C2 (1− 2τn)2

τn(1− τn)
+ (2C − 1)2

)]
β(m1,m1)

− 4

n2
(2C − 1) Cov

(
Ψm1(ξ)− 2sm1(ξ), sm1(ξ)

)
+

4

n
Var
(
sm1(ξ)

)
=

4

n
Var

((
1 +

2C − 1

n

)
sm1(ξ)− 2C − 1

2n
Ψm1(ξ)

)
+

2

n2

(
1 + 4C2 − (2C − 1)2

n

)
β(Λm1 ,Λm1)

+
4C2

n3

(1− 2τn)2

τn(1− τn)

[
Var
(
Ψm1(ξ)− 2sm1(ξ)

)
− 2β(m1,m1)

]
.

Eq (80) follows from similar computations.
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B.4 Additional Comments on Computational Issues

This section is an appendix to Section 7. We first detail a naive algorithm for computing
V -fold criteria, Algorithm 2. Then, we prove Proposition 8 which shows that Algorithm 1
also computes correctly the V -fold criteria, much faster than Algorithm 2.

B.4.1 Naive Implementation

Algorithm 2

Input : B some partition of {1, ..., n} satisfying (Reg), ξ1, . . . , ξn ∈ X and (ψλ)λ∈Λm

a finite orthonormal family of L2(µ), with Card(m) = dm.

1. For j ∈ {1, . . . , V },

(a) train ŝm(·) with the data set (ξi)i/∈Bj , that is, for all λ ∈ Λm, compute

αλ,j := P
(−Bj)
n (ψλ) =

V

(V − 1)n

∑
i/∈Bj

ψλ(ξi)

so that ŝ
(−Bj)
m =

∑
λ∈Λm

αλ,jψλ;

(b) compute the norm of ŝ
(−Bj)
m : Nj :=

∑
λ∈Λm

α2
λ,j ;

(c) compute Qj := P
(Bj)
n

(
ŝ

(−Bj)
m

)
= V

n

∑
λ∈Λm

∑
i∈Bj αλ,jψλ(ξi);

(d) compute Rj := P
(−Bj)
n

(
ŝ

(−Bj)
m

)
= V

n(V−1)

∑
λ∈Λm

∑
i/∈Bj αλ,jψλ(ξi).

2. Compute the V -fold cross-validation criterion: C = V −1
∑V

j=1(Nj − 2Qj).

3. Compute the empirical risk :

(a) train ŝm(·) with the data set (ξi)16i6n, that is, for all λ ∈ Λm, compute

αλ := Pn(ψλ) =
1

n

n∑
i=1

ψλ(ξi)

so that ŝm =
∑

λ∈Λm
αλψλ;

(b) compute the norm of ŝm: N :=
∑

λ∈Λm
α2
λ;

(c) compute R := 1
n

∑
λ∈Λm

∑n
i=1 αλψλ(ξi).

4. Compute the V -fold penalty : D := 2(V − 1)V −2
∑V

j=1(Qj −Rj).

Output :
Empirical risk : N − 2R
V -fold cross-validation estimator of the risk of ŝm: critVFCV(m) = C
V -fold penalty : penVF(m) = D.

Assuming that the computational cost of evaluating ψλ at some point ξ ∈ Ξ is of order 1,
the computational cost of this naive algorithm 2 is as follows: n(V − 1)dm for step 1, V
for steps 2 and 4, ndm for step 3. So the overall cost of computing the V -fold penalization
criterion for m is of order nV dm.
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B.4.2 Proof of Proposition 8

Let us first note that for every i ∈ {1, . . . , V } and λ ∈ Λm, Ai,λ = P
(Bi)
n (ψλ). So, at step 2,

for every i, j ∈ {1, . . . , V }, we have

Ci,j =
∑
λ∈Λm

P (Bi)
n (ψλ)P

(Bj)
n (ψλ) = P (Bi)

n

 ∑
λ∈Λm

P
(Bj)
n (ψλ)ψλ

 = P (Bi)
n

(
ŝ

(Bj)
m

)

and by symmetry Ci,j = Cj,i = P
(Bj)
n

(
ŝ

(Bi)
m

)
.

Correctness of Algorithm 1. By assumption (Reg), we have

Pn =
1

V

V∑
j=1

P
(Bj)
n , ŝm =

1

V

V∑
j=1

ŝ
(Bj)
m ,

P (−Bi)
n =

1

V − 1

∑
16j6V
j 6=i

P
(Bj)
n and ŝ(−Bi)

m =
1

V − 1

∑
16j6V
j 6=i

ŝ
(Bj)
m .

Therefore,

‖ŝm‖2 = −Pnγ(ŝm) = Pn(ŝm) =
1

V 2

∑
16i,j6V

P (Bi)
n

(
ŝ

(Bj)
m

)
=

1

V 2
S

and

critVFCV(m)

=
1

V

V∑
j=1

P
(Bj)
n γ

(
ŝ

(−Bj)
m

)

=
1

V

V∑
j=1

[∥∥ŝ(−Bj)
m

∥∥2 − 2P
(Bj)
n

(
ŝ

(−Bj)
m

)]

=
1

V

V∑
j=1

 1

(V − 1)2

∑
16i,`6V
i,` 6=j

P (Bi)
n

(
ŝ(B`)
m

)
− 2

V − 1

∑
i 6=j

P
(Bj)
n

(
ŝ(Bi)
m

)
=

1

V (V − 1)2

∑
16i,`6V

P (Bi)
n

(
ŝ(B`)
m

) V∑
j=1

1i 6=j, 6̀=j

− 2

V (V − 1)

∑
16i 6=j6V

P
(Bj)
n

(
ŝ(Bi)
m

)
=

1

V (V − 1)2

∑
16i,`6V

[
P (Bi)
n

(
ŝ(B`)
m

)
(V − 1− 1i 6=`)

]
− 2

V (V − 1)
(S − T )

=
1

V (V − 1)

∑
16i6V

[
P (Bi)
n

(
ŝ(Bi)
m

)]
+

V − 2

V (V − 1)2

∑
16i 6=`6V

[
P (Bi)
n

(
ŝ(B`)
m

)]
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− 2

V (V − 1)
(S − T )

=
1

V (V − 1)
T +

V − 2

V (V − 1)2
(S − T )− 2

V (V − 1)
(S − T )

=
1

V (V − 1)
T − 1

(V − 1)2
(S − T ) ,

so the formula for critVFCV is correct. Lemma 1 implies the formula for penVF is also
correct.

Computational cost of Algorithm 1. Step 1 has a cost of order

V × Card(Λm)× n

V
= nCard(Λm) .

Step 2 has a cost of order V 2 Card(Λm). Step 3 has a cost of order V 2. Summing the three
steps yields the result.

Computational cost for histograms. In the histogram case, step 1 can be performed
with a cost of order V Card(Λm) + n. Indeed, one can initialize the V × Card(Λm) ma-
trix A with zeros (cost: V Card(Λm)), and then go sequentially through the data set: for
j = 1, . . . , n, find the unique i(j) ∈ {1, . . . , V } such that j ∈ Bi(j), the unique λ(j) ∈ Λm
such that ξj ∈ λ(j), and add (V/n)ψλ(ξj) to A(i(j),λ(j)). Since the partitions B and Λm can
be coded so that finding i(j) and λ(j) has a cost of order 1, the resulting cost of step 1 is
V Card(Λm) + n, hence the overall cost is of order V 2 Card(Λm) + n.

B.5 Probabilistic Tool

Proposition 29 (Lerasle, 2011) Let ξJNK be iid random variables valued in a measurable
space (X,X ), with common distribution P . Let S be a symmetric class of functions bounded
by b. For all t ∈ S, let us define

PN t =
1

N

N∑
i=1

t(ξi) v2 = sup
t∈S

P
[
(t− Pt)2

]
Z = sup

t∈S

{
(PN − P )(t)

}
and D = NE

[
Z2
]
.

There exists an absolute constant κ such that, for all x > 0, with probability larger than
1− 2e−x, for all ε ∈ (0, 1],∣∣∣∣Z2 − D

N

∣∣∣∣ 6 ε
D

N
+ κ

(
v2x

εN
+
b2x2

ε3N2

)
.

For instance, taking S = Bm, by Eq. (3), this result applies to

Z = sup
t∈Bm

{
(Pn − P )(t)

}
= ‖ŝm − sm‖2 .
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Figure 7: Oracle model for some sample of size n = 500, in setting L. Left: Regu. Right:
Dya2.

B.6 Additional Simulation Results

This section provides simulation results in addition to the ones of Section 6.

Figure 7 is an analogous of Figure 2 in setting L, that illustrates the difference between
the model collections Regu and Dya2.

Table 3 is an extended version of Table 2, with more procedures compared and two
additional settings (L-Regu and S-Regu). Table 4 provides a similar comparison of model
selection performances with a reduced sample size n = 100, again from N = 10 000 inde-
pendent samples.
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Experiment L–Dya2 L–Regu S–Dya2 S–Regu

E[penid] 6.52± 0.05 2.33± 0.01 2.07± 0.01 1.75± 0.01
1.25 × E[penid] 4.81± 0.04 2.01± 0.01 1.94± 0.01 1.62± 0.004
1.5 × E[penid] 4.12± 0.03 1.93± 0.01 1.92± 0.01 1.65± 0.003
2 × E[penid] 3.61± 0.02 1.96± 0.01 2.01± 0.01 1.84± 0.004

pendim 8.27± 0.07 2.33± 0.01 3.21± 0.01 1.75± 0.01
1.25 × pendim 5.95± 0.05 2.01± 0.01 3.01± 0.01 1.62± 0.004
1.5 × pendim 4.99± 0.04 1.94± 0.01 3.03± 0.01 1.66± 0.003
2 × pendim 4.38± 0.03 1.97± 0.01 3.24± 0.01 1.85± 0.004

penLOO 6.35± 0.05 2.33± 0.01 2.06± 0.01 1.75± 0.01
1.25 × penLOO 4.62± 0.04 2.01± 0.01 1.92± 0.01 1.62± 0.004
1.5 × penLOO 3.97± 0.03 1.94± 0.01 1.90± 0.005 1.66± 0.003
2 × penLOO 3.55± 0.02 1.97± 0.01 1.98± 0.01 1.85± 0.004

penVF (V=10) 6.89± 0.06 2.42± 0.02 2.11± 0.01 1.77± 0.01
1.25 × penVF (V=10) 5.01± 0.04 2.04± 0.01 1.95± 0.01 1.62± 0.004
1.5 × penVF (V=10) 4.27± 0.03 1.94± 0.01 1.92± 0.01 1.63± 0.004
2 × penVF (V=10) 3.68± 0.02 1.94± 0.01 1.98± 0.01 1.78± 0.004

penVF (V=5) 7.47± 0.06 2.55± 0.02 2.16± 0.01 1.80± 0.01
1.25 × penVF (V=5) 5.50± 0.04 2.10± 0.01 1.98± 0.01 1.63± 0.004
1.5 × penVF (V=5) 4.58± 0.03 1.96± 0.01 1.93± 0.01 1.62± 0.004
2 × penVF (V=5) 3.86± 0.02 1.93± 0.01 1.98± 0.01 1.73± 0.004

penVF (V=2) 10.21± 0.08 3.37± 0.03 2.39± 0.01 2.01± 0.01
1.25 × penVF (V=2) 7.69± 0.06 2.49± 0.02 2.15± 0.01 1.71± 0.01
1.5 × penVF (V=2) 6.41± 0.05 2.18± 0.01 2.05± 0.01 1.63± 0.004
2 × penVF (V=2) 5.11± 0.04 1.99± 0.01 2.04± 0.01 1.64± 0.004

LOO 6.34± 0.05 2.33± 0.01 2.06± 0.01 1.75± 0.01
10-fold CV 6.24± 0.05 2.29± 0.01 2.05± 0.01 1.71± 0.01
5-fold CV 6.27± 0.05 2.26± 0.01 2.05± 0.01 1.68± 0.01
2-fold CV 6.41± 0.05 2.18± 0.01 2.05± 0.01 1.63± 0.004

Oracle: 10−3× 5.46± 0.02 13.39± 0.05 43.86± 0.09 62.37± 0.13
Best: 10−3× 19.38± 0.10 25.77± 0.10 83.39± 0.22 100.86± 0.23

Table 3: Simulation results: settings L and S, n = 500. The best procedures (up to standard-
deviations) are bolded, where the data-driven procedures are considered separately from the
procedures using the knowledge of E[penid].
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Experiment L–Dya2 L–Regu S–Dya2 S–Regu

E[penid] 8.38± 0.08 3.29± 0.03 1.97± 0.01 2.09± 0.01
1.25 × E[penid] 6.53± 0.07 2.61± 0.02 1.93± 0.01 1.72± 0.01
1.5 × E[penid] 5.59± 0.06 2.46± 0.02 1.92± 0.01 1.61± 0.01
2 × E[penid] 4.72± 0.05 2.57± 0.01 1.94± 0.005 1.60± 0.004

pendim 9.67± 0.09 3.28± 0.03 2.17± 0.01 2.09± 0.01
1.25 × pendim 7.85± 0.08 2.62± 0.02 2.10± 0.01 1.72± 0.01
1.5 × pendim 6.74± 0.07 2.48± 0.02 2.05± 0.01 1.62± 0.01
2 × pendim 5.70± 0.06 2.60± 0.01 2.00± 0.01 1.61± 0.004

penLOO 8.10± 0.08 3.29± 0.03 1.97± 0.01 2.09± 0.01
1.25 × penLOO 6.20± 0.06 2.62± 0.02 1.92± 0.01 1.72± 0.01
1.5 × penLOO 5.18± 0.05 2.49± 0.02 1.91± 0.01 1.62± 0.01
2 × penLOO 4.44± 0.04 2.59± 0.01 1.94± 0.005 1.61± 0.004

penVF (V=10) 8.61± 0.08 3.54± 0.04 1.97± 0.01 2.21± 0.01
1.25 × penVF (V=10) 6.76± 0.07 2.76± 0.02 1.92± 0.01 1.78± 0.01
1.5 × penVF (V=10) 5.77± 0.06 2.52± 0.02 1.90± 0.01 1.64± 0.01
2 × penVF (V=10) 4.81± 0.05 2.57± 0.01 1.91± 0.01 1.60± 0.004

penVF (V=5) 9.14± 0.08 3.92± 0.04 1.98± 0.01 2.34± 0.02
1.25 × penVF (V=5) 7.38± 0.07 2.90± 0.03 1.93± 0.01 1.85± 0.01
1.5 × penVF (V=5) 6.31± 0.06 2.60± 0.02 1.91± 0.01 1.68± 0.01
2 × penVF (V=5) 5.21± 0.05 2.56± 0.02 1.90± 0.01 1.60± 0.005

penVF (V=2) 11.15± 0.09 6.14± 0.08 2.01± 0.01 2.92± 0.02
1.25 × penVF (V=2) 9.61± 0.08 4.05± 0.05 1.97± 0.01 2.24± 0.01
1.5 × penVF (V=2) 8.60± 0.07 3.30± 0.03 1.94± 0.01 1.94± 0.01
2 × penVF (V=2) 7.30± 0.07 2.80± 0.02 1.91± 0.01 1.70± 0.01

LOO 8.04± 0.08 3.26± 0.03 1.97± 0.01 2.07± 0.01
10-fold CV 8.11± 0.08 3.28± 0.03 1.95± 0.01 2.06± 0.01
5-fold CV 8.15± 0.08 3.28± 0.03 1.95± 0.01 2.01± 0.01
2-fold CV 8.60± 0.07 3.30± 0.03 1.94± 0.01 1.94± 0.01

Oracle: 10−3× 12.66± 0.05 33.58± 0.16 118.21± 0.25 133.04± 0.28
Best: 10−3× 56.15± 0.53 83.42± 0.51 224.09± 0.63 212.84± 0.61

Table 4: Simulation results: settings L and S, n = 100. The best procedures (up to standard-
deviations) are bolded, where the data-driven procedures are considered separately from the
procedures using the knowledge of E[penid].

79



The influence of overpenalization is considered in Figures 8–15. As on Figure 3, the
top graph represents the estimated model selection performance Cor(C(C,B)) as a function
of C, for various values of V = |B|. Error bars are not shown on these graphs for clarity;
all visible differences on the graph correspond to significant differences, as can be seen in
Tables 3–4 for instance. The bottom tables in Figures 8–15 show the estimated model
selection performance for three key values of C: the optimal one C?n, the unbiased case
(C = 1, which corresponds to an AIC-type penalty) and the value C = log(n)/2 (which
corresponds to a BIC-type penalty). The estimated value of the optimal overpenalizing
constant C?n was obtained by minimizing over C ∈ [0, 10] the estimated value of Cor(C(C,B)).
Error bars on C?n show the maximum of |C?n − C| over the set of values of C that are “not
significantly worse than C?n”, where we define by convention “significantly worse” as having
a |Cor(C(C?n,B))− Cor(C(C,B))| larger than the sum of the corresponding error bars.
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LOO

10−Fold

5−Fold

2−Fold

Penalty C?n Cor(C = C?n) Cor(C = 1) Cor(C = 2.30)

E[penid] 6.58± 1.33 3.89± 0.02 8.38± 0.08 4.46± 0.04
penLOO 4.65± 0.54 3.98± 0.02 8.10± 0.08 4.29± 0.04
pen 10F 4.49± 1.71 4.12± 0.03 8.61± 0.08 4.53± 0.04
pen 5F 4.67± 1.88 4.25± 0.03 9.14± 0.08 4.90± 0.05
pen 2F 9.96± 1.61 4.79± 0.04 11.15± 0.09 6.80± 0.06

Figure 8: Overpenalization in setting L-Dya2, n = 100.
Top: same as Figure 3 (estimated loss ratio as a function of the overpenalization constant
C).
Bottom: Table showing the estimated optimal overpenalization constant C?n as well as the
estimated loss ratio for several values of C: C = C?n (optimal value), C = 1 (AIC-type
penalty) and C = log(n)/2 (BIC-type penalty). See text for details.
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LOO

10−Fold

5−Fold

2−Fold

Penalty C?n Cor(C = C?n) Cor(C = 1) Cor(C = 3.11)

E[penid] 2.56± 0.40 3.53± 0.02 6.52± 0.05 3.59± 0.02
penLOO 2.53± 0.43 3.49± 0.02 6.35± 0.05 3.58± 0.02
pen 10F 2.63± 0.49 3.52± 0.02 6.89± 0.06 3.55± 0.02
pen 5F 3.06± 0.67 3.59± 0.02 7.47± 0.06 3.59± 0.02
pen 2F 5.28± 1.90 3.80± 0.02 10.21± 0.08 4.14± 0.03

Figure 9: Overpenalization in setting L-Dya2, n = 500.
Top: same as Figure 3 (estimated loss ratio as a function of the overpenalization constant
C).
Bottom: Table showing the estimated optimal overpenalization constant C?n as well as the
estimated loss ratio for several values of C: C = C?n (optimal value), C = 1 (AIC-type
penalty) and C = log(n)/2 (BIC-type penalty). See text for details.
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LOO

10−Fold

5−Fold

2−Fold

Penalty C?n Cor(C = C?n) Cor(C = 1) Cor(C = 2.30)

E[penid] 1.66± 0.21 2.44± 0.01 3.29± 0.03 2.77± 0.01
penLOO 1.60± 0.18 2.47± 0.01 3.29± 0.03 2.81± 0.01
pen 10F 1.71± 0.22 2.49± 0.02 3.54± 0.04 2.71± 0.02
pen 5F 1.79± 0.31 2.53± 0.02 3.92± 0.04 2.67± 0.02
pen 2F 2.86± 0.58 2.70± 0.02 6.14± 0.08 2.74± 0.02

Figure 10: Overpenalization in setting L-Regu, n = 100.
Top: same as Figure 3 (estimated loss ratio as a function of the overpenalization constant
C).
Bottom: Table showing the estimated optimal overpenalization constant C?n as well as the
estimated loss ratio for several values of C: C = C?n (optimal value), C = 1 (AIC-type
penalty) and C = log(n)/2 (BIC-type penalty). See text for details.
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E[penid] 1.63± 0.25 1.93± 0.01 2.33± 0.01 2.20± 0.01
penLOO 1.61± 0.23 1.93± 0.01 2.33± 0.01 2.21± 0.01
pen 10F 1.79± 0.26 1.92± 0.01 2.42± 0.02 2.16± 0.01
pen 5F 1.88± 0.29 1.92± 0.01 2.55± 0.02 2.11± 0.01
pen 2F 2.15± 0.34 1.97± 0.01 3.37± 0.03 2.07± 0.01

Figure 11: Overpenalization in setting L-Regu, n = 500.
Top: same as Figure 3 (estimated loss ratio as a function of the overpenalization constant
C).
Bottom: Table showing the estimated optimal overpenalization constant C?n as well as the
estimated loss ratio for several values of C: C = C?n (optimal value), C = 1 (AIC-type
penalty) and C = log(n)/2 (BIC-type penalty). See text for details.
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Penalty C?n Cor(C = C?n) Cor(C = 1) Cor(C = 2.30)
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penLOO 1.55± 0.32 1.91± 0.01 1.97± 0.01 1.96± 0.00
pen 10F 1.60± 0.31 1.90± 0.01 1.97± 0.01 1.93± 0.01
pen 5F 1.76± 0.39 1.89± 0.01 1.98± 0.01 1.91± 0.01
pen 2F 2.33± 1.09 1.90± 0.01 2.01± 0.01 1.90± 0.01

Figure 12: Overpenalization in setting S-Dya2, n = 100.
Top: same as Figure 3 (estimated loss ratio as a function of the overpenalization constant
C).
Bottom: Table showing the estimated optimal overpenalization constant C?n as well as the
estimated loss ratio for several values of C: C = C?n (optimal value), C = 1 (AIC-type
penalty) and C = log(n)/2 (BIC-type penalty). See text for details.
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pen 5F 1.63± 0.21 1.93± 0.01 2.16± 0.01 2.42± 0.01
pen 2F 1.75± 0.23 2.02± 0.01 2.39± 0.01 2.28± 0.01

Figure 13: Overpenalization in setting S-Dya2, n = 500.
Top: same as Figure 3 (estimated loss ratio as a function of the overpenalization constant
C).
Bottom: Table showing the estimated optimal overpenalization constant C?n as well as the
estimated loss ratio for several values of C: C = C?n (optimal value), C = 1 (AIC-type
penalty) and C = log(n)/2 (BIC-type penalty). See text for details.
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Penalty C?n Cor(C = C?n) Cor(C = 1) Cor(C = 2.30)

E[penid] 1.77± 0.21 1.59± 0.00 2.09± 0.01 1.63± 0.00
penLOO 1.76± 0.27 1.60± 0.00 2.09± 0.01 1.64± 0.00
pen 10F 1.90± 0.26 1.60± 0.00 2.21± 0.01 1.62± 0.00
pen 5F 2.09± 0.34 1.60± 0.00 2.34± 0.02 1.60± 0.00
pen 2F 3.10± 0.50 1.61± 0.01 2.92± 0.02 1.65± 0.01

Figure 14: Overpenalization in setting S-Regu, n = 100.
Top: same as Figure 3 (estimated loss ratio as a function of the overpenalization constant
C).
Bottom: Table showing the estimated optimal overpenalization constant C?n as well as the
estimated loss ratio for several values of C: C = C?n (optimal value), C = 1 (AIC-type
penalty) and C = log(n)/2 (BIC-type penalty). See text for details.
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Penalty C?n Cor(C = C?n) Cor(C = 1) Cor(C = 3.11)
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pen 5F 1.39± 0.08 1.61± 0.00 1.80± 0.01 2.01± 0.00
pen 2F 1.63± 0.23 1.62± 0.00 2.01± 0.01 1.81± 0.01

Figure 15: Overpenalization in setting S-Regu, n = 500.
Top: same as Figure 3 (estimated loss ratio as a function of the overpenalization constant
C).
Bottom: Table showing the estimated optimal overpenalization constant C?n as well as the
estimated loss ratio for several values of C: C = C?n (optimal value), C = 1 (AIC-type
penalty) and C = log(n)/2 (BIC-type penalty). See text for details.
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The study of variance of Section 6.4 (setting S with n = 100) is completed with Figure 16,
which tests the validity of the heuristic of Section 4, Figure 17, which is the equivalent of
Figure 5 without zooming on the smallest dimensions, and Figure 18, which shows that

∀m 6= m?, SNR(m) ≈
E
[
∆(m,m?)

]√
Var
(
∆(m,m?)

) .

The next figures present the same results as the ones of Section 6.4 about the variance,
for other experimental settings.

Figures 18–23 show the results for setting L with n = 100, based upon N = 10 000
independent samples.

Figures 24–34 show the results for settings S and L with n = 500, based upon N = 1 000
independent samples.
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Figure 16: Illustration of the variance heuristic: P(m̂ = m) as a function of Φ(SNR(m))
(renormalized to have a sum equal to one). Setting S-Regu, n = 100.
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Figure 17: Setting S-Regu, n = 100. P(m̂ = m) as a function of m. The black diamond
shows m? = 7.
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Figure 18: SNR(m) as a function of the ratio at m′ = m?. n = 100. Left: S-Regu. Right:
L-Regu.
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Figure 19: L-Regu, n = 100. Var(∆C(m,m
?)) as a function of m. The black lines show the

linear approximation n−2[5.6(1 + 1.1
V−1) + 2.2(1 + 4.2

V−1)(m−m?)] for m > m? = 4.
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Figure 20: L-Regu, n = 100. Φ(SNR C(m)) as a function of m.
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Figure 21: L-Regu, n = 100. P(m̂(C) = m) as a function of m.
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Figure 22: L-Regu, n = 100. P(m̂(C) = m) as a function of Φ(SNR C(m)).
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Figure 23: L-Regu, n = 100. P(m̂(C) = m) as a function of m.
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Figure 24: SNR(m) as a function of the ratio at m′ = m?. n = 500. Left: S-Regu. Right:
L-Regu.
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Figure 25: S-Regu, n = 500. Var(∆CV (m,m?)) as a function of m. The black lines show
the linear approximation n−2[75(1 + 0.52

V−1) + 3.8(1 + 3.8
V−1)(m−m?)] for m > m? = 22.
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Figure 26: S-Regu, n = 500. Φ(SNR CV (m)) as a function of m.
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Figure 27: S-Regu, n = 500. P(m̂ = m) as a function of m.
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Figure 28: S-Regu, n = 500. P(m̂(C) = m) as a function of Φ(SNR(m)).
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Figure 29: S-Regu, n = 500. P(m̂ = m) as a function of m.
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Figure 30: L-Regu, n = 500. Var(∆CV (m,m?)) as a function of m. The black lines show
the linear approximation n−2[28(1 + 0.06

V−1) + 2.1(1 + 4.2
V−1)(m−m?)] for m > m? = 7.
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Figure 31: L-Regu, n = 500. Φ(SNR CV (m)) as a function of m.
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Figure 32: L-Regu, n = 500. P(m̂ = m) as a function of m.

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Heuristic estimation of P(m is selected)

P
(m

 i
s
 s

e
le

c
te

d
)

 

 

LOO

10−Fold

5−Fold

2−Fold

E[penid]

Figure 33: L-Regu, n = 500. P(m̂(C) = m) as a function of Φ(SNR(m)).
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Figure 34: L-Regu, n = 500. P(m̂ = m) as a function of m.
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