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Abstract: This paper studies V -fold cross-validation for model selection in
least-squares density estimation. The goal is to provide theoretical grounds
for choosing V in order to minimize the least-squares loss of the selected es-
timator. We first prove a non asymptotic oracle inequality for V -fold cross-
validation and its bias-corrected version (V -fold penalization). In particu-
lar, this result implies V -fold penalization is asymptotically optimal. Then,
we compute the variance of V -fold cross-validation and related criteria, as
well as the variance of key quantities for model selection performance. We
show these variances depend on V like 1+ 4/(V − 1) (at least in some par-
ticular cases), suggesting the performance increases much from V = 2 to
V = 5 or 10, and then is almost constant. Overall, this explains the common
advice to take V = 5—at least in our setting and when the computational
power is limited—, as confirmed by some simulation experiments.

Keywords and phrases: V -fold cross-validation, leave-one-out, leave-p-
out, resampling penalties, density estimation, model selection, penalization.

1. Introduction

Cross-validation methods are widely used in statistics, for estimating the risk
of a given statistical estimator [Sto74, All74, Gei75] and for selecting among a
family of estimators. For instance, cross-validation can be used for model selec-
tion, where a collection of linear spaces is given (the models) and the problem
is to choose the best least-squares estimator over one of these models. We refer
to [AC10] for more references about cross-validation for model selection.

Then, a natural question arises: which cross-validation method should be
used for minimizing the risk of the selected estimator? For instance, a popular
family of cross-validation methods is V -fold cross-validation [Gei75, often called
k-fold cross-validation], which depends on an integer parameter V , and enjoys
a smaller computational cost than other classical cross-validation methods. The
question becomes (1) which V is optimal, and (2) can we do almost as well as
the optimal V with a small computational cost, that is, a small V ? Answering
the second question is particularly useful for practical applications where the
computational power is limited.
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Surprisingly, few theoretical results exist for answering these two questions,
especially with a non asymptotic point of view [AC10]. In short, it is proved in
least-squares regression that at first order, V -fold cross-validation is suboptimal
for model selection if V stays bounded, because V -fold cross-validation is biased
[Arl08]. When correcting for the bias [Bur89, Arl08], we recover asymptotic
optimality whatever V , but without any theoretical result distinguishing among
values of V in second order terms in the risk bounds [Arl08].

Intuitively, if there is no bias, increasing V should reduce the variance of the
V -fold cross-validation estimator of the risk, hence reduce the risk of the final
estimator, as confirmed by some simulation experiments [Arl08, for instance].
But variance computations for unbiased V -fold methods have only been made
in a very specific regression setting, and they are asymptotic [Bur89].

This paper aims at providing theoretical grounds for the choice of V by two
means: a non-asymptotic oracle inequality valid for any V (Section 3) and exact
variance computations shedding light on the influence of V on the variance
(Section 5). In particular, we would like to understand why the common advice
in the literature is to take V = 5 or 10, based on simulation experiments [HTF09,
for instance].

The results of the paper are proved in the least-squares density estimation
framework, because, we can then benefit from explicit closed-form formulas
and simplifications for the V -fold criteria. In particular, we show V -fold cross-
validation and all leave-p-out methods are particular cases of V -fold penalties
in least-squares density estimation (Lemma 1).

The first main contribution of the paper (Theorem 1) is an oracle inequality
with leading constant 1 + εn with εn → 0 as n → ∞ (for unbiased V -fold
methods) that holds for any value of V . To the best of our knowledge, Theorem 1
is the first non asymptotic oracle inequality for V -fold methods enjoying such
properties: the leading constant 1 + o(1) is new in density estimation, and the
fact that it holds whatever the value of V had never been obtained in any
framework. Theorem 1 relies on a new concentration inequality for the V -fold
penalty (Proposition 2). The second main contribution of the paper (Theorem 2)
is the first non asymptotic variance computation for V -fold criteria that allows
to understand precisely how the model selection performance of V -fold cross-
validation or penalization depends on V . Previous results only focused on the
variance of the V -fold criterion [Bur89, BG05, Cel08, Cel12, CR08], which is not
sufficient for our purpose, as explained in Section 4; see also the remarks after
Theorem 2. In our setting, we can explain theoretically why taking, say, V > 10
is not necessary for getting a performance close to the optimum, as confirmed
by experiments on synthetic data in Section 6.

Notation For any integer k ≥ 1, JkK denotes {1, . . . , k }, and for any B ⊂ JnK,
ξB denotes {ξi, i ∈ B }, |B| its cardinality and Bc = JnK \ B. For any real
numbers t, u, we define t ∨ u =: max{ t, u}, u+ := u ∨ 0 and u− := (−u) ∨ 0.
All asymptotic results and notation o(·) or O(·) are for the regime when the
number n of observations tends to infinity.



S. Arlot and M. Lerasle/Why V = 5 is enough 3

All references to the supplementary material (e.g., to sections, equations or
figures) are of the form S.x, and references to the appendix are of the form A.x.

2. Least-squares density estimation and definition of V -fold
procedures

This section introduces the framework of the paper, the main procedures stud-
ied, and some useful notation.

2.1. General statistical framework

Let ξ, ξ1, ..., ξn be independent random variables taking value in a Polish space
X , with common distribution P and density s with respect to some known
measure µ. Suppose that s ∈ L∞(µ) so s ∈ L2(µ). The goal is to estimate s
from ξJnK = (ξ1, . . . , ξn), that is, to build an estimator ŝ = ŝ(ξJnK) ∈ L2(µ)

such that its loss ‖ŝ− s‖2 is as small as possible, where for any t ∈ L2(µ),

‖t‖2 :=
∫
X
t2dµ.

Projection estimators are among the most classical estimators in this frame-
work, see for example [DL93, Mas07]. Given a separable linear subspace Sm of
L2(µ) (called a model), the projection estimator of s onto Sm is defined by

ŝm := argmin
t∈Sm

{
‖t‖2 − 2Pn(t)

}
, (1)

where Pn is the empirical measure; for any function t ∈ L2(µ), Pn(t) =
∫
tdPn =

n−1
∑n

i=1 t (ξi ). The quantity minimized in the definition of ŝm is often called
the empirical risk, and can be denoted by

Pnγ(t) = ‖t‖2−2Pn(t) where ∀x ∈ X , ∀t ∈ L2(µ) , γ(t;x) = ‖t‖2−2t(x) .

The function γ is called the least-squares contrast. Note that Sm ⊂ L1(P ) since
s ∈ L2(µ).

2.2. Model selection

When a finite collection of models (Sm)m∈Mn
is given, following [Mas07], we

want to choose from data one among the corresponding projection estimators
(ŝm)m∈Mn

. The goal is to design a model selection procedure m̂ : Xn 7→ Mn so
that the final estimator s̃ := ŝm̂ has a quadratic loss as small as possible, that
is, comparable to the oracle loss infm∈Mn

‖ŝm − s‖2. More precisely, we aim at
proving an oracle inequality of the form

‖ŝm̂ − s‖2 ≤ Cn inf
m∈Mn

{
‖ŝm − s‖2

}
+Rn

with large probability. The procedure m̂ is called asymptotically optimal when
Rn is negligible in front of the oracle loss and Cn → 1.
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In this paper, we focus on model selection procedures of the form

m̂ := argmin
m∈Mn

{crit(m)} ,

where crit : Mn 7→ R is some data-driven criterion. Since our goal is to satisfy
an oracle inequality, an ideal criterion is

critid(m) = ‖ŝm − s‖2 − ‖s‖2 = −2P (ŝm) + ‖ŝm‖2 = Pγ ( ŝm ) .

Penalization is a popular way of designing a model selection criterion [BBM99,
Mas07]:

crit(m) = Pnγ ( ŝm ) + pen(m)

for some penalty function pen : Mn → R, possibly data-driven. From the ideal
criterion critid, we get the ideal penalty

penid(m) := critid(m)− Pnγ ( ŝm ) = (P − Pn)γ ( ŝm ) = 2(Pn − P )(ŝm) (2)

= 2(Pn − P )(ŝm − sm) + 2(Pn − P )(sm) = 2 ‖ŝm − sm‖2 + 2(Pn − P )(sm) ,

where sm := argmin
t∈Sm

{Pγ(t)} = argmin
t∈Sm

{
‖t− s‖2

}

is the orthogonal projection of s onto Sm in L2(µ). Let us finally recall some
useful and classical reformulations of the main term in the ideal penalty (2), that
proves in particular the last equality in Eq. (2): If Bm = { t ∈ Sm s.t. ‖t‖ ≤ 1}
and (ψλ)λ∈Λm

denotes an orthonormal basis of Sm in L2(µ), then,

(Pn − P )(ŝm − sm) =
∑

λ∈Λm

[ (Pn − P )(ψλ) ]
2

= ‖ŝm − sm‖2 = sup
t∈Bm

[(Pn − P )t]2 ,
(3)

where the last equality follows from Eq. (A.29).

2.3. V -fold cross validation

A standard approach for model selection is cross-validation. We refer the reader
to [AC10] for references and a complete survey on cross-validation for model
selection. This section only provides the minimal definitions and notation nec-
essary for the remainder of the paper.

For any subset A ⊂ JnK, let

P (A)
n :=

1

|A|
∑

i∈A

δξi and ŝ(A)
m := argmin

t∈Sm

{
‖t‖2 − 2P (A)

n (t)
}

.

The main idea of cross-validation is data splitting: some T ⊂ JnK is chosen,
one first trains ŝm(·) with ξT , then test the trained estimator on the remaining
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data ξT c . The hold-out criterion is the estimator of critid(m) obtained with this
principle

critHO(m,T ) := P (T c)
n γ

(
ŝ(T )
m

)
= −2P (T c)

n

(
ŝ(T )
m

)
+
∥∥∥ŝ(T )

m

∥∥∥
2

, (4)

and all cross-validation criteria are defined as averages of hold-out criteria with
various subsets T .

Let V ≤ n be a positive integer and let B = BJV K = (B1, . . . ,BV ) be some
partition of JnK. The V -fold cross validation criterion is defined by

critVFCV(m,B) :=
1

V

V∑

K=1

critHO(m,Bc
K) .

Compared to the hold-out, one expects cross-validation to be less variable thanks
to the averaging over V splits of the sample into ξBK

and ξBc
K
.

Since critVFCV(m,B) is known to be a biased estimator of E [ critid(m) ], Bur-
man [Bur89] proposed the bias-corrected V -fold cross-validation criterion

critcorr,VFCV(m,B) := critVFCV(m,B) + Pnγ ( ŝm )− 1

V

V∑

K=1

Pnγ
(
ŝ
(Bc

K)
m

)
.

This criterion is studied in [Mas07, Sec. 7.2.1, p.204–205] in the particular case
where V = n under the name cross-validation estimator (see in Lemma 1).

2.4. Resampling-based and V -fold penalties

Another approach for building general data-driven model selection criteria is
penalization with a resampling-based estimator of the expectation of the ideal
penalty, as proposed by Efron [Efr83] with the bootstrap and recently gener-
alized to all resampling schemes [Arl09]. Let W ∼ W be some random vector
of R

n independent from ξJnK with n−1
∑n

i=1Wi = 1, and denote by PW
n =

n−1
∑n

i=1Wiδξi the weighted empirical distribution of the sample. Then, the
resampling-based penalty associated with W is defined as

penW(m) := CWEW

[
(Pn − PW

n )γ
(
ŝWm
)]

, (5)

where ŝWm ∈ argmint∈Sm

{
PW
n γ ( t )

}
, EW [ · ] denotes the expectation with re-

spect to W only (that is, conditionally to the sample ξJnK), and CW is some
positive constant. Resampling-based penalties have been studied recently in the
least-squares density estimation framework [Ler12], assuming W is exchange-
able, i.e., its distribution is invariant by any permutation of its coordinates.

Since computing exactly penW(m) has a large computational cost in general
for exchangeable W , some non-exchangeable resampling schemes were intro-
duced in [Arl08], inspired by V -fold cross-validation: given some partition B =
BJV K of JnK, the weight vectorW is defined byWi = (1−Card(BJ)/n)

−11i/∈BJ
for
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some random variable J with uniform distribution over JV K. Then, PW
n = P

(Bc
J )

n

so that the associated resampling penalty, called V -fold penalty, is defined by

penVF(m,B, x) :=
x

V

V∑

K=1

[(
Pn − P

(Bc
K)

n

)
γ
(
ŝ
(Bc

K)
m

)]

=
2x

V

V∑

K=1

(
P

(Bc
K)

n − Pn

)(
ŝ
(Bc

K)
m

)
(6)

where x > 0 is left free for flexibility, which is quite useful according to Lemma 1.

2.5. Links between V -fold penalties, resampling penalties and
(corrected) V -fold cross-validation

In this paper, we focus our study on V -fold penalties because formula (6) covers
all V -fold and resampling-based procedures mentioned in Sections 2.3 and 2.4.

First, when V = n, the only possible partition is BLOO = {{1} , . . . , {n}},
and the V -fold penalty is called the leave-one-out penalty penLOO(m,x) :=
penVF(m,BLOO, x). The associated weight vector W is exchangeable, hence
Eq. (6) leads to all exchangeable resampling penalties since they are all equal up
to a deterministic multiplicative factor in the least-squares density estimation
framework, as proved in [Ler12].

For V -fold methods, let us assume B is a regular partition of JnK, that is,

V = |B| divides n and ∀K ∈ JV K , |BK | = n

V
. (Reg)

Then, we get the following connection between V -fold penalization and cross-
validation methods.

Lemma 1. In least-squares density estimation, under assumption (Reg),

critcorr,VFCV(m,B) = Pnγ ( ŝm ) + penVF (m,B, V − 1) (7)

critVFCV(m,B) = Pnγ ( ŝm ) + penVF

(
m,B, V − 1

2

)
(8)

critLPO(m, p) = Pnγ ( ŝm ) + penLPO

(
m, p,

n

p
− 1

2

)
(9)

= Pnγ ( ŝm ) + penLOO

(
m, (n− 1)

n/p− 1/2

n/p− 1

)
(10)

= Pnγ ( ŝm ) + penVF

(
m,BLOO, (n− 1)

n/p− 1/2

n/p− 1

)

where for any p ∈ Jn− 1K, the leave-p-out cross-validation criterion is defined
by
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critLPO(m, p) :=
1

|Ep|
∑

A∈Ep

P (A)
n γ

(
ŝ(A

c)
m

)
with Ep := {A ⊂ JnK s.t. |A| = p}

and the leave-p-out penalty is defined by

∀x > 0 , penLPO(m, p, x) :=
x

|Ep|
∑

A∈Ep

(Pn − P (Ac)
n )γ

(
ŝ(A

c)
m

)
.

Lemma 1 is proved in Section A.1.

Remark 1. Eq. (7) was first proved in [Arl08] in a general framework that
includes least-squares density estimation, assuming only (Reg). Eq. (10) follows
from Lemma 6.11 in [Ler12] since penLPO belongs to the family of exchangeable
resampling penalties, with weights Wi := (1 − p/n)−11i/∈A and A is randomly
chosen uniformly over Ep. It can also be deduced from [Cel12, Proposition 3.1],
see Section A.1.

Remark 2. It is worth mentioning the cross-validation estimators given in [Mas07,
Chapter 7]. First, the unbiased cross-validation criterion defined in [Mas07, Sec-
tion 7.2.1] is exactly critcorr,VFCV(m,BLOO). Then, the penalized estimator of
[Mas07, Theorem 7.6] is the estimator selected by the penalty

penLOO

(
m,

(1 + ǫ)6(n− 1)2

2[n− (1 + ǫ)6]

)

for some ǫ > 0 such that (1 + ǫ)6 < n (see Section A.1 for details).

As a conclusion of this section, in the least-squares density estimation frame-
work and assuming only (Reg), Lemma 1 shows it is sufficient to study V -fold
penalization with a free multiplicative factor x in front of the penalty for study-
ing also V -fold cross-validation (x = V −1/2), corrected V -fold cross-validation
(x = V − 1), the leave-p-out (V = n and x = (n− 1)(n/p− 1/2)/(n/p− 1)) and
all exchangeable resampling penalties. For any C > 0 and B some partition of
JnK, taking x = C(V − 1), the V -fold penalization criterion with is denoted by

C(C,B)(m) := Pnγ ( ŝm ) + penVF(m,B, C(V − 1)) . (11)

A key quantity in our results is the bias E[C(C,B)(m)− critid(m) ]. From Lemma A.4
in Section A.2, we have

E [penVF(m,B, V − 1) ] = E [penid(m) ] = 2E
[
‖ŝm − sm‖2

]
, (12)

so that for any C > 0,

E
[
C(C,B)(m)− critid(m)

]
= 2(C − 1)E

[
‖ŝm − sm‖2

]
. (13)

In Sections 3–7, we focus our study on V -fold methods, that is, we study the
performance of the V -fold penalized estimators ŝm̂, defined by

m̂ = m̂(C(C,B)) = argmin
m∈Mn

{
C(C,B)(m)

}
, (14)

for all values of V and C > 1/2. Additional results on hold-out (penalization)
are given in Section 8.1 to complete the picture.
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3. Oracle inequalities

In this section, we state our first main result, that is, a non-asymptotic oracle
inequality satisfied by V -fold procedures. This result holds for any V ∈ JnK, any
constant x = C(V − 1) in front of the penalty with C > 1/2, and provides an
asymptotically optimal oracle inequality for the selected estimator when C → 1.
In addition, as proved by Section 2.5, it implies oracle inequalities satisfied by
leave-p-out procedures for all p.

3.1. Concentration of V -fold penalties

Concentration is the key property to establish oracle inequalities. Let us start
with some concentration results for V -fold penalties.

Proposition 2. Let ξJnK be i.i.d. real-valued random variables with density s ∈
L∞(µ), B some partition of JnK into V pieces satisfying (Reg), Sm a separable
linear space of measurable functions and (ψλ)λ∈Λm

an orthonormal basis of Sm.
Define Bm = { t ∈ Sm s.t. ‖t‖ ≤ 1}, Ψm =

∑
λ∈Λm

ψ2
λ = supt∈Bm

t2, bm :=∥∥√Ψm

∥∥
∞
,

Dm := PΨm − ‖sm‖2 = nE
[
‖sm − ŝm‖2

]

where ŝm is defined by Eq. (1), and for any x, ǫ > 0, let

ρ1 (m, ǫ, s, x, n ) :=
‖s‖∞ x

ǫn
+

(b2m + ‖s‖2)x2
ǫ3n2

.

Then, an absolute constant κ exists such that for any x ≥ 0, with probability at
least 1− 8e−x, for any ǫ ∈ (0, 1], the following two inequalities hold true:

∣∣∣∣penVF(m,B, V − 1)− 2Dm

n

∣∣∣∣ ≤ ǫ
Dm

n
+ κρ1 (m, ǫ, s, x, n ) (15)

∣∣∣penVF(m,B, V − 1)− 2 ‖sm − ŝm‖2
∣∣∣ ≤ ǫ

Dm

n
+ κρ1 (m, ǫ, s, x, n ) . (16)

Proposition 2 is proved in Section A.2. Eq. (15) gives the concentration of the
V -fold penalty around its expectation 2Dm/n = E[penid(m) ], see Eq. (12).
Eq. (16) gives the concentration of the V -fold penalty around the ideal penalty,
see Eq. (2). Optimizing over ǫ, the first order of the deviations of penVF(m,B, V−
1) around penid(m) is driven by

√
Dm/n. The deviation term in Proposition 2

does not depend on V and cannot therefore help to discriminate between dif-
ferent values of this parameter.

3.2. Example: histogram models

Histograms on R are a classical example of collections of models. Let X be a
measurable subset of R, µ denote the Lebesgue measure on X and m be some
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countable partition of X such that µ(λ) > 0 for any λ ∈ m. The histogram space
Sm based on m is the linear span of the functions (1λ)λ∈m. More precisely, we
illustrate our results with the following examples.

Example 3. [Regular histograms on X = R]

Mn = {mh, h ∈ JnK} where ∀h ∈ JnK , mh =

{[
λ

h
,
λ+ 1

h

)
, λ ∈ Z

}
.

In Example 3, defining dmh
= h for every h ∈ JnK, for every m ∈ Mn,

Dm = dm−‖sm‖2 since Ψm is constant and equal to dm. Therefore Proposition 2
shows penVF(m,B, V − 1) is asymptotically equivalent to pendim(m) := 2dm/n
when dm → ∞. Penalties of the form of pendim are classical and have been
studied for instance by [BBM99].

Example 4. [k-rupture points on X = [0, 1]]

Mn =
{
mhJk+1K,xJkK

, x1 < · · · < xk ∈ Jn− 1K , hi ∈ [xi − xi−1]
}
,

where, with the conventions x0 = 0, xk+1 = n, for any x1, . . . , xk ∈ Jn− 1K , x1 <
· · · < xk, hJk+1K ∈ N

k+1, mhJk+1K,xJkK
is defined as the union

⋃

i∈JkK

{[
xi−1

n
+

(xi − xi−1)(λ− 1)

nhi
,
xi−1

n
+

(xi − xi−1)λ

nhi

)
, λ ∈ JhiK

}
.

In Example 4, the function Ψm is constant on each interval [xi−1, xi), equal
to hi, therefore,

Dm =

k+1∑

i=1

hiP (ξ ∈ [xi−1, xi))− ‖sm‖2 .

3.3. Oracle inequality for V -fold procedures

In order to state the main results, we introduce the following hypotheses:

• for all m ∈ Mn,

b2m := sup
t∈Bm

‖t‖2∞ ≤ n where Bm := { t ∈ Sm, ‖t‖ ≤ 1} , (H1)

• the family of the projections of s is uniformly bounded: for some a > 0,

∀m ∈ Mn , ‖sm‖∞ ≤ a , (H2)

• the collection of models is nested

∀(m,m′) ∈ M2
n , Sm ∪ Sm′ ∈ {Sm, Sm′} . (H2′)

Hereafter, we define A := a∨‖s‖∞ when (H2) holds and A := ‖s‖∞ when (H2′)
holds. On histogram spaces, (H1) holds if and only if infm∈Mn

infλ∈m µ(λ) ≥
n−1, and (H2) holds with a = ‖s‖∞.
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Theorem 1. Let ξJnK be i.i.d real-valued random variables with common den-
sity s ∈ L∞(µ), B some partition of JnK into V pieces satisfying (Reg) and
(Sm)m∈Mn

be a collection of separable linear spaces satisfying (H1). Assume
that either (H2) or (H2′) holds true. Let C ∈ (1/2, 2], δ := 2(C − 1) and, for
any x, ǫ > 0,

ρ2 (ǫ, s, x, n ) :=
(‖s‖∞ +A)x

ǫn
+

(
1 +

‖s‖2
n

)
x2

ǫ3n
.

For every m ∈ Mn, let ŝm be the estimator defined by Eq. (1), and s̃ = ŝm̂
where m̂ = m̂(C(C,B)) is defined by Eq. (14). Then, an absolute constant κ exists
such that, for any x > 0, with probability at least 1− e−x, for any ǫ ∈ (0, 1],

1− δ− − ǫ

1 + δ+ + ǫ
‖s̃− s‖2 ≤ inf

m∈Mn

‖ŝm − s‖2 + κρ2(ǫ, s, xn, n) , (17)

where xn = x+ log |Mn|.
Theorem 1 is proved in Section A.3.

Taking ǫ > 0 small enough in Eq. (17), Theorem 1 proves V -fold model
selection procedures satisfy an oracle inequality with large probability. The re-
mainder term can be bounded under the following classical assumption:

∃a′ > 0 , ∀n ∈ N
⋆, |Mn| ≤ na′

. (A3)

For instance, (A3) holds in Example 3 with a′ = 1 and in Example 4 with a′ = k.
Under (A3), the remainder term in Eq. (17) is bounded by L(log n)2/(ǫ3n) for
some L > 0.
The leading constant in the oracle inequality (17) is (1+ δ+)/(1− δ−)+ o(1) by
choosing ǫ = o(1), so the first-order behaviour of the upper bound on the loss
is driven by δ. An asymptotic optimality result can be derived from Eq. (17)
only if δ = o(1). The meaning of δ = 2(C − 1) is the amount of bias of the
V -fold penalization criterion, as shown by Eq. (13). Given this interpretation of
δ, the model selection literature suggests no asymptotic optimality result can
be obtained in general when δ 6= o(1), see for instance [Sha97]. Therefore, even
if the leading constant (1+ δ+)/(1− δ−) is only an upper bound, we conjecture
it cannot be taken as small as 1 + o(1) unless δ = o(1); such a result can be
proved in our setting using similar arguments and assumptions as in [Arl08] for
instance.
For bias-corrected V -fold cross-validation, that is, C = 1 hence δ = 0, Theorem 1
shows a first-order optimal non-asymptotic oracle inequality, since the leading
constant (1+ ǫ)/(1− ǫ) can be taken equal to 1+ o(1), and the remainder term
is small enough under assumption (A3), for instance. Such a result valid with
no upper bound on V had never been obtained before in any setting.
Regular V -fold cross-validation is also analyzed by Theorem 1, since by Lemma 1
it corresponds to C = 1+ 1/(2(V − 1)), hence δ = 1/(V − 1). When V is fixed,
the oracle inequality is asymptotically sub-optimal, which is consistent with
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the result proved in regression by [Arl08]. On the contrary, if B = Bn has Vn
blocs, with Vn → ∞, Theorem 1 implies under assumption (A3) the asymptotic
optimality of Vn-fold cross-validation as soon as the oracle loss is much larger
than (log n)2/n.

The bound obtained in Theorem 1 can be integrated and we get

1− δ− − ǫ

1 + δ+ + ǫ
E

[
‖s̃− s‖2

]
≤ E

[
inf

m∈Mn

‖ŝm − s‖2
]
+ κ′ρ2(ǫ, s, log(|Mn|))

for some absolute constant κ′ > 0.
Assuming C > 1/2 is necessary according to minimal penalty results proved in
[Ler12]. Assuming C ≤ 2 only simplifies the presentation; if C > 2, the same
proof shows Theorem 1 holds with κ replaced by Cκ.
An oracle inequality similar to Theorem 1 holds in a more general setting, as
proved in a previous version of this paper [AL12]; we state a less general result
here for simplifying the exposition, since it does not change the message of the
paper. First, assumption (Reg) can be relaxed into assuming the partition B is
close to regular, that is,

B is a partition of JnK of size V and sup
k∈JV K

∣∣∣Card(Bk)−
n

V

∣∣∣ ≤ 1 , (Reg’)

which can hold for any V ∈ JnK. Second, data ξ1, . . . , ξn can belong to a general
Polish space X , at the price of some additional technical assumption, see [AL12].

3.4. Comparison with previous works on V -fold procedures

Few non-asymptotic oracle inequalities have been proved for V -fold penaliza-
tion or cross-validation procedures. Concerning cross-validation, previous oracle
inequalities are listed in the survey [AC10]. In the least-squares density esti-
mation framework, oracle inequalities were proved by [vdLDK04] in the V -fold
case, but compared the risk of the selected estimator with the risk of an oracle
trained with n(V −1)/V data. In comparison, Theorem 1 considers the strongest
possible oracle, that is, trained with n data. Optimal oracle inequalities were
proved by [Cel12] for leave-p-out estimators with p ≪ n, a case also treated
in Theorem 1 by taking V = n and C = (n/p − 1/2)/(n/p − 1) as shown by
Lemma 1. If p≪ n, C ∼ 1, hence δ = o(1) and we recover the result of [Cel12].
Concerning V -fold penalization, previous results were either valid for V = n
only ([Mas07, Theorem 7.6] and [Ler12] for least-squares density estimation,
[Arl09] for regressogram estimators), or for V bounded when n tends to infin-
ity (for regressogram estimators [Arl08]). In comparison, Theorem 1 provides a
result valid for all V , except for the assumption that V divides n, which can be
removed, see [AL12]. In particular, the loss bound in [Arl08] deteriorates when
V grows, while it remains stable in our result. The latter corresponds to the
typical behavior of the loss ratio ‖s− s̃‖2/ infm∈Mn

‖s− ŝm‖2 of V -fold penal-
ization as a function of V in simulation experiments, see Section 6 and [Arl08],
for instance.
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4. How to compare theoretically the performances of model
selection procedures for estimation?

The main goal of the paper is to compare the model selection performances
of several (V -fold) cross-validation methods, when the goal is estimation, that

is minimizing the loss ‖ŝm̂ − s‖2 of the selected estimator. In this section, we
discuss how such a comparison can be made on theoretical grounds, in a general
setting.

For some data-driven function C : M → R, the goal is to understand how
‖ŝm̂(C) − s‖2 depends on C when the selected model is

m̂(C) ∈ argmin
m∈Mn

{C(m)} . (18)

From now on, in this section, C is assumed to be a cross-validation estimator of
the risk, but the heuristic developed here applies to the general case.

Ideal comparison. Ideally, for proving C1 is a better method than C2 in some
setting, we would like to prove that

∥∥ŝm̂(C1) − s
∥∥2 < (1− εn)

∥∥ŝm̂(C2) − s
∥∥2 (19)

with a large probability, for some εn ≥ 0.

Previous works and their limits. The classical way to analyze the perfor-
mance of a model selection procedure is to prove an oracle inequality, that is,
to upper bound (with a large probability or in expectation)

∥∥ŝm̂(C) − s
∥∥2 − inf

m∈Mn

{
‖ŝm − s‖2

}
or Rn(C) :=

∥∥ŝm̂(C) − s
∥∥2

infm∈Mn

{
‖ŝm − s‖2

} .

Alternatively, asymptotic results show that when n tends to infinity, Rn(C) → 1
(asymptotic optimality of C) or that Rn(C1) ∼ Rn(C2) (asymptotic equivalence
of C1 and C2). A review of such results can be found in [AC10, Section 6]. Never-
theless, proving Eq. (19) requires a lower bound on Rn(C) (asymptotic or not),
which has been done only once for some cross-validation method, to the best of
our knowledge. In some least-squares regression setting, V -fold cross-validation
(CVF) performs (asymptotically) worse than all asymptotically optimal model
selection procedures since Rn(CVF) ≥ κ(V ) > 1 with a large probability [Arl08].
The major limitation of all these previous results is they can only compare C1
to C2 at first order, that is, according to limn→∞ Rn(C1)/Rn(C2), which only
depends on the bias of Ci(m) (i = 1, 2) as an estimator of E[‖ŝm − s‖2 ], hence,
on the asymptotic ratio between the training set size and the sample size [AC10,
Section 6]. For instance, the leave-p-out and the hold-out with a training set of
size (n−p) cannot be distinguished at first order, while the leave-p-out performs
much better in practice, certainly because its “variance” is much smaller.
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Beyond first-order. So, we must go beyond the first-order of Rn(C) and
take into account the variance of C(m). Nevertheless, proving a lower bound
on Rn(C) is already challenging at first order—probably the reason why only
one has been proved up to now, in a specific setting only—so the challenge of
computing a precise lower bound on the second order term of Rn(C) seems too
high for the present paper. We propose instead a heuristic showing the variances
of some quantities—depending on (Ci)i=1,2 and on Mn—can be used as a proxy
to a proper comparison of the second-order terms of Rn(C1) and Rn(C2). Since
we focus on second-order terms, from now on, we assume C1 and C2 have the
same bias, that is,

∀m ∈ Mn , E[C1(m) ] = E[C2(m) ] . (SameBias)

In least-squares density estimation, given Lemma 1, this means for i ∈ {1, 2},
Ci = C(C,Bi) as defined by Eq. (11), with different partitions Bi satisfying (Reg)
with different V = Vi, but the same constant C > 0; C = 1 corresponds to the
unbiased case.

The variance of the cross-validation criteria is not the correct quan-
tity to look at. If we were only comparing cross-validation methods C1, C2 as
estimators of E[‖ŝm − s‖2 ] for every single m ∈ Mn, we could naturally com-
pare them through their mean squared errors. Under assumption (SameBias),
this would mean to compare their variances. This can be done from Eq. (24)
below, but it is not sufficient to solve our problem, since it is known the best
cross-validation estimator of the risk does not necessarily yield the best model
selection procedure [BS92]. More precisely, the selected model m̂(C) defined by
Eq. (18) is unchanged when C(m) is translated by any random quantity, but
such a translation does change var(C(m) ) and can make it as large as desired.
For model selection, what really matters is that

sign (C(m1)− C(m2) ) = sign
(
‖ŝm1

− s‖2 − ‖ŝm2
− s‖2

)
(20)

as often as possible for every (m1,m2) ∈ M2
n, and that most mistakes in the

ranking of models occur when ‖ŝm1
−s‖2−‖ŝm2

−s‖2 is small, so that ‖ŝm̂(C)−s‖2
cannot be much larger than infm∈Mn

{‖ŝm − s‖2 }.

Heuristic. The heuristic we propose goes as follows. Assume for simplicity
m⋆ = argminm∈Mn

E[‖ŝm − s‖2 ] is uniquely defined. For any C, the smallest is
P(m = m̂(C)) for allm 6= m⋆, the better should be the performance of ŝm̂(C). Our
idea is to find a proxy for P(m = m̂(C)), that is, a quantity that should behave
similarly as a function of C and its “variance” properties. For all m,m′ ∈ Mn,
let ∆C(m,m

′) := C(m)−C(m′), ξ some standard Gaussian random variable and
Φ(t) = P (ξ > t ) for all t ∈ R. Then, for every m ∈ Mn,

P (m̂(C) = m ) = P (∀m′ 6= m, ∆C(m,m
′) < 0)

≍ min
m′ 6=m

P (∆C(m,m
′) < 0) (21)
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≈ min
m′ 6=m

P

(
E [∆C(m,m

′) ] + ξ
√
var (∆C(m,m′) ) < 0

)
(22)

= Φ (SRC(m) ) where SRC(m) := max
m′ 6=m

E [∆C(m,m
′) ]√

var (∆C(m,m′) )
.

So, if SRC1
(m) > SRC2

(m) for all m 6= m⋆, C1 should be better than C2. Under
assumption (SameBias), this leads to the following heuristic:

∀m 6= m′ , var (∆C1
(m,m′) ) < var (∆C2

(m,m′) ) ⇒ C1 better than C2 . (23)

Let us make some remarks.

• The quantity ∆C(m,m
′) appears in relative bounds [Cat07, Section 1.4]

which can be used as a tool for model selection [Aud04].
• Approximation (21) is the strongest one. Clearly, inequality ≤ holds true.
The equality case is for a very particular dependence setting, when the
events ({∆C(m,m

′) < 0} )m′∈M are nested. In general, the left-hand side
is significantly smaller than the right-hand side; we claim they vary simi-
larly as a function of C.

• The gaussian approximation (22) for ∆C(m,m
′) does not hold exactly, but

it seems reasonable to make it, at first order at least.

In the heuristic (23), all (m,m′) do not matter equally for explaining a quan-
titative difference in the performances of C. First, we can fix m′ = m⋆, since
intuitively, the strongest candidate against any m 6= m⋆ is m⋆, which clearly
holds in all our experiments, see Figures S.9 and S.25. Second, if m and m⋆ are
very close, that is, ‖ŝm − s‖2/‖ŝm⋆ − s‖2 is smaller than the minimal order of
magnitude we can expect forRn(C) with a data-driven C, takingm instead ofm⋆

does not decrease the performance significantly. Third, if Φ (SRC(m) ) is much
too small, changing it even by an order of magnitude will not affect the perfor-
mance of m̂(C) significantly; hence, all m such that, say, SRC(m) ≫ (log(n))α

for all α > 0, can also be discarded. Overall, pairs (m,m′) that really mat-
ter in (23) are pairs (m,m⋆) that are at a “moderate distance”, in terms of
E[‖ŝm − s‖2 − ‖ŝm⋆ − s‖2 ].

5. Dependence on V of V -fold penalization and cross-validation

Let us now come back to the least-squares density estimation setting. Our goal
is to compare the performance of classical cross-validation methods having the
same bias, that is, according to Section 2.5, m̂(C(C,B)) with the same constant
C but different partitions B, where m̂(C(C,B)) is defined by Eq. (14).

Theorem 2. Let ξJnK be i.i.d. random variables with common density s ∈
L∞(µ), B some partition of JnK into V pieces satisfying (Reg), and (ψλ)λ∈Λm1

,

(ψλ)λ∈Λm2
two orthonormal families in L2(µ). For m ∈ {m1,m2 }, Sm denotes

the linear span of (ψλ )λ∈Λm
, Bm = {t ∈ Sm / ‖t‖ ≤ 1} and Ψm := supt∈Bm

t2.
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For any Λ,Λ′ ∈ {Λm1
,Λm2

},

β (Λ,Λ′ ) :=
∑

λ∈Λ,λ′∈Λ′

(E [ (ψλ(ξ1)− Pψλ ) (ψλ′(ξ1)− Pψλ′ ) ] )
2

and B (m1,m2 ) := β (Λm1
,Λm1

) + β (Λm2
,Λm2

)− 2β (Λm1
,Λm2

) .

Then, for every C > 0,

Var
(
C(C,B)(m1)

)
=

2

n2

(
1 +

4C2

V − 1
− (2C − 1)

2

n

)
β (Λm1

,Λm1
) (24)

+
4

n
Var

((
1 +

2C − 1

n

)
sm1

(ξ1)−
2C − 1

2n
Ψm1

(ξ1)

)

and Var
(
C(C,B)(m1)− C(C,B)(m2)

)
=

2

n2

(
1 +

4C2

V − 1
− (2C − 1)2

n

)
B (m1,m2 )

(25)

+
4

n
Var

((
1 +

2C − 1

n

)
(sm1

− sm2
)(ξ1)−

2C − 1

2n
(Ψm1

−Ψm2
)(ξ1)

)
.

Theorem 2 is proved in Section A.4.

In the unbiased case, that is, C = 1,

Var
(
C(1,B)(m1)− C(1,B)(m2)

)
=

(
1 +

4

V − 1
− 1

n

)
a+ b

for some a, b ≥ 0 depending on n,m1,m2 but not on V . Given the heuristic argu-
ments of Section 4, this shows the model selection performance of bias-corrected
V -fold cross-validation improves when V increases, but the improvement is at
most in a second order term as soon as V is large. In particular, even if b≪ a,
the improvement from V = 2 to 5 or 10 is much larger than from V = 10 to
V = n, which justifies the commonly used principle that taking V = 5 or V = 10
is large enough. Assuming in addition Sm1

and Sm2
are regular histogram mod-

els (Example 3 in Section 3.2) and dm1
divides dm2

, then, by Lemma S.10 in
Section S.1,

a =
2

n2
B (m1,m2 ) ≍ ‖sm2

‖2 dm2

n2

and b =
4

n

(
1 +

1

n

)2

Var (sm1
(ξ)− sm2

(ξ)) ≈ O
(

1

n
‖sm1

− sm2
‖2
)

.

When dm2
/n is at least as large as ‖sm1

− sm2
‖2, we obtain that V drives

the constant of the first order term in the variance through the multiplicative
factor 1 + 4/(V − 1) in front of a. Let Cid(m) := Pnγ(ŝm) + E [penid(m) ] be
the criterion we could use if we knew the expectation of the ideal penalty. From
Proposition S.8 in Section S.1,
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Var (Cid(m1)− Cid(m2)) =
2

n2

(
1− 1

n

)
B (m1,m2 )

+
4

n
Var

((
1− 1

n

)
(sm1

− sm2
)(ξ1) +

1

2n
(Ψm1

−Ψm2
)(ξ1)

)

which easily compares to formula (25) obtained for the V -fold criterion when
C = 1. Up to smaller order terms, the difference lies in the first term, where
(1 + 4/(V − 1) − 1/n) is replaced by (1 − 1/n) when using the expectation of
the ideal penalty instead of a V -fold penalty. In other words, the leave-one-
out penalty—that is, taking V = n—behaves like the expectation of the ideal
penalty.

Regular V -fold cross-validation and the leave-p-out are also covered by
Theorem 2, according to Lemma 1, respectively with C = 1+ 1/(2(V − 1)) and
with V = n and C = 1+1/(2(n/p− 1)). The conclusion is similar: increasing V
decreases the variance, and V -fold cross-validation performs almost as well as
the leave-(n/V )-out as soon as V is larger than 5 or 10.

Similarly, the variances of the V -fold cross-validation and leave-p-out criteria—
for instance—can be derived from Eq. (24). In the leave-p-out case, we recover
formulas obtained in [Cel12, CR08], with a different grouping of the variance
components; Eq. (24) clearly emphasizes the influence of the bias—through
(C−1)—on the variance. For V -fold cross-validation, we believe Eq. (24) shows
in a simpler way how the variance depends on V , compared to the result of
[CR08] which was focusing on the difference between V -fold cross-validation
and the leave-(n/V )-out; here the difference can be written

8

(
1

V − 1
− 1

n− 1

)(
1 +

1

2(V − 1)

)2

n−2β (Λm1
,Λm1

) .

A major novelty in Eq. (24) is also to cover a larger set of criteria, such as
corrected-V -fold cross-validation. Note that var(C(C,B)(m1)) is generally much
larger than var(C(C,B)(m1) − C(C,B)(m2)), which illustrates again why comput-
ing the former quantity might not help for understanding the model selection
properties of C(C,B), as explained in Section 4. For instance, comparing Eq. (24)
and (25), changing sm1

into sm1
− sm2

in the second term can reduce dramat-
ically the variance when sm1

and sm2
are close, which happens for the pairs

(m1,m2) that matter for model selection according to Section 4.
The variance of hold-out criteria and their increments ∆Cho(m1,m2) are also

computed in Proposition S.13 in Section S.2.2.

Remark 5. The term B (m1,m2 ) does not depend on the choice of particular
bases of Sm1

and Sm2
: as proved in Proposition S.9 in Section S.1,

B (m1,m2 ) = Var (( ŝm1
− ŝm2

) (ξ))− n+ 1

n
Var ((sm1

− sm2
) (ξ)) , (26)

where ξ denotes a copy of ξ1, independent of ξJnK.
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Figure 1. The two densities considered. Left: setting L. Right: setting S.

6. Simulation study

This section illustrates the main theoretical results of the paper with some
experiments on synthetic data.

6.1. Setting

In this section, we consider X = [0, 1] and µ is the Lebesgue measure on X .
Two examples are considered for the target density s and for the collection of
models (Sm)m∈Mn

.
Two density functions s are considered, see Figure 1:

• Setting L: s(x) = 10x
3 10≤x<1/3 + (1 + x

3 )11≥x≥1/3 .
• Setting S: s is the mixture of the piecewise linear density x 7→ (8x −
4)11≥x≥1/2 (with weight 0.8) and four truncated gaussians with means
(k/10)k=1,...,4 and standard deviation 1/60 (each with weight 0.05).

Two collections of models are considered, both leading to histogram estima-
tors: for every m ∈ Mn, Sm is the set of piecewise constant functions on some
partition Λm of X .

• “Regu” for regular histograms: Mn = {1, . . . , n} where for every m ∈
Mn , Λm is the regular partition of [0, 1] into m bins.

• “Dya2” for dyadic regular histograms with two bin sizes and a variable
change-point:Mn =

⋃
k∈{ 1,...,ñ} {k }×{0, . . . , ⌊log2(k)⌋}×{0, . . . , ⌊log2(ñ− k)⌋}

where ñ = ⌊n/ log(n)⌋ and for every (k, i, j) ∈ Mn, Λ(k,i,j) is the union of
the regular partition of [0, k/ñ) into 2i pieces and the regular partition of
[k/ñ, 1] into 2j pieces.

The difference between “Regu” and “Dya2” can be visualized on Figure 2,
where the corresponding oracle models have been plotted in setting S. While
“Regu” is one of the simplest and most classical collections for density estima-
tion, the flexibility of “Dya2” allows to adapt to the variability of the smoothness
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Figure 2. Oracle model for one sample of size n = 500, in setting S. Left: Regu. Right: Dya2.

Table 1

Comparison of Regu and Dya2: quadratic risks E[‖s− ŝm̂‖2 ] of “Oracle” and “Best”
estimators (multiplied by 103) with the two collections of models. “Best” means that m̂ is

the data-driven procedure minimizing E[‖s− ŝm̂‖2 ] among all the data-driven procedures we
considered in our experiments (see Section 6.2). “Oracle” means that
m̂ ∈ argminm∈Mn

‖s− ŝm‖2 is the oracle model for each sample.

Setting Oracle(Regu) Oracle(Dya2) Best(Regu) Best(Dya2)

L 13.4± 0.1 5.46± 0.02 25.8± 0.1 19.4± 0.1
S 62.4± 0.1 43.9± 0.1 100.9± 0.2 83.4± 0.2

of s. Intuitively, in settings L and S, the optimal bin size is smaller on [0, 1/2]
(where s is varying fastly) than on [1/2, 1] (where |s′| is much smaller).

Another point of comparison of Regu and Dya2 is given by Table 1, that
reports values of the quadratic risks obtained depending on the collection of
models considered. Table 1 shows that in settings L and S, the collection Dya2
helps reducing the quadratic risk by approximately 20% (when comparing the
best data-driven procedures of our experiment), and even more when comparing
oracle estimators (30% in setting S, 59% in setting L). Therefore, in settings L
and S, it is worth considering more complex collections of models (such as Dya2)
than regular histograms.

Let us finally remark that Dya2 does not reduce the quadratic risk in all
settings as significantly as in settings L and S. We performed similar experi-
ments with a few other density functions, sometimes leading to less important
differences between Regu and Dya2 in terms of risk (results not shown). The
oracle model was always better with Dya2, but in two cases, the risk of the best
data-driven procedure with Dya2 was larger than with Regu by 6 to 8%.

6.2. Procedures compared

In each setting, we consider the following model selection procedures:
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Table 2

Estimated model selection performances, see text. ‘LOO’ is a shortcut for ‘leave-one-out’,
that is, V -fold with V = n = 500.

Procedure L–Dya2 S–Dya2

pendim 8.27± 0.07 3.21± 0.01

pen2F 10.21± 0.08 2.39± 0.01
pen5F 7.47± 0.06 2.16± 0.01
pen10F 6.89± 0.06 2.11± 0.01
penLOO 6.35± 0.05 2.06± 0.01

2FCV 6.41± 0.05 2.05± 0.01
5FCV 6.27± 0.05 2.05± 0.01
10FCV 6.24± 0.05 2.05± 0.01
LOO 6.34± 0.05 2.06± 0.01

E[ penid ] 6.52± 0.05 2.07± 0.01

• pendim [BBM99]: penalization with pen(m) = 2Card(Λm)/n .
• V -fold cross-validation with V ∈ {2, 5, 10, n}, see Section 2.3.
• V -fold penalties (with leading constant x = V − 1, that is, bias-corrected
V -fold cross-validation), for V ∈ {2, 5, 10, n}, see Section 2.4.

• for comparison, penalization with E[penid(m) ], that is, m̂(Cid).
Since it is often suggested to multiply the usual penalties by some factor

larger than one [Arl08], we consider all penalties above multiplied by a factor
chosen among {1, 1.25, 1.5, 2}. Complete results can be found in Table S.3 in
Section S.5.

6.3. Model selection performances

In each setting, all procedures are compared on N = 10 000 independent syn-
thetic data sets of size n = 500. For measuring their respective model selection
performances, for each procedure m̂(C) we estimate

Cor(C) := E [Rn(C) ] = E

[ ∥∥ŝm̂(C) − s
∥∥2

infm∈Mn
‖ŝm − s‖2

]

which represents the constant that would appear in front of an oracle inequality.
The uncertainty of estimation of Cor(C) is measured by the empirical standard
deviation of Rn(C) divided by

√
N . The results are reported in Table 2 for

settings L and S, with the collection Dya2.
Results for Regu are not reported here since dimensionality-based penalties

are already known to work well with Regu [Ler12], so V -fold methods cannot
improve significantly its performance, with a larger computational cost. Com-
plete results (including Regu, with n = 100 and n = 500) are given in Tables S.3
and S.4 in Section S.5, showing the performances of pendim and V -fold methods
indeed are very close.
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Performance as a function of V Let us first consider V -fold penalization.
In both settings L and S, as suggested by our theoretical results, Cor decreases
when V increases. The improvement is large when V goes from 2 to 5 (27% for
L, 10% for S) and small when V goes from 5 to 10 and when V goes from 10 to
n = 500 (each time, 8% for L, 2% for S). Since the main influence of V is on the
variance of the V -fold penalty, these experiments confirm our interpretation of
Theorem 2 in Section 5: increasing V helps much more from 2 to 5 or 10 than
from 10 to n.

The picture is less clear for V -fold cross-validation, for which almost no dif-
ference is observed among V ∈ {2, 5, 10, n}—less than 2%—, and Cor is mini-
mized for V ∈ {5, 10}. Indeed, increasing V simultaneously decreases the bias
and the variance of the V -fold cross-validation criterion, leading to various pos-
sible behaviours of Cor as a function of V , depending on the setting. The same
phenomenon has been observed in regression [Arl08].

Other comments Table 2 confirms in the least-squares density estimation
framework several facts previouly observed in least-squares regression [Arl08]:

• pendim performs much worse than V -fold penalization (except V = 2 in
setting L) with the collection Dya2. On the contrary, pendim does well
with Regu (see Table S.3), but V -fold penalization then performs as well.

• V -fold penalization and E[penid ] perform much better when multiplying
the penalty by some C > 1. The best overpenalization factor is C = 2
for L-Dya2 and C = 1.5 for S-Dya2, see Table S.3. Such a phenomenon
can also be observed in regression [Arl08] and can explain in part the
behaviour of V -fold cross-validation.

• Once V -fold penalties are multiplied by a well-chosen C, they perform
significantly better than V -fold cross-validation, except for the fact that
2-fold cross-validation coincides with 2-fold penalization multiplied by 1.5
as shown by Lemma 1. Nevertheless, making a bad choice for C (which
depends on the setting) can lead to worse performance with V -fold penal-
ization, especially when V = 2, see Table S.3.

In other settings considered in a preliminary phase of our experiments, differ-
ences between V = 2 and V = 5 were sometimes smaller or not significant, but
always with the same ordering (that is, the worse performance for V = 2 when
C is fixed). In a few settings, for which the “change-point” in the smoothness of
s was close to the median of sdµ, we found pendim among the best procedures
with collection Dya2; then, V -fold penalization and cross-validation always had
a performance very close to pendim. Both phenomena lead us to discard all
settings for which there were no significant difference to comment.

6.4. Variance as a function of V

We now illustrate the results of Section 5 about the variance of V -fold penal-
ization and the heuristic of Section 4 about its influence on model selection.
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We focus on the unbiased case, that is, criteria C(1,B) with partitions B satis-
fying (Reg). Since the distribution of (C(1,B)(m))m∈Mn

then only depends on
V = |B|, we write CV instead of C(1,B) by abuse of notation. All results presented
in this subsection have been obtained from N = 10 000 independent samples in
setting S with a sample size n = 100 and the collection Regu—for which models
are naturally indexed by their dimension.

First, Figure 3 shows the variance of ∆CV
(m,m⋆) = CV (m) − CV (m⋆) as a

function of the dimension m of Sm, illustrating the conclusions of Theorem 2:
the variance decreases when V increases. More precisely, the variance decrease
is significant between V = 2 and V = 5, an order of magnitude smaller between
V = 5 and V = 10 and between V = 10 and V = n, while the leave-one-out
Cn is hard to distinguish from the ideal penalized criterion Cid. On Figure 3, we
can remark that for m > m⋆,

var (∆CV
(m,m⋆) ) ≈ 1

n2

[
K1

(
1 +

K2

V − 1

)
+K3

(
1 +

K4

V − 1

)
(m−m⋆)

]

with K1 ≈ 29, K2 ≈ 0.81, K3 ≈ 3.7 and K4 ≈ 3.8. The shape of the dependence
on V already appears in Theorem 2, the above formula clarifies the relative
importance of the terms called a and b in Section 5, and their dependence on
the dimension m of Sm. Remark the same behaviour holds when n = 500 with
very close values for K3 and K4 (see Figure S.15), as well as in setting L with
n = 100 or n = 500 with K3 ≈ 2.1 and K4 ≈ 4.2 (see Figures S.10 and S.20).
The fact that K4 is close to 4 in both settings confirms the term 1 + 4/(V − 1)
appearing Theorem 2 indeed drives how var(∆CV

(m,m⋆) ) depends on V .
Figures 4 and 5 respectively show P(m̂(C) = m) and its proxy Φ(SRC(m))

as a function of m for C = CV with V ∈ {2, 5, 10, n} and for C = Cid. First,
remark both quantities behave similarly as a function of m and C—see also Fig-
ure S.7—confirming empirically the heuristic of Section 4. The decrease of the
variance observed on Figure 3 when V increases here translates into a better
concentration of the distribution of m̂(CV ) around m⋆, which explains the per-
formance improvement observed in Section 6.3. Figures 4–5 actually show how
the decrease of the variance quantitatively influences the distribution of m̂(CV ):
m̂(C5) is significantly more concentrated than m̂(C2), while the difference be-
tween V = 10 and V = 5 is much smaller and comparable to the difference
between V = n and V = 10; Cn is hard to distinguish from Cid. Similar exper-
iments with n = 500 and in setting L are reported in Section S.5, leading to
similar conclusions.

7. Fast algorithm for computing V-fold penalties for least-squares
density estimation

Since the use of V -fold algorithms is motivated by computational reasons, it
is important to discuss the actual computational cost of V -fold penalization
and cross-validation as a function of V . In the least-squares density estimation
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Figure 3. Illustration of the variance heuristic: var(∆C(m,m⋆)) as a function of m for five
different C. Setting S-Regu, n = 100. The black diamond shows m⋆ = 7. The black lines show
the linear approximation n−2[29(1 + 0.81
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) + 3.7(1 + 3.8
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)(m−m⋆)] for m > m⋆.
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Figure 4. P(m̂(C) = m) as a function of m for five different C. Setting S-Regu, n = 100. The
black diamond shows m⋆ = 7.
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Figure 5. Illustration of the variance heuristic: Φ(SRC(m)) as a function of m for five
different C. Setting S-Regu, n = 100. The black diamond shows m⋆ = 7.

framework, two approaches are possible: a naive one—valid for all frameworks—
and a faster one—specific to least-squares density estimation. For clarifying the
exposition, we assume in this section (Reg) holds true—so, V divides n. The
general algorithm for computing the V -fold penalized criterion and/or the V -
fold cross-validation criterion consists in training the estimator with data sets
(ξi)i/∈Bj

for j = 1, . . . , V and then testing each trained estimator on the data
sets (ξi)i∈Bj

and/or (ξi)i/∈Bj
. In the least-squares density estimation framework,

for any model Sm given through an orthonormal family (ψλ )λ∈Λm
of elements

of L2(µ), we get the “naive” algorithm described and analysed more precisely
in Section S.3.1, whose complexity is of order nV Card(Λm).

Several simplifications occur in the least-squares density estimation frame-
work, that allow to avoid a significant part of the computations made in the
naive algorithm.

Algorithm 1.

Input: B some partition of {1, ..., n} satisfying (Reg), ξ1, . . . , ξn ∈ X and
(ψλ )λ∈Λm

a finite orthonormal family of L2(µ).

1. For i ∈ {1, . . . , V } and λ ∈ Λm, compute Ai,λ := V
n

∑
j∈Bi

ψλ(ξj)
2. For i, j ∈ {1, . . . , V }, compute Ci,j :=

∑
λ∈Λm

Ai,λAj,λ

3. Compute S :=
∑

1≤i,j≤V Ci,j and T := tr(C) .
Output:
Empirical risk: Pnγ ( ŝm ) = −S/V 2
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V -fold cross-validation criterion: critVFCV(m) = T
V (V−1) − S−T

(V−1)2

V -fold penalty: penVF(m) = (critVFCV(m)− Pnγ ( ŝm ))V−1/2
V−1 .

To the best of our knowledge, Algorithm 1 is new, even for computing the
V -fold cross-validation criterion. Its correctness and complexity are analyzed
with the following proposition.

Proposition 3. Algorithm 1 is correct and has a computational complexity of
order (n+ V 2) Card(Λm) .

In the histogram case, that is, when Λm is a partition of X and ∀λ ∈ Λm,

ψλ = |λ|−1/2
1λ , the computational complexity of Algorithm 1 can be reduced to

the order of n+ V 2 Card(Λm).

Proposition 3 is proved in Section S.3.2. Note that closed-form formulas are
available for the leave-p-out criterion in least-squares density estimation [Cel12],
allowing to compute it with a complexity of order nCard(Λm) in general, and
smaller in some particular cases—for instance, n for histograms.

8. Discussion

Before discussing how to choose V when using V -fold methods for model selec-
tion, we state an additional result and we discuss the model selection literature
in least-squares density estimation.

8.1. Hold-out penalization

Our analysis of V -fold procedures for model selection can be extended to hold-
out methods, that is, when data are split only once. Similarly to the definition
of the hold-out criterion in Eq. (4), the hold-out penalty is defined as

∀x ≥ 0 , penHO(m,T, x) := 2x
(
P (T )
n − Pn

)(
ŝ(T )
m − ŝm

)
, (27)

that is, the hold-out estimator of the expectation of the ideal penalty, written
as E[ 2(Pn − P )(ŝm − sm) ], see Eq. (2). We do not define penHO by Eq. (6)
with V = 1 and T = Bc

1—that is, the hold-out estimator of E[ (P − Pn)γ(ŝm) ],
which amounts to removing the centering term −ŝm in Eq. (27)— because this
would dramatically increase its variability. Note that adding such a term −ŝm
in Eq. (6) does not change the value of the V -fold penalty under (Reg) since∑V

K=1(P
(Bc

K)
n − Pn) = 0.

Denoting by τ = |T | /n, it comes from Lemma S.11 that

E [penHO(m,T, x) ] = x
1− τ

τ
E [penid(m) ] .

In the following, we choose x = Cτ/(1 − τ) so that C = 1 corresponds to the
unbiased case, as in the previous sections for the V -fold penalty.
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Remark 6. Since Pn = τP
(T )
n + (1− τ)P

(T c)
n , by linearity of the estimator ŝm,

penHO(m,T, x) := 2x(1− τ)2
(
P (T )
n − P (T c)

n

)(
ŝ(T )
m − ŝ(T

c)
m

)

which is symmetric in T and T c, hence penHO(m,T
c, x) = penHO(m,T, x). In

particular, if |T | = n/2, the 2-fold penalty computed on the partition B =
{T, T c } and the hold-out penalty coincide:

∀x > 0, penVF(m, {T, T c }, x) = penHO(m,T, x) .

Theorem 3. Let ξJnK be i.i.d real-valued random variables with common density
s ∈ L∞(µ), T ⊂ JnK with τ = |T |/n ∈ (0, 1) and (Sm)m∈Mn

be a collection
of separable linear spaces satisfying (H1). Assume that either (H2) or (H2′)
holds true. Let C ∈ (1/2, 2] and δ := 2(C − 1). For every m ∈ Mn, let ŝm be
the projection estimator onto Sm defined by Eq. (1), and s̃HO = ŝm̂HO

where

m̂HO = argmin
m∈Mn

{
Pnγ ( ŝm ) + penHO

(
m,T,

Cτ

1− τ

)}
.

Then, an absolute constant κ exists such that, for any x > 0, defining xn =
x+ log |Mn|, with probability at least 1− e−x, for any ǫ ∈ (0, 1],

1− δ− − ǫ

1 + δ+ + ǫ
‖s̃HO − s‖2

≤ inf
m∈Mn

‖ŝm − s‖2 + κ

(
Axn
ǫn

+
τ2 + (1− τ)2

τ(1− τ)

x2n
ǫ3n

)
. (28)

Theorem 3 is proved in Section S.2.1.
Theorem 3 extends Theorem 1 to hold-out penalties, under similar assump-

tions. As in Theorem 1, δ quantifies the bias of the hold-out penalized criterion,
and plays the same role in the leading constant of the oracle inequality (28).

The main difference between Theorems 1 and 3 lies in the remainder term.
For making proper comparisons, let V be some divisor of n and T ⊂ JnK such
that |T | = n − n/V . Then, the remainder term in Eq. (28) is larger than the
one of Eq. (17) in Theorem 1 by a factor of order V when V is large. These only
are upper bounds, but at least they are consistent with the common intuition
about the stabilizing effect of averaging over V folds.

Similarly to Theorem 2, the variance terms can be computed for the hold-out
penalty in order to understand separately the roles of the training sample size
and of averaging over the V splits, in the V -fold criteria. See Proposition S.13
in Section S.2.2 for details.

8.2. Other model selection procedures for density estimation

Although the primary topic of the paper is the study of V -fold procedures, let us
compare briefly our results to other oracle inequalities that have been proved in
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the least-squares density estimation setting. For projection estimators, [Mas07,
Section 7.2] prove an oracle inequality for some penalization procedures, but
they are suboptimal since the leading constant Cn does not tend to 1 as n
goes to +∞. Oracle inequalities have also been proved for other estimators:
blockwise Stein estimators in [Rig06] and some T -estimators in [Bir13]. Note the
models considered in [Bir13] are more general than ours, but the corresponding
estimators are not computable in practice, and the oracle inequality in [Bir13]
also has a suboptimal constant Cn. Some aggregation procedures also satisfy
oracle inequalities, as proved for instance in [RT07, BTWB10]. Overall, under
our assumptions, none of these results imply strictly better bounds than ours.

Let us finally mention [BR06] proposed a precise evaluation of the penalty
term in the case of regular histogram models and the log-likelihood contrast.
Their final penalty is a function of the dimension, only slightly modified com-
pared to pendim, performing very well on regular histograms. These perfor-
mances are likely to become much worse on the collection Dya2 presented in
Section 6. This can be seen, for example, in Table S.3 where we presented the
performances of pendim with different over-penalizing constants.

8.3. Conclusion on the choice of V

Overall, choosing V requires a trade-off between:

• Computational complexity, usually proportional to V , slightly different
in the least-squares density estimation setting since it can be reduced to
(n+ V 2) Card(Λm) or even to n+ V 2 Card(Λm), see Section 7.

• Statistical performance in terms of risk, which is better when the bias
and the variance are small. The bias decreases as V increases for V -fold
cross-validation, but it can be removed completely or fixed to any desired
value by using V -fold penalization instead, see Lemma 1. The variance
decreases as V increases, but it almost reaches its minimal value by taking,
say, V = 5 or V = 10, as shown by theoretical and empirical arguments
in Sections 5 and 6.

The most common advices for choosing V in the literature [for instance
HTF09, Section 7.10.1] are between V = 5 and V = 10. This article provides
clear evidence why taking V larger does not reduce the variance significantly.
Concerning the bias, Lemma 1 shows 5-fold (resp. 10-fold) cross-validation cor-
responds to overpenalization by a factor 1+1/8 (resp. 1+1/18), which is likely
to be a good amount in many cases; in our simulation experiments, the best
overpenalization factor is even larger, see also [Arl08].

Note however our results are only valid for some least-squares algorithms,
and it is reported in the literature [AC10] that V -fold cross-validation behaves
differently as a function of V in other settings.

Finally, we would like to address the question of choosing between V -fold
cross-validation and penalization. The answer is rather simple—at least in least-
squares density estimation—since Lemma 1 shows V -fold cross-validation is a
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particular instance of V -fold penalization, with C = 1+1/(2(V −1)) . So, if one
wants to overpenalize by a factor 1+1/(2(V −1)), V -fold cross-validation is def-
initely the good choice. Otherwise, the best choice would be V -fold penalization
with another value for C, depending on how much one wants to overpenalize.
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Appendix A: Proofs

Before proving the main results stated in the paper, let us recall a simple result
that we use repeatedly in the proofs: if (bλ)λ∈Λm

is a family of real numbers
such that

∑
λ∈Λm

b2λ <∞, then

sup∑
λ∈Λm

a2
λ
≤1

(
∑

λ∈Λm

aλbλ

)2

=
∑

λ∈Λm

b2λ . (A.29)

The left-hand side is smaller than the right-hand side by Cauchy-Schwarz in-
equality, and considering aλ = bλ/(

∑
λ′∈Λm

b2λ′ )1/2 shows the converse inequal-
ity holds true.

A.1. Proof of Lemma 1

Let us first recall here the proof of Eq. (7) (coming from [Arl08]) for the sake of

completeness. By (Reg), Pn−P (Bc
K)

n = V −1(P
(BK)
n −P (Bc

K)
n ) and P

(BK)
n −Pn =

(V − 1)V −1(P
(BK)
n − P

(Bc
K)

n ), so that

C1,B(m) := Pnγ ( ŝm ) + penVF(m,B, V − 1)

= Pnγ ( ŝm ) +
V − 1

V 2

V∑

K=1

[(
P (BK)
n − P

(Bc
K)

n

)
γ
(
ŝ
(Bc

K)
m

)]

= Pnγ ( ŝm ) +
1

V

V∑

K=1

[(
P (BK)
n − Pn

)
γ
(
ŝ
(Bc

K)
m

)]

= critcorr,VFCV(m,B) .
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Eq. (8) and (9) follow simultaneously from Eq. (A.33) below. Let E be a set of
subsets of JnK such that

∀A ∈ E , |A| = p and
1

|E|
∑

A∈E

P (Ac)
n = Pn . (A.30)

Let us consider the associated penalty

penE(m,C) =
C

|E|
∑

A∈E

(Pn − P (Ac)
n )γ

(
ŝ(A

c)
m

)
=

2C

|E|
∑

A∈E

(P (Ac)
n − Pn)

(
ŝ(A

c)
m

)

and the associated cross-validation criterion

critE(m) =
1

|E|
∑

A∈E

P (A)
n γ

(
ŝ(A

c)
m

)
.

When E = B, we get the V -fold penalty penVF = penE and the V -fold cross-
validation criterion critVFCV = critE , and Eq. (A.30) holds true with p = n/V
under assumption (Reg). When E = Ep := {A ⊂ JnK s.t. |A| = p}, Eq. (A.30)
always holds true and we get the leave-p-out penalty penLPO = penE and the
leave-p-out cross-validation criterion critLPO = critE .

Let (ψλ)λ∈Λm
be some orthonormal basis of Sm in L2(µ). On the one hand,

using Eq. (A.30), we get

penE(m,C) =
2C

|E|
∑

A∈E

(P (Ac)
n − Pn)

(
ŝ(A

c)
m

)

=
2C

|E|
∑

A∈E

∑

λ∈Λm

[(
P (Ac)
n (ψλ)− Pn(ψλ)

)
P (Ac)
n (ψλ)

]

=
2C

|E|
∑

λ∈Λm

[
∑

A∈E

(
P (Ac)
n (ψλ)

)2
− Pn(ψλ)

∑

A∈E

P (Ac)
n (ψλ)

]

=
2C

|E|
∑

λ∈Λm

∑

A∈E

[(
P (Ac)
n (ψλ)

)2
− (Pn(ψλ) )

2

]
. (A.31)

On the other hand, using that P
(A)
n = n

pPn − n−p
p P

(Ac)
n by (A.30),

critE(m)− Pnγ ( ŝm )

=
1

|E|
∑

A∈E

[
P (A)
n γ

(
ŝ(A

c)
m

)
− Pnγ ( ŝm )

]

=
1

|E|
∑

A∈E

[∥∥∥ŝ(A
c)

m

∥∥∥
2

− 2P (A)
n

(
ŝ(A

c)
m

)
− ‖ŝm‖2 + 2Pn ( ŝm )

]

=
1

|E|
∑

A∈E

∑

λ∈Λm

[(
P (Ac)
n (ψλ)

)2
− 2P (A)

n (ψλ)P
(Ac)
n (ψλ) + (Pn(ψλ) )

2

]
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=
1

|E|
∑

λ∈Λm

∑

A∈E

[(
2n

p
− 1

)(
P (Ac)
n (ψλ)

)2
− 2n

p
Pn(ψλ)P

(Ac)
n (ψλ) + (Pn(ψλ) )

2

]

=

(
2n

p
− 1

)
1

|E|
∑

λ∈Λm

∑

A∈E

[(
P (Ac)
n (ψλ)

)2
− (Pn(ψλ) )

2

]
, (A.32)

where we used again Eq. (A.30). Comparing Eq. (A.31) and (A.32) gives

critE(m) = Pnγ ( ŝm ) + penE

(
m,

n

p
− 1

2

)
(A.33)

which implies Eq. (8) and (9). Eq. (10) follows by [Ler12].
We now prove the statements made in Remarks 1–2 below Lemma 1. Eq. (10)
can also be deduced from [Cel12, Proposition 2.1], which proves that

critLPO(m, p)

=
1

n(n− p)

∑

λ∈Λm




n∑

i=1

ψλ(ξi)
2 − n− p+ 1

n− 1

∑

1≤i 6=j≤n

ψλ(ξi)ψλ(ξj)


 .

Elementary algebraic computations show then that

critLPO(m, p)− Pnγ(ŝm)

=
2n− p

n2(n− p)

∑

λ∈Λm




n∑

i=1

ψλ(ξi)
2 − 1

n− 1

∑

1≤i 6=j≤n

ψλ(ξi)ψλ(ξj)


 (A.34)

hence for any p, p′ ∈ JnK,

n/p− 1

n/p− 1/2
(critLPO (m, p )− Pnγ(ŝm) )

=
n/p′ − 1

n/p′ − 1/2
(critLPO (m, p′ )− Pnγ(ŝm) ) .

In particular, when p′ = 1, from Eq. (9), since penLPO(m, 1, C) = penLOO(m,C),

penLPO

(
m, p,

n

p
− 1

2

)
=
n/p− 1/2

n/p− 1

n− 1

n− 1/2
penLPO

(
m, 1, n− 1

2

)

= penLOO

(
m, (n− 1)

n/p− 1/2

n/p− 1

)
.

For Remark 2, note first the CV estimator in [Mas07, Sec. 7.2.1, p.204–205] is
defined as the minimizer of

‖ŝm‖2 − 2

n(n− 1)

∑

1≤i 6=j≤n

∑

λ∈Λm

ψλ(ξi)ψλ(ξj)
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= Pnγ ( ŝm ) +
2

n2

∑

λ∈Λm




n∑

i=1

ψλ(ξi)
2 − 1

n− 1

∑

1≤i 6=j≤n

ψλ(ξi)ψλ(ξj)


 .

(A.35)

On the other hand, from Eq. (A.34) and (9) with p = 1, we have

penLOO (m,n− 1) =
2

n2

∑

λ∈Λm




n∑

i=1

ψλ(ξi)
2 − 1

n− 1

∑

1≤i 6=j≤n

ψλ(ξi)ψλ(ξj)


 .

Hence, from Eq. (A.35), the CV estimator is the minimizer of critcorr,VFCV(m,BLOO ).
[Mas07, Theorem 7.6] studies the minimizers of the criterion

Pnγ(ŝm) +
C

n2

n∑

i=1

∑

λ∈Λm

ψλ(ξi)
2 , (A.36)

where C = (1 + ǫ)6 for any ǫ > 0. Let α = C/n, so that α = (C − α)/(n − 1).
Then, the criterion (A.36) is equal to

(1− α)Pnγ(ŝm) +
C − α

n2

∑

λ∈Λm

n∑

i=1

ψλ(ξi)
2 − α

n2

∑

λ∈Λm

∑

1≤i 6=j≤n

ψλ(ξi)ψλ(ξj)

= (1− α)Pnγ(ŝm) +
C − α

n2

∑

λ∈Λm




n∑

i=1

ψλ(ξi)
2 − 1

n− 1

∑

λ∈Λm

∑

1≤i 6=j≤n

ψλ(ξi)ψλ(ξj)




= (1− α)

[
Pnγ(ŝm) +

C − α

2(1− α)
penLOO (m,n− 1)

]

= (1− α)

[
Pnγ(ŝm) + penLOO

(
m,

C(n− 1)2

2(n− C)

)]
.

A.2. Proof of Proposition 2

Note the two formulas given for Ψm in the statement of Proposition 2 coincide
by Eq. (A.29). The proof is decomposed into 3 lemmas.

Lemma A.4. Let ξJnK denote i.i.d. random variables taking value in a Polish
space X , BJV K some partition of JnK satisfying (Reg), Sm some separable linear
subspace of L2(µ) with orthonormal basis (ψλ)λ∈Λm

and

U(m) :=
1

n2

∑

1≤k 6=k′≤V

∑

i∈Bk

j∈Bk′

∑

λ∈Λm

(ψλ(ξi)− Pψλ)(ψλ(ξj)− Pψλ) . (A.37)

Then, the V -fold penalty is equal to

penVF(m,B, C) =
2C

V − 1
‖sm − ŝm‖2 − 2V C

(V − 1)2
U(m) (A.38)
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and E

[
penVF

(
m,B, V − 1

2

)]
= E

[
‖sm − ŝm‖2

]
=

Dm

2n
. (A.39)

Proof. Let Wi =
V

V−11i/∈BJ
and use the formulation (5) of the V -fold penalty

as a resampling penalty. Then,

penVF(m,B, C) = CEW

[
(Pn − PW

n )(γ(ŝWm ))
]

= 2CEW

[
(PW

n − Pn)(ŝ
W
m )
]

= 2CEW

[
(PW

n − Pn)(ŝ
W
m − ŝm)

]
by (Reg)

= 2C
∑

λ∈Λm

EW

[[
(PW

n − Pn)(ψλ)
]2 ]

= 2C
∑

λ∈Λm

EW

[[
(PW

n − Pn)(ψλ − Pψλ)
]2 ]

=
2C

n2

∑

λ∈Λm

∑

1≤i,j≤n

E
(VF)
i,j (ψλ(ξi)− Pψλ)(ψλ(ξj)− Pψλ) (A.40)

where E
(VF)
i,j := E [ (Wi − 1)(Wj − 1) ]. Since E[Wi] = 1 by (Reg) and WiWj =

(V/(V − 1))21J /∈{J0,J1 } if i ∈ BJ0
and j ∈ BJ1

, we get that E
(VF)
i,j = (V − 1)−1

if i and j belong to the same block and E
(VF)
i,j = −(V − 1)−2 otherwise. So,

penVF(m,B, C)

=
2C

n2(V − 1)

∑

λ∈Λm

V∑

k=1

∑

(i,j)∈Bk

(ψλ(ξi)− Pψλ)(ψλ(ξj)− Pψλ)−
2C

(V − 1)2
U(m)

=
2C

V − 1

∑

λ∈Λm

( (Pn − P )ψλ )
2 − 2CV

(V − 1)2
U(m)

and Eq. (A.38) follows by Eq. (3). Eq. (A.39) directly follows from Eq. (A.38).

Lemma A.5. Let ξJnK be i.i.d. random variables taking values in a Polish
space X with common density s ∈ L∞(µ), Sm a separable linear subspace
of L2(µ) and denote by (ψλ)λ∈Λm

an orthonormal basis of Sm. Let Bm =

{ t ∈ Sm s.t. ‖t‖ ≤ 1}, Dm =
∑

λ∈Λm
P
(
ψ2
λ

)
− ‖sm‖2 and assume that bm =

supt∈Bm
‖t‖∞ <∞. An absolute constant κ exists such that, for any x > 0, with

probability larger than 1− 2e−x, we have for every ǫ > 0,
∣∣∣∣‖sm − ŝm‖2 − Dm

n

∣∣∣∣ ≤ ǫ
Dm

n
+ κ

( ‖s‖∞ x

(ǫ ∧ 1)n
+

b2mx
2

(ǫ ∧ 1)3n2

)
.

Proof. By Eq. (3), ‖sm − ŝm‖2 = supt∈Bm
[ (Pn − P )t ]

2
has expectation Dm/n.

In addition, for any t ∈ Bm,

Var (t(ξ1)) ≤
∫

R

t2sdµ ≤ ‖s‖∞ ‖t‖2 ≤ ‖s‖∞ , (A.41)
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which gives the conclusion thanks to Proposition S.14.

Lemma A.6. Assume that ξJnK is a sequence of i.i.d. real-valued random vari-
ables with common density s ∈ L∞(µ) and BJV K is some partition of JnK sat-
isfying (Reg). Let Sm denote a separable subspace of L2(µ) with orthonormal
basis (ψλ)λ∈Λm

such that bm := supt∈Sm,‖t‖≤1 ‖t‖∞ < +∞. Let U(m) be the U -
statistics defined by Eq. (A.37). Using the notations of Lemma A.5, an absolute
constant κ exists such that, with probability larger than 1− 6e−x,

|U(m)| ≤ 3
√
(V − 1) ‖s‖∞ Dmx√

V n
+ κ

(
‖s‖∞ x

n
+

(b2m + ‖s‖2)x2
n2

)
.

Hence, an absolute constant κ′ exists such that, for any x > 0, with probability
larger than 1− 6e−x, for any θ ∈ (0, 1],

|U(m)| ≤ θ
Dm

n
+ κ′

(
‖s‖∞ x

θn
+

(b2m + ‖s‖2)x2
n2

)
.

Proof. For any x, y ∈ R and i, j ∈ JnK, let us define

gi,j(x, y) =

{
0 if ∃k ∈ JV K s.t. { i, j } ⊂ Bk∑

λ∈Λm
(ψλ(x)− Pψλ)(ψλ(y)− Pψλ) otherwise.

Then,

U(m) =
2

n2

n∑

i=2

i−1∑

j=1

gi,j(ξi, ξj) .

From Theorem 3.4 in [HRB03], an absolute constant κ exists such that, for any
x > 0 and ǫ ∈ (0, 1],

P

(
|U(m)| ≥ 1

n2

[
(4 + ǫ)A

√
x+ κ

(
Bx

ǫ
+
Cx3/2

ǫ3
+
Dx2

ǫ3

)])
≤ 6e−x .

A
2
=

n∑

i=2

i−1∑

j=1

E
[
gi,j(ξi, ξj)

2
]
,

B = sup



E




n∑

i=2

i−1∑

j=1

ai(ξi)bj(ξj)gi,j(ξi, ξj)


 s.t.

E

[
n∑

i=1

a2i (ξi)

]
≤ 1 and E

[
n∑

i=1

b2i (ξi)

]
≤ 1

}
,

C
2
= sup

x∈R

{
n∑

i=2

E
[
gi,1(ξi, x)

2
]
}

and D = sup
x,y

|gi,j(x, y)| .
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It remains to upper bound these different terms for proving the first inequality,
and the second inequality follows. First,

A
2
=

V∑

k=2

k−1∑

k′=1

∑

i∈Bk,j∈Bk′

∑

λ∈Λm,λ′∈Λm

E [ (ψλ(ξ1)− Pψλ)(ψλ′(ξ1)− Pψλ′) ]
2

=
n2(V − 1)

2V

∑

λ∈Λm

(
sup∑

λ′∈Λm
a2

λ′≤1

E

[
(ψλ(ξ1)− Pψλ)

∑

λ′∈Λm

aλ′(ψλ′(ξ1)− Pψλ′)

])2

=
n2(V − 1)

2V

∑

λ∈Λm

(
sup
t∈Bm

E [ (ψλ(ξ1)− Pψλ)(t(ξ1)− Pt) ]

)2

≤ n2(V − 1)

2V
Dm sup

t∈Bm

E

[
( t(ξ1)− P (t) )

2
]

≤ n2(V − 1)

2V
‖s‖∞ Dm by Eq. (A.41) .

Let now a1, . . . , an, b1, . . . , bn be functions in L2(µ) such that

E

[
n∑

i=1

a2i (ξi)

]
≤ 1 and E

[
n∑

i=1

b2i (ξi)

]
≤ 1 .

Using successively the independence of the ξi and that αβ ≤ (α2 + β2)/2 for
every α, β ∈ R,

E




n∑

i=2

i−1∑

j=1

ai(ξi)bj(ξj)gi,j(ξi, ξj)




=

V∑

k=2

V−1∑

k′=1

∑

i∈Bk,j∈Bk′

∑

λ∈Λm

E [ai(ξi)(ψλ(ξi)− Pψλ) ]E [bj(ξj)(ψλ(ξj)− Pψλ) ]

≤
V∑

k=2

V−1∑

k′=1

∑

i∈Bk,j∈Bk′

∑

λ∈Λm

E [ai(ξi)(ψλ(ξi)− Pψλ) ]
2
+ E [bj(ξj)(ψλ(ξj)− Pψλ) ]

2

2
.

(A.42)

Now, we have, for every i ∈ JnK, using Eq. (A.29), Cauchy-Schwarz inequality

and the fact that for every t ∈ L2(µ), Var (t(ξ1)) ≤ ‖s‖∞ ‖t‖2,

∑

λ∈Λm

E [ai(ξi)(ψλ(ξi)− Pψλ) ]
2
= sup∑

λ∈Λm
t2
λ
≤1

(
E

[
ai(ξi)

∑

λ∈Λm

tλψλ(ξi)− P (tλψλ)

])2

= sup
t∈Bm

(E [ai(ξi)(t(ξi)− Pt ] )
2

≤ E
[
ai(ξi)

2
]
sup
t∈Bm

Var (t(ξ1)) ≤ E
[
ai(ξi)

2
]
‖s‖∞ .
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Plugging this bound in (A.42) yields

E




n∑

i=2

i−1∑

j=1

ai(ξi)bj(ξj)gi,j(ξi, ξj)


 ≤ ‖s‖∞

V∑

k=2

V−1∑

k′=1

∑

i∈Bk,j∈Bk′

E
[
ai(ξi)

2
]
+ E

[
bj(ξj)

2
]

2

≤ n ‖s‖∞ .

Hence,
B ≤ n ‖s‖∞ . (A.43)

Now, for any x ∈ R, using (Reg),

n∑

i=2

E
[
gi,1(ξi, x)

2
]
=
n(V − 1)

V
E



(
∑

λ∈Λm

(ψλ(x)− Pψλ)(ψλ(ξ1)− Pψλ)

)2

 .

For every x, y ∈ R, let gx(y) =
∑

λ∈Λm
(ψλ(x)− Pψλ)ψλ(y) so that

‖gx‖2 =
∑

λ∈Λm

(ψλ(x)− Pψλ)
2 ≤ 2

∑

λ∈Λm

(ψλ(x))
2 + 2

∑

λ∈Λm

(Pψλ)
2

= 2Ψm(x)2 + 2 ‖sm‖2 ≤ 2(b2m + ‖sm‖2) .

Hence,

n∑

i=2

E
[
gi,1(ξi, x)

2
]
=
n(V − 1)

V
Var (gx(ξ1)) ≤

n(V − 1) ‖gx‖2 ‖s‖∞
V

≤ 2n(V − 1)

V

(
b2m + ‖sm‖2

)
‖s‖∞

which proves

C
2 ≤ 2n(V − 1)

V

(
b2m + ‖sm‖2

)
‖s‖∞ . (A.44)

Finally, from Cauchy-Schwarz inequality,

∑

λ∈Λm

(ψλ(x)−Pψλ)(ψλ(y)−Pψλ) ≤ sup
x∈R

∑

λ∈Λm

(ψλ(x)− Pψλ )
2 ≤ 2(b2m+‖sm‖2) .

Hence,

D ≤ 2
(
b2m + ‖sm‖2

)
. (A.45)

Let us conclude the proof of Proposition 2. From Lemmas A.4 and A.6, an
absolute constant κ exists such that, with probability larger than 1− 6e−x, for
every ǫ ∈ (0, 1],

∣∣∣penVF(m,V, V − 1)− 2 ‖sm − ŝm‖2
∣∣∣
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=
2V

V − 1
|U(m)| ≤ ǫ

Dm

n
+ κ

(
‖s‖∞ x

ǫn
+

(b2m + ‖s‖2)x2
n2

)
. (A.46)

Using in addition Lemma A.5, we get that an absolute constant κ′ exists such
that with probability larger than 1− 8e−x, for every ǫ ∈ (0, 1], Eq. (A.46) holds
true and

∣∣∣∣penVF(m,V, V − 1)− 2Dm

n

∣∣∣∣ ≤ ǫ
Dm

n
+ κ

(
‖s‖∞ x

ǫn
+

(b2mǫ
−3 + ‖s‖2)x2
n2

)
,

which implies Eq. (15) and (16).

A.3. Proof of Theorem 1

By construction, the penalized estimator satisfies, for any m ∈ Mn,

‖ŝm̂ − s‖2 − (penid(m̂)− penVF(m̂, V, C(V − 1)) )

≤ ‖ŝm − s‖2 + (penVF(m,V,C(V − 1))− penid(m) ) . (A.47)

Now, by Eq. (2) and (3), penid(m) = 2 ‖ŝm − sm‖2 + 2(Pn − P )(sm), hence

‖ŝm̂ − s‖2 ≤ ‖ŝm − s‖2 +
(
penVF(m,V,C(V − 1))− 2 ‖sm − ŝm‖2

)

−
(
penVF(m̂, V, C(V − 1))− 2 ‖sm̂ − ŝm̂‖2

)
+ 2(Pn − P )(sm − sm̂)

= ‖ŝm − s‖2 +
(
penVF(m,V,C(V − 1))− 2C ‖sm − ŝm‖2

)

−
(
penVF(m̂, V, C(V − 1))− 2C ‖sm̂ − ŝm̂‖2

)
+ 2(Pn − P )(sm − sm̂)

+ 2 (C − 1)
[
‖ŝm − sm‖2 − ‖ŝm̂ − sm̂‖2

]
. (A.48)

Let x > 0 and xn = log(|Mn|) + x. A union bound in Proposition 2 gives

P

(
∃m ∈ Mn, ǫ ∈ (0, 1] s.t.

∣∣∣penVF(m,V, V − 1)− 2 ‖sm − ŝm‖2
∣∣∣ > ǫ

Dm

n
+ κρ1(m, ǫ, s, xn, n)

)

≤ 8
∑

m∈Mn

e−xn = 8e−x
∑

m∈Mn

1

|Mn|
= 8e−x (A.49)

and a union bound in Lemma A.5 gives

P

(
∃m ∈ Mn, ǫ ∈ (0, 1] s.t.

∣∣∣∣‖ŝm − sm‖2 − Dm

n

∣∣∣∣ > ǫ
Dm

n
+ κρ1(m, ǫ, s, xn, n)

)

≤
∑

m∈Mn

e−xn = e−x . (A.50)
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It remains to bound 2(Pn−P )(sm−sm′) uniformly over m and m′ in Mn. In
order to apply Bernstein’s inequality, we first bound the variance and the sup
norm of sm − sm′ for some m,m′ ∈ Mn. Since s ∈ L∞(µ),

Var ((sm − sm′)(ξ1)) ≤ ‖s‖∞ ‖sm − sm′‖2 .

Under Assumption (H2),

‖sm − sm′‖∞ ≤ ‖sm‖∞ + ‖sm′‖∞ ≤ 2a .

Under Assumption (H2′), sm − sm′ ∈ Sm′′ for some m′′ ∈ {m,m′}, hence by
(H1),

‖sm − sm′‖∞ ≤ bm′′ ‖sm − sm′‖ ≤
√
n ‖sm − sm′‖ .

Therefore, by Bernstein’s inequality, for any x > 0, for any m,m′, with proba-
bility larger than 1− e−x, for any ǫ ∈ (0, 1],

(Pn − P )(sm − sm′) ≤
√

2xVar ((sm − sm′)(ξ1))

n
+

‖sm − sm′‖∞ x

3n

≤ ǫ ‖sm − sm′‖2 + κ(Ax+ x2)

ǫn
.

for some absolute constant κ, where the last inequality is obtained by considering
separately the cases (H2) and (H2′), and by using that for every α, β, ǫ > 0,
αβ ≤ ǫα2+(β2)/(4ǫ). A union bound gives that for any x > 0, with probability
at least 1− e−x, for every m,m′ ∈ Mn and every ǫ ∈ (0, 1],

(Pn − P )(sm − sm′) ≤ ǫ ‖sm − sm′‖2 + κ(Axn + x2n)

ǫn
. (A.51)

Plugging Eq. (A.49), (A.50) and (A.51) into Eq. (A.48) and using that C ∈
(1/2, 2] yields that, with probability 1− 10e−x, for any ǫ ∈ (0, 1/2],

(1− 4ǫ) ‖ŝm̂ − s‖2 ≤ (1 + 4ǫ) ‖ŝm − s‖2 + (δ+ + 4ǫ )
Dm

n
+ (δ− + 3ǫ )

Dm̂

n

+ κ

(
ρ1(m, ǫ, s, xn, n) + ρ1(m̂, ǫ, s, xn, n) +

Axn + x2n
ǫn

)

≤ (1 + δ+ + 16ǫ) ‖ŝm − s‖2 + (δ− + 8ǫ ) ‖ŝm̂ − sm‖2

+ κ′
(
ρ1(m, ǫ, s, xn, n) + ρ1(m̂, ǫ, s, xn, n) +

Axn + x2n
ǫn

)

for some absolute constants κ, κ′ > 0. Since bm ≤ √
n for all m ∈ Mn, we get

2 sup
m∈Mn

ρ1(m, ǫ, s, xn, n) +
Axn + x2n

ǫn
≤ (2 ‖s‖∞ +A)xn

ǫn
+

(
3 +

2 ‖s‖2
n

)
x2n
ǫ3n

for every ǫ ∈ (0, 1]. Hence, with probability larger than 1 − 10e−x, for any
ǫ ∈ (0, 1],

1− δ− − ǫ

1 + δ+ + ǫ
‖ŝm̂ − s‖2 ≤ ‖ŝm − s‖2 + κ

[
(‖s‖∞ +A)xn

ǫn
+

(
1 +

‖s‖2
n

)
x2n
ǫ3n

]
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for some absolute constant κ > 0, which implies the result.

A.4. Proof of Theorem 2

For every x, y ∈ X and m ∈ {m1,m2}, let Km(x, y) :=
∑

λ∈Λm
ψλ(x)ψλ(y) and

Um(x, y) :=
∑

λ∈Λm

(ψλ(x)− Pψλ)(ψλ(y)− Pψλ)

= Km(x, y)− sm(x)− sm(y) + ‖sm‖2 . (A.52)

For every x ∈ X , Km(x, x) = Ψm(x) by Eq. (A.29), Um(x, x) = Ψm(x) −
2sm(x) + ‖sm‖2 and, by independence, for every m,m′ ∈ {m1,m2}

cov (Um(ξ1, ξ2), Um′(ξ1, ξ2) )

=
∑

λ∈Λm,λ′∈Λm′

E [ (ψλ(ξ1)− Pψλ ) (ψλ(ξ2)− Pψλ ) (ψλ′(ξ1)− Pψλ′ ) (ψλ′(ξ2)− Pψλ′ ) ]

=
∑

λ∈Λm,λ′∈Λm′

E [ (ψλ(ξ1)− Pψλ ) (ψλ′(ξ1)− Pψλ′ ) ]
2
= β (Λm,Λm′ ) ,

hence, Var (Um1
(ξ1, ξ2)− Um2

(ξ1, ξ2)) = B (m1,m2 ). For every m ∈ {m1,m2},
by Eq. (A.52),

Pnγ(ŝm) = −
∑

λ∈Λm

(Pnψλ)
2 = − 1

n2

∑

1≤i,j≤n

Km(ξi, ξj) (A.53)

= − 1

n2

∑

1≤i,j≤n

Um(ξi, ξj)−
2

n

n∑

i=1

sm(ξi) + ‖sm‖2 . (A.54)

Moreover, by Eq. (A.40) in the proof of Lemma A.4,

penVF(m,B, C(V − 1)) =
2C

n2

∑

1≤i,j≤n

E
(VF)
i,j Um(ξi, ξj)

where ∀I, J ∈ {1, . . . , V } , ∀i ∈ BI , ∀j ∈ BJ , E
(VF)
i,j = 1− V 1I 6=J

V − 1
.

It follows that

CC,B(m) =
∑

1≤i,j≤n

2CE
(VF)
i,j − 1

n2
Um(ξi, ξj) +

n∑

i=1

−2sm(ξi)

n
+ ‖sm‖2 .

Hence, up to the deterministic term ‖sm‖2, CC,B(m) has the form of a function
Cm defined in Lemma A.7 below with

ωi,j =
2CE

(VF)
i,j − 1

n2
, fm =

−2sm
n

.
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It remains to evaluate the quantities appearing in Lemma A.7 for these weights
and function. First,

n∑

i=1

E
(VF)
i,i = n and

n∑

i=1

(
E

(VF)
i,i

)2
= n .

Second, by (Reg),

∑

1≤i 6=j≤n

(
E

(VF)
i,j

)
= n

( n
V

− 1
)
+

−1

(V − 1)
× n2(V − 1)

V
= −n

and
∑

1≤i 6=j≤n

(
E

(VF)
i,j

)2
= n

[( n
V

− 1
)
+

n

V (V − 1)

]
=

n2

V − 1
− n .

It follows that

∑

1≤i≤n

ω2
i,i =

(2C − 1)
2

n3
,

n∑

i=1

ωi,i =
2C − 1

n

and
∑

1≤i 6=j≤n

ωi,jωj,i =
∑

1≤i 6=j≤n

ω2
i,j =

1

n2

(
1 +

4C2

V − 1
− (2C − 1)

2

n

)
.

Hence, from Lemma A.7, for every m,m′ ∈ {m1,m2},

cov (CC,B(m), CC,B(m
′) ) =

2

n2

(
1 +

4C2

V − 1
− (2C − 1)2

n

)
β (Λm,Λm′ )

+
(2C − 1)

2

n3
cov (Um(ξ, ξ), Um′(ξ, ξ) ) +

4

n
cov (sm(ξ), sm′(ξ) )

− 2 (2C − 1)

n2
(cov (Um(ξ, ξ), sm′(ξ) ) + cov (Um′(ξ, ξ), sm(ξ) ) )

=
2

n2

(
1 +

4C2

V − 1
− (2C − 1)

2

n

)
β (Λm,Λm′ )

+
1

n
cov

(
2C − 1

n
Um(ξ, ξ)− 2sm(ξ),

2C − 1

n
Um′(ξ, ξ)− 2sm′(ξ)

)
.

Therefore,

Var (CC,B(m1)) =
2

n2

(
1 +

4C2

V − 1
− (2C − 1)

2

n

)
β (Λm1

,Λm1
)

+
1

n
Var

(
2C − 1

n
Um1

(ξ, ξ)− 2sm1
(ξ)

)
.

Var (CC,B(m1)− CC,B(m2)) =
2

n2

(
1 +

4C2

V − 1
− (2C − 1)

2

n

)
B (m1,m2 )
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+
1

n
Var

(
2(sm1

− sm2
)(ξ)− 2C − 1

n
(Um1

(ξ, ξ)− Um2
(ξ, ξ) )

)

=
2

n2

(
1 +

4C2

V − 1
− (2C − 1)

2

n

)
Var (Um1

(ξ, ξ)− Um2
(ξ1, ξ2))

+
4

n
Var

((
1 +

2C − 1

n

)
(sm1

− sm2
)(ξ)− 2C − 1

2n
(Ψm1

(ξ)−Ψm2
(ξ) )

)
,

which concludes the proof.

Lemma A.7. Let Cm =
∑

1≤i,j≤n ωi,jUm(ξi, ξj) +
∑n

i=1 fm(ξi), where Um is

defined by Eq. (A.52) and fm ∈ L2(µ). We have

cov (Cm, Cm′ ) =


 ∑

1≤i 6=j≤n

ω2
i,j + ωi,jωj,i


 cov (Um(ξ1, ξ2), Um′(ξ1, ξ2) )

+

(
n∑

i=1

ω2
i,i

)
cov (Um(ξ1, ξ1), Um′(ξ1, ξ1) )

+

(
n∑

i=1

ωi,i

)
[ cov (Um(ξ1, ξ1), fm′(ξ1) ) + cov (Um′(ξ1, ξ1), fm(ξ1) ) ]

+ n cov (fm(ξ1), fm′(ξ1) ) .

Proof. We develop the covariance to get

cov (Cm, Cm′ ) =
∑

1≤i,j,k,ℓ≤n

ωi,jωk,ℓ cov (Um(ξi, ξj), Um′(ξk, ξℓ) )

+
∑

1≤i,j,k≤n

ωi,j cov (Um(ξi, ξj), fm′(ξk) )

+
∑

1≤i,j,k≤n

ωi,j cov (Um′(ξi, ξj), fm(ξk) )

+
∑

1≤i,j≤n

cov (fm(ξi), fm′(ξj) ) .

The proof is then concluded with the following remarks, that follow by indepen-
dence of the random variables ξJnK.

1. cov (fm(ξi), fm′(ξj) ) 6= 0 only when ξi = ξj , therefore

∑

1≤i,j≤n

cov (fm(ξi), fm′(ξj) ) =

n∑

i=1

cov (fm(ξi), fm′(ξi) ) = n cov (fm(ξ1), fm′(ξ1) ) .

2. By definition (A.52) of Um, cov (Um(ξi, ξj), fm′(ξk) ) 6= 0 only when i =
j = k, hence
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∑

1≤i,j,k≤n

ωi,j cov (Um(ξi, ξj), fm′(ξk) ) =

(
n∑

i=1

ωi,i

)
cov (Um(ξ1, ξ1), fm′(ξ1) ) .

3. By definition (A.52) of Um, cov (Um(ξi, ξj), Um(ξk, ξl) ) 6= 0 only when
i = j = k = ℓ or i = k 6= j = ℓ or i = ℓ 6= j = k. It follows that

∑

1≤i,j,k,ℓ≤n

ωi,jωk,ℓ cov (Um(ξi, ξj), Um′(ξk, ξℓ) )

=


 ∑

1≤i 6=j≤n

ω2
i,j + ωi,jωj,i


 cov (Um(ξ1, ξ2), Um′(ξ1, ξ2) )

+

(
n∑

i=1

ω2
i,i

)
cov (Um(ξ1, ξ1), Um′(ξ1, ξ1) ) .
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Appendix S: Supplementary material

The supplementary material is organized as follows. Section S.1 gives comple-
mentary computations of variances. Then, results concerning hold-out penaliza-
tion are detailed in Section S.2, with the proof of the oracle inequality stated in
Section 8.1 (Theorem 3) and an exact computation of the variance. Section S.3
provides complements on the computational aspects stated in Section 7. In
particular, we state and analyse the basic algorithm for computing the V -fold
criteria and we give the proof of Proposition 3. A useful concentration inequal-
ity is recalled in Section S.4. Finally, some simulation results are detailed in
Section S.5, as a supplement to the ones of Section 6.

S.1. Additional variance computations

Proposition S.8. Let (ψλ)λ∈Λm
and (ψλ)λ∈Λm′

be two finite orthonormal fam-
ilies of vectors of L4(µ), C > 0 some constant. Assume that B satisfies (Reg)
and, for any m ∈ Mn, let

Cid(m) = Pnγ(ŝm) + E [penid(m) ] .

Then, with the notation of Theorem 2, for every m ∈ Mn,

Var (Cid(m)) =
2(n− 1)

n3
β (Λm,Λm ) +

2

n
Var

((
1− 1

n

)
sm(ξ) +

1

2n
Ψm(ξ)

)
.

For any (m,m′) in Mn, we also have

Var (Cid(m)− Cid(m′)) =
2(n− 1)

n3
B (Λm,Λm′ )

+
2

n
Var

((
1− 1

n

)
(sm(ξ)− sm′(ξ)) +

1

2n
(Ψm(ξ)−Ψm′(ξ))

)
.

Proof of Proposition S.8. Simply notice that

Var (Cid(m)) = Var (Pnγ(ŝm)) .

Therefore, from (A.53), the variance of Cid(m) is the one of

− 1

n2

∑

1≤i,j≤n

Um(ξi, ξj)−
n∑

i=1

2sm(ξi)

n
.

so that, by Lemma A.7,

Var (Cid(m)) =
2(n− 1)

n3
β (Λm,Λm ) +

1

n3
Var (Ψm(ξ)− 2sm(ξ))

+
4

n2

n∑

i=1

cov (Ψm(ξ)− 2sm(ξ), sm(ξ) ) +
4

n
Var (sm(ξ))

=
2(n− 1)

n3
β (Λm,Λm ) +

2

n
Var

((
1− 1

n

)
sm(ξ) +

1

n
Ψm(ξ)

)
.

The variance of the increments follows from the same computations.
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Evaluation of the terms in the variance term The following proposition
gives a formulation of the terms appearing in Theorem 2 and Proposition S.8
that does not depend of the basis (ψλ)λ∈Λm

.

Proposition S.9. For any m,m′ ∈ Mn, we have

β (Λm,Λm′ ) = n cov ( ŝm(ξ), ŝm′(ξ) )− (n+ 1) cov (sm(ξ), sm′(ξ) )

B (Λm,Λm′ ) = nVar ((ŝm − ŝm′)(ξ))− (n+ 1)Var ((sm − sm′)(ξ)) (S.55)

Proof of Proposition S.9. By definition, we have

β (Λm,Λm′ ) :=
∑

λ∈Λm , λ′∈Λm′

(
C

(1,1)
λ,λ′

)2
=

∑

λ∈Λm

λ′∈Λm′

cov (ψλ, ψλ′ )
2

=
∑

λ∈Λm

λ′∈Λm′

(P (ψλψλ′ )− PψλPψλ′ )
2

=
∑

λ∈Λm

λ′∈Λm′

(P (ψλψλ′ ) )
2 − 2

∑

λ∈Λm

λ′∈Λm′

PψλPψλ′P (ψλψλ′ ) +
∑

λ∈Λm

λ′∈Λm′

(PψλPψλ′ )
2

=
∑

λ∈Λm

λ′∈Λm′

(P (ψλψλ′ ) )
2 − 2P [smsm′ ] + ‖sm‖2 ‖sm′‖2 .

Now, let ξ denote a copy of ξ1, independent of ξJnK. We have

cov ( ŝm(ξ), ŝm′(ξ) ) =
1

n2

∑

1≤i,j≤n

∑

λ∈Λm,λ′∈Λm′

cov (ψλ(ξi)ψλ(ξ), ψλ′(ξj)ψλ′(ξ) )

=
1

n

∑

λ∈Λm,λ′∈Λm′

(P (ψλψλ′ ) )
2 − (PψλPψλ′ )

2

+
n− 1

n

∑

λ∈Λm,λ′∈Λm′

(P (ψλψλ′ )− PψλPψλ′ )PψλPψλ′

=
1

n

∑

λ∈Λm,λ′∈Λm′

(P (ψλψλ′ ) )
2

− 1

n
‖sm‖2 ‖sm′‖2 + n− 1

n
cov (sm(ξ), sm′(ξ) )

It follows that
∑

λ∈Λm,λ′∈Λm′

(P (ψλψλ′ ) )
2
= n cov ( ŝm(ξ), ŝm′(ξ) ) + ‖sm‖2 ‖sm′‖2

− (n− 1) cov (sm(ξ), sm′(ξ) ) . (S.56)

Thus,

β (Λm,Λm′ ) = n cov ( ŝm(ξ), ŝm′(ξ) )− (n+ 1) cov (sm(ξ), sm′(ξ) ) .
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Evaluation of the variance in the regular histogram case The following
lemma gives the value of the terms appearing in Theorem 2 in the histogram
case.

Lemma S.10. For any i ∈ JnK and λ ∈ Λ, let ξλ,i = ψλ(ξi) − Pψλ and for
m⋆ ∈ {m,m′ }, let Tm⋆(x) =

∑
λ∈m⋆(ψλ(x) − Pψλ)

2 = supt∈Bm⋆
(t(x) − Pt)2.

The random variables (ξλ,1)λ∈Λ, . . . , (ξλ,n)λ∈Λ are independent and, if m is a
regular partition of R, with µ(λ) = d−1

m for any λ ∈ m and if m′ is a subpartition
of m,

β (Λm,Λm′ ) =
∑

λ∈m,λ′∈m′

E [ξ1,λξ1,λ′ ]
2
= P (Tmsm′ )

and

B (Λm,Λm′ ) = P ( (Tm(sm − sm′) + (Tm′ − Tm)sm′ )

= dm′ ‖sm′‖2 − dm ‖sm‖2 − 2 varP (sm − sm′)− ‖sm − sm′‖4 .

Proof.
∑

λ∈m,λ′∈m′

E [ξ1,λξ1,λ′ ]
2

=
∑

λ∈m,λ′∈m′

(
[P (ψλψλ′ ) ]

2 − 2P (PψλψλPψλ′ψλ′ ) + (Pψλ )
2
(Pψλ′ )

2
)

=
∑

λ∈m,λ′∈m′

[P (ψλψλ′ ) ]
2 − 2P (smsm′ ) + ‖sm‖2 ‖sm′‖2 .

Moreover,

∑

λ∈m,λ′∈m′

[P (ψλψλ′ ) ]
2
=
∑

λ∈m

∑

λ′⊂λ

[P (ψλψλ′ ) ]
2

=
∑

λ∈m

1

µ(λ)

∑

λ′⊂λ

(Pψλ′ )
2
= dm

∑

λ′∈m′

(Pψλ′)2 .

Hence,
∑

λ∈m,λ′∈m′

E [ξ1,λξ1,λ′ ]
2
= dm ‖sm′‖2 − 2P (smsm′) + ‖sm‖2 ‖sm′‖2 ,

and
P (Tmsm′) = dm ‖sm′‖2 − 2P (smsm′) + ‖sm‖2 ‖sm′‖2 .

It follows that

B (Λm,Λm′ ) = P ( (Tm(sm − sm′) + (Tm′ − Tm)sm′ )

= dm(‖sm‖2−‖sm′‖2)+(dm′−dm) ‖sm′‖2−2P ((sm−sm′)2)+(‖sm‖2−‖sm′‖2)2

= (dm′ − dm) ‖sm′‖2 + dm ‖sm − sm′‖2 − 2 varP (sm − sm′)− ‖sm − sm′‖4 .
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S.2. Results on hold-out penalization

This section gathers the proof of Theorem 3 (oracle inequality for hold-out
penalization) and the variance computations we can make for hold-penalization.

S.2.1. Proof of Theorem 3

The hold-out penalty is equal to

penHO(m,T, x) = 2x(1− τ)2(P (T )
n − P (T c)

n )(ŝ(T )
m − ŝ(T

c)
m )

= 2x(1− τ)2
∑

λ∈Λm

[(
P (T )
n − P (T c)

n

)
ψλ

]2
. (S.57)

As for Theorem 1, the oracle inequality is based on a concentration result
for penHO(m,T, x). Let start with an exact formula for the hold-out penalty
(Lemma S.11, analogous to Lemma A.4).

Lemma S.11. For all m ∈ Mn, we have

penHO(m,T, x)

= 2x(1−τ)2
[∥∥∥ŝ(T )

m − sm

∥∥∥
2

+
∥∥∥ŝ(T

c)
m − sm

∥∥∥
2

− 2(P (T )
n − P )

(
ŝ(T

c)
m − sm

)]
.

In particular, for τ = |T | /n,

E [penHO(m,T, x) ] = 2x
1− τ

τ

Dm

n
.

Proof of Lemma S.11. By definition,

penHO(m,T, x) = 2x(1− τ)2
∑

λ∈Λm

{(
(P (T c)

n − P )ψλ

)2
+
(
(P (T )

n − P )ψλ

)2}

−2x(1− τ)2
∑

λ∈Λm

{
2
(
(P (T c)

n − P )ψλ

)(
(P (T )

n − P )ψλ

)}

= 2x(1− τ)2
[∥∥∥ŝ(T

c)
m − sm

∥∥∥
2

+
∥∥∥ŝ(T )

m − sm

∥∥∥
2

−2(P (T )
n − P )

(
∑

λ∈Λm

(
(P (T c)

n − P )ψλ

)
ψλ

)]
.

Lemma S.12. For all m ∈ Mn and x > 0, with probability larger than 1−2e−x,
for all η > 0,

∣∣∣(P (T )
n − P )

(
ŝ(T

c)
m − sm

)∣∣∣ ≤ η

2

∥∥∥ŝ(T
c)

m − sm

∥∥∥
2

+
2 ‖s‖∞ x

ητn
+

b2mx
2

9η(τn)2
. (S.58)
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Proof of Lemma S.12. Let us apply Bernstein’s inequality conditionally to (ξi)i/∈T

to the function t =
(
ŝ
(T c)
m − sm

)
. Recall that v2m ≤ ‖s‖∞, hence,

∥∥∥ŝ(T
c)

m − sm

∥∥∥
∞

≤
∥∥∥ŝ(T

c)
m − sm

∥∥∥ bm ,

var
(
ŝ(T

c)
m (ξ)− sm(ξ)

∣∣∣ (ξi)i/∈T

)
≤
∥∥∥ŝ(T

c)
m − sm

∥∥∥
2

v2m ≤
∥∥∥ŝ(T

c)
m − sm

∥∥∥
2

‖s‖∞ .

Hence, for all x > 0, with probability larger than 1 − 2e−x, conditionally to
(ξi)i/∈T ,

∣∣∣(P (T )
n − P )

(
ŝ(T

c)
m − sm

)∣∣∣ ≤
∥∥∥ŝ(T

c)
m − sm

∥∥∥
(√

2 ‖s‖∞ x

τn
+
bmx

3τn

)

≤ η

2

∥∥∥ŝ(T
c)

m − sm

∥∥∥
2

+
1

η

(
2 ‖s‖∞ x

τn
+

b2mx
2

9(τn)2

)
.

As the bound on the probability does not depend on (ξi)i/∈T , the same inequality
holds unconditionally.

Proof of Theorem 3. From Theorem 4.1 in [Ler11] (recalled in Proposition S.14),
Lemma S.11 and Lemma S.12 that there exists an absolute constant κ such that,
for all x > 0, with probability larger than 1− 8e−x, for all ǫ ∈ (0, 1],

∀m ∈ Mn,

∣∣∣∣penHO

(
m,T,

τ

1− τ

)
− ‖ŝm − sm‖2

∣∣∣∣

≤ ǫ ‖ŝm − sm‖2 + κ

( ‖s‖∞ xn
ǫn

+
b2mx

2
n

ǫ3n2

τ2 + (1− τ)2

τ(1− τ)

)
.

We can then conclude the proof as in Theorem 1.

S.2.2. Variance

Proposition S.13. Assume that |T | ∈ Jn− 1K and denote, for any m ∈ M,

Cho
(C,T )(m) = Pnγ(ŝ) + penHO (m,T,Cτ/(1− τ) ) .

Then, with the notations introduced in Theorem 2, for every m,m′ ∈ Mn,

Var
(
Cho
(C,T )(m)

)
=

4

n
Var

((
1 +

2C − 1

n

)
sm(ξ)− 2C − 1

2n
Ψm(ξ)

)

+
2

n2

[
1 + 4C2 − (2C − 1)2

n

]
β(Λm,Λm) (S.59)

+
4C2

n3

(1− 2τ)2

τ(1− τ)
(Var (Ψm(ξ)− 2sm(ξ))− 2β (Λm,Λm ) ) .
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Var
(
Cho
(C,T )(m)− Cho

(C,T )(m
′)
)

=
4

n
Var

((
1 +

2C − 1

n

)
(sm(ξ)− sm′(ξ))− 2C − 1

2n
(Ψm(ξ)−Ψm′(ξ))

)

+
2

n2

[
1 + 4C2 − (2C − 1)2

n

]
B (Λm,Λm′ ) (S.60)

+
4C2

n3

(1− 2τ)2

τ(1− τ)
(Var ((Ψm(ξ)−Ψm′(ξ))− 2(sm(ξ)− sm′(ξ)))− 2B (Λm,Λm ) ) .

Proof of Proposition S.13. By definition,

penHO(m,T, x) = 2x
∑

λ∈Λm

[(
P (T )
n − Pn

)
ψλ

]2

=
2x

n2

∑

λ∈Λm

(
n∑

i=1

(
1

τ
1i∈T − 1

)
ψλ(ξi)

)2

=
2x

n2

n∑

i,j=1

E
(HO)
i,j Um(ξi, ξj) , (S.61)

where, for all i, j ∈ {1 . . . , n},

Um(ξi, ξj) =
∑

λ∈Λm

(ψλ(ξi)− Pψλ)(ψλ(ξj)− Pψλ) ,

E
(HO)
i,j =

(
1

τ
1i∈T − 1

)(
1

τ
1j∈T − 1

)
,

Therefore, from (A.53), if x = Cτ/(1− τ),

Cho
(C,T )(m) := Pnγ(ŝm) + penHO(m,T, x)

=
∑

1≤i,j≤n

2xE
(HO)
i,j − 1

n2
Um(ξi, ξj)−

n∑

i=1

2

n
sm(ξi) + ‖sm‖2 .

By definition

E
(HO)
i,j =

(
1− τ

τ

)2

1i,j∈T − 1− τ

τ
1i∈T, j /∈T − 1− τ

τ
1i/∈T, j∈T + 1i,j /∈T ,

Therefore,

n∑

i=1

E
(HO)
i,i = n

(
τ

(
1− τ

τ

)2

+ 1− τ

)
= n

1− τ

τ
, (S.62)

n∑

i=1

(
E

(HO)
i,i

)2
= n

(
τ

(
1− τ

τ

)4

+ 1− τ

)
= n(1− τ)

(1− τ)3 + τ3

τ3
. (S.63)
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Moreover, E
(HO)
i,j satisfy

∑

1≤i,j≤n

E
(HO)
i,j = E



(

n∑

i=1

(
1

τ
1i∈T − 1

))2

 = 0 , (S.64)

so Eq. (S.62) implies that

∑

1≤i 6=j≤n

(
E

(HO)
i,j

)
= −

n∑

i=1

E
(HO)
i,i = −n1− τ

τ
. (S.65)

In addition,

∑

1≤i 6=j≤n

(
E

(HO)
i,j

)2
= 2n2τ(1− τ)

(
1− τ

τ

)2

+ nτ(nτ − 1)

(
1− τ

τ

)4

+ n(1− τ)(n(1− τ)− 1)

= n2(1− τ)2

(
2
1− τ

τ
+

(
1− τ

τ

)2

+ 1

)

− n(1− τ)

((
1− τ

τ

)3

+ 1

)

= n2

(
1− τ

τ

)2

− n(1− τ)
(1− τ)3 + τ3

τ3
. (S.66)

According to (S.61) and (A.53), Var
(
Cho
(C,T )(m)

)
can be computed using Lemma A.7

with

∀i, j ∈ {1, . . . , n} , ωi,j =
1

n2

(
2xE

(HO)
i,j − 1

)
and fm =

−2sm
n

.

So, using Eq. (S.62), (S.63), (S.65) and (S.66), we have

n∑

i=1

ω2
i,i =

1

n4

[
4x2

n∑

i=1

(
E

(HO)
i,i

)2
− 4x

n∑

i=1

E
(HO)
i,i + n

]

=
1

n3

[
4x2(1− τ)

(1− τ)3 + τ3

τ3
− 4x

1− τ

τ
+ 1

]
(S.67)

∑

1≤i 6=j≤n

ω2
i,j =

1

n4


4x2

∑

1≤i 6=j≤n

(
E

(HO)
i,j

)2
− 4x

∑

1≤i 6=j≤n

E
(HO)
i,j + n(n− 1)




=
1

n4

[
4x2

(
n2

(
1− τ

τ

)2

− n(1− τ)
(1− τ)3 + τ3

τ3

)
+ 4xn

1− τ

τ
+ n(n− 1)

]

(S.68)
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n∑

i=1

ωi,i =
1

n

(
2x

1− τ

τ
− 1

)
. (S.69)

Therefore, by Lemma A.7 with m′ = m, we deduce

Var
(
Cho
(C,T )(m)

)
=

1

n3

[
4C2 (1− 2τ)2

τ(1− τ)
+ (2C − 1)2

]
Var (Ψm(ξ)− 2sm(ξ))

+
2

n2

[
1 + 4C2 − 1

n

(
4C2 (1− 2τ)2

τ(1− τ)
+ (2C − 1)2

)]
β (Λm,Λm )

− 4

n2
(2C − 1) cov (Ψm(ξ)− 2sm(ξ), sm(ξ) ) +

4

n
Var (sm(ξ))

=
4

n
Var

((
1 +

2C − 1

n

)
sm(ξ)− 2C − 1

2n
Ψm(ξ)

)

+
2

n2

[
1 + 4C2 − (2C − 1)2

n

]
β(Λm,Λm)

+
4C2

n3

(1− 2τ)2

τ(1− τ)
(Var (Ψm(ξ)− 2sm(ξ))− 2β (Λm,Λm ) ) .

Eq (S.60) follows from the same computations.

S.3. Additional comments on computational issues

S.3.1. Naive implementation

Algorithm S.2.

Input: B some partition of {1, ..., n} satisfying (Reg), ξ1, . . . , ξn ∈ X and
(ψλ )λ∈Λm

a finite orthonormal family of L2(µ), with Card(m) = dm .
1. For j ∈ {1, . . . , V },

(a) train ŝm(·) with the data set (ξi)i/∈Bj
, that is, for all λ ∈ Λm , com-

pute αλ,j := P
(−Bj)
n (ψλ) = V

(V−1)n

∑
i/∈Bj

ψλ(ξi) so that ŝ
(−Bj)
m =∑

λ∈Λm
αλ,jψλ

(b) compute the norm of ŝ
(−Bj)
m : Nj :=

∑
λ∈Λm

α2
λ,j

(c) compute Qj := P
(Bj)
n

(
ŝ
(−Bj)
m

)
= V

n

∑
λ∈Λm

∑
i∈Bj

αλ,jψλ(ξi)

(d) compute Rj := P
(−Bj)
n

(
ŝ
(−Bj)
m

)
= V

n(V−1)

∑
λ∈Λm

∑
i/∈Bj

αλ,jψλ(ξi)

2. Compute the V -fold cross-validation criterion: C = V −1
∑V

j=1(Nj − 2Qj)
3. Empirical risk:

(a) Train ŝm(·) with the data set (ξi)1≤i≤n, that is, for all λ ∈ Λm ,
compute αλ := Pn(ψλ) =

1
n

∑n
i=1 ψλ(ξi) so that ŝm =

∑
λ∈Λm

αλψλ

(b) compute the norm of ŝm: N :=
∑

λ∈Λm
α2
λ
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(c) compute R := 1
n

∑
λ∈Λm

∑n
i=1 αλψλ(ξi)

4. Compute the V -fold penalty: D := 2(V − 1)V −2
∑V

j=1(Qj −Rj)
Output:
Empirical risk: N − 2R
V -fold cross-validation estimator of the risk of ŝm: critVFCV(m) = C
V -fold penalty: penVF(m) = D.

Assuming the computational cost of evaluation ψλ at some point ξ ∈ Ξ is
of order 1, the computational cost of this naive algorithm S.2 is as follows:
n(V − 1)dm for step 1, V for steps 2 and 4, ndm for step 3. So the overall cost
of computing the V -fold penalization criterion for m is of order nV dm.

S.3.2. Proof of Proposition 3

Let us first note that for every i ∈ {1, . . . , V } and λ ∈ Λm, Ai,λ = P
(Bi)
n (ψλ).

So, at step 2, for every i, j ∈ {1, . . . , V },

Ci,j =
∑

λ∈Λm

P (Bi)
n (ψλ)P

(Bj)
n (ψλ) = P (Bi)

n

(
∑

λ∈Λm

P (Bj)
n (ψλ)ψλ

)
= P (Bi)

n (ŝ(Bj)
m )

and by symmetry Ci,j = Cj,i = P
(Bj)
n (ŝ

(Bi)
m ).

Correctness of Algorithm 1 By assumption (Reg), we have

Pn =
1

V

V∑

j=1

P (Bj)
n , ŝm =

1

V

V∑

j=1

ŝ(Bj)
m ,

P (−Bi)
n =

1

V − 1

∑

1≤j≤V

j 6=i

P (Bj)
n and ŝ(−Bi)

m =
1

V − 1

∑

1≤j≤V

j 6=i

ŝ(Bj)
m .

Therefore,

‖ŝm‖2 = −Pnγ(ŝm) = Pn(ŝm) =
1

V 2

∑

1≤i,j≤V

P (Bi)
n (ŝ(Bj)

m ) =
1

V 2
S

and

critVFCV(m) =
1

V

V∑

j=1

P (Bj)
n γ

(
ŝ(−Bj)
m

)

=
1

V

V∑

j=1

(∥∥∥ŝ(−Bj)
m

∥∥∥
2

− 2P (Bj)
n

(
ŝ(−Bj)
m

))

=
1

V

V∑

j=1




1

(V − 1)2

∑

1≤i,ℓ≤V

i,ℓ 6=j

P (Bi)
n (ŝ(Bℓ)

m )− 2

V − 1

∑

i 6=j

P (Bj)
n

(
ŝ(Bi)
m

)


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=
1

V (V − 1)2

∑

1≤i,ℓ≤V


P (Bi)

n (ŝ(Bℓ)
m )

V∑

j=1

1i 6=j , ℓ 6=j


− 2

V (V − 1)

∑

1≤i 6=j≤V

P (Bj)
n

(
ŝ(Bi)
m

)

=
1

V (V − 1)2

∑

1≤i,ℓ≤V

(
P (Bi)
n (ŝ(Bℓ)

m )(V − 1− 1i 6=ℓ)
)
− 2

V (V − 1)
(S − T )

=
1

V (V − 1)

∑

1≤i≤V

(
P (Bi)
n (ŝ(Bi)

m )
)
+

V − 2

V (V − 1)2

∑

1≤i 6=ℓ≤V

(
P (Bi)
n (ŝ(Bℓ)

m )
)

− 2

V (V − 1)
(S − T )

=
1

V (V − 1)
T +

V − 2

V (V − 1)2
(S − T )− 2

V (V − 1)
(S − T )

=
1

V (V − 1)
T − 1

(V − 1)2
(S − T ) ,

so the formula for critVFCV is correct. Lemma 1 implies the formula for penVF

is also correct.

Computational cost of Algorithm 1 Step 1 has a cost of order V ×
Card(Λm) × (n/V ) = nCard(Λm) . Step 2 has a cost of order V 2 Card(Λm).
Step 3 has a cost of order V 2. Summing the three steps yields the result.

Computational cost for histograms In the histogram case, step 1 can be
performed with a cost of order V Card(Λm) + n. Indeed, one can initialize the
V ×Card(Λm) matrix A with zeros (cost: V Card(Λm)), and then go sequentially
through the data set: for j = 1, . . . , n, find the unique i(j) ∈ {1, . . . , V } such
that j ∈ Bi(j), the unique λ(j) ∈ Λm such that ξj ∈ λ(j), and add (V/n)ψλ(ξj)
to A(i(j),λ(j)) . Since the partitions B and Λm can be coded so that finding i(j)
and λ(j) has a cost of order 1, the resulting cost of step 1 is V Card(Λm) + n,
hence the overall cost is of order V 2 Card(Λm) + n.

S.4. Probabilistic Tool

Proposition S.14 ([Ler11]). Let ξJNK be iid random variables valued in a
measurable space (X,X ), with common distribution P . Let S be a symmetric

class of functions bounded by b. For all t ∈ S, let PN t = N−1
∑N

i=1 t(ξi),
v2 = supt∈S P [(t − Pt)2], Z = supt∈S(PN − P )t, D = NE(Z2). There ex-
ists an absolute constant κ such that, for all x > 0, with probability larger than
1− 2e−x, for all ǫ ∈ (0, 1],

∣∣∣∣Z
2 − D

N

∣∣∣∣ ≤ ǫ
D

N
+ κ

(
v2x

ǫN
+
b2x2

ǫ3N2

)
.
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Figure S.6. Oracle model for some sample of size n = 500, in setting L. Left: Regu. Right:
Dya2.

S.5. Additional simulation results

This section provides simulation results in addition to the ones of Section 6.
Figure S.6 is an analogous of Figure 2 in setting L, that illustrates the difference
between the model collections Regu and Dya2. Table S.3 is an extended version
of Table 2, with more procedures compared and two additional settings (L-
Regu and S-Regu). Table S.4 provides a similar comparison of model selection
performances with a reduced sample size n = 100, again from N = 10 000
independent samples.

The study of variance of Section 6.4 (setting S with n = 100) is completed
with Figure S.7, which tests the validity of the heuristic of Section 4, Figure S.8,
which is the equivalent of Figure 4 without zooming on the smallest dimensions,
and Figure S.9, which shows that

∀m 6= m⋆ , SR(m) ≈ E [∆(m,m⋆) ]√
var (∆(m,m⋆) )

.
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Table S.3

Simulation results: settings L and S, n = 500. The best procedures (up to
standard-deviations) are bolded, where the data-driven procedures are considered separately

from the procedures using the knowledge of E[ penid ].

Experiment L–Dya2 L–Regu S–Dya2 S–Regu

E[penid] 6.52± 0.05 2.33± 0.01 2.07± 0.01 1.75± 0.01
1.25 × E[penid] 4.81± 0.04 2.01± 0.01 1.94± 0.01 1.62± 0.004
1.5 × E[penid] 4.12± 0.03 1.93± 0.01 1.92± 0.01 1.65± 0.003
2 × E[penid] 3.61± 0.02 1.96± 0.01 2.01± 0.01 1.84± 0.004

pendim 8.27± 0.07 2.33± 0.01 3.21± 0.01 1.75± 0.01
1.25 × pendim 5.95± 0.05 2.01± 0.01 3.01± 0.01 1.62± 0.004
1.5 × pendim 4.99± 0.04 1.94± 0.01 3.03± 0.01 1.66± 0.003
2 × pendim 4.38± 0.03 1.97± 0.01 3.24± 0.01 1.85± 0.004

penLOO 6.35± 0.05 2.33± 0.01 2.06± 0.01 1.75± 0.01
1.25 × penLOO 4.62± 0.04 2.01± 0.01 1.92± 0.01 1.62± 0.004
1.5 × penLOO 3.97± 0.03 1.94± 0.01 1.90± 0.005 1.66± 0.003
2 × penLOO 3.55± 0.02 1.97± 0.01 1.98± 0.01 1.85± 0.004

penVF (V=10) 6.89± 0.06 2.42± 0.02 2.11± 0.01 1.77± 0.01
1.25 × penVF (V=10) 5.01± 0.04 2.04± 0.01 1.95± 0.01 1.62± 0.004
1.5 × penVF (V=10) 4.27± 0.03 1.94± 0.01 1.92± 0.01 1.63± 0.004
2 × penVF (V=10) 3.68± 0.02 1.94± 0.01 1.98± 0.01 1.78± 0.004

penVF (V=5) 7.47± 0.06 2.55± 0.02 2.16± 0.01 1.80± 0.01
1.25 × penVF (V=5) 5.50± 0.04 2.10± 0.01 1.98± 0.01 1.63± 0.004
1.5 × penVF (V=5) 4.58± 0.03 1.96± 0.01 1.93± 0.01 1.62± 0.004
2 × penVF (V=5) 3.86± 0.02 1.93± 0.01 1.98± 0.01 1.73± 0.004

penVF (V=2) 10.21± 0.08 3.37± 0.03 2.39± 0.01 2.01± 0.01
1.25 × penVF (V=2) 7.69± 0.06 2.49± 0.02 2.15± 0.01 1.71± 0.01
1.5 × penVF (V=2) 6.41± 0.05 2.18± 0.01 2.05± 0.01 1.63± 0.004
2 × penVF (V=2) 5.11± 0.04 1.99± 0.01 2.04± 0.01 1.64± 0.004

LOO 6.34± 0.05 2.33± 0.01 2.06± 0.01 1.75± 0.01
10-fold CV 6.24± 0.05 2.29± 0.01 2.05± 0.01 1.71± 0.01
5-fold CV 6.27± 0.05 2.26± 0.01 2.05± 0.01 1.68± 0.01
2-fold CV 6.41± 0.05 2.18± 0.01 2.05± 0.01 1.63± 0.004

Oracle: 10−3× 5.46± 0.02 13.39± 0.05 43.86± 0.09 62.37± 0.13
Best: 10−3× 19.38± 0.10 25.77± 0.10 83.39± 0.22 100.86± 0.23
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Table S.4

Simulation results: settings L and S, n = 100. The best procedures (up to
standard-deviations) are bolded, where the data-driven procedures are considered separately

from the procedures using the knowledge of E[ penid ].

Experiment L–Dya2 L–Regu S–Dya2 S–Regu

E[penid] 8.38± 0.08 3.29± 0.03 1.97± 0.01 2.09± 0.01
1.25 × E[penid] 6.53± 0.07 2.61± 0.02 1.93± 0.01 1.72± 0.01
1.5 × E[penid] 5.59± 0.06 2.46± 0.02 1.92± 0.01 1.61± 0.01
2 × E[penid] 4.72± 0.05 2.57± 0.01 1.94± 0.005 1.60± 0.004

pendim 9.67± 0.09 3.28± 0.03 2.17± 0.01 2.09± 0.01
1.25 × pendim 7.85± 0.08 2.62± 0.02 2.10± 0.01 1.72± 0.01
1.5 × pendim 6.74± 0.07 2.48± 0.02 2.05± 0.01 1.62± 0.01
2 × pendim 5.70± 0.06 2.60± 0.01 2.00± 0.01 1.61± 0.004

penLOO 8.10± 0.08 3.29± 0.03 1.97± 0.01 2.09± 0.01
1.25 × penLOO 6.20± 0.06 2.62± 0.02 1.92± 0.01 1.72± 0.01
1.5 × penLOO 5.18± 0.05 2.49± 0.02 1.91± 0.01 1.62± 0.01
2 × penLOO 4.44± 0.04 2.59± 0.01 1.94± 0.005 1.61± 0.004

penVF (V=10) 8.61± 0.08 3.54± 0.04 1.97± 0.01 2.21± 0.01
1.25 × penVF (V=10) 6.76± 0.07 2.76± 0.02 1.92± 0.01 1.78± 0.01
1.5 × penVF (V=10) 5.77± 0.06 2.52± 0.02 1.90± 0.01 1.64± 0.01
2 × penVF (V=10) 4.81± 0.05 2.57± 0.01 1.91± 0.01 1.60± 0.004

penVF (V=5) 9.14± 0.08 3.92± 0.04 1.98± 0.01 2.34± 0.02
1.25 × penVF (V=5) 7.38± 0.07 2.90± 0.03 1.93± 0.01 1.85± 0.01
1.5 × penVF (V=5) 6.31± 0.06 2.60± 0.02 1.91± 0.01 1.68± 0.01
2 × penVF (V=5) 5.21± 0.05 2.56± 0.02 1.90± 0.01 1.60± 0.005

penVF (V=2) 11.15± 0.09 6.14± 0.08 2.01± 0.01 2.92± 0.02
1.25 × penVF (V=2) 9.61± 0.08 4.05± 0.05 1.97± 0.01 2.24± 0.01
1.5 × penVF (V=2) 8.60± 0.07 3.30± 0.03 1.94± 0.01 1.94± 0.01
2 × penVF (V=2) 7.30± 0.07 2.80± 0.02 1.91± 0.01 1.70± 0.01

LOO 8.04± 0.08 3.26± 0.03 1.97± 0.01 2.07± 0.01
10-fold CV 8.11± 0.08 3.28± 0.03 1.95± 0.01 2.06± 0.01
5-fold CV 8.15± 0.08 3.28± 0.03 1.95± 0.01 2.01± 0.01
2-fold CV 8.60± 0.07 3.30± 0.03 1.94± 0.01 1.94± 0.01

Oracle: 10−3× 12.66± 0.05 33.58± 0.16 118.21± 0.25 133.04± 0.28
Best: 10−3× 56.15± 0.53 83.42± 0.51 224.09± 0.63 212.84± 0.61
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Figure S.7. Illustration of the variance heuristic: P(m̂ = m) as a function of Φ(SR(m))
(renormalized to have a sum equal to one). Setting S-Regu, n = 100.
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Figure S.8. Setting S-Regu, n = 100. P ( m̂ = m ) as a function of m. The black diamond
shows m⋆ = 7.
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Figure S.9. SR(m) as a function of the ratio at m′ = m⋆. n = 100. Left: S-Regu. Right:
L-Regu.
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Figure S.10. L-Regu, n = 100. var(∆C(m,m⋆)) as a function of m. The black lines show the
linear approximation n−2[5.6(1 + 1.1

V −1
) + 2.2(1 + 4.2

V −1
)(m−m⋆)] for m > m⋆ = 4.

All graphs plotted about the variance in setting S with n = 100 are also
provided for setting L with n = 100, based upon N = 10 000 independent
samples, see Figures S.9–S.14. The case of a sample size n = 500 has also
been considered in both settings S and L, based upon N = 1000 independent
samples, see Figures S.15–S.25.
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Figure S.11. L-Regu, n = 100. Φ(SRC(m)) as a function of m.
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Figure S.12. L-Regu, n = 100. P(m̂(C) = m) as a function of m.
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Figure S.13. L-Regu, n = 100. P(m̂(C) = m) as a function of Φ(SRC(m)).
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Figure S.14. L-Regu, n = 100. P(m̂(C) = m) as a function of m.
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Figure S.15. S-Regu, n = 500. var(∆CV
(m,m⋆)) as a function of m. The black lines show

the linear approximation n−2[75(1 + 0.52

V −1
) + 3.8(1 + 3.8

V −1
)(m−m⋆)] for m > m⋆ = 22.
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Figure S.16. S-Regu, n = 500. Φ(SRCV
(m)) as a function of m.
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Figure S.17. S-Regu, n = 500. P(m̂ = m) as a function of m.
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Figure S.18. S-Regu, n = 500. P(m̂(C) = m) as a function of Φ(SR(m)).
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Figure S.19. S-Regu, n = 500. P(m̂ = m) as a function of m.
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Figure S.20. L-Regu, n = 500. var(∆CV
(m,m⋆)) as a function of m. The black lines show

the linear approximation n−2[28(1 + 0.06

V −1
) + 2.1(1 + 4.2

V −1
)(m−m⋆)] for m > m⋆ = 7.
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Figure S.21. L-Regu, n = 500. Φ(SRCV
(m)) as a function of m.
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Figure S.22. L-Regu, n = 500. P(m̂ = m) as a function of m.
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Figure S.23. L-Regu, n = 500. P(m̂(C) = m) as a function of Φ(SR(m)).
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Figure S.24. L-Regu, n = 500. P(m̂ = m) as a function of m.
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Figure S.25. SR(m) as a function of the ratio at m′ = m⋆. n = 500. Left: S-Regu. Right:
L-Regu.
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