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The largest contributions to the n = 2 Lamb-shift, fine structure interval and 2s hyperfine structure of muonic hydrogen are calculated by exact numerical evaluations of the Dirac equation, rather than by a perturbation expansion in powers of 1/c, in the framework of non-relativistic quantum electrodynamics. Previous calculations and the validity of the perturbation expansion for light elements are confirmed. The dependence of the various effects on the nuclear size and model are studied.

Despite many years of study, the proton charge radius has remained relatively poorly known. It has been derived from measurements in electron-proton collisions [1,2] or from high-precision spectroscopy of hydrogen [3][4][5][6][7][8][9][10] as described in the CODATA report in [11]. Tests of fundamental physics based on the progress in accuracy of spectroscopy of hydrogen and deuterium have been limited by the lack of an accurate value for the proton radius. Moreover, the values for the proton radius obtained by different methods or different analyses of existing experiments are spread over a range larger than the uncertainty quoted for the individual results. Two recent measurements have resulted in a puzzle. The accurate determination of the 2S Lamb shift by laser spectroscopy in muonic hydrogen provides a proton size with a ten times smaller uncertainty than any previous value and it differs by five standards deviations from the 2006 CO-DATA value [12]. At the same time, a new, improved determination of the charge radius by electron scattering, performed at Mainz with the MAMI microtron, provides a value in good agreement with the value from hydrogen and deuterium spectroscopy [START_REF] Bernauer | Measurement of the elastic electron-proton cross section and separation of the electric and magnetic form factor in the Q 2 range from 0.004 to 1[END_REF][START_REF] A1 Collaboration | [END_REF]. Taking into account improved theory in hydrogen and deuterium and the MAMI measurement lead the recently released 2010 adjustment [START_REF]Internationally recommended values of the fundamental physical constants 2010[END_REF] to differ by 6.9 standard deviation between from the proton radius obtained from muonic hydrogen.

Many papers have been published in the last year, trying to solve this puzzle. A few are dealing with the calculation of the n = 2 level energies in muonic hydrogen. Several others are concerned with the effect of the internal structure of the proton on these energies [START_REF] Rújula | [END_REF][17][18][19][20][21][22][23][24][25][26][START_REF] Sick | Progress in Particle and Nuclear Physics[END_REF]. Others look at exotic phenomenon beyond the standard model [START_REF] Jaeckel | [END_REF][29][30][31][32][33][34].

Many contributions to the Lamb shift, fine, and hyperfine structure of muonic hydrogen have been evaluated over the years; the results are summarized in [35][36][37][38][39][40] and in a recent book by Eides et al. [START_REF] Eides | Theory of light hydrogenic bound states[END_REF]. Most of these calculations are done in the framework of nonrelativis- * paul.indelicato@spectro.jussieu.fr tic QED. The wavefunction and operators are expanded in powers of the fine-structure constant, and the contributions are obtained by perturbation theory. Hylton [42] showed that the perturbation calculation of the finite size correction to the vacuum polarization in heavy elements gives incorrect results. Since a bound muon is closer to the nucleus than a bound electron by a factor m µ /m e ≈ 207, its Bohr radius is slightly smaller than the Compton wavelength of the electron C = /m e c by a factor m e /α m µ ≈ 137/207 (α ≈ 1/137.036 is the fine structure constant, m e and m µ the electron and muon mass respectively). The Compton wavelength is the scale of QED corrections, and for the 2S level, the muon wavefunction mean radius is only 2.6 times larger than the electron Compton wavelength.

It is thus worthwhile to reconsider the largest corrections that contribute to the 2S Lamb-shift in muonic hydrogen using non-perturbative methods. In the present work, we use the latest version of the MCDF code of Desclaux and Indelicato [START_REF] Indelicato | Mcdfgme, a multiconfiguration dirac fock and general matrix elements program (release 2005)[END_REF], which is designed to calculate properties of exotic atoms [START_REF] Santos | [END_REF], to evaluate the exact contribution of the electron Uehling potential with Dirac wavefunctions including the finite nuclear size. In the same way, we calculate the Källén and Sabry contribution.

Throughout this paper we will use QED units, = 1, c = 1. The electric charge is given by e 2 = 4πα.

I. NUMERICAL EVALUATION OF THE DIRAC EQUATION WITH REALISTIC NUCLEAR CHARGE DISTRIBUTION MODELS

A. Evaluation by the numerical solution of the Dirac equation

We calculate higher-order finite size correction, starting from the Dirac equation with reduced mass, as techniques for the accurate numerical solution of the Dirac equation in a Coulomb potential have been developed over a period of many years within theframework of the Multiconfiguration Dirac-Fock (MCDF) method for the atomic many-body problem [45][46][47][48].

The Dirac equation is written as

α • p + βµ r + V N (r) Φ nκµ (r) = E nκµ Φ nκµ (r), (1) 
where α and β are the Dirac 4 × 4 matrices, V N (r) is the Coulomb potential of the nucleus, E nκµ is the atom total energy, and Φ is a one-electron Dirac four-component spinor:

Φ nκµ (r) = 1 r P nκ (r) χ κµ (θ, φ) i Q nκ (r) χ -κµ (θ, φ) (2) 
in which χ κµ (θ, φ) is the two-component Pauli spherical spinor [46], n is the principal quantum number, κ is the Dirac quantum number, and µ is the eigenvalue of J z . This reduces, for a spherically symmetric potential, to the differential equation:

      V N (r) -d dr + κ r d dr + κ r V N (r) -2µ r       P nκ (r) Q nκ (r) = E D nκµ P nκ (r) Q nκ (r) , (3) 
where P nκ (r) and Q nκ (r) are the large and small radial components of the wavefunction, respectively, κ the Dirac quantum number, E D nκµ is the binding energy, µ r is the muon reduced mass, µ r = m µ M p /(m µ + M p ) (m µ and M p are the muon and proton masses).

To solve this equation numerically, we use a 5 point predictor-corrector method (order h 7 ) [48,[START_REF] Desclaux | Computational Chemistry, Handbook of Numerical Analysis[END_REF] on a linear mesh defined as

t n = ln r n r 0 + ar n , (4) 
with t n = t 0 + nh, and r 0 > 0 is the first point of the mesh, corresponding to n = 0. This immediately gives t 0 = ar 0 . Equation ( 4) can be inverted to yield r n = W ar 0 e t n a ,

dr n dt n = W ar 0 e t n a 1 + W ar 0 e t n ) , (5) 
where W is the Lambert (or product logarithm) function.

The wavefunction and differential equation between 0 and r 0 are represented by a 10 term series expansion. For a point nucleus, the first point is usually given by r 0 = 10 -2 /Z and h = 0.025. Here we use values down to r 0 = 10 -7 /Z and h = 0.002 to obtain the best possible accuracy. For a finite charge distribution, the nuclear boundary is fixed at the value r N , where N is large enough to obtain sufficient accuracy. The mean value of an operator O, that gives the first-order contributions to the energy, is calculated as

∆E O = ∞ 0 dr P(r) 2 + Q(r) 2 O(r) = r 0 0 dr P(r) 2 + Q(r) 2 O(r) + ∞ r 0 dt dr dt P(r) 2 + Q(r) 2 O(r) (6) 
using 8 and 14 points integration formulas due to Roothan. The two integration formulas provide the same result within 9 decimal places.

B. Charge distribution models

For the proton charge distribution, two models are extensively used. The first corresponds to a proton dipole (charge) form factor, the second is a gaussian model. Here we also use uniform and Fermi charge distributiond and fits to experimental data [START_REF] Belushkin | [END_REF]51]. The analytic distributions are parametrized so they provide the same mean square radius R. Moments of the charge distribution are defined by

< r n >= 4π ∞ 0 r 2+n ρ(r)dr, (7) 
where the nuclear charge distribution ρ(r) = ρ N (r)/(Ze) is normalized by

ρ( r)d r = 4π ∞ 0 ρ(r)r 2 dr = 1, (8) 
for a spherically symmetric charge distribution. The mean square radius is R = √ < r 2 >. The potential can be deduced from the charge density using the well known expression:

V N (r) = - 4πe r r 0 du u 2 ρ N (u) -4πe ∞ r duuρ N (u). (9) 
The exponential charge distribution and corresponding potential energy are written

ρ N (r) = Ze e -r ξ 8πξ 3 , V N (r) = -Ze 2 1 -e -r ξ r - e -r c 2ξ , < r n > = (n + 2)! ξ n 2 , (10) 
which gives ξ = R 2 √ 3
. The gaussian charge distribution and potential are given by

ρ N (r) = Ze e -( r ξ ) 2 π 3/2 ξ 3 , V N (r) = -Ze 2 erf r ξ r , < r n > = 2Γ n+3 2 ξ n √ π , ( 11 
)
where erf is the error function, and ξ = 2 3 R. Other similar expressions for the two above models can be found in [52].
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Electromagnetic interaction between a lepton (narrow line) and a nucleon (bold line).

The electric form factor is related to the charge distribution by

G E ( Q 2 ) = dre -iq • r ρ(r), (12) 
For the exponential model this leads to

G E ( Q 2 ) = 1 1 + R 2 q 2 12 2 ≈ 1 - R 2 6 q 2 + R 4 48 q 4 + • • • (13)
while for the Gaussian model one has

G E ( Q 2 ) = e -1 6 R 2 q 2 ≈ 1 - R 2 6 q 2 + R 4 72 q 4 + • • • (14) 
The two models have an identical slope R 2 /6 as functions of q 2 for q → 0 as expected (see, e.g, [START_REF] Pilkuhn | Relativistic Quantum Mechanics[END_REF]).

In 1956, Zemach introduced an electromagnetic form factor, useful for evaluating the hyperfine structure energy correction

ρ em (r) = ρ(r -u)µ(u)du, (15) 
where µ(u) is the magnetic moment density. Both µ(u) and ρ em are normalized to unity as in Eq. ( 8). The Zemach radius is given by

R Z = r Z = rρ em (r)dr. ( 16 
)
The Zemach's radius can be written in momentum space as [54,55] 

R Z = -4 π dq 1 q 2         G E Q 2 G M Q 2 1 + κ p -1         , ( 17 
)
where κ p is the proton anomalous magnetic moment, and G M is normalized so that G M (0) = 1 + κ p . The exponential and gaussian models enables to obtain analytic results for R Z as a function of the charge and magnetic moment radii R and R M . Using [START_REF] Bernauer | Measurement of the elastic electron-proton cross section and separation of the electric and magnetic form factor in the Q 2 range from 0.004 to 1[END_REF] or [START_REF] A1 Collaboration | [END_REF] for the exponential or gaussian model, and Eq. ( 17), we get respectively

R Exp. Z = 3R 4 + 9R 3 R M + 11R 2 R 2 M + 9RR 3 M + 3R 4 M 2 √ 3(R + R M ) 3 (18) R Gauss Z = 2 2 3π R 2 + R 2 M . (19) 
An other useful quantity, which appears in the estimation of the finite size correction to vacuum polarization is the third Zemach's moment

r 3 (2) = r 3 ρ (2) (r)dr, ( 20 
)
where the convolved charge distribution is

ρ (2) (r) = ρ(r -u)ρ(u)du. ( 21 
)
This can be rewritten in the more convenient form [17,35], in the limit of large proton masses, r

= 48 π dq 1 q 4 G 2 E Q 2 -1 + q 2 3 R 2 . ( 3 (2) 
) 22 
It can be easily seen from Eqs. ( 13) or ( 14) that the expression is finite for q → 0. We now turn to more realistic models, based on experiment. A recent analysis of the world's data on elastic electron-proton scattering and calculations of twophoton exchange effects provides an analytic expression for the electric form factors [51], given as

G E Q 2 = 1 + 2 i=0 a i τ i 1 + 4 j=0 b j τ j , (23) 
where τ = q 2 /(4M p ). The a i coefficients can be found in Table I of Ref. [51]. A second work [START_REF] Belushkin | [END_REF] uses a combination of several spectral functions tacking into account several resonances and continua like the 2π, K Kand ρπ continua. Here we use the fit resulting from the superconvergence approach from this work. This corresponds to a sum of 12 dipole-like functions, which are able to represent the experimental data with a reduced χ 2 of 1.8. A comparison of the electric form factor from both works is presented on Fig. 3. It is clear that both experimental form factors and the dipole approximation with an identical radius are very close. We can obtain the charge radius and the next correction by performing an expansion in q of the experimental form factors. We get for Ref. [51] G E Q 2 ≈ 1 -0.8503 2 6 q 2 + 0.8503 4 43.3909

q 4 + • • • , (24) 
and for Ref. [START_REF] Belushkin | [END_REF] G E Q 2 ≈ 1 -0.84995 2 6 q 2 + 0.84995 4 38.793

q 4 + • • • . (25)
These expansions are very close to the one for a dipole form factors from Eq. [START_REF] Bernauer | Measurement of the elastic electron-proton cross section and separation of the electric and magnetic form factor in the Q 2 range from 0.004 to 1[END_REF].

In order to compare different charge density models, we have performed an analytic evaluation of the charge densities corresponding to [51], replacing (23) in (12) and performing the inverse Fourier transforms, to obtain the corresponding charge distribution, depending on the set of a coefficients. The corresponding densities are plotted and compared to Fermi, Gaussian and exponential models. Distances are converted from GeV to fm using c = 0.1973269631 GeVfm in the density obtained from the experiment. The charge distributions are compared on Fig. 2. We plotted both ρ(r) and ρ(r)r 2 to reveal the differences at long and medium distances. The experimental charge density is rather different from all three analytic distributions, while, once multiplied by r 2 , it is closer to the exponential distribution. 2. Top: charge densities ρ(r), bottom: charge densities r 2 ρ(r) for the experimental fits in Ref. [51], compared to Gaussian, Fermi and exponential models distributions. All models are calculated to have the same R = 0.850 fm RMS radius as deduced from the experimental function. The grey circles correspond to the interaction with the nucleus.

II. EVALUATION OF MAIN VACUUM POLARIZATION AND FINITE SIZE CORRECTION

The Feynman diagram corresponding to the Uehling approximation to the vacuum polarization correction is presented in Fig. 4 (a). The evaluation of the vacuum polarization can be performed using standard techniques of (perturbative) non-relativistic QED (NRQED) as described in [35,37]. Here we use the analytic results of Klarsfeld [56] as described in [57] and numerical solution of the Dirac equation from Sec. I. In order to obtain higher order effects, we solve the Dirac equation in a combined potential resulting from the finite nuclear charge distribution and of the Uehling potential. The logarithmic singularity of the Uehling potential at the origin for a point charge cannot be easily incorporated in a numerical Dirac solver. In the case of a finite charge distributions, the singularity is milder, but great care must be exercised to obtain results accurate enough for our purpose.

For a point charge, the Uehling potential, which represents the leading contribution to the vacuum polarization, is expressed as [56,58,59]

V pn 11 (r) = - α(Zα) 3π ∞ 1 dz √ z 2 -1 2 z 2 + 1 z 4 e -2m e rz r = - 2α(Zα 2 ) 3π 1 r χ 1 2 λ e r (26) 
where m e is the electron mass, λ e is the electron Compton wavelength and the function χ 1 belongs to a family of functions defined by

χ n (x) = ∞ 1 dze -xz 1 z n 1 z + 1 2z 3 √ z 2 -1. ( 27 
)
The Uehling potential for a spherically symmetric charge distribution is expressed as [56] V

11 (r) = - 2α(Zα) 3 1 r ∞ 0 dr r ρ(r ) × χ 2 2 λ e | r -r | -χ 2 2 λ e | r + r | . ( 28 
)
The expression of the potential at the origin is given by

V 11 (0) = - 8α(Zα) 3 ∞ 0 dr r ρ(r )χ 1 2 λ e r , (29) 
while it behaves at large distances as [60] V 11 (r) = -2α(Zα) 3π

1 r χ 1 2 λ e r + 2 3 < r 2 > χ -1 2 λ e r + 2 15 < r 4 > χ -3 ( 2 λ e r) + . . . (30) 
using the moments of the charge distribution (7). The energy shift associated with the potential (26) or [START_REF] Jaeckel | [END_REF] in first order perturbation is calculated as

∆E 11,pn nlκ = n, l, κ, µ r |V 11 | n, l, κ, µ r (31) 
where n, l, κ, µ r is a wavefunction solution of Eq. ( 1), which depends on the reduced mass. It was shown recently [61] that this method provides the correct inclusion of the vacuum polarization recoil correction at the Barker and Glover level [62]. Since we directly use relativistic functions, the other corrections described in [61] are automatically included.

III. HIGHER ORDER QED CORRECTIONS

A. Reevaluation of the Källèn and Sabry potential

The Källén and Sabry potential [63], is a fourth order potential, corresponding to the diagrams in Fig. 5. The FIG. 5. Feynman diagrams included in the Källen and Sabry V 21 (r) potential (Eq. ( 32)). See Fig. 4 for explanation of symbols.

expression for this potential has also been derived on Ref. [64][65][66][67]. In the previous version of the mdfgme code, the Källèn and Sabry potential used was the one provided by Ref. [60], which is only accurate to 3 digits. The expression of this potential is for a point charge

V 21 (r) = α 2 (Zα) π 2 r L 1 ( 2 λ e r), (32) 
where

L 1 (r) = ∞ 1 dte -rt 2 3t 5 - 8 3t f (t) + 2 3t 4 + 4 3t 2 √ t 2 -1 ln 8t t 2 -1 + √ t 2 -1 2 9t 6 + 7 108t 4 + 13 54t 2 + 2 9t 7 + 5 4t 5 + 2 3t 3 - 44 9t ln √ t 2 -1 + t , (33) 
and

f (t) = ∞ t dx         3x 2 -1 ln √ x 2 -1 + x x (x 2 -1) - ln 8x x 2 -1 √ x 2 -1         . (34) 
The function f (t) can be calculated analytically in term of the ln and dilogarithm functions. Blomqvist [68] has shown that L 1 (r) can be expressed as

L 1 (r) = g 2 (r) ln 2 (r) + g 1 (r)log(r) + g 0 (r), (35) 
and provided a series expansion of this function for small r. Fullerton and Rinker [60] provided polynomial approximations to the functions g i (r). Here we have numerically evaluated the function L 1 (r) to a very good accuracy, using Mathematica. We then fitted the coefficients of polynomials for the function g i (r). The results are presented in Appendix A. For x > 3, we have used the functional form

L 1 (r) = e -r a + b √ r + cr + dr 3/2 + er 2 + f r 5/2 r 7/2 . (36) 
The coefficients are also given in Appendix A.

To obtain the finite nuclear size correction, we use the known expression for a spherically-symmetric charge distribution [60] V

21 (r) = α 2 (Zα) π 2 r ∞ 0 dr r ρ(r ) L 0 ( 2 λ e | r -r |) -L 0 ( 2 λ e | r + r |) , (37) 
where

L 0 (x) = - x duL 1 (u). ( 38 
)
Using our approximation to L 1 (x) in Eqs ( 35) and ( 36), we obtain the following approximate expressions for L 0 (x). For x ≤ 3, the expression is very similar to the one for L 1 (x). One obtains

L 0 (r) = rh 2 (r) ln 2 (r) + rh 1 (r)log(r) + h 0 (r), (39) 
The expression for the functions h i are given in Appendix B. For the asymptotic function, given for x > 3, we integrate directly Eq. ( 36), which yield (fixing the integration constant so that L 0 (r) is 0 at infinity)

L 0 (r) = 41.1352787432251923 -5.1094977559522696 8.05074798111erf √ r -1.028091975364Ei(-r) + e -r r 5/2 -2.02809197536r 3/2 + 4.54214815071r 2 -0.494718704003r + 0.98439728916 √ r -0.344009752879 (40) 
where Ei(r) is the exponential integral.

IV. NUMERICAL RESULTS

A. Finite size correction to the Coulomb contribution

Obtaining the accuracy required from the calculation on E D 2κµ , which has a value of ≈ 632.1 eV, while the Lamb shift is ≈0.22 eV with an aim at better than 0.001 meV, is a very demanding task. For a point nucleus, we get exact degeneracy for the 2s and 2p 1/2 Dirac energies. The best numerical accuracy was obtained generating the wavefunction on a grid with r 0 = 2 × 10 -3 and h = 2 × 10 -3 . This corresponds to ≈ 8700 tabulation points for the wavefunction, with around 2800 points inside the proton. I checked that variations in r 0 and h do not change the final value. The main finite nuclear size effect on the 2p 1/2 -2s energy separation comes from the sum of the Dirac energy splitting (the 2p 1/2 and 2s level are exactly degenerate for a point nucleus).

I evaluated the different quantities on a grid of proton sizes ranging from 0.3 to 1.2 fm, with steps of 0.025 fm (80 points). I also evaluated the contribution for the muonic hydrogen proton size and the CODATA 2010 proton size. The first few terms of the dependence of the relativistic energy on the moments of the charge distribution where given by Friar [52]. For a Gaussian charge distribution he finds for a s state

∆E Coul. = a r 2 + b r 3 (2) + c r 2 2 + d r 2 log r + e r 2 2 log r . (41) 
I use this as a guide to fit my numerical results.

As a first example a 3-parameter fits provides

∆E Coul. 2p 1/2 -2s 1/2 (R) = -5.19972 R 2 + 0.0351289 R 3 -0.0000534235 R 4 meV (42) 
A better fit is provided by

∆E Coul. 2p 1/2 -2s 1/2 (R) = -5.19990R 2 + 0.0355905R 3 -0.000488059R 4 + 0.000172334R 5 -0.0000245051R 6 meV (43) 
Using Friar functional form with only one log R term, I obtain

∆E Coul. 2p 1/2 -2s 1/2 (R) = -5.199365R 2 + 0.03466100R 3 + 0.00007366037R 4 -0.00001720960R 5 + 1.198332 × 10 -6 R 6 + 0.0002677236R 2 log R meV. ( 44 
)
The function with two logarithmic terms and close values of the BIC and χ 2 criteria is given by

∆E Coul. 2p 1/2 -2s 1/2 (R) = -5.199337R 2 + 0.03458139R 3 + 0.0001092856R 4 + 0.0002788380R 2 log R -0.00004957598R 4 log R (45) 
Criteria for the quality of the fit are plotted in Fig. 6. I use both the reduced χ 2 and a Bayesian information criterion (BIC) to evaluate the improvement in the value when increasing the number of parameters [69]. We obtain a coefficient for R 2 which is -5.1999 meV/fm 2 and a coefficient for R 3 equal to 0.03559 meV/fm 3 . Using our numerical solutions we also find -5.19972 meV/fm 2 and 0.032908 meV/fm 3 for the Gaussian model. Borie [39] finds -5.1975 meV/fm 2 and 0.0347 meV/fm 3 for an exponential model, and 0.0317 meV/fm 3 for a Gaussian model, in reasonable agreement with the result presented here. In the same way, I evaluated the finite size correction to the fine structure.

∆E Coul. 2p 3/2 -2p 1/2 (R) = 8.41563570 -0.00005192R 2 + 1.1818650 × 10 -7 R 3 -1.19528126 × 10 -9 R 4 meV. ( 46 
)
The constant term is in perfect agreement with Borie's value 8.41564 meV [70] (Table 7).

It is interesting to explore at this stage the influence of the charge distribution shape on the Coulomb and vacuum polarization contribution. Friar and Sick [71] have evaluated the third Zemach moment from Eq. ( 20), using the proton-electron scattering data available in 2005. Using a model-independent analysis, they find r 3

(2)

= 2.71 ± 0.13 fm 3 , leading to an energy shift of -0.0247 ± 0.0012 meV. Using the Fourier transform of the exponential (13) distribution in Eq. ( 22), I find

r 3 (2) = 35 
√ 3R 3 16 ≈ 3.789R 3 , (47) 
showing that r 3

is proportional to R 3 and justifying the fit in R 2 and R 3 performed to derive the coefficients above. Equation ( 47) is in exact agreement with the result that can be obtained from Eq. ( 15) in [START_REF] Rújula | [END_REF], but Eq. ( 16) in the same work is not correct (the denominator should be 256, not 64). The value obtained by Friar and Sick corresponds to R = 0.894 fm. In that case our energy shift is -0.0250 meV in good agreement with the energy shift in Ref. [71]. In the Gaussian model, I find r 3

(2)

= 32R 3 3 √ 3π ≈ 1.960R 3 , (48) 
leading to R = 0.920 fm and an energy shift of -0.0256 meV, still in agreement. One can perform a more advanced calculation, using the experimental charge distribution from Ref. [51], as given in (23). I find r 3 = 2.45 fm 3 , significantly lower than Friar and Sick's value. This lead to R = 0.864 fm for the exponential model and R = 0.889 fm for the Gaussian model, providing shifts of -0.0226 meV and -0.0232 meV respectively, in closer agreement to Borie's work. In a recent paper, De Rùjula [START_REF] Rújula | [END_REF] claims that the discrepancy found between the charge radii obtained from hydrogen and muonic hydrogen could be due to the fact that theoretical calculations use too simple a dipole model to represent the nucleus. He builds a "toy model" composed of the sum of two dipole function corresponding to two resonances with different masses. In his model the third moment of the charge distribution is much higher than what is derived from a dipole model, enabling to mostly resolve the discrepancy between charge radii obtained from muonic and normal hydrogen. He gets

r 3 (2) = 36.6 ± 7.3 ≈ 43R 3 , (49) 
using R from muonic hydrogen. I use the fit to the experimental form factor from Ref. [51] as given in Eq.( 23) to check the result from Ref. [START_REF] Rújula | [END_REF] against an experimental determination. I obtain

r 3 (2) ≈ 2.4485 ≈ 3.98 × 0.850 3 , (50) 
very close to the dipole model value of Eq. (47). Using the recent MAMI experiment, combined with data from [51], Distler et al. [22] obtain

r 3 (2) ≈ 2.85(8) ≈ 4.18 × 0.880 3 , (51) 
The conclusions from Ref. [START_REF] Rújula | [END_REF], which depend on an overly large third moment of the charge distribution are thus not supported by experiment.

B. Finite size correction to the Uehling contribution

For the vacuum polarization we obtain, for a point nucleus,

∆E 11,pn 2s 1/2 -2p 1/2 = 205.028201 meV, (52) 
to be compared with 205.0282 meV in Ref. [39]. Pachucki [37] obtained 205.0243 meV as the sum of the non-relativistic 205.0074 meV and first order relativistic 0.0169 meV corrections. If I calculate the difference between (52) and Pachuki non-relativistic value, I obtain a difference of 0.0208076 meV. This is in excellent agreement with the value provided in Ref. [72], Eq. ( 6), 0.020843 meV.

To achieve this result we used the mesh parameters described in the previous section, and checked by varying them so that the results were stable within the decimal places provided here. For finite nuclei, I use the same parameters as in the previous section. Again changes in r 0 and h do not change the final value. We get

∆E 11,fs 2s 1/2 -2p 1/2 (R) = 205.0282076 -0.02810970909R 2 + 0.0007111893365R 3 -0.00003572368803R 4 (53) 
The constant term is in excellent agreement with the one in Eq. ( 52). This result must be combined to Eq. ( 45) to obtain values that can be compared with the literature. I obtain:

∆E 11C,fs 2s 1/2 -2p 1/2 (R) = 205.0282076 -5.227446248R 2 + 0.03529257801R 3 + 0.00007356191826R 4 + 0.0002788380236R 2 log(R) -0.00004957597920R 4 log(R) (54) 
The R 2 coefficient can be compared to the one in Ref. [72] Table III, which has the value -5.2254 meVfm -2 , which contains additional recoil corrections.

For the Uelhing correction to the fine structure, I obtain in the same way:

∆E 11,fs 2p 1/2 -2p 3/2 (R) = 0.0050157881 -1.1662334 × 10 -7 R 2 + 2.2741334 × 10 -9 R 3 -1.5308196 × 10 -10 R 4 meV, (55) 
where the constant term is again in perfect agreement with Borie's value 0.0050 meV [70] (Table 7).

C. Finite size correction to the Källén and Sabry contribution

We can then evaluate the Källén and Sabry contribution ∆E 21 2p 1/2 -∆E 21 2s 1/2 using V 21 calculated following Sec. III A, with good accuracy, using our numerical wavefunctions. For a point nucleus I obtain

∆E 21,pn 2s 1/2 -2p 1/2 = 1.508097 meV, ( 56 
)
in agreement with the result of Ref. [37], 1.5079 meV, and in excellent agreement with the one from Ref. [39], 1.5081 meV. Using the wavefunctions calculated with the proton size, I can also evaluate the finite size correction to the Källén and Sabry contribution. A direct fit to the numerical data gives a result of the form

∆E 21,fs 2s 1/2 -2p 1/2 (R) = 1.508097 -0.00021341293R 2 + 7.3404895 × 10 -6 R 3 -5.0291143 × 10 -7 R 4 meV. ( 57 
)
and

∆E 21,fs 2p 1/2 -2p 3/2 (R) = 0.0000414300 -9.25489 × 10 -10 R 2 + 2.33622 × 10 -11 R 3 -1.80063 × 10 -12 R 4 meV. ( 58 
)
for the fine structure, to be compared with 0.00004 meV in Ref. [70].

V. HIGHER-ORDER VACUUM POLARIZATION CORRECTIONS

A. Higher-order vacuum polarization

The term named "VP iteration", which correspond to Fig. 7, is given by Eq. (215) of Ref. [38] ∆E VPVP (2s) = 0.01244 4 9

α π 2 (Zα) 2 µ r c 2 (59) 
where µ r =94.96446 MeV for muonic hydrogen (using [11]). This adds 0.15086 meV to the Lamb-shift for muonic hydrogen. The Uehling potential under the form used in Sec.II can be introduced in the potential of the Dirac equation (3) when solving it numerically. This amounts to get the exact solution with any number of vacuum polarization insertions as shown in Fig. 7. The numerical methods that we used are described in Ref. [56,57]. Because of the Logarithmic dependence of the point nucleus Uehling potential at the origin, we do not calculate the iterated vacuum polarization directly for point nucleus. We instead calculate for different mean square radii and charge distribution models, and fit the curves with f (R) = a + bR 2 + cR 3 + dR 4 . All 4 models provides very similar values. The final value is

∆E 11,loop,fs 2s 1/2 -2p 1/2 (R) = 0.15102161 -0.000098409804R 2 + 7.9038238 × 10 -6 R 3 -7.2004764 × 10 -7 R 4 meV. ( 60 
)
The value calculated in Ref. [37] is 0.1509 meV and the one in Ref. [39] is 0.1510 meV in very good agreement with the present work. The method employed here provides in addition the proton size dependence for this 25) in Ref. [73] correction, which was not calculated before. For the fine structure, I obtain in the same way

∆E 11,loop,fs 2p 1/2 -2p 3/2 (R) = 2.33197 × 10 -6 -1.77101 × 10 -9 R 2 + 9.36429 × 10 -10 R 3 -1.79951 × 10 -10 R 4 meV. (61) 

B. Other higher-order Uehling correction

Since we include the vacuum polarization in the Dirac equation potential, all energies calculated by perturbation using the numerical wavefunction contains the contribution of higher-order diagrams where the external legs, which represent the wavefunction, can be replaced by a wavefunction and a bound propagator with one, or several vacuum polarization insertion. For example the Källèn and Sabry correction calculated in this way, contains correction of the type presented in Fig. 8. This correction is given by

∆E 21×11,fs 2s 1/2 -2p 1/2 (R) = 0.0021552 -1.32976 × 10 -6 R 2 + 9.4577 × 10 -8 R 3 -8.5185 × 10 -9 R 4 meV, (62) 
with a 10 -7 meV accuracy. This correction is part of the three-loop corrections form Ref. [73,74]. The diagrams in Fig. 8 correspond to diagrams (a) and (b) of Fig. 5 in Ref. [73] and (e) (upper left) and (f) in Fig. 2 of Ref. [75]. The sum of contributions of the diagram (a) and (b) is 0.00223, in good agreement with our all-order fully relativistic result. The three loop diagram Fig. 5 (c) Ref. [73] and Fig. 2 (g) Ref. [75] is included in the all-order contribution obtained by solving numerically the Dirac equation with the Uëlhing potential. For the 25) in Ref. [73] fine structure this correction is very small:

∆E 21×11,fs 2p 1/2 -2p 3/2 (R) = 3.75754 × 10 -8 -3.49318 × 10 -12 R 2 + 2.58244 × 10 -13 R 3 -2.74201 × 10 -14 R 4 meV. (63) 

C. Wichmann and Kroll correction

We use the approximate potentials as presented in Refs. [68,76] to evaluate the Wichmann and Kroll [77] V 13 correction to the Uehling potential. The corresponding diagram is shown on Fig. 4 (b). This contribution is given together with the light-by-light scattering diagrams of Fig. 9 in Refs. [73,75,78]. We find for a point nucleus, the exact value, and a size correction, given by

∆E 13,fs 2s 1/2 -2p 1/2 (R) = -0.0010170628 + 5.5414179 × 10 -8 R 2 -5.1356872 × 10 -10 R 3 -1.9364450 × 10 -11 R 4 meV, (64) 
to be compared to the value given in Ref. [75] (Table III) of -0.001018(4) meV. In the lowest order approximation, the diagram on Fig. 9(a) provides an energy shift of ∆E 13 /Z 2 [75,78]. For the fine structure, this correction is comparable to the contribution from Eq. ( 63): 

D. Muon radiative corrections

Muon self-energy

Highly accurate self-energy values for electronic atoms and point nucleus are known from Ref. [79]. The self-energy correction, represented in Fig. 10 is conveniently expressed by the slowly varying function F(Zα) defined by

∆E SE = α π (Zα) 4 n 3 mc 2 F(Zα), ( 66 
)
where m is the particle mass.

The recoil corrections to F(Zα) are described in detail in [11]. The dependence in the reduced mass has to be included leading to the following expressions, specialized for the n = 2 shells:

∆E µSE,2S = α π (Zα) 4 8 µ r m µ 3 m µ c 2 - 4 3 ln k 0 (2S) + 10 9 + 4 3 ln m µ α 2 µ r + 139 32 -2 ln 2 πα + 67 30 + 16 ln 2 3 ln m µ α 2 µ r α 2 -ln m µ α 2 µ r 2 α 2 +α 2 G 2s (α) , (67) 
∆E µSE,2p 1/2 = α π (Zα) 4 8 µ r m µ 3 m µ - 4 3 ln k 0 (2P) - 1 6 
m µ µ r + 103 180 ln m µ α 2 µ r α 2 + α 2 G 2p 1/2 (α) , (68) 
∆E µSE,2p 3/2 = α π (Zα) 4 8 µ r m µ 3 m µ - 4 3 ln k 0 (2P) + 1 12 m µ µ r + 29 90 ln m µ α 2 µ r α 2 + α 2 G 2p 3/2 (α) . (69) 
The Bethe logarithms are given by ln k 0 (2S) = 2.811769893 and ln k 0 (2P) = -0.030016709 [80]. The the remainders are given by G 2s (α) = -31.185150 [START_REF] Johnson | Atomic Structure Theory[END_REF], G 2p 1/2 (α) = -0.97350 (20) and G 2p 3/2 (α) = -0.48650(20) [79,81]. One then gets the exact muon self-energy for each state. For the 2s state, this gives 0.675150 meV instead of 0.675389 meV. For the 2p 1/2 I get -0.00916882 meV and for 2p 3/2 , 0.008393377 meV in place of 0.01424054 meV and -0.00332838 meV respectively, if one would use only the low order A 40 term.

The finite size correction is given by perturbation theory [11] Eq. ( 54)

E SE-NS (R, Zα) = 4 ln 2 - 23 4 α(Zα)E NS (R, Zα), (70) 
where ([11] Eq. ( 51))

E NS (R, Zα) = 2 3 µ r m µ 3 (Zα) 2 n 3 m µ ZαR C 2 , (71) 
is the lowest-order finite nuclear size correction to the Coulomb energy. Here C = 1.867594282 fm is the muon Compton wavelength. Equation ( 71) provides E NS (R) = 5.19745R 2 for muonic hydrogen in agreement with Refs. [37,39]. The self-energy correction to the Lamb shift with finite-size correction is then ∆E SE,fs 2p 1/2 -∆E SE,fs 2s 1/2 (R) = -0.68431882+0.000824R 2 meV, (72) and to the fine structure:

∆E SE,fs 2p 3/2 -∆E SE,fs 2p 1/2 = 0.017562197 meV. ( 73 
)
It should be noted that in Ref. [39], the R 2 -dependent part of the 2s self-energy is much larger than what is given in Eq. ( 72). This value was checked independently by using an all-order calculation with finite size, following the work of Mohr and Soff [82]. The results of this calculation agree reasonably well with Eq. ( 72) and is given by [83]

E H SE-NS (Z = 1, R) = -0.68431882 +0.0012176389R 2 -0.00072582511R 3 +0.00034744609R 4 -0.000063788419R 5 meV. ( 74 
)

Muon loop vacuum polarization

The vacuum polarization due to the creation of virtual muon pairs is represented by the same diagram 4 (a) and same equations [START_REF] Jaeckel | [END_REF] as vacuum polarization due to electron-positron pairs, replacing the electron Compton wavelength by the muon one. For S states, it is given by [11] Eq. ( 27), [35] Eq. ( 32)

E µVP (ns) = - α(αZ) 4 πn 3 - 4 15 + πα 5 48 µ r m µ 3 m µ c 2 , ( 75 
)
in which higher order terms in Zα have been neglected.

For the 2s Lamb shift in muonic hydrogen it gives 0.01669 meV and is included in Refs. [37,39] and [START_REF] Jentschura | [END_REF] Eq. (2.29) for the first α correction. As it is a sizable contribution, and the muon Compton wavelength, which represent the scale of QED corrections for muons is of the order of the finite nuclear size (1.9 fm), one could expect a non-negligible finite size contribution. Using the numerical procedure described in Sec. II, replacing the electron Compton wavelength by the muon one in Eq. ( 28), I obtain ∆E µ11,fs

2s 1/2 -2p 1/2 (R) = 0.01671487464 -0.00005279721702R 2 + 0.00001269866912R 3 -5.360546098 × 10 -6 R 4 + 0.00001717649157R 2 log(R) + 2.047113814 × 10 -6 R 4 log(R) meV, (76) 
where the constant term is in excellent agreement with (75) and the R dependence explicit. From Ref. [11], Eq. ( 55), one obtains

E fs µVP (ns) = 3 4 α(Zα)E NS (R, α) = 0.00020758R 2 meV (77)
for the 2s level. This term is about 4 times larger than the numerical coefficient for R 2 in Eq. ( 76).

Using the wavefunction evaluated with the Uehling potential in the Dirac equation, I also obtain the value of the sum of diagrams with one muon vacuum polarization loop and any number of electron loops on each side, as in Fig. 7, with one loop being a muon loop:

∆E µ11×11,fs 2s 1/2 -2p 1/2 (R) = 0.00005348857 -5.358667885 × 10 -7 R 2 + 6.495888541 × 10 -8 R 3 -4.287455607 × 10 -8 R 4 + 2.822488184 × 10 -7 R 2 log(R) + 1.739448734 × 10 -8 R 4 log(R) meV. ( 78 
)
This muonic vacuum polarization is a small contribution to the fine structure ∆E µ11×11,fs

2p 1/2 -2p 3/2 (R) = 1.67794 × 10 -7 -2.10861 × 10 -10 R 2 + 8.51427 × 10 -11 R 3 -1.38884 × 10 -11 R 4 meV. ( 79 
)

VI. EVALUATION OF THE RECOIL CORRECTIONS

The relativistic treatment of recoil corrections is described in, e.g., [11], Eq. (10). The analytic solution of the Dirac equation for a point nucleus and a particle of mass m is given by

E D = mc 2 f (n, j) (80) 
with

f (n, j) = 1 1 + (Zα) 2 n-j+ 1 2 + (j+ 1 2 ) 2 -(Zα) 2 2 . ( 81 
)
The recoil can then be included by evaluating [62,[START_REF] Sapirstein | Quantum electrodynamics[END_REF]]

E M = Mc 2 + µ r c 2 f (n, j) -1 + f (n, j) -1 2 µ 2 r c 2 2M (82) + 1 -δ l,0 κ(2l + 1) (Zα) 4 µ 3 r c 2 2n 3 M 2 p , (83) 
where M = m µ + M p . If one expands the previous equation in power of (Zα), one would find that the terms of order up to (Zα) 4 are identical to what is given in Ref. [62]. We also compared the numerical results from our numerical approach for point nucleus, as described in Sec. I A to what can be obtained by using directly (80) and find excellent agreement. Below, we will make exclusive use of the direct numerical evaluation of the Dirac equation. The relativistic corrections to Eq. ( 83) associated with motion of the nucleus are called relativistic-recoil correction. The correction to order (Zα) 5 and to all orders in m µ /M p is given by [11,[START_REF] Eides | Theory of light hydrogenic bound states[END_REF][START_REF] Sapirstein | Quantum electrodynamics[END_REF][START_REF] Erickson | [END_REF]]

E 5 RR (n, l) = µ 3 r c 2 m µ M p (Zα) 5 πn 3 δ l,0 3 ln 1 (Zα) 2 - 8 3 ln k 0 (l, n) - δ l,0 9 - 7 3 a n,l - 2δ l,0 M 2 p -m 2 µ × M 2 p ln m µ µ r -m 2 µ ln M p µ r ( 84 
)
where This correction corresponds to the diagrams in Fig. 11.

a n,l = -2        ln        2 n + n i=1 1 i        + 1 - 1 2n        δ l,0 + 1 -δ l,0 l(l + 1)(2l + 1) . (85) 
The next order of the relativistic recoil corrections is given for s states by

E 6 RR (ns) = m µ M p (Zα) 6 n 3 m µ c 2 4 ln 2 - 7 2 - 11 60π ln 1 (Zα) 2 , ( 86 
)
and for l ≥ 1 states by

E 6 RR (nl) = m µ M p (Zα) 6 n 3 m µ c 2 3 - l(l + 1) n 2 × 2 (4l 2 -1) (2l + 3) . ( 87 
)
Using Eqs. ( 82) to ( 87), I obtain

∆E Rec. 2s 1/2 -2p 1/2 = 0 + 0.0574706 -0.0449705 = 0.0125001meV, (88) 
and to the fine structure:

∆E Rec. 2p 1/2 -2p 3/2 = 0.0000051 -0.0862059 + 0 = -0.0862008 meV. ( 89 
)
This is in excellent agreement with the results from Ref. [70].

VII. EVALUATION OF SOME ALL-ORDER HYPERFINE STRUCTURE CORRECTIONS

The expression of the hyperfine magnetic dipole operator can be written as

H h f s = -ecα • A(r) = -ecα • A(r), (90) 
with

A(r) = µ 0 4π µ × r r 3 , ( 91 
)
where µ is the nuclear magnetic moment and we have assumed a magnetic moment distribution of a point particle for the nucleus. It is convenient to express H h f s using vector spherical harmonics. On obtains [87][88][89][START_REF] Johnson | Atomic Structure Theory[END_REF]]

H h f s = M 1 • T 1 , (92) 
where

T 1 (r) = -ie 8π 3 α • Y (0) 1q ( r) r 2 , ( 93 
)
and M 1 representing the magnetic moment operator from the nucleus. The operator T 1 acts only on the bound particle coordinates. The vector spherical harmonic Y (0) 1q ( r) is an eigenfunction of J 2 and J z , defined as [88,[START_REF] Johnson | Atomic Structure Theory[END_REF][START_REF] Judd | Operator Techniques In Atomic Spectroscopy[END_REF][92][START_REF] Varshalovich | Quantum Theory of Angular Momentum[END_REF]]

Y (0) 1q ( r) = Y 11q ( r) = σ C 1, 1, 1; q -σ, σ, q Y 1,q-σ ( r) ξ σ (94)
where C j 1 , j 2 , j; m 1 , m 2 , m is a Clebsh-Gordan coefficient, Y 1,q are scalar spherical harmonic and ξ σ are eigenvectors of s 2 and s z , the spin 1 matrices [88,[START_REF] Johnson | Atomic Structure Theory[END_REF][START_REF] Judd | Operator Techniques In Atomic Spectroscopy[END_REF][92][START_REF] Varshalovich | Quantum Theory of Angular Momentum[END_REF]. The reduction to radial and angular integrals is presented in various works [88][89][START_REF] Johnson | Atomic Structure Theory[END_REF]. In heavy atoms, the hyperfine structure correction due to the magnetic moment contribution is usually calculated for a finite charge distribution, but a point magnetic dipole moment (see, e.g., [88,89]). When matrix elements non-diagonal in J are needed, one can use [START_REF] Indelicato | [END_REF] for a one-particle atom

∆E HFS M1 = A gα 2M p ∞ 0 dr P 1 (r)Q 2 (r) + P 2 (r)Q 1 (r) r 2 , (95) 
where g = µ p /2 = 2.792847356 for the proton, is the anomalous magnetic moment, A is an angular coefficient

A = (-1) I+ j 1 +F I j 1 F j 2 I k I 1 I -I 0 I × (-1) J 1 -1 2 (2J 1 + 1) (2J 2 + 1) j 1 1 j 2 1 2 0 -1 2 π (l 1 , k, l 2 ) , (96) 
where π (l 1 , k, l 2 ) = 0 if l 1 + l 2 + 1 is odd and 1 otherwise. The j i are the total angular momentum of the i state for the bound particle, l i are orbital angular momentum, I is the nuclear spin, k the multipole order (k = 1 for the magnetic dipole contribution described in Eq. ( 95)) and F the total angular momentum of the atom. The difference between ∆E HFS values calculated with a finite or point nuclear charge contribution is called the Breit-Rosenthal correction [95].

To consider a finite magnetic moment distribution, one uses the Bohr-Weisskopf correction [96]. The correction can be written [97] 

∆E BW = -A gα 2M p ∞ 0 dr n r 2 n µ(r n ) × r n 0 dr P 1 (r)Q 2 (r) + P 2 (r)Q 1 (r) r 2 , (97) 
where the magnetic moment density µ(r n ) is normalized as

∞ 0 dr n r 2 n µ(r n ) = 1. (98) 
Borie and Rinker [98], write the total diagonal hyperfine energy correction for a muonic atom as

∆E i, j = 4πκ F(F + 1) -I(I + 1) -j(j + 1) κ 2 -1 4 gα 2M p × ∞ 0 dr P 1 (r)Q 2 (r) r 2 r 0 dr n r 2 n µ BR (r n ). ( 99 
)
where the normalization is different:

∞ 0 d 3 r n µ BR (r n ) = 4π ∞ 0 dr n r 2 n µ BR (r n ) = 1. ( 100 
)
This means that µ BR (r) = µ(r)/(4π). Evaluation of the Wigner 3J and 6J symbols in (96) give the same angular factor than in Eq. ( 95).

The equivalence of the two formalism can be easily checked: starting from (99) and droping the angular factors, we get, doing an integration by part

∞ 0 dr P 1 (r)Q 2 (r) r 2 r 0 dr n r 2 n µ(r n ) = r 0 dr n r 2 n µ(r n ) r 0 dt P 1 (t)Q 2 (t) t 2 ∞ 0 - ∞ 0 dr n r 2 n µ(r n ) r n 0 dr P 1 (r)Q 2 (r) r 2 = ∞ 0 dr P 1 (r)Q 2 (r) r 2 - ∞ 0 dr n r 2 n µ(r n ) r n 0 dr P 1 (r)Q 2 (r) r 2 , (101) 
where we have used (98). We thus find that the formula in Borie and Rinker represents the full hyperfine structure correction, including the Bohr-Weisskopf part.

In 1956, Zemach [99] calculated the fine structure energy of hydrogen, including recoil effects. He showed that in first order in the finite size, the HFS depends on the charge and magnetic distribution moments only through the Zemacs's form factor defined in Eq. ( 15). The proton is assumed to be at the origin of coordinates. Its charge and magnetic moment distribution are given in terms of charge distribution ρ(r) and magnetic moment distributions µ(r). Zemach calculate the correction in first order to the hyperfine energy of s-states of hydrogen due to the electric charge distribution. The HFS energy is written as

∆E Z HFS = - 2 3 S p • S µ | φ(r) | 2 µ(r)dr (102) 
φ the non-relativistic electron wavefunction and S x are the spin operators of the electron and proton. If the magnetic moment distribution is taken to be the one of a point charge, µ(r) = δ(r), the integral reduces to | φ(0) | 2 . The first order correction to the wavefunction due to the nucleus finite charge distribution is given by

φ(r) = φ C (0) 1 -αm µ ρ(u) |u -r| du , (103) 
where φ C (0) is the unperturbed Coulomb wavefunction at the origin for a point nucleus. Replacing into Eq. ( 102) and keeping only first order terms, we get (Eq. 2.8 of Ref. [99] corrected for a misprint):

∆E Z HFS = - 2 3 S p • S µ φ C (0) 2 × 1 -2αm µ ρ(u) | u -r | µ(r)dudr , = E F 1 -2αm µ ρ(u) | u -r | µ(r)dudr , (104) 
where E F is the well known HFS Fermi energy. Transforming Eq. ( 104) using r → r + u, etc. Zemach obtains

∆E Z HFS = E F 1 -2αm µ r Z , (105) 
with r Z given in Eq. ( 16). The 2s state Fermi energy is given by

E 2s F = (Zα) 4 3 g p µ 3 r m p m µ . (106) 
A. Hyperfine structure of the 2s level

In order to check the dependence of the hyperfine structure on the Zemach radius and on the proton finite size, I have performed a series of calculations for a dipolar distribution for both the charge and magnetic moment distribution. We can then study the dependence of the HFS beyond the first order corresponding to the Zemach correction. I calculated the hyperfine energy splitting ∆E HFS (R Z , R) = E HFS (R) + E BW HFS (R, R M ) numerically. I also evaluate with and without self-consistent inclusion of the Uëhling potential in the calculation, to obtain all-order Uëhling contribution to the HFS energy. We calculated the correction ∆E HFS (R Z , R) for several value of R Z between 0.8 fm and 1.15 fm, and proton sizes ranging from 0.3 fm to 1.2 fm, by steps of 0.05 fm, which represents 285 values. The results show that the correction to the HFS energy due to charge and magnetic moment distribution is not quite independent of R as one would expect from Eq. ( 105), in which the finite size contribution depends only on R Z . We fitted the hyperfine structure splitting of the 2s level, E 2s HFS (R Z , R) by a function of R and R Z , which gives:

E 2s HFS (R Z , R) = 22.807995 -0.0022324349R 2 + 0.00072910794R 3 -0.000065912957R 4 -0.16034434R Z -0.00057179529RR Z -0.00069518048R 2 R Z -0.00018463878R 3 R Z + 0.0010566454R 2 Z + 0.00096830453RR 2 Z + 0.00037883473R 2 R 2 Z -0.00048210961R 3 Z -0.00041573690RR 3 Z + 0.00018238754R 4 Z meV. (107) 
The constant term should be close to the sum of the Fermi energy 22.80541 meV and of the Breit term [100]. the HFS correction calculated with a point-nucleus Dirac wavefunction for which I find 22.807995 meV. When setting the speed of light to infinity in the program I recover exactly the Fermi energy. The Breit contribution is thus 0.002595 meV, to be compared to 0.0026 meV in Ref. [40] (Table II, line 3) and 0.00258 meV in Ref. [70]. Martynenko [40] evaluates this correction, which he names "Proton structure corrections of order α 5 and α 6 ", to be -0.1535 meV, following [35]. He finds the coefficient for the Zemach's radius to be -0.16018 meVf -1 , in very good agreement with the present all-order calculation -0.16034 meVf -1 . Borie's value [70] -0.16037 meVf -1 is even closer. The difference between Borie's value and Eq. ( 107) is represented in Fig. 12 as a function of the charge and Zemach radii. The maximum difference is around 1 µeV. In Ref. [35], the charge and magnetic moment distributions are written down in the dipole form, which corresponds to [START_REF] Bernauer | Measurement of the elastic electron-proton cross section and separation of the electric and magnetic form factor in the Q 2 range from 0.004 to 1[END_REF],

G E q 2 = G M q 2 1 + κ p = Λ 4 Λ 2 + q 2 2 , (108) 
with Λ = 848.5MeV. This leads to R = 0.806 fm as in Ref. [2] and R Z = 1.017 fm using this definition for the form factor in Eq. (17). Moreover there are recoil corrections included. Pachucki [35] finds that the pure Zemach contribution (in the limit m p → ∞) is -0.183 meV. In Ref. [101], the Zemach corrections is given as δ(Zemach) × E F = -71.80 × 10 -4 E F , for R Z = 1.022 fm. This leads to a coefficient -0.1602 meVfm -1 , in excellent agreement with our value -0.16036 meVfm -1 . The effect of the vacuum polarization on the 2s hyperfine structure energy shift as a function of the Zemach and charge radius have been calculated for the same set of values as the main contribution. The data can be de- scribed as a function of R Z and R as

E 2s,VP HFS (R Z , R) = 0.074369030 + 0.000074236132R 2 + 0.00013277334R 3 -8.0987285 × 10 -6 R 4 -0.0017880269R Z -0.00017204505RR Z -0.00037499458R 2 R Z -0.000070355379R 3 R Z -0.00022093411R 2 Z + 0.00035038656RR 2 Z + 0.00020554316R 2 R 2 Z + 0.00025100642R 3 Z -0.00017200435RR 3 Z -0.000061266973R 4 Z meV. ( 109 
)
It corresponds to the diagrams presented in Fig. 13. The size-independent term 0.07437 meV corresponds to the sum of the two contributions represented by the two top diagrams in Fig. 13 and is given as ∆E HFS 1loop-after-loop VP = 0.0746 meV in Ref. [40]. The term ∆E HFS 1γ,VP = 0.0481 meV corresponds to a vacuum polarization loop in the HFS potential [35,40,98], which is not evaluated here. Corrections present in Ref. [70] not included in Eqs. ( 107) and (109) gives an extra contribution of E 2s,HO HFS = 0.10287 meV. (110) Combining Eqs. ( 107), ( 109) and ( 110), I get

E 2s HFS (R Z , R) = 22.985234 -0.0021581988R 2 + 0.00086188128R 3 -0.000074011685R 4 -0.16213237R Z -0.00074384033RR Z -0.0010701751R 2 R Z -0.00025499415R 3 R Z + 0.00083571133R 2 Z + 0.0013186911RR 2 Z + 0.00058437789R 2 R 2 Z -0.00023110319R 3 Z -0.00058774125RR 3 Z + 0.00012112057R 4 Z meV. (111) 
In Ref. [40], the equivalent expression is

E 2sMart. HFS (R Z ) = 22.9857 -0.16018R Z meV, ( 112 
)
while it is

E 2sBorie HFS (R Z ) = 22.9627 -0.16037R Z meV, (113) 
in Ref. [70]. Using a Zemach's radius of 0.9477 fm in Eq. ( 112), needed to reproduce entry 11 in Table II of Ref.

[40], one obtains 22.8148 meV as expected. In Eq. ( 113), it gives 22.8107 meV. Using the same Zemach radius and Eq. ( 111) I obtain 22.8104 meV with the muonic hydrogen proton radius value and 22.8103 meV with the CODATA one, in excellent agreement with Borie's value. All three values are in agreement with the result 22.8146 [START_REF] Desclaux | Computational Chemistry, Handbook of Numerical Analysis[END_REF] meV in Ref. [19]. In a recent work, however, the use of Form factors in the Breit equations leads to smaller finite size corrections, leading to 22.8560 meV [102]. A comparison between some of these results is presented in Table I.

VIII. EVALUATION OF MUONIC HYDROGEN n = 2 TRANSITIONS

A. Lamb shift and fine structure

The results presented in this work for the Lamb shift (Eqs. ( 45), ( 54), ( 57), ( 60), ( 62), ( 64), ( 72), (76), (78)) can be summarized in the following proton-size dependent 

In the same way, Eqs. ( 46), ( 55), ( 58), ( 61), ( 63), ( 65), ( 73), (79), and (89) lead to the fine structure interval (which include the recoil corrections (89), included in Table II for the 2s Lamb shift)

∆E Tot,fs 2p 1/2 -2p 3/2 (R) = 8.352051651 -0.00005203798087R 2 + 1.215060759 × 10 -7 R 3 -1.544056441 × 10 -9 R 4 meV. (115) 
Martynenko [105] finds E Tot,fs 2p 1/2 -2p 3/2 = 8.352082 meV for the fine structure.

A number of terms not included in Eqs. (114) [40,70] and the present work (meV) for R Z = 1.0668 fm [2] as used in Ref. [40]. Note that in this reference, the proton structure correction of order α 5 (item # 6) may combine the Zemach correction and the recoil correction (# 24). VP: Vacuum Polarization. # Ref. [40] Ref. [ 

An extra recoil contribution is given in Ref. [72] for the fine structure, corresponding to entry #9 in Table II for the Lamb shift,

∆E VPRec. 2p 1/2 -2p 3/2 = -0.00006359 meV. (119) 
This term correspond to corrections beyond the full Dirac term. This lead to the final result

∆E Tot,fs 2p 1/2 -2p 3/2 (R) = 8.351988061 -0.00005203798087R 2 + 1.215060759 × 10 -7 R 3 -1.544056441 × 10 -9 R 4 meV. (120) 
TABLE II. Contributions to the Lamb shift not included in Eq. ( 114) (meV). The uncertainty on the proton polarization value used in Ref. [12] has been increased by a factor of 10, according to the discussion in Ref. [26].

# Contribution Reference Value Unc. 1 NR three-loop electron VP (Eq. ( 11), ( 15), ( 18) and ( 23)) [ 

B. Transitions between hyperfine sublevels

The energies of the two transitions observed experimentally in muonic hydrogen are given by (

E F=2 2p 3/2 -E F=1 2s 
) 122 
Here we use the results from [105] for the 2p states: 

Using the results presented above I get Using Eq. ( 124), a Zemach radius of 1.0668 fm from Ref. [40] and the transition energy from Ref. [12], I obtain a charge radius for the proton of 0.84091 (69) fm in place of 0.84184(69) fm in Ref. [12] and 0.8775 (51) fm in the 2010 CODATA fundamental constant adjustment. This is 7.1 σ (using the combined σ) from the 2010 CO-DATA value. A summary of proton size determinations is presented in Table III and Fig. 14.

E F=2 2p 3/2 (R Z , R) -E F=1

IX. CONCLUSION

In the present work, I have evaluated finite-size dependent contributions to the n = 2 Lamb shift in muonic hydrogen, to the fine structure and to the 2s hyperfine splitting. The calculations were performed numerically, to all order in the finite size correction, in the framework of the Dirac equation. High-order size contributions to the Uelhing potential and to higher-order QED corrections been evaluated. The full dependance of the 2s hy-perfine splitting on the proton charge distribution and Zemach radius has been evaluated as well.

The discrepancy between the proton size deduced from muonic hydrogen and the one coming from CO-DATA is slightly enlarged when tacking into account all the newly calculated effects. It is changed from 6.9 σ to 7.1 σ.
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TABLE III. Proton size determinations (fm). e -p: electron-proton scattering, µH: muonic hydrogen, ChPt: Lattice QCD corrected with Chiral perturbation theory. The values in the four last lines are obtained using the transition frequency from Ref. [12] Hand et al. [1] 0.805 ± 0.011 e -p Simon et al. [2] 0.862 ± 0.012 e -p Mergel et al. [118] 0.847 ± 0.008 e -p Rosenfelder [119] 0.880 ± 0.015 e -p Sick 2003 [120] 0.895 ± 0.018 e -p Angeli [121] 0.8791 ± 0.0088 e -p Kelly [122] 0.863 ± 0.004 e -p Hammer et al. [123] 0.848 hydrogen, e -p CODATA 06 [11] 0.8768 ± 0.0069 Hydrogen, e -p Arington et al. [51] 0.850 e -p Belushkin et al. [START_REF] Belushkin | [END_REF] e -p Wang et al. [124] 0.828 ChPt Pohl et al. [12] 0.84184 ± 0.00067 µH Bernauer et al. [START_REF] A1 Collaboration | [END_REF] 0.879 ± 0.008 e -p CODATA 2010 [START_REF]Internationally recommended values of the fundamental physical constants 2010[END_REF] 0.8775 ± 0.0051 Hydrogen, e -p Adamuščín et al. [125,[START_REF] Adamuscin | Progress in Particle and Nuclear Physics in press[END_REF] 0.84894 ± 0.00690 e -p This work (using R Z = 1.045 fm) [START_REF] Volotka | [END_REF] 0.84079 ± 0.00069 µH This work (using R Z = 1.0668 fm) [40] 0.84089 ± 0.00069 µH Using Jentschura [START_REF] Jentschura | [END_REF] 0.84169 ± 0.00066 µH Using Borie 0.84232 ± 0.00069 µH

  FIG.2. Top: charge densities ρ(r), bottom: charge densities r 2 ρ(r) for the experimental fits in Ref.[51], compared to Gaussian, Fermi and exponential models distributions. All models are calculated to have the same R = 0.850 fm RMS radius as deduced from the experimental function.

FIG. 3 .FIG. 4 .

 34 FIG.3. Comparison of the electric form factor from Refs.[START_REF] Belushkin | [END_REF]51], with a dipole model with the same R = 0.850 fm as deduced from the experimental function.

FIG. 6 .

 6 FIG.6. BIC criterium (top) and reduced χ 2 (bottom) as function of the degree of the polynomial and of the logarithmic dependence used in the fit of the energy.

FIG. 7 .

 7 FIG.7. Feynman diagrams obtained when the Uehling potential is added to the nuclear potential in the Dirac equation. A double line represents a bound electron wavefunction or propagator and a wavy line a retarded photon propagator. The grey circles correspond to the interaction with the nucleus. Diagram (b) correspond to Fig.5and third term in Eq. (25) in Ref.[73] 

FIG. 8 .

 8 FIG. 8. Lower order Feynman diagrams included in the Källén and Sabry V 21 (r) potential, when the Uehling potential is included in the differential equation. See Figs. 4 and 7 for explanation of symbols. Diagrams (a) and (b) exactly correspond to diagrams (a) and (b) in Fig. 5 and Eq. (25) in Ref.[73] 

∆E 13,fs 2p 1 / 2 - 2 - 8 .49036 × 10 - 15 R 3 + 1 .

 1228101531 2p 3/2 (R) = -4.21088 × 10 -8 + 4.41081 × 10 -13 R 81474 × 10 -15 R 4 meV.

FIG. 9 .FIG. 10 .

 910 FIG. 9. Feynman diagrams for the light-by-light scattering. See Figs. 4 and 7 for explanation of symbols.

FIG. 11 .

 11 FIG. 11. Feynman diagrams corresponding to the Relativistic recoil correction[START_REF] Jentschura | [END_REF]. The heavy double line represents the proton wave function or propagator. The other symbols are explained in Fig.4.

FIG. 12 .

 12 FIG.12. difference between Borie's value and Eq. (107) result as a function of the charge and Zemach radii (meV).

FIG. 13 . 3 + 0.0005454642475R 4 -0.00008785574420R 5 +

 13345 FIG.[START_REF] Bernauer | Measurement of the elastic electron-proton cross section and separation of the electric and magnetic form factor in the Q 2 range from 0.004 to 1[END_REF]. Feynman diagrams corresponding to the evaluation of the hyperfine structure using wavefunctions obtained with the Uehling potential in the Dirac equation. The grey squares correspond to the hyperfine interaction.

E 2p 1 / 2 HFS = 7 2 HFS = 3

 12723 .392588 meV δE F=1 HFS = 0.14456 meV.

2 +

 2 hyperfine structure of Ref.[40]. For the other transition I obtainE F=1 2p 3/2 (R Z , R) -E F=0 2s 1/2 (R Z , R) = 229.66162 -5.2282657R

FIG. 14 .

 14 FIG. 14. Plot of the proton size as a function of time and method.

  are presented in Table II together with the relevant references. Combining Eq. (114) with the sum of the contributions

TABLE I .

 I Comparison of contributions to the 2s hyperfine structure from Refs.

  1/2 = ∆E 2s 1/2 -2p 1/2 + ∆E 2p 1/2 -2p 3/2 = ∆E 2s 1/2 -2p 1/2 + ∆E 2p 1/2 -2p 3/2

	+	3 8	E	2p 3/2 HFS -	1 4	E 2s HFS ,	(121)
	and						
	E F=1 2p 3/2 -E F=0 2s 1/2 -	5 8	E	2p 3/2 HFS +	3 4	E 2s HFS + δE F=1 HFS .	

Appendix A: Coefficients for the numerical evaluation of the Källén and Sabry potential for a point nucleus

The functions defined in Eq. ( 35) are given here. We find, for x ≤ 3, the functions valid for a point nucleus: Using these functions we reach an agreement to 9 decimal place with both the result of the numerical evaluation and the expansion from [68]. The coefficients for the functions defined in Eq. ( 39) that we obtained are listed below: