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Non-perturbative evaluation of some QED contributions to the muonic hydrogen n = 2
Lamb shift and hyperfine structure
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Laboratoire Kastler Brossel, École Normale Supérieure; CNRS; Université Pierre

et Marie Curie - Paris 6; 4, place Jussieu, 75252 Paris CEDEX 05, France
(Dated: October 21th, 2012)

The largest contributions to the n = 2 Lamb-shift, fine structure interval and 2s hyperfine structure
of muonic hydrogen are calculated by exact numerical evaluations of the Dirac equation, rather than
by a perturbation expansion in powers of 1/c, in the framework of non-relativistic quantum electro-
dynamics. Previous calculations and the validity of the perturbation expansion for light elements are
confirmed. The dependence of the various effects on the nuclear size and model are studied.

PACS numbers: 31.30.jf,36.10.Ee,31.30.Gs

Despite many years of study, the proton charge radius
has remained relatively poorly known. It has been de-
rived from measurements in electron-proton collisions
[1, 2] or from high-precision spectroscopy of hydrogen
[3–10] as described in the CODATA report in [11]. Tests
of fundamental physics based on the progress in accu-
racy of spectroscopy of hydrogen and deuterium have
been limited by the lack of an accurate value for the pro-
ton radius. Moreover, the values for the proton radius
obtained by different methods or different analyses of ex-
isting experiments are spread over a range larger than the
uncertainty quoted for the individual results. Two recent
measurements have resulted in a puzzle. The accurate
determination of the 2S Lamb shift by laser spectroscopy
in muonic hydrogen provides a proton size with a ten
times smaller uncertainty than any previous value and
it differs by five standards deviations from the 2006 CO-
DATA value[12]. At the same time, a new, improved de-
termination of the charge radius by electron scattering,
performed at Mainz with the MAMI microtron, provides
a value in good agreement with the value from hydro-
gen and deuterium spectroscopy [13, 14]. Taking into
account improved theory in hydrogen and deuterium
and the MAMI measurement lead the recently released
2010 adjustment [15] to differ by 6.9 standard deviation
between from the proton radius obtained from muonic
hydrogen.

Many papers have been published in the last year,
trying to solve this puzzle. A few are dealing with the
calculation of the n = 2 level energies in muonic hydro-
gen. Several others are concerned with the effect of the
internal structure of the proton on these energies [16–27].
Others look at exotic phenomenon beyond the standard
model [28–34].

Many contributions to the Lamb shift, fine, and hyper-
fine structure of muonic hydrogen have been evaluated
over the years; the results are summarized in [35–40]
and in a recent book by Eides et al. [41]. Most of these
calculations are done in the framework of nonrelativis-
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tic QED. The wavefunction and operators are expanded
in powers of the fine-structure constant, and the con-
tributions are obtained by perturbation theory. Hylton
[42] showed that the perturbation calculation of the fi-
nite size correction to the vacuum polarization in heavy
elements gives incorrect results. Since a bound muon
is closer to the nucleus than a bound electron by a fac-
tor mµ/me ≈ 207, its Bohr radius is slightly smaller than
the Compton wavelength of the electron oC = ~/mec by a
factor me/αmµ ≈ 137/207 (α ≈ 1/137.036 is the fine struc-
ture constant, me and mµ the electron and muon mass
respectively). The Compton wavelength is the scale of
QED corrections, and for the 2S level, the muon wave-
function mean radius is only 2.6 times larger than the
electron Compton wavelength.

It is thus worthwhile to reconsider the largest correc-
tions that contribute to the 2S Lamb-shift in muonic hy-
drogen using non-perturbative methods. In the present
work, we use the latest version of the MCDF code of
Desclaux and Indelicato [43], which is designed to cal-
culate properties of exotic atoms [44], to evaluate the
exact contribution of the electron Uehling potential with
Dirac wavefunctions including the finite nuclear size. In
the same way, we calculate the Källén and Sabry contri-
bution.

Throughout this paper we will use QED units, ~ = 1,
c = 1. The electric charge is given by e2 = 4πα.

I. NUMERICAL EVALUATION OF THE DIRAC
EQUATION WITH REALISTIC NUCLEAR CHARGE

DISTRIBUTION MODELS

A. Evaluation by the numerical solution of the Dirac
equation

We calculate higher-order finite size correction, start-
ing from the Dirac equation with reduced mass, as tech-
niques for the accurate numerical solution of the Dirac
equation in a Coulomb potential have been developed
over a period of many years within theframework of the
Multiconfiguration Dirac-Fock (MCDF) method for the
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atomic many-body problem [45–48].
The Dirac equation is written as[

α ·p + βµr + VN(r)
]
Φnκµ(r) = EnκµΦnκµ(r), (1)

where α and β are the Dirac 4 × 4 matrices, VN(r) is the
Coulomb potential of the nucleus, Enκµ is the atom total
energy, and Φ is a one-electron Dirac four-component
spinor:

Φnκµ(r) =
1
r

[ Pnκ(r)χκµ(θ, φ)

i Qnκ(r)χ−κµ(θ, φ)

]
(2)

in which χκµ(θ, φ) is the two-component Pauli spherical
spinor [46], n is the principal quantum number, κ is the
Dirac quantum number, and µ is the eigenvalue of Jz.
This reduces, for a spherically symmetric potential, to
the differential equation: VN(r) −

d
dr + κ

r
d
dr + κ

r VN(r) − 2µr

 [ Pnκ(r)

Qnκ(r)

]
= ED

nκµ

[ Pnκ(r)

Qnκ(r)

]
, (3)

where Pnκ(r) and Qnκ(r) are the large and small radial
components of the wavefunction, respectively, κ the
Dirac quantum number, ED

nκµ is the binding energy, µr

is the muon reduced mass, µr = mµMp/(mµ + Mp) (mµ

and Mp are the muon and proton masses).
To solve this equation numerically, we use a 5 point

predictor-corrector method (order h7) [48, 49] on a linear
mesh defined as

tn = ln
( rn

r0

)
+ arn, (4)

with tn = t0 + nh, and r0 > 0 is the first point of the mesh,
corresponding to n = 0. This immediately gives t0 = ar0.
Equation (4) can be inverted to yield

rn =
W

(
ar0e tn

)
a

,

drn

dtn
=

W
(
ar0e tn

)
a
[
1 + W

(
ar0e tn))] , (5)

where W is the Lambert (or product logarithm) function.
The wavefunction and differential equation between 0
and r0 are represented by a 10 term series expansion. For
a point nucleus, the first point is usually given by r0 =
10−2/Z and h = 0.025. Here we use values down to r0 =
10−7/Z and h = 0.002 to obtain the best possible accuracy.
For a finite charge distribution, the nuclear boundary is
fixed at the value rN, where N is large enough to obtain
sufficient accuracy. The mean value of an operator O,
that gives the first-order contributions to the energy, is
calculated as

∆EO =

∫
∞

0
dr

[
P(r)2 + Q(r)2

]
O(r)

=

∫ r0

0
dr

[
P(r)2 + Q(r)2

]
O(r)

+

∫
∞

r0

dt
dr
dt

[
P(r)2 + Q(r)2

]
O(r) (6)

using 8 and 14 points integration formulas due to
Roothan. The two integration formulas provide the same
result within 9 decimal places.

B. Charge distribution models

For the proton charge distribution, two models are ex-
tensively used. The first corresponds to a proton dipole
(charge) form factor, the second is a gaussian model.
Here we also use uniform and Fermi charge distribu-
tiond and fits to experimental data [50, 51]. The analytic
distributions are parametrized so they provide the same
mean square radius R. Moments of the charge distribu-
tion are defined by

< rn >= 4π
∫
∞

0
r2+nρ(r)dr, (7)

where the nuclear charge distribution ρ(r) = ρN(r)/(Ze)
is normalized by∫

ρ(~r)d~r = 4π
∫
∞

0
ρ(r)r2dr = 1, (8)

for a spherically symmetric charge distribution. The
mean square radius is R =

√

< r2 >.
The potential can be deduced from the charge density

using the well known expression:

VN(r) = −
4πe

r

∫ r

0
du u2ρN(u)−4πe

∫
∞

r
duuρN(u). (9)

The exponential charge distribution and correspond-
ing potential energy are written

ρN(r) = Ze
e−

r
ξ

8πξ3 ,

VN(r) = −Ze2

(
1 − e−

r
ξ

r
−

e−
r
c

2ξ

)
,

< rn > =
(n + 2)! ξn

2
, (10)

which gives ξ = R
2
√

3
. The gaussian charge distribution

and potential are given by

ρN(r) = Ze
e−(

r
ξ )

2

π3/2ξ3
,

VN(r) = −Ze2
erf

(
r
ξ

)
r

,

< rn > =
2Γ

(
n+3

2

)
ξn

√
π

, (11)

where erf is the error function, and ξ =
√

2
3 R. Other

similar expressions for the two above models can be
found in [52].
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FIG. 1. Electromagnetic interaction between a lepton (narrow
line) and a nucleon (bold line).

The electric form factor is related to the charge distri-
bution by

GE(~Q2) =

∫
dre−iq ·rρ(r), (12)

For the exponential model this leads to

GE(~Q2) =
1(

1 + R2q2

12

)2 ≈ 1 −
R2

6
q2 +

R4

48
q4 + · · · (13)

while for the Gaussian model one has

GE(~Q2) = e−
1
6 R2q2

≈ 1 −
R2

6
q2 +

R4

72
q4 + · · · (14)

The two models have an identical slope R2/6 as functions
of q2 for q → 0 as expected (see, e.g, [53]).

In 1956, Zemach introduced an electromagnetic form
factor, useful for evaluating the hyperfine structure en-
ergy correction

ρem(r) =

∫
ρ(r − u)µ(u)du, (15)

where µ(u) is the magnetic moment density. Both µ(u)
and ρem are normalized to unity as in Eq. (8). The
Zemach radius is given by

RZ = 〈rZ〉 =

∫
rρem(r)dr. (16)

The Zemach’s radius can be written in momentum space
as [54, 55]

RZ =
−4
π

∫
dq

1
q2

GE

(
~Q2

) GM

(
~Q2

)
1 + κp

− 1

 , (17)

where κp is the proton anomalous magnetic moment,
and GM is normalized so that GM (0) = 1 + κp. The expo-
nential and gaussian models enables to obtain analytic

results for RZ as a function of the charge and magnetic
moment radii R and RM. Using (13) or (14) for the expo-
nential or gaussian model, and Eq. (17), we get respec-
tively

RExp.
Z =

3R4 + 9R3RM + 11R2R2
M + 9RR3

M + 3R4
M

2
√

3(R + RM)3
(18)

RGauss
Z = 2

√
2

3π

√
R2 + R2

M. (19)

An other useful quantity, which appears in the estima-
tion of the finite size correction to vacuum polarization
is the third Zemach’s moment〈

r3
〉

(2)
=

∫
r3ρ(2)(r)dr, (20)

where the convolved charge distribution is

ρ(2)(r) =

∫
ρ(r − u)ρ(u)du. (21)

This can be rewritten in the more convenient form [17,
35], in the limit of large proton masses,〈

r3
〉

(2)
=

48
π

∫
dq

1
q4

(
G2

E

(
~Q2

)
− 1 +

q2

3
R2

)
. (22)

It can be easily seen from Eqs. (13) or (14) that the ex-
pression is finite for q→ 0.

We now turn to more realistic models, based on ex-
periment. A recent analysis of the world’s data on elas-
tic electron-proton scattering and calculations of two-
photon exchange effects provides an analytic expression
for the electric form factors [51], given as

GE

(
~Q2

)
=

1 +
∑2

i=0 aiτi

1 +
∑4

j=0 b jτ j
, (23)

where τ = q2/(4Mp). The ai coefficients can be found in
Table I of Ref. [51]. A second work [50] uses a combi-
nation of several spectral functions tacking into account
several resonances and continua like the 2π, KK̄and ρπ
continua. Here we use the fit resulting from the super-
convergence approach from this work. This corresponds
to a sum of 12 dipole-like functions, which are able to
represent the experimental data with a reduced χ2 of
1.8. A comparison of the electric form factor from both
works is presented on Fig. 3. It is clear that both ex-
perimental form factors and the dipole approximation
with an identical radius are very close. We can obtain
the charge radius and the next correction by performing
an expansion in q of the experimental form factors. We
get for Ref. [51]

GE

(
~Q2

)
≈ 1 −

0.85032

6
q2 +

0.85034

43.3909
q4 + · · · , (24)
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and for Ref. [50]

GE

(
~Q2

)
≈ 1 −

0.849952

6
q2 +

0.849954

38.793
q4 + · · · . (25)

These expansions are very close to the one for a dipole
form factors from Eq. (13).

In order to compare different charge density models,
we have performed an analytic evaluation of the charge
densities corresponding to [51], replacing (23) in (12) and
performing the inverse Fourier transforms, to obtain the
corresponding charge distribution, depending on the set
of a coefficients. The corresponding densities are plot-
ted and compared to Fermi, Gaussian and exponential
models. Distances are converted from GeV to fm using
~c = 0.1973269631 GeVfm in the density obtained from
the experiment. The charge distributions are compared
on Fig. 2. We plotted both ρ(r) and ρ(r)r2 to reveal the
differences at long and medium distances. The experi-
mental charge density is rather different from all three
analytic distributions, while, once multiplied by r2, it is
closer to the exponential distribution.
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FIG. 2. Top: charge densities ρ(r), bottom: charge densities
r2ρ(r) for the experimental fits in Ref. [51], compared to Gaus-
sian, Fermi and exponential models distributions. All models
are calculated to have the same R = 0.850 fm RMS radius as
deduced from the experimental function.

2 4 6 8 10
q
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Arrington et al.

Belushkin et al.

FIG. 3. Comparison of the electric form factor from Refs. [50,
51], with a dipole model with the same R = 0.850 fm as deduced
from the experimental function.

FIG. 4. Feynman diagrams corresponding to the full vacuum
polarization contribution, and expansion in Zα. Diagram (a)
corresponds to the Uehling potential [Eqs. (26) and (28)]. Di-
agram (b) corresponds to the Wichmann and Kroll correction.
The double line represents a bound lepton wavefunction, the
wavy line a retarded photon propagator. The single line cor-
respond to a free electron-positron (or muon-antimuon) pair.
The grey circles correspond to the interaction with the nucleus.

II. EVALUATION OF MAIN VACUUM POLARIZATION
AND FINITE SIZE CORRECTION

The Feynman diagram corresponding to the Uehling
approximation to the vacuum polarization correction is
presented in Fig. 4 (a). The evaluation of the vacuum po-
larization can be performed using standard techniques
of (perturbative) non-relativistic QED (NRQED) as de-
scribed in [35, 37]. Here we use the analytic results of
Klarsfeld [56] as described in [57] and numerical solu-
tion of the Dirac equation from Sec. I. In order to ob-
tain higher order effects, we solve the Dirac equation in
a combined potential resulting from the finite nuclear
charge distribution and of the Uehling potential. The
logarithmic singularity of the Uehling potential at the
origin for a point charge cannot be easily incorporated
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in a numerical Dirac solver. In the case of a finite charge
distributions, the singularity is milder, but great care
must be exercised to obtain results accurate enough for
our purpose.

For a point charge, the Uehling potential, which rep-
resents the leading contribution to the vacuum polariza-
tion, is expressed as [56, 58, 59]

Vpn
11 (r) = −

α(Zα)
3π

∫
∞

1
dz
√

z2 − 1
( 2

z2 +
1
z4

) e−2merz

r

= −
2α(Zα2)

3π
1
r
χ1

( 2
λe

r
) (26)

where me is the electron mass, λe is the electron Compton
wavelength and the function χ1 belongs to a family of
functions defined by

χn(x) =

∫
∞

1
dze−xz 1

zn

(1
z

+
1

2z3

) √
z2 − 1. (27)

The Uehling potential for a spherically symmetric charge
distribution is expressed as [56]

V11(r) = −
2α(Zα)

3
1
r

∫
∞

0
dr′ r′ρ(r′)

×

[
χ2

( 2
λe
| r − r′ |

)
− χ2

( 2
λe
| r + r′ |

)]
.(28)

The expression of the potential at the origin is given by

V11(0) = −
8α(Zα)

3

∫
∞

0
dr′r′ρ(r′)χ1

( 2
λe

r′
)
, (29)

while it behaves at large distances as [60]

V11(r) = −
2α(Zα)

3π
1
r

[
χ1

( 2
λe

r
)

+
2
3
< r2 > χ−1

( 2
λe

r
)

+
2

15
< r4 > χ−3(

2
λe

r) + . . .
]

(30)

using the moments of the charge distribution (7). The
energy shift associated with the potential (26) or (28) in
first order perturbation is calculated as

∆E11,pn
nlκ =

〈
n, l, κ, µr |V11|n, l, κ, µr

〉
(31)

where
∣∣∣n, l, κ, µr

〉
is a wavefunction solution of Eq. (1),

which depends on the reduced mass. It was shown
recently [61] that this method provides the correct in-
clusion of the vacuum polarization recoil correction at
the Barker and Glover level [62]. Since we directly use
relativistic functions, the other corrections described in
[61] are automatically included.

III. HIGHER ORDER QED CORRECTIONS

A. Reevaluation of the Källèn and Sabry potential

The Källén and Sabry potential [63], is a fourth order
potential, corresponding to the diagrams in Fig. 5. The

FIG. 5. Feynman diagrams included in the Källen and Sabry
V21(r) potential (Eq. (32)). See Fig. 4 for explanation of sym-
bols.

expression for this potential has also been derived on
Ref. [64–67]. In the previous version of the mdfgme
code, the Källèn and Sabry potential used was the one
provided by Ref. [60], which is only accurate to 3 digits.
The expression of this potential is for a point charge

V21(r) =
α2(Zα)
π2r

L1(
2
λe

r), (32)

where

L1(r) =

∫
∞

1
dte−rt

(( 2
3t5 −

8
3t

)
f (t)

+
( 2

3t4 +
4

3t2

) √
t2 − 1 ln

(
8t

(
t2
− 1

))
+
√

t2 − 1
( 2

9t6 +
7

108t4 +
13

54t2

)
+

( 2
9t7 +

5
4t5 +

2
3t3 −

44
9t

)
ln

(√
t2 − 1 + t

))
,

(33)

and

f (t) =

∫
∞

t
dx


(
3x2
− 1

)
ln

(√
x2 − 1 + x

)
x (x2 − 1)

−

ln
(
8x

(
x2
− 1

))
√

x2 − 1

 .
(34)

The function f (t) can be calculated analytically in term
of the ln and dilogarithm functions. Blomqvist [68] has
shown that L1(r) can be expressed as

L1(r) = g2(r) ln2(r) + g1(r)log(r) + g0(r), (35)

and provided a series expansion of this function for small
r. Fullerton and Rinker [60] provided polynomial ap-
proximations to the functions gi(r). Here we have nu-
merically evaluated the function L1(r) to a very good
accuracy, using Mathematica. We then fitted the coeffi-
cients of polynomials for the function gi(r). The results
are presented in Appendix A. For x > 3, we have used
the functional form

L1(r) =
e−r

(
a + b

√
r + cr + dr3/2 + er2 + f r5/2

)
r7/2

. (36)
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The coefficients are also given in Appendix A.
To obtain the finite nuclear size correction, we use the

known expression for a spherically-symmetric charge
distribution [60]

V21(r) =
α2(Zα)
π2r

∫
∞

0
dr′r′ρ(r′)

(
L0(

2
λe
| r − r′ |)

−L0(
2
λe
| r + r′ |)

)
, (37)

where

L0(x) = −

∫ x

duL1(u). (38)

Using our approximation to L1(x) in Eqs (35) and (36), we
obtain the following approximate expressions for L0(x).
For x ≤ 3, the expression is very similar to the one for
L1(x). One obtains

L0(r) = rh2(r) ln2(r) + rh1(r)log(r) + h0(r), (39)

The expression for the functions hi are given in Appendix
B. For the asymptotic function, given for x > 3, we inte-
grate directly Eq. (36), which yield (fixing the integration
constant so that L0(r) is 0 at infinity)

L0(r) = 41.1352787432251923

− 5.1094977559522696
(
8.05074798111erf

(√
r
)

− 1.028091975364Ei(−r)

+
e−r

r5/2

(
−2.02809197536r3/2 + 4.54214815071r2

− 0.494718704003r + 0.98439728916
√

r

− 0.344009752879
))

(40)

where Ei(r) is the exponential integral.

IV. NUMERICAL RESULTS

A. Finite size correction to the Coulomb contribution

Obtaining the accuracy required from the calculation
on ED

2κµ, which has a value of ≈ 632.1 eV, while the Lamb
shift is ≈0.22 eV with an aim at better than 0.001 meV,
is a very demanding task. For a point nucleus, we get
exact degeneracy for the 2s and 2p1/2 Dirac energies. The
best numerical accuracy was obtained generating the
wavefunction on a grid with r0 = 2 × 10−3 and h = 2 ×
10−3. This corresponds to ≈ 8700 tabulation points for
the wavefunction, with around 2800 points inside the
proton. I checked that variations in r0 and h do not
change the final value. The main finite nuclear size effect
on the 2p1/2–2s energy separation comes from the sum

of the Dirac energy splitting (the 2p1/2 and 2s level are
exactly degenerate for a point nucleus).

I evaluated the different quantities on a grid of proton
sizes ranging from 0.3 to 1.2 fm, with steps of 0.025 fm (80
points). I also evaluated the contribution for the muonic
hydrogen proton size and the CODATA 2010 proton size.
The first few terms of the dependence of the relativistic
energy on the moments of the charge distribution where
given by Friar [52]. For a Gaussian charge distribution
he finds for a s state

∆ECoul. = a〈r2
〉 + b〈r3

〉(2) + c〈r2
〉

2

+ d〈r2
〉〈log r〉 + e〈r2

〉
2
〈log r〉.

(41)

I use this as a guide to fit my numerical results.
As a first example a 3-parameter fits provides

∆ECoul.
2p1/2−2s1/2

(R) = −5.19972 R2 + 0.0351289 R3

−0.0000534235 R4 meV (42)

A better fit is provided by

∆ECoul.
2p1/2−2s1/2

(R) = −5.19990R2 + 0.0355905R3

− 0.000488059R4 + 0.000172334R5

− 0.0000245051R6 meV

(43)

Using Friar functional form with only one log R term, I
obtain

∆ECoul.
2p1/2−2s1/2

(R) = −5.199365R2 + 0.03466100R3

+ 0.00007366037R4

− 0.00001720960R5

+ 1.198332 × 10−6R6

+ 0.0002677236R2 log R meV.

(44)

The function with two logarithmic terms and close val-
ues of the BIC and χ2 criteria is given by

∆ECoul.
2p1/2−2s1/2

(R) = −5.199337R2

+ 0.03458139R3 + 0.0001092856R4

+ 0.0002788380R2 log R

− 0.00004957598R4 log R

(45)

Criteria for the quality of the fit are plotted in Fig. 6. I
use both the reduced χ2 and a Bayesian information cri-
terion (BIC) to evaluate the improvement in the value
when increasing the number of parameters [69]. We ob-
tain a coefficient for R2 which is −5.1999 meV/fm2 and a
coefficient for R3 equal to 0.03559 meV/fm3. Using our
numerical solutions we also find −5.19972 meV/fm2 and
0.032908 meV/fm3 for the Gaussian model. Borie [39]
finds −5.1975 meV/fm2 and 0.0347 meV/fm3 for an ex-
ponential model, and 0.0317 meV/fm3 for a Gaussian
model, in reasonable agreement with the result pre-
sented here.
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FIG. 6. BIC criterium (top) and reduced χ2 (bottom) as func-
tion of the degree of the polynomial and of the logarithmic
dependence used in the fit of the energy.

In the same way, I evaluated the finite size correction
to the fine structure.

∆ECoul.
2p3/2−2p1/2

(R) = 8.41563570

− 0.00005192R2

+ 1.1818650 × 10−7R3

− 1.19528126 × 10−9R4 meV.

(46)

The constant term is in perfect agreement with Borie’s
value 8.41564 meV [70] (Table 7).

It is interesting to explore at this stage the influence
of the charge distribution shape on the Coulomb and
vacuum polarization contribution. Friar and Sick [71]
have evaluated the third Zemach moment from Eq. (20),
using the proton-electron scattering data available in
2005. Using a model-independent analysis, they find〈
r3
〉

(2)
= 2.71 ± 0.13 fm3, leading to an energy shift of

−0.0247 ± 0.0012 meV. Using the Fourier transform of
the exponential (13) distribution in Eq. (22), I find

〈
r3
〉

(2)
=

35
√

3R3

16
≈ 3.789R3, (47)

showing that
〈
r3
〉

(2)
is proportional to R3 and justifying

the fit in R2 and R3 performed to derive the coefficients
above. Equation (47) is in exact agreement with the result
that can be obtained from Eq. (15) in [16], but Eq. (16)
in the same work is not correct (the denominator should
be 256, not 64). The value obtained by Friar and Sick
corresponds to R = 0.894 fm. In that case our energy
shift is −0.0250 meV in good agreement with the energy

shift in Ref. [71]. In the Gaussian model, I find〈
r3
〉

(2)
=

32R3

3
√

3π
≈ 1.960R3, (48)

leading to R = 0.920 fm and an energy shift of
−0.0256 meV, still in agreement. One can perform a more
advanced calculation, using the experimental charge
distribution from Ref. [51], as given in (23). I find〈
r3
〉

= 2.45 fm3, significantly lower than Friar and Sick’s
value. This lead to R = 0.864 fm for the exponential
model and R = 0.889 fm for the Gaussian model, provid-
ing shifts of −0.0226 meV and −0.0232 meV respectively,
in closer agreement to Borie’s work. In a recent paper, De
Rùjula [16] claims that the discrepancy found between
the charge radii obtained from hydrogen and muonic
hydrogen could be due to the fact that theoretical calcu-
lations use too simple a dipole model to represent the
nucleus. He builds a “toy model” composed of the sum
of two dipole function corresponding to two resonances
with different masses. In his model the third moment of
the charge distribution is much higher than what is de-
rived from a dipole model, enabling to mostly resolve the
discrepancy between charge radii obtained from muonic
and normal hydrogen. He gets〈

r3
〉

(2)
= 36.6 ± 7.3 ≈ 43R3, (49)

using R from muonic hydrogen. I use the fit to the exper-
imental form factor from Ref. [51] as given in Eq.(23) to
check the result from Ref. [16] against an experimental
determination. I obtain〈

r3
〉

(2)
≈ 2.4485 ≈ 3.98 × 0.8503, (50)

very close to the dipole model value of Eq. (47). Using
the recent MAMI experiment, combined with data from
[51], Distler et al. [22] obtain〈

r3
〉

(2)
≈ 2.85(8) ≈ 4.18 × 0.8803, (51)

The conclusions from Ref. [16], which depend on an
overly large third moment of the charge distribution are
thus not supported by experiment.

B. Finite size correction to the Uehling contribution

For the vacuum polarization we obtain, for a point
nucleus,

∆E11,pn
2p1/2
− ∆E11,pn

2s1/2
= 205.028201 meV, (52)

to be compared with 205.0282 meV in Ref. [39].
Pachucki [37] obtained 205.0243 meV as the sum of the
non-relativistic 205.0074 meV and first order relativistic
0.0169 meV corrections. If I calculate the difference be-
tween (52) and Pachuki non-relativistic value, I obtain a
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difference of 0.0208076 meV. This is in excellent agree-
ment with the value provided in Ref. [72], Eq. (6),
0.020843 meV.

To achieve this result we used the mesh parameters de-
scribed in the previous section, and checked by varying
them so that the results were stable within the decimal
places provided here. For finite nuclei, I use the same
parameters as in the previous section. Again changes in
r0 and h do not change the final value. We get

∆E11,fs
2p1/2
− ∆E11,fs

2s1/2
= 205.0282076 − 0.02810970909R2

+ 0.0007111893365R3

− 0.00003572368803R4

(53)

The constant term is in excellent agreement with the one
in Eq. (52). This result must be combined to Eq. (45) to
obtain values that can be compared with the literature. I
obtain:

∆E11C,fs
2p1/2

− ∆E11C,fs
2s1/2

= 205.0282076 − 5.227446248R2

+ 0.03529257801R3

+ 0.00007356191826R4

+ 0.0002788380236R2 log(R)

− 0.00004957597920R4 log(R)

(54)

The R2 coefficient can be compared to the one in Ref. [72]
Table III, which has the value −5.2254 meVfm−2, which
contains additional recoil corrections.

For the Uelhing correction to the fine structure, I obtain
in the same way:

∆E11,fs
2p3/2
− ∆E11,fs

2p1/2
= 0.0050157881

− 1.1662334 × 10−7R2

+ 2.2741334 × 10−9R3

− 1.5308196 × 10−10R4 meV,

(55)

where the constant term is again in perfect agreement
with Borie’s value 0.0050 meV [70] (Table 7).

C. Finite size correction to the Källén and Sabry
contribution

We can then evaluate the Källén and Sabry contribu-
tion ∆E21

2p1/2
− ∆E21

2s1/2
using V21 calculated following Sec.

III A, with good accuracy, using our numerical wave-
functions. For a point nucleus I obtain

∆E21,pn
2p1/2
− ∆E21,pn

2s1/2
= 1.508097 meV, (56)

in agreement with the result of Ref. [37], 1.5079 meV,
and in excellent agreement with the one from Ref. [39],
1.5081 meV. Using the wavefunctions calculated with

the proton size, I can also evaluate the finite size correc-
tion to the Källén and Sabry contribution. A direct fit to
the numerical data gives a result of the form

∆E21,fs
2p1/2
− ∆E21,fs

2s1/2
= 1.508097 − 0.00021341293R2

+ 7.3404895 × 10−6R3

− 5.0291143 × 10−7R4 meV.

(57)

and

∆E21,fs
2p3/2
− ∆E21,fs

2p1/2
= 0.0000414300 − 9.25489 × 10−10R2

+ 2.33622 × 10−11R3

− 1.80063 × 10−12R4 meV.
(58)

for the fine structure, to be compared with 0.00004 meV
in Ref. [70].

V. HIGHER-ORDER VACUUM POLARIZATION
CORRECTIONS

A. Higher-order vacuum polarization

The term named “VP iteration”, which correspond to
Fig. 7, is given by Eq. (215) of Ref. [38]

∆EVPVP(2s) = 0.01244
4
9

(
α
π

)2
(Zα)2 µrc2 (59)

where µr =94.96446 MeV for muonic hydrogen (using
[11]). This adds 0.15086 meV to the Lamb-shift for
muonic hydrogen. The Uehling potential under the form
used in Sec.II can be introduced in the potential of the
Dirac equation (3) when solving it numerically. This
amounts to get the exact solution with any number of
vacuum polarization insertions as shown in Fig. 7. The
numerical methods that we used are described in Ref.
[56, 57]. Because of the Logarithmic dependence of the
point nucleus Uehling potential at the origin, we do not
calculate the iterated vacuum polarization directly for
point nucleus. We instead calculate for different mean
square radii and charge distribution models, and fit the
curves with f (R) = a + bR2 + cR3 + dR4. All 4 models
provides very similar values. The final value is

∆E11,loop,fs
2p1/2

− ∆E11,loop,fs
2s1/2

= 0.15102161

− 0.000098409804R2

+ 7.9038238 × 10−6R3

− 7.2004764 × 10−7R4 meV.

(60)

The value calculated in Ref. [37] is 0.1509 meV and the
one in Ref. [39] is 0.1510 meV in very good agreement
with the present work. The method employed here pro-
vides in addition the proton size dependence for this
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+ +...

a b

FIG. 7. Feynman diagrams obtained when the Uehling poten-
tial is added to the nuclear potential in the Dirac equation. A
double line represents a bound electron wavefunction or prop-
agator and a wavy line a retarded photon propagator. The grey
circles correspond to the interaction with the nucleus. Diagram
(b) correspond to Fig. 5 and third term in Eq. (25) in Ref. [73]

correction, which was not calculated before. For the fine
structure, I obtain in the same way

∆E11,loop,fs
2p3/2

− ∆E11,loop,fs
2p1/2

= 2.33197 × 10−6

− 1.77101 × 10−9R2

+ 9.36429 × 10−10R3

− 1.79951 × 10−10R4 meV.

(61)

B. Other higher-order Uehling correction

Since we include the vacuum polarization in the Dirac
equation potential, all energies calculated by perturba-
tion using the numerical wavefunction contains the con-
tribution of higher-order diagrams where the external
legs, which represent the wavefunction, can be replaced
by a wavefunction and a bound propagator with one,
or several vacuum polarization insertion. For example
the Källèn and Sabry correction calculated in this way,
contains correction of the type presented in Fig. 8. This
correction is given by

∆E21×11,fs
2p1/2

− ∆E21×11,fs
2s1/2

= 0.0021552

− 1.32976 × 10−6R2

+ 9.4577 × 10−8R3

− 8.5185 × 10−9R4 meV,

(62)

with a 10−7 meV accuracy. This correction is part of the
three-loop corrections form Ref. [73, 74]. The diagrams
in Fig. 8 correspond to diagrams (a) and (b) of Fig. 5
in Ref. [73] and (e) (upper left) and (f) in Fig. 2 of
Ref. [75]. The sum of contributions of the diagram (a)
and (b) is 0.00223, in good agreement with our all-order
fully relativistic result. The three loop diagram Fig. 5
(c) Ref. [73] and Fig. 2 (g) Ref. [75] is included in the
all-order contribution obtained by solving numerically
the Dirac equation with the Uëlhing potential. For the

a b

c d

FIG. 8. Lower order Feynman diagrams included in the Käl-
lén and Sabry V21(r) potential, when the Uehling potential is
included in the differential equation. See Figs. 4 and 7 for ex-
planation of symbols. Diagrams (a) and (b) exactly correspond
to diagrams (a) and (b) in Fig. 5 and Eq. (25) in Ref. [73]

fine structure this correction is very small:

∆E21×11,fs
2p3/2

− ∆E21×11,fs
2p1/2

= 3.75754 × 10−8
− 3.49318 × 10−12R2

+ 2.58244 × 10−13R3

− 2.74201 × 10−14R4 meV.
(63)

C. Wichmann and Kroll correction

We use the approximate potentials as presented in
Refs. [68, 76] to evaluate the Wichmann and Kroll [77]
V13 correction to the Uehling potential. The correspond-
ing diagram is shown on Fig. 4 (b). This contribution
is given together with the light-by-light scattering dia-
grams of Fig. 9 in Refs. [73, 75, 78]. We find for a point
nucleus, the exact value, and a size correction, given by

∆E13,fs
2p1/2
− ∆E13,fs

2s1/2
= −0.0010170628 + 5.5414179 × 10−8R2

− 5.1356872 × 10−10R3

− 1.9364450 × 10−11R4 meV,
(64)

to be compared to the value given in Ref. [75] (Table III)
of−0.001018(4) meV. In the lowest order approximation,
the diagram on Fig. 9(a) provides an energy shift of
∆E13/Z2 [75, 78]. For the fine structure, this correction is
comparable to the contribution from Eq. (63):

∆E13,fs
2p3/2
− ∆E13,fs

2p1/2
= −4.21088 × 10−8

+ 4.41081 × 10−13R2

− 8.49036 × 10−15R3

+ 1.81474 × 10−15R4 meV.

(65)
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a b

FIG. 9. Feynman diagrams for the light-by-light scattering. See
Figs. 4 and 7 for explanation of symbols.

FIG. 10. Feynman diagrams for the muon self-energy. See Figs.
4 and 7 for explanation of symbols.

D. Muon radiative corrections

1. Muon self-energy

Highly accurate self-energy values for electronic
atoms and point nucleus are known from Ref.[79]. The
self-energy correction, represented in Fig. 10 is conve-
niently expressed by the slowly varying function F(Zα)
defined by

∆ESE =
α
π

(Zα)4

n3 mc2F(Zα), (66)

where m is the particle mass.
The recoil corrections to F(Zα) are described in detail

in [11]. The dependence in the reduced mass has to be in-
cluded leading to the following expressions, specialized
for the n = 2 shells:

∆EµSE,2S =
α
π

(Zα)4

8

(
µr

mµ

)3

mµc2
(
−

4
3

ln k0(2S) +
10
9

+
4
3

ln
(

mµ

α2µr

)
+

(139
32
− 2 ln 2

)
πα

+
(67

30
+

16 ln 2
3

)
ln

(
mµ

α2µr

)
α2

−

(
ln

(
mµ

α2µr

))2

α2

+α2G2s(α)
)
, (67)

∆EµSE,2p1/2 =
α
π

(Zα)4

8

(
µr

mµ

)3

mµ

(
−

4
3

ln k0(2P) −
1
6

(
mµ

µr

)
+

103
180

ln
(

mµ

α2µr

)
α2 + α2G2p1/2 (α)

)
, (68)

and

∆EµSE,2p3/2 =
α
π

(Zα)4

8

(
µr

mµ

)3

mµ

(
−

4
3

ln k0(2P) +
1

12

(
mµ

µr

)
+

29
90

ln
(

mµ

α2µr

)
α2 + α2G2p3/2 (α)

)
. (69)

The Bethe logarithms are given by ln k0(2S) =
2.811769893 and ln k0(2P) = −0.030016709 [80]. The
the remainders are given by G2s(α) = −31.185150(90),
G2p1/2 (α) = −0.97350(20) and G2p3/2 (α) = −0.48650(20) [79,
81]. One then gets the exact muon self-energy for each
state. For the 2s state, this gives 0.675150 meV instead of
0.675389 meV. For the 2p1/2 I get −0.00916882 meV and
for 2p3/2, 0.008393377 meV in place of 0.01424054 meV
and−0.00332838 meV respectively, if one would use only
the low order A40 term.

The finite size correction is given by perturbation the-
ory [11] Eq. (54)

ESE−NS(R,Zα) =
(
4 ln 2 −

23
4

)
α(Zα)ENS(R,Zα), (70)

where ([11] Eq. (51))

ENS(R,Zα) =
2
3

(
µr

mµ

)3 (Zα)2

n3 mµ

(ZαR
oC

)2

, (71)

is the lowest-order finite nuclear size correction to the
Coulomb energy. Here oC = 1.867594282 fm is the muon
Compton wavelength. Equation (71) provides ENS(R) =
5.19745R2 for muonic hydrogen in agreement with Refs.
[37, 39].

The self-energy correction to the Lamb shift with
finite-size correction is then

∆ESE,fs
2p1/2
−∆ESE,fs

2s1/2
(R) = −0.68431882+0.000824R2 meV, (72)

and to the fine structure:

∆ESE,fs
2p3/2
− ∆ESE,fs

2p1/2
= 0.017562197 meV. (73)

It should be noted that in Ref. [39], the R2-dependent
part of the 2s self-energy is much larger than what is
given in Eq. (72). This value was checked indepen-
dently by using an all-order calculation with finite size,
following the work of Mohr and Soff [82]. The results of
this calculation agree reasonably well with Eq. (72) and
is given by [83]

EH
SE−NS(Z = 1,R) = −0.68431882 − 0.001677053R2

+0.0009996784R3

−0.0004785372R4

+0.00008785574R5 meV. (74)

2. Muon loop vacuum polarization

The vacuum polarization due to the creation of virtual
muon pairs is represented by the same diagram 4 (a)
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and same equations (28) as vacuum polarization due to
electron-positron pairs, replacing the electron Compton
wavelength by the muon one. For S states, it is given by
[11] Eq. (27),[35] Eq. (32)

EµVP(ns) = −
α(αZ)4

πn3

(
−

4
15

+ πα
5

48

) ( µr

mµ

)3

mµc2, (75)

in which higher order terms in Zα have been neglected.
For the 2s Lamb shift in muonic hydrogen it gives
0.01669 meV and is included in Refs. [37, 39] and [84]
Eq. (2.29) for the first α correction. As it is a sizable con-
tribution, and the muon Compton wavelength, which
represent the scale of QED corrections for muons is of
the order of the finite nuclear size (1.9 fm), one could ex-
pect a non-negligible finite size contribution. Using the
numerical procedure described in Sec. II, replacing the
electron Compton wavelength by the muon one in Eq.
(28), I obtain

∆Eµ11,fs
2p1/2

− ∆Eµ11,fs
2s1/2

= 0.01671487464

− 0.00005279721702R2

+ 0.00001269866912R3

− 5.360546098 × 10−6R4

+ 0.00001717649157R2 log(R)

+ 2.047113814 × 10−6R4 log(R) meV,
(76)

where the constant term is in excellent agreement with
(75) and the R dependence explicit. From Ref. [11], Eq.
(55), one obtains

Efs
µVP(ns) =

3
4
α(Zα)ENS(R, α) = 0.00020758R2 meV (77)

for the 2s level. This term is about 4 times larger than
the numerical coefficient for R2 in Eq. (76).

Using the wavefunction evaluated with the Uehling
potential in the Dirac equation, I also obtain the value of
the sum of diagrams with one muon vacuum polariza-
tion loop and any number of electron loops on each side,
as in Fig. 7, with one loop being a muon loop:

∆Eµ11×11,fs
2p1/2

− ∆Eµ11×11,fs
2s1/2

= 0.00005346

− 7.6035 × 10−7R2

+ 3.2548 × 10−7R3

− 5.4392 × 10−8R4 meV.

(78)

This muonic vacuum polarization is a small contribution
to the fine structure

∆Eµ11×11,fs
2p3/2

− ∆Eµ11×11,fs
2p1/2

= 1.67794 × 10−7

− 2.10861 × 10−10R2

+ 8.51427 × 10−11R3

− 1.38884 × 10−11R4 meV.

(79)

VI. EVALUATION OF THE RECOIL CORRECTIONS

The relativistic treatment of recoil corrections is de-
scribed in, e.g., [11], Eq. (10). The analytic solution of
the Dirac equation for a point nucleus and a particle of
mass m is given by

ED = mc2 f (n, j) (80)

with

f (n, j) =
1√

1 +
(Zα)2(

n− j+ 1
2 +

√
( j+ 1

2 )2
−(Zα)2

)2

. (81)

The recoil can then be included by evaluating [62, 85]

EM = Mc2 + µrc2 (
f (n, j) − 1

)
+

[
f (n, j) − 1

]2 µ2
r c2

2M
(82)

+
1 − δl,0

κ(2l + 1)
(Zα)4µ3

r c2

2n3M2
p
, (83)

where M = mµ + Mp. If one expands the previous equa-
tion in power of (Zα), one would find that the terms of or-
der up to (Zα)4 are identical to what is given in Ref. [62].
We also compared the numerical results from our nu-
merical approach for point nucleus, as described in Sec.
I A to what can be obtained by using directly (80) and
find excellent agreement. Below, we will make exclusive
use of the direct numerical evaluation of the Dirac equa-
tion. The relativistic corrections to Eq. (83) associated
with motion of the nucleus are called relativistic-recoil
correction. The correction to order (Zα)5 and to all orders
in mµ/Mp is given by [11, 41, 85, 86]

E5
RR(n, l) =

µ3
r c2

mµMp

(Zα)5

πn3

{
δl,0

3
ln

1
(Zα)2 −

8
3

ln k0(l,n)

−
δl,0

9
−

7
3

an,l −
2δl,0

M2
p −m2

µ

×

[
M2

p ln
(

mµ

µr

)
−m2

µ ln
(

Mp

µr

)] }
(84)

where

an,l = −2

ln
2

n
+

n∑
i=1

1
i

 + 1 −
1

2n

 δl,0

+
1 − δl,0

l(l + 1)(2l + 1)
. (85)

This correction corresponds to the diagrams in Fig. 11.
The next order of the relativistic recoil corrections is

given for s states by

E6
RR(ns) =

mµ

Mp

(Zα)6

n3 mµc2

{
4 ln 2 −

7
2

−
11

60π
ln

1
(Zα)2

}
, (86)
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FIG. 11. Feynman diagrams corresponding to the Relativistic
recoil correction (84). The heavy double line represents the
proton wave function or propagator. The other symbols are
explained in Fig. 4.

and for l ≥ 1 states by

E6
RR(nl) =

mµ

Mp

(Zα)6

n3 mµc2

{ [
3 −

l(l + 1)
n2

]
×

2
(4l2 − 1) (2l + 3)

}
. (87)

Using Eqs. (82) to (87), I obtain

∆ERec.
2p1/2
− ∆ERec.

2s1/2
(R) = 0 + 0.0574706 − 0.0449705

= 0.0125001meV,
(88)

and to the fine structure:

∆ERec.
2p3/2
− ∆ERec.

2p1/2
= 0.0000051 − 0.0862059 + 0

= −0.0862008 meV.
(89)

This is in excellent agreement with the results from Ref.
[70].

VII. EVALUATION OF SOME ALL-ORDER HYPERFINE
STRUCTURE CORRECTIONS

The expression of the hyperfine magnetic dipole op-
erator can be written as

Hh f s = −ecα ·A(r) = −ecα ·A(r), (90)

with

A(r) =
µ0

4π
µ × r

r3 , (91)

where µ is the nuclear magnetic moment and we have
assumed a magnetic moment distribution of a point par-
ticle for the nucleus. It is convenient to express Hh f s
using vector spherical harmonics. On obtains [87–90]

Hh f s = M 1
·T 1, (92)

where

T 1 (r) = −ie

√
8π
3

α ·Y
(0)

1q (r̂)

r2 , (93)

and M 1 representing the magnetic moment operator
from the nucleus. The operator T 1 acts only on the

bound particle coordinates. The vector spherical har-
monic Y (0)

1q (r̂) is an eigenfunction of J2 and Jz, defined
as [88, 90–93]

Y
(0)

1q (r̂) = Y11q (r̂) =
∑
σ

C
(
1, 1, 1; q − σ, σ, q

)
Y1,q−σ (r̂) ξσ

(94)

where C
(
j1, j2, j; m1,m2,m

)
is a Clebsh-Gordan coeffi-

cient, Y1,q are scalar spherical harmonic and ξσ are eigen-
vectors of s2 and sz, the spin 1 matrices [88, 90–93]. The
reduction to radial and angular integrals is presented
in various works [88–90]. In heavy atoms, the hyper-
fine structure correction due to the magnetic moment
contribution is usually calculated for a finite charge dis-
tribution, but a point magnetic dipole moment (see, e.g.,
[88, 89]). When matrix elements non-diagonal in J are
needed, one can use [94] for a one-particle atom

∆EHFS
M1 = A

gα
2Mp

∫
∞

0
dr

P1(r)Q2(r) + P2(r)Q1(r)
r2 , (95)

where g = µp/2 = 2.792847356 for the proton, is the
anomalous magnetic moment, A is an angular coefficient

A = (−1)I+ j1+F

{
I j1 F
j2 I k

}
(

I 1 I
−I 0 I

)
× (−1)J1−

1
2

√
(2J1 + 1) (2J2 + 1)

(
j1 1 j2
1
2 0 − 1

2

)
π (l1, k, l2) ,

(96)

where π (l1, k, l2) = 0 if l1 + l2 + 1 is odd and 1 otherwise.
The ji are the total angular momentum of the i state for
the bound particle, li are orbital angular momentum, I
is the nuclear spin, k the multipole order (k = 1 for the
magnetic dipole contribution described in Eq. (95)) and F
the total angular momentum of the atom. The difference
between ∆EHFS values calculated with a finite or point
nuclear charge contribution is called the Breit-Rosenthal
correction [95].

To consider a finite magnetic moment distribution, one
uses the Bohr-Weisskopf correction [96]. The correction
can be written [97]

∆EBW = −A
gα

2Mp

∫
∞

0
drnr2

nµ(rn)

×

∫ rn

0
dr

P1(r)Q2(r) + P2(r)Q1(r)
r2 ,

(97)

where the magnetic moment density µ(rn) is normalized
as ∫

∞

0
drnr2

nµ(rn) = 1. (98)
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Borie and Rinker [98], write the total diagonal hyper-
fine energy correction for a muonic atom as

∆Ei, j =
4πκ

(
F(F + 1) − I(I + 1) − j( j + 1)

)
κ2 − 1

4

gα
2Mp

×

∫
∞

0
dr

P1(r)Q2(r)
r2

∫ r

0
drnr2

nµBR(rn). (99)

where the normalization is different:∫
∞

0
d3rnµBR(rn) = 4π

∫
∞

0
drnr2

nµBR(rn) = 1. (100)

This means that µBR(r) = µ(r)/(4π). Evaluation of the
Wigner 3J and 6J symbols in (96) give the same angular
factor than in Eq. (95).

The equivalence of the two formalism can be easily
checked: starting from (99) and droping the angular fac-
tors, we get, doing an integration by part∫

∞

0
dr

P1(r)Q2(r)
r2

∫ r

0
drnr2

nµ(rn)

=

[∫ r

0
drnr2

nµ(rn)
∫ r

0
dt

P1(t)Q2(t)
t2

]∞
0

−

∫
∞

0
drnr2

nµ(rn)
∫ rn

0
dr

P1(r)Q2(r)
r2

=

∫
∞

0
dr

P1(r)Q2(r)
r2

−

∫
∞

0
drnr2

nµ(rn)
∫ rn

0
dr

P1(r)Q2(r)
r2 , (101)

where we have used (98). We thus find that the for-
mula in Borie and Rinker represents the full hyperfine
structure correction, including the Bohr-Weisskopf part.

In 1956, Zemach [99] calculated the fine structure en-
ergy of hydrogen, including recoil effects. He showed
that in first order in the finite size, the HFS depends
on the charge and magnetic distribution moments only
through the Zemacs’s form factor defined in Eq. (15).
The proton is assumed to be at the origin of coordinates.
Its charge and magnetic moment distribution are given
in terms of charge distribution ρ(r) and magnetic mo-
ment distributions µ(r). Zemach calculate the correction
in first order to the hyperfine energy of s-states of hy-
drogen due to the electric charge distribution. The HFS
energy is written as

∆EZ
HFS = −

2
3

〈
Sp ·Sµ

〉∫
| φ(r) |2 µ(r)dr (102)

φ the non-relativistic electron wavefunction and Sx are
the spin operators of the electron and proton. If the
magnetic moment distribution is taken to be the one of a
point charge, µ(r) = δ(r), the integral reduces to | φ(0) |2.
The first order correction to the wavefunction due to the
nucleus finite charge distribution is given by

φ(r) = φC(0)
(
1 − αmµ

∫
ρ(u) |u − r| du

)
, (103)

where φC(0) is the unperturbed Coulomb wavefunction
at the origin for a point nucleus. Replacing into Eq. (102)
and keeping only first order terms, we get (Eq. 2.8 of
Ref. [99] corrected for a misprint):

∆EZ
HFS = −

2
3

〈
Sp ·Sµ

〉 ∣∣∣φC(0)
∣∣∣2

×

(
1 − 2αmµ

∫
ρ(u) | u − r | µ(r)dudr

)
,

= EF

(
1 − 2αmµ

∫
ρ(u) | u − r | µ(r)dudr

)
,

(104)

where EF is the well known HFS Fermi energy. Trans-
forming Eq. (104) using r → r + u, etc. Zemach obtains

∆EZ
HFS = EF

(
1 − 2αmµ 〈rZ〉

)
, (105)

with 〈rZ〉 given in Eq. (16). The 2s state Fermi energy is
given by

E2s
F =

(Zα)4

3
gp

µ3
r

mpmµ
. (106)

A. Hyperfine structure of the 2s level

In order to check the dependence of the hyperfine
structure on the Zemach radius and on the proton fi-
nite size, I have performed a series of calculations for
a dipolar distribution for both the charge and magnetic
moment distribution. We can then study the dependence
of the HFS beyond the first order corresponding to the
Zemach correction. I calculated the hyperfine energy
splitting ∆EHFS (RZ,R) = EHFS(R) + EBW

HFS (R,RM) numer-
ically. I also evaluate with and without self-consistent
inclusion of the Uëhling potential in the calculation, to
obtain all-order Uëhling contribution to the HFS energy.
We calculated the correction ∆EHFS (RZ,R) for several
value of RZ between 0.8 fm and 1.15 fm, and proton sizes
ranging from 0.3 fm to 1.2 fm, by steps of 0.05 fm, which
represents 285 values. The results show that the cor-
rection to the HFS energy due to charge and magnetic
moment distribution is not quite independent of R as
one would expect from Eq. (105), in which the finite size
contribution depends only on RZ. We fitted the hyper-
fine structure splitting of the 2s level, E2s

HFS (RZ,R) by a
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function of R and RZ, which gives:

E2s
HFS (RZ,R) = 22.807995

− 0.0022324349R2 + 0.00072910794R3

− 0.000065912957R4
− 0.16034434RZ

− 0.00057179529RRZ

− 0.00069518048R2RZ

− 0.00018463878R3RZ

+ 0.0010566454R2
Z

+ 0.00096830453RR2
Z

+ 0.00037883473R2R2
Z

− 0.00048210961R3
Z

− 0.00041573690RR3
Z

+ 0.00018238754R4
Z meV.

(107)

The constant term should be close to the sum of the Fermi
energy 22.80541 meV and of the Breit term [100]. the HFS
correction calculated with a point-nucleus Dirac wave-
function for which I find 22.807995 meV. When setting
the speed of light to infinity in the program I recover
exactly the Fermi energy. The Breit contribution is thus
0.002595 meV, to be compared to 0.0026 meV in Ref. [40]
(Table II, line 3) and 0.00258 meV in Ref. [70]. Mar-
tynenko [40] evaluates this correction, which he names
“Proton structure corrections of order α5 and α6”, to be
−0.1535 meV, following [35]. He finds the coefficient
for the Zemach’s radius to be −0.16018 meVf−1, in very
good agreement with the present all-order calculation
−0.16034 meVf−1. Borie’s value [70] −0.16037 meVf−1 is
even closer. The difference between Borie’s value and
Eq. (107) is represented in Fig. 12 as a function of the
charge and Zemach radii. The maximum difference is
around 1 µeV.

In Ref. [35], the charge and magnetic moment dis-
tributions are written down in the dipole form, which
corresponds to (13),

GE

(
q2

)
=

GM

(
q2

)
1 + κp

=
Λ4(

Λ2 + q2)2 , (108)

with Λ = 848.5MeV. This leads to R = 0.806 fm as in
Ref. [2] and RZ = 1.017 fm using this definition for
the form factor in Eq. (17). Moreover there are re-
coil corrections included. Pachucki [35] finds that the
pure Zemach contribution (in the limit mp → ∞) is
−0.183 meV. In Ref. [101], the Zemach corrections is
given as δ(Zemach) × EF = −71.80 × 10−4EF, for RZ =
1.022 fm. This leads to a coefficient −0.1602 meVfm−1, in
excellent agreement with our value −0.16036 meVfm−1.

The effect of the vacuum polarization on the 2s hyper-
fine structure energy shift as a function of the Zemach
and charge radius have been calculated for the same set
of values as the main contribution. The data can be de-
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FIG. 12. difference between Borie’s value and Eq. (107) result
as a function of the charge and Zemach radii (meV).

scribed as a function of RZ and R as

E2s,VP
HFS (RZ,R) = 0.074369030 + 0.000074236132R2

+ 0.00013277334R3
− 8.0987285 × 10−6R4

− 0.0017880269RZ − 0.00017204505RRZ

− 0.00037499458R2RZ

− 0.000070355379R3RZ

− 0.00022093411R2
Z + 0.00035038656RR2

Z

+ 0.00020554316R2R2
Z + 0.00025100642R3

Z

− 0.00017200435RR3
Z

− 0.000061266973R4
Z meV.

(109)

It corresponds to the diagrams presented in Fig. 13.
The size-independent term 0.07437 meV corresponds
to the sum of the two contributions represented by
the two top diagrams in Fig. 13 and is given as
∆EHFS

1loop-after-loop VP = 0.0746 meV in Ref. [40]. The term

∆EHFS
1γ,VP = 0.0481 meV corresponds to a vacuum polar-

ization loop in the HFS potential [35, 40, 98], which is not
evaluated here. Corrections present in Ref. [70] not in-
cluded in Eqs. (107) and (109) gives an extra contribution
of

E2s,HO
HFS = 0.10287 meV. (110)
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Combining Eqs. (107), (109) and (110), I get

E2s
HFS (RZ,R) = 22.985234 − 0.0021581988R2

+ 0.00086188128R3

− 0.000074011685R4

− 0.16213237RZ

− 0.00074384033RRZ

− 0.0010701751R2RZ

− 0.00025499415R3RZ

+ 0.00083571133R2
Z

+ 0.0013186911RR2
Z

+ 0.00058437789R2R2
Z

− 0.00023110319R3
Z

− 0.00058774125RR3
Z

+ 0.00012112057R4
Z meV.

(111)

In Ref. [40], the equivalent expression is

E2sMart.
HFS (RZ) = 22.9857 − 0.16018RZ meV, (112)

while it is

E2sBorie
HFS (RZ) = 22.9627 − 0.16037RZ meV, (113)

in Ref. [70]. Using a Zemach’s radius of 0.9477 fm in Eq.
(112), needed to reproduce entry 11 in Table II of Ref.
[40], one obtains 22.8148 meV as expected. In Eq. (113),
it gives 22.8107 meV. Using the same Zemach radius
and Eq. (111) I obtain 22.8104 meV with the muonic
hydrogen proton radius value and 22.8103 meV with
the CODATA one, in excellent agreement with Borie’s
value. All three values are in agreement with the result
22.8146(49) meV in Ref. [19]. In a recent work, how-
ever, the use of Form factors in the Breit equations leads
to smaller finite size corrections, leading to 22.8560 meV
[102]. A comparison between some of these results is
presented in Table I.

VIII. EVALUATION OF MUONIC HYDROGEN n = 2
TRANSITIONS

A. Lamb shift and fine structure

The results presented in this work for the Lamb shift
(Eqs. (45), (54), (57), (60), (62), (64), (72), (76), (78)) can
be summarized in the following proton-size dependent
equation:

ETot,fs
2p1/2
− ETot,fs

2s1/2
(R) = 206.0209137 − 5.226988678R2

+ 0.03532068001R3

+ 0.00006692700063R4

+ 0.0002962967640R2 log(R)

− 0.00004751147090R4 log(R) meV.

FIG. 13. Feynman diagrams corresponding to the evaluation
of the hyperfine structure using wavefunctions obtained with
the Uehling potential in the Dirac equation. The grey squares
correspond to the hyperfine interaction.

(114)

In the same way, Eqs. (46), (55), (58), (61), (63), (65), (73),
(79), and (89) lead to the fine structure interval (which
include the recoil corrections (89), included in Table II
for the 2s Lamb shift)

ETot,fs
2p3/2
− ETot,fs

2p1/2
(R) = 8.3520516

− 0.00005206070R2

+ 1.70858 × 10−7R3

− 4.30422 × 10−8R4

+ 1.54724 × 10−8R5

− 2.13593 × 10−9R6 meV.

(115)

Martynenko [105] finds ETot,fs
2p3/2
− ETot,fs

2p1/2
= 8.352082 meV

for the fine structure.
A number of terms not included in Eqs. (114) are pre-

sented in Table II together with the relevant references.
Combining Eq. (114) with the sum of the contributions
contained in Table II, I obtain the final 2s − 2p1/2 energy:

ETot,fs
2p1/2
− ETot,fs

2s1/2
(R) = 206.046613695 − 5.226988678R2

+ 0.03532068001R3

+ 0.00006692700063R4

+ 0.0002962967640R2 log(R)

− 0.00004751147090R4 log(R) meV.
(116)
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TABLE I. Comparison of contributions to the 2s hyperfine structure from Refs. [40, 70] and the present work (meV) for
RZ = 1.0668 fm [2] as used in Ref. [40]. Note that in this reference, the proton structure correction of order α5 (item # 6)
may combine the Zemach correction and the recoil correction (# 24). VP: Vacuum Polarization.

# Ref. [40] Ref. [70] This work
Fermi energy 1 22.8054 22.8054
Dirac Energy (includes Breit corr.) 2 22.807995
Vacuum polarization corrections of orders α5, α6 in 2nd-order 3 0.0746 0.07443
perturbation theory εVP1
All-order VP contribution to HFS, with finite magnetisation distribution 4 0.07244
finite extent of magnetisation density correction to the above 5 −0.00114
Proton structure corr. of order α5 6 −0.1518 −0.17108 −0.17173
Proton structure corrections of order α6 7 −0.0017
Electron vacuum polarization contribution+ proton structure corrections of order α6 8 −0.0026
contribution of 1γ interaction of order α6 9 0.0003 0.00037 0.00037
εVP2EF (neglected in Ref. [40]) 10 0.00056 0.00056
muon loop VP (part corresponding to εVP2 neglected in Ref. [40]) 11 0.00091 0.00091
Hadronic Vac. Pol. 12 0.0005 0.0006 0.0006
Vertex (order α5) 13 −0.00311 −0.00311
Vertex (order α6) (only part with powers of ln(α) - see Ref. [103] ) 14 −0.00017 −0.00017
Breit 15 0.0026 0.00258
Muon anomalous magnetic moment correction of order α5, α6 16 0.0266 0.02659 0.02659
Relativistic and radiative recoil corrections with 17 0.0018
proton anomalous magnetic moment of order α6

One-loop electron vacuum polarization contribution of 1γ interaction 18 0.0482 0.04818 0.04818
of orders α5, α6 (εVP2)
finite extent of magnetisation density correction to the above 19 −0.00114 −0.00114
One-loop muon vacuum polarization contribution of 1γ interaction of order α6 20 0.0004 0.00037 0.00037
Muon self energy+proton structure correction of order α6 21 0.001 0.001
Vertex corrections+proton structure corrections of order α6 22 −0.0018 −0.0018
“Jellyfish” diagram correction+ proton structure corrections of order α6 23 0.0005 0.0005
Recoil correction Ref. [104] 24 0.02123 0.02123
Proton polarizability contribution of order α5 25 0.0105
Proton polarizability Ref. [104] 26 0.00801 0.00801
Weak interaction contribution 27 0.0003 0.00027 0.00027
Total 22.8148 22.8129 22.8111

This can be compared with the result from from E. Borie
[70]

EBorie,fs
2p1/2

− EBorie,fs
2s1/2

(R) = 206.0579(60) − 5.22713R2

+ 0.0365(18)R3 meV,
(117)

and Carroll et al. [106]

ECar.,fs
2p1/2

− ECar.,fs
2s1/2

(R) = 206.0604 − 5.2794R2

+ 0.0546R3 meV.
(118)

An extra recoil contribution is given in Ref. [72] for
the fine structure, corresponding to entry #9 in Table II
for the Lamb shift,

EVPRec.
2p3/2

− EVPRec.
2p1/2

= −0.00006359 meV. (119)

This term correspond to corrections beyond the full Dirac

term. This lead to the final result

ETot,fs
2p3/2
− ETot,fs

2p1/2
(R) = 8.351988025

− 0.00005206070023R2

+ 1.708581114 × 10−7R3

− 4.304222172 × 10−8R4

+ 1.547238809 × 10−8R5

− 2.135927044 × 10−9R6 meV.

(120)

B. Transitions between hyperfine sublevels

The energies of the two transitions observed experi-
mentally in muonic hydrogen are given by

EF=2
2p3/2
− EF=1

2s1/2
= E2p1/2 − E2s1/2 + E2p3/2 − E2p1/2

+
3
8

E2p3/2

HFS −
1
4

E2s
HFS,

(121)
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TABLE II. Contributions to the Lamb shift not included in Eq. (114) (meV). The uncertainty on the proton polarization value used
in Ref. [12] has been increased by a factor of 10, according to the discussion in Ref. [26].

# Contribution Reference Value Unc.
1 NR three-loop electron VP (Eq. (11), (15), (18) and (23)) [73] 0.00529
2 Virtual Delbrück scattering (2:2) [75, 78] 0.00115 0.00001
3 Light by light electron loop contribution (3:1) [75, 78] -0.00102 0.00001
4 Mixed self-energy vacuum polarization [35, 84, 107] -0.00254
5 Hadronic vacuum polarization [108–110] 0.01121 0.00044
6 Recoil contribution Eqs. (82) and (83) [11, 36, 62, 85] 0.05747063
7 Relativistic recoil of order (Zα)5 Eq. (84) [11, 37–39, 41] -0.04497053
8 Relativistic Recoil of order (Zα)6 Eq. (86) [11, 37] 0.0002475
9 Recoil correction to VP of order m/M and (m/M)2 in Eq. (4) [72] -0.001987
10 Proton Self-energy [35, 37, 41, 111] -0.0108 0.0010
11 Proton polarization [18, 37, 109, 112, 113] 0.0129 0.0040
12 Electron loop in the radiative photon [98, 114–116] -0.00171

of order α2(Zα)4

13 Mixed electron and muon loops [117] 0.00007
14 Rad. Recoil corr. α(Zα)5 [61] 0.000136
15 Hadronic polarization α(Zα)5mr [109, 110] 0.000047
16 Hadronic polarization in the radiative [109, 110] -0.000015

photon α2(Zα)4mr
17 Polarization operator induced correction [110] 0.00019

to nuclear polarizability α(Zα)5mr
18 Radiative photon induced correction [110] -0.00001

to nuclear polarizability α(Zα)5mr

Total 0.0256 0.0041

and

EF=1
2p3/2
− EF=0

2s1/2
= E2p1/2 − E2s1/2 + E2p3/2 − E2p1/2

−
5
8

E2p3/2

HFS +
3
4

E2s
HFS + δEF=1

HFS.
(122)

Here we use the results from [105] for the 2p states:

E2p1/2

HFS = 7.964364 meV

E2p3/2

HFS = 3.392588 meV

δEF=1
HFS = 0.14456 meV.

(123)

Using the results presented above I get

EF=2
2p3/2
− EF=1

2s1/2
(RZ,R) = 209.92451 − 5.2265012R2

+ 0.035105381R3

+ 0.000085386880R4

+ 1.5472388 × 10−8R5

− 2.1359270 × 10−9R6

+ 0.040533092Rz
+ 0.00018596008RRz

+ 0.00026754376R2Rz

+ 0.000063748539R3Rz

− 0.00020892783Rz2

− 0.00032967277RRz2

− 0.00014609447R2Rz2

+ 0.000057775798Rz3

+ 0.00014693531RRz3

− 0.000030280142Rz4

+ 0.00029629676R2 log(R)

− 0.000047511471R4 log(R)
meV.

(124)

This can be compared with the result from
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U. Jentschura [84]

∆EJents.,F=2
2p3/2

− ∆EJents.,F=1
2s1/2

= 209.9974(48)

− 5.2262R2 meV,
(125)

using the 2s hyperfine structure of Ref. [40].
For the other transition I obtain

EF=1
2p3/2
− EF=0

2s1/2
(RZ,R) = 229.66172 − 5.2286594R2

+ 0.035967212R3

+ 0.000011416693R4

− 0.12159928RZ − 0.00055788025RRZ

− 0.00080263129R2RZ

− 0.00019124562R3RZ

+ 0.00062678350R2
Z

+ 0.00098901832RR2
Z

+ 0.00043828342R2R2
Z

− 0.00017332740R3
Z

− 0.00044080593RR3
Z

+ 0.000090840426R4
Z

+ 0.00029629676R2 log(R)

− 0.000047511471R4 log(R)
meV.

(126)

Using Eq. (124), a Zemach radius of 1.0668 fm from
Ref. [40] and the transition energy from Ref. [12], I
obtain a charge radius for the proton of 0.84091(69) fm
in place of 0.84184(69) fm in Ref. [12] and 0.8775(51) fm
in the 2010 CODATA fundamental constant adjustment.
This is 7.1 σ (using the combined σ) from the 2010 CO-
DATA value. A summary of proton size determinations
is presented in Table III and Fig. 14.

IX. CONCLUSION

In the present work, I have evaluated finite-size de-
pendent contributions to the n = 2 Lamb shift in muonic
hydrogen, to the fine structure and to the 2s hyperfine
splitting. The calculations were performed numerically,
to all order in the finite size correction, in the framework
of the Dirac equation. High-order size contributions to
the Uelhing potential and to higher-order QED correc-
tions been evaluated. The full dependance of the 2s hy-

perfine splitting on the proton charge distribution and
Zemach radius has been evaluated as well.

The discrepancy between the proton size deduced
from muonic hydrogen and the one coming from CO-
DATA is slightly enlarged when tacking into account all
the newly calculated effects. It is changed from 6.9 σ to
7.1 σ.
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FIG. 14. Plot of the proton size as a function of time and
method.
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Appendix A: Coefficients for the numerical evaluation of
the Källén and Sabry potential for a point nucleus

The functions defined in Eq. (35) are given here. We
find, for x ≤ 3, the functions valid for a point nucleus:

g0(r) = 0.00013575124407339550307r8

− 0.00012633396034194731891r7

+ 0.0023754193119115541914r6

− 0.0052460271878852635132r5

+ 0.16925588925254111005r4

− 0.25201860708873574898r3

+ 0.95109984162919008905r2

− 2.0864972181198001792r
+ 1.6459704071917522632,

(A1)

g1(r) = −0.000078684672329473358699r8

− 0.0012293141869424835524r6

− 0.097906849416525020713r4

− 0.41666290189975666225r2

+ 0.13769050748433509769

(A2)

and

g2(r) = −0.000012756169252850100497r8

+ 0.017425498169562658160r4

+ 0.44444444460943167625 .

(A3)

For x > 3, we fitted the coefficients in Eq. (40) to the
numerical values. We obtain

a = 4.3942926509010
b = −10.059551479890
c = 5.5493632222582
d = 5.3327556570422
e = −9.0762837836987
f = 5.1094977559523 .

Using these functions we reach an agreement to 9 deci-
mal place with both the result of the numerical evalua-
tion and the expansion from [68].
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Appendix B: Coefficients for the numerical evaluation of the
Källén and Sabry potential for a finite nucleus.

The coefficients for the functions defined in Eq. (39)
that we obtained are listed below:

h0(r) = −0.00001608988362060r9

+ 0.000015791745043r8

− 0.00036443366062r7

+ 0.0008743378646r6

− 0.038046259798r5

+ 0.063004651772r4

− 0.36332915853r3

+ 1.04324860906r2

− 2.39716878893r + 2.005566300

(B1)

g1(r) = 0.7511983817345282548

+ 0.13888763396658555408r2

+ 0.020975409736870016795r4

+ 0.00017561631242035479319r6

+ 9.057708511987165794 × 10−6r8

(B2)

and

g2(r) = −0.44444444460943167625

− 0.0034850996339125316319r4

− 1.4173521392055667219 × 10−6r8 .

(B3)


