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Stabilizability of Parabolic Systems

Mehdi Badra ∗†, Takéo Takahashi ‡§
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Abstract

In this paper, we extend an approximate controllability criterion for infinite dimensional linear systems
of type y′ = Ay+Bu, originally proved by H. O. Fattorini in [11] for bounded input B, to the case where B

is unbounded. We also prove that if Fattorini criterion is satisfied and if the set of geometric multiplicities of
A is bounded then approximate controllability can be achieved with a finite dimensional control. Thus, we
show that Fattorini criterion implies the feedback stabilizability of linear and nonlinear parabolic systems.

When considering systems discribed by partial differential equations such a criterion reduces to a unique
continuation theorem for an eigenvalue problem. We then consider flow systems described by coupled Navier-
Stokes type equations (such as MHD system or micropolar fluid system) and we sketch a systematic procedure
relying on Fattorini criterion for checking stabilizability of such nonlinear system. In particular, we provide
local Carleman inequalities for Stokes equations that permit to prove unique continuation theorems related
to the stabilizability of coupled Stokes type systems.

Key words. Approximate controllability, stabilizability, parabolic equation, finite dimensional control, coupled
- Stokes and MHD system.
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1 Introduction

In the present paper we address the question of the stabilizability of the linear system

y′ = Ay +Bu, (1)

where A is the infinitesimal generator of a semigroup (etA) on a complex Hilbert space H (in particular, D(A)
is dense in H and A is a closed linear operator) and where B is a linear and possibly unbounded input operator
defined on a complex Hilbert space U . In the particular case where (etA) is analytic our aim is to show some
necessary and sufficient conditions for (1) to be stabilizable by using a frequency approach. Such a stabilizability
criterion relies on an approximate controllability criterion originally proved by H. O. Fattorini in [11] in the case
of bounded operator B.

More precisely, [11, Corollary 3.3] states that if B is bounded, if the spectrum of A consists in isolated
eigenvalues with finite multiplicity and if its family of root vectors is complete, then (1) is approximately
controllable if and only if B∗ is one-to-one on each eigenspace of A∗, or equivalently, if the following “unique
continuation” property holds:

∀ε ∈ D(A∗), ∀λ ∈ C, A∗ε = λε and B∗ε = 0 =⇒ ε = 0. (UC)

In above settings, A∗ and B∗ denote the adjoints of A and B respectively. Condition (UC) is an infinite
dimensional version of the classical Hautus test introduced in [20] (see [34] for a stronger version for exact
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controllability). Note that (UC) can also be formulated as a linear independence condition related to the family
of eigenvectors of A∗: if {λj | j ∈ N} denotes the set of eigenvalues of A, if ℓj = dim ker(λj − A) denotes the
geometric multiplicity of λj and if {εk(λ̄j) | k = 1, . . . , ℓj} is a basis of ker(λ̄j − A∗) then (UC) is true if and
only if

for all j ∈ N
{
B∗εk(λj) | k = 1, . . . , ℓj

}
is a linearly independent family of U. (2)

Here we generalize the Fattorini criterion (UC) to the case of unbounded input operator and we show that it
is also a criterion for approximate controllability with finite dimensional control. More precisely, we prove that
approximate controllability of (1) by K-dimensional control in spanC{vl | l = 1, . . . ,K} ⊂ U holds if and only
if the following rank conditions hold:

∀j ∈ N, rank

(
(vl | B∗εk(λ̄j))U

)

1≤k≤ℓj ,1≤l≤K
= ℓj . (3)

From characterization (2) it is easily seen that (UC) and K ≥ sup{ℓj | j ∈ N} are necessary conditions for (3).
In the present paper, we prove that conditions (UC) and K ≥ sup{ℓj | j ∈ N} are also sufficient to obtain a
family {vl | l = 1, . . . ,K } satisfying (3). Moreover, we also prove that the set of such families is residual in UK ,
which means that approximate controllability of (1) by K-dimensional control is generically true if and only if
(UC) and K ≥ sup{ℓj | j ∈ N} hold (see Theorem 4 below).

In the parabolic case (i.e. if A generates an analytic semigroup on H) and if the spectrum of A consists in
isolated eigenvalues with finite multiplicity without any finite cluster point, unique continuation property (UC)
is also a stability criterion for (1). Indeed, in such situation only a finite number of the modes of the system have
to be controlled. More precisely, approximate controllability of (1) guarantees the stabilizability of the unstable
modes with finite dimensional control and then the stabilizability of the whole system is obtained by remarking
that the control does not destabilize the stable modes. Here we prove that (1) is generically stabilizable by finite
dimensional feedback control for an arbitrary rate of decrease if and only if (UC) is satisfied. More precisely, we
prove that (1) is generically stabilizable by K-dimensional feedback control for an exponential rate of decrease
σ > 0 if and only if K ≥ sup{ℓj | ℜλj ≥ −σ} and the following “unique continuation” property holds (see
Corollary 7 below):

∀ε ∈ D(A∗), ∀λ ∈ C, ℜλ ≥ −σ A∗ε = λε and B∗ε = 0 =⇒ ε = 0. (UCσ)

Moreover, by using stabilizability results of [6] for a certain class of nonlinear systems for which the linearized
system is stabilizable, it follows that (UC) is also a stabilizability criterion (see Theorem 10 and Theorem 11
below).

Finally, let us underline that in many practical examples system (1) is originally defined on a real Hilbert
space for control functions with values in a real control space. Thus above approximate controllability and
stabilization resuts are also stated in the real case (see Theorem 12 and Corollary 13 below).

The first works dealing with approximate controllability of infinite dimensional linear systems are due to H.
O. Fattorini in the pioneer papers [11, 12]. While [12] focus on the particular case of self-adjoint generators,
general semigroup generators are considered in [11] where the above mentioned infinite dimensional Hautus test
(UC) is proposed. Very surprisingly, the last quoted work has been published three years earlier than M. L. J.
Hautus famous paper [20]. It is also suggested in [11] that one can find a finite rank input operator such that
approximate controllability holds provided that the rank is greater or equal than the maximum of the geometric
multiplicities of A. However, nothing is said about the way of constructing such a finite rank input operator
(obtained for instance by simply restricting a given operator B to a finite dimensional subspace of U). A partial
answer is given in [37] where a generalization of the Kalman rank condition for approximate controllability of
system generated by strongly continuous semigroup in general Banach spaces is proposed. In the particular
case where A is a normal operator with compact resolvent, such a generalized Kalman condition reduces to
the matrix rank criterion (3) and permits to characterize admissible finite dimensional control subspaces, see
[37, eq.(3.5)]. About stabilizability problems, the idea of using finite dimensional rank feedback law stabilizing
linear parabolic systems goes back to [36, 38]. Note that in the case of self-adjoint generators with compact
resolvent, the rank conditions in (3) for j corresponding to the unstable modes appears in [36, eq.(7.2)] as a
stabilizability criterion.

One of the major interest of the Fattorini criterion is that proving (UC) is an easy alternative to obtain the
finite cost condition needed to construct stabilizing feedback law from well-posed optimal quadratic problem,
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see [3, Remark 2]. For instance, boundary feedback stabilizability of the Navier-Stokes system can be simply
reduced to a uniqueness result of type [10] and avoid more sophisticate approachs for the instationary system as
in [23, 14] or [15, 16]. Moreover, a systematic generalization of the last quoted works to other analogous more
complex systems such as coupled Stokes type systems or fluid-structure systems is not straightforward. Here,
with two examples of flow systems described by coupled Stokes type equations, we sketch a systematic procedure
relying on (UC) for checking nonlinear system stabilizability. We prove local Carleman estimates that permit to
check (UC) for general coupled Navier-Stokes systems and next we deduce feedback and dynamical stabilization
of nonlinear MHD and micropolar systems (see Corollary 17, Theorem 23 and Theorem 25). Concerning the
use of Fattorini criterion for feedback stabilization of fluid structure system we refer to forthcoming works [5, 4].

The rest of the paper is organized as follows. In Section 2, we state the main assumptions, we recall Fattorini
theorem and we enounce our main results. In Section 3, we give two simple examples of application involving the
heat equation, Section 4 is devoted to the proofs of the main results and we end the paper with two applications
to the stabilization of incompressible coupled Navier-Stokes type systems in Section 5.

2 Assumptions and abstract results

2.1 The Fattorini Theorem

Here we recall the Fattorini Theorem for approximate controllability of (1).
In what follows, H denotes a complex Hilbert space, A an unbounded operator with domain D(A) which

is the infinitesimal generator of a strongly continuous semigroup (eAt) on H. We assume that A satisfies the
following assumption:

(H1) the spectrum of A consists in isolated eigenvalues with finite multiplicity.

More precisely, (H1) means that the spectrum of A is composed with complex eigenvalues λj for j ∈ N and
that for all j ∈ N the projection operator:

R−1(λj) =
1

2πı

∫

|λ−λj |=α
(λ−A)−1dλ, (4)

has finite dimensional range. In (4) the value α > 0 is chosen small enough so that the circle {λ ∈ C | |λ−λj | = α}
does not enclose other point of the spectrum than λj . It is well-known that there exists some n ∈ N∗ such that
Ran(R−1(λj)) = ker(λj − A)n (see [24]) and we denote by m(λj) ∈ N∗ the smallest of such n. The finite
dimensional subspace ker(λj − A)m(λj) = Ran(R−1(λj)) is called the generalized eigenspace of A associated to
λj , its dimension Nj ∈ N∗ is called the algebraic multiplicity of λj and an element of ker(λj−A)m(λj) is called a
root vector of A. We also recall that the subspace ker(λj −A) is called the (proper) eigenspace of A associated
to λj and its dimension ℓj ∈ N∗ is called the geometric multiplicity of λj (recall that ℓj ≤ Nj).

We make the following second assumption on A:

(H2) The family of root vectors of A is complete in H, or equivalently:

ε = 0 ⇐⇒ ∀j ∈ N, ∀e ∈ ker(λj −A)m(λj), (ε|e)H = 0.

Remark 1. According to Keldy’s Theorem, assumption (H2) is satisfied by a class of perturbations of self-
adjoint operator: if A0 is a self-adjoint operator in H with compact resolvent, if A1 is an operator such that
A1(−A0)−α is bounded for some 0 ≤ α < 1, and if the eigenvalues (λj)j∈N of A0 satisfy for some 1 ≤ p < +∞:

∑

j∈N

1

|λj |p
< +∞, (5)

then A = A0 +A1 with domain D(A) = D(A0) is closed and its family of root vectors is complete in H, see [18,
Thm.10.1, p.276] or [35, Thm.5.6.1.3, p.394] combined with [35, Thm.5.6.1.1, p.392 and Lem.5.6.1.2, p.395].
Note that Weyl’s formula ensures that (5) is satisfied by regular self-adjoint elliptic operator, see [35, p.395].
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Next, let denote by U a complex Hilbert space and by B : U → H a linear mapping. Suppose for the
moment that B : U → H is bounded and for any τ > 0 define the input map:

Φτ (u) =

∫ τ

0

eA(τ−s)Bu(s) ds. (6)

The boundedness of B clearly implies that Φτ : L2(0,+∞;U) → H is well-defined and bounded. Moreover, for
t > 0 and y0 ∈ H the solution to (1) and y(0) = y0 is given by y(t) = eAty0 + Φt(u).

System (1) is said to be approximately controllable1 if ∪τ>0 Ran Φτ is dense in H. It can be checked that
system (1) is approximately controllable, if and only if, for any y1 ∈ H and for any ε > 0, there exists
u ∈ L2(0,+∞;U) such that the solution y of (1) with y(0) = 0 satisfies ‖y(τ)− y1‖H < ε for some τ , depending
in general on y1 and ε. If τ can be chosen independently on y1 and ε, or equivalently if Ran Φτ is dense in H,
then (1) is said to approximately controllable in time τ . It can be checked that system (1) is approximately
controllable in time τ , if and only if, for any y0, y1 ∈ H and for any ε > 0, there exists u ∈ L2(0,+∞;U) such
that the solution y of (1) with y(0) = y0 satisfies ‖y(τ) − y1‖H < ε. Finally, (1) is said to be approximately
controllable in any time if for all τ > 0 it is approximately controllable in time τ .

It is well known that approximate controllability can be characterized in terms of the adjoint of Φτ . Let
denote by A∗ (with domain D(A∗)) the adjoint of A and by B∗ : H → U the adjoint of B. Then the adjoint of
Φτ is given by:

∀ε ∈ H, (Φ∗
τε)(t) =

{
B∗eA

∗(τ−t)ε for t ∈ [0, τ ]
0 for t > τ,

(7)

and a straightforward consequence of the equivalence Ran Φτ
H

= H ⇔ ker Φ∗
τ = {0} is that (1) is approximately

controllable in time τ , if and only if the following uniqueness result holds:

∀ε ∈ H, B∗eA
∗tε = 0 (t ∈ (0, τ)) =⇒ ε = 0. (8)

Moreover, from ∪τ>0 Ran Φτ
H

= H ⇔ ∩τ>0 ker Φ∗
τ = {0} we also get that (1) is approximately controllable, if

and only if the following uniqueness result holds:

∀ε ∈ H, B∗eA
∗tε = 0 (t ∈ (0,+∞)) =⇒ ε = 0. (9)

We are now in position to enounce the Fattorini Theorem stated in [11, Cor.3.3].

Theorem 2 (Fattorini 1966). Assume (H1) and (H2) and that B : U → H is bounded. System (1) is approxi-
mately controllable if and only if (UC) is satisfied.

It is underlined in [12, Rem. 1] that approximate controllability and approximate controllability in any time
are equivalent notions under the following additional assumption:

(H3) A is the infinitesimal generator of an analytic semigroup on H.

Indeed, this follows from the fact that (H3) allows to extend equality B∗eA
∗tε = 0 from (0, τ) to (0,+∞) by

analytic continuation. As a consequence, the following corollary holds.

Corollary 3. Assume (H1), (H2) and (H3) and that B : U → H is bounded. System (1) is approximately
controllable in any time if and only if (UC) is satisfied.

2.2 The case of unbounded input operator and of finite dimensional control

Theorem 2 can be extended to the case where B is not necessarily bounded from U into H. In what follows,
we fix µ0 > supj∈N ℜλj so that fractional powers of (µ0 − A∗) and (µ0 − A) are well defined and for α ∈ R we
introduce the spaces:

Hα
def

=

{
D((µ0 −A)α) if α ≥ 0
D((µ0 −A∗)α)′ if α < 0,

and H∗
α

def

=

{
D((µ0 −A∗)α) if α ≥ 0
D((µ0 −A)α)′ if α < 0,

(10)

where D((µ0 − A)α)′ [resp. D((µ0 − A∗)α)′] stands for the dual space of D((µ0 − A)α) [resp. D((µ0 − A∗)α)]
with respect to H.

We assume that B satisfies the following assumption:

1or completely controllable in the terminology of H.O. Fattorini
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(H4) (i) B : U → H−γ is bounded for some γ ≥ 0.

(ii) For some β ∈ [γ − 1, γ] we have:
RanΦτ ⊂ H−β . (11)

Assumption (H4)(i) means that (µ0 − A)−γB : U → H is bounded for some γ ≥ 0. For instance, the heat
equation with Dirichlet boundary control corresponds to γ = 3

4 + ǫ, ǫ > 0, and the heat equation with Neumann
boundary control corresponds to γ = 1

4 + ǫ, ǫ > 0 (see [7, Part IV, par. 2, examples 1.1 and 1.2]). Under
(H4)(i) the linear system (1) can be interpreted in H−γ instead of H: Φτ defined by (6) is now bounded from
L2(0,+∞;U) into H−γ and then the solution to (1) for y(0) = y0 ∈ H−γ and u ∈ L2(0,+∞;U) belongs to
C([0,+∞);H−γ). However, in many situations the trajectory y may be more regular. For instance, when (H3)
is true maximal regularity result for analytic semigroup ensures that y ∈ C([0,+∞);H 1

2
−γ) which corresponds

to β = γ − 1
2 in assumption (H4)(ii). Indeed, if the admissibility condition (11) holds for a specific τ > 0 then

(11) holds for all τ > 0 and Φτ is bounded from L2(0,+∞;U) into H−β for all τ > 0, see [40, Prop. 4.2.2.]2.
Then assumption (11) implies that the solution to (1) for y(0) = y0 ∈ H−β belongs to C([0,+∞);H−β).

Of course, previous definitions of approximate controllability must be modified by just replacing H by H−β :
we now say that system (1) is approximately controllable if ∪τ>0 Ran Φτ is dense in H−β , that system (1) is
approximately controllable in time τ if Ran Φτ is dense in H−β and that system (1) is approximately controllable
in any time if Ran Φτ is dense in H−β for all τ > 0.

As before, those definitions can be equivalently stated in terms of uniqueness properties analogue to (8) or
(9). However, because the expression of Φ∗

τ given by (7) is valid for ε ∈ H∗
γ but not necessarily for ε ∈ H∗

β ,
expressions (8) or (9) must be slightly modified. Following [40, Par. 4.3 and Par. 4.4] we have

∀ε ∈ H∗
β , (Φ∗

τε)(t) =

{
(Ψε)(τ − t) for t ∈ [0, τ ]
0 for t > τ,

(12)

where Ψ denotes the uniquely determined extended output map Ψ : H∗
β → L2

loc([0,+∞);U) satisfying

(Ψε)(t) = B∗eA
∗tε ∀ε ∈ H∗

γ , t ≥ 0.

About existence and uniqueness of such Ψ, see [40, p. 123]3. Then we verify that (1) is approximately controllable
in time τ if and only if

∀ε ∈ H∗
β , (Ψε)(t) = 0 (t ∈ (0, τ)) =⇒ ε = 0, (13)

and that (1) is approximately controllable if and only if

∀ε ∈ H∗
β , (Ψε)(t) = 0 (t ∈ (0,∞)) =⇒ ε = 0. (14)

Another important extension for Theorem 2, which is of course interesting from applications point of view,
consists in replacing U by a strict subspace if possible of finite dimension. In what follows, v denotes an
infinite linearly independent family in ℓ2(N;U) or a finite linearly independent family in UK for some K ∈ N∗.
Here ℓ2(N;U) denotes the space of square-summable sequences of U . For such linearly independent family
v = (vj)j∈N ∈ ℓ2(N;U) or v = (vj)j=1,...,K we set Uv = spanC{vj}

U

and we introduce the restriction operator
B|Uv : Uv → H−γ defined by B|Uvu = Bu for u ∈ Uv. Then such a linearly independent family v is said to be
admissible if system

y′ = Ay +B|Uvu (15)

is approximately controllable. Moreover, if there exists an admissible finite family v = (vj)j=1,...,K (then
dimUv = K) we say that (1) is approximately controllable by a K-dimensional control.

As it has already been underlined in the introduction, it is suggested in [11, p.693] that if the geometric
multiplicities of A’s eigenvalues are bounded above by K ∈ N∗ then one can find an input operator defined
on a K-dimensional control space and such that (1) is approximately controllable. However, for a prescribed
input operator approximate controllability by a K-dimensional control is not established i.e. for a given infinite

2Although the quoted work only applies for γ = 1 and β = 0 the result can be recovered for γ ≥ 0 and β ∈ [γ − 1, γ] with the

change of variable Φ̃τ
def
= (µ0 −A)−βΦτ , because for such values γ, β we have (µ0 −A)−βB : U → H−1 bounded.

3Since the quoted work only applies for γ = 1 and β = 0 it can be used to justify the existence and the uniqueness of
Ψ̃ : H → L2

loc
([0,+∞);U) satisfying (Ψ̃ε)(t) = B∗(µ0 − A∗)−βeA

∗tε for all ε ∈ H∗
1
, t ≥ 0, and we check that Ψ = Ψ̃(µ0 − A∗)β

obeys the desired property.
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dimensional input B it is not said if it is possible to choose a K-dimensional subspace Uv ⊂ U such that (15)
is approximately controllable.

Here, we propose a generalization of Theorem 2 to the case of unbounded input which gives a precise
characterization of approximate controllability by a K-dimensional control and of admissibility for a family v.
For that, we need to introduce some additional notations. We recall that ℓj = ker(λj − A) = ker(λj − A∗) is
the geometric multiplicity of λj , we denote by εk(λj), k = 1, . . . , ℓj , a basis of ker(λj −A∗) and we set

E def

=
⊕

j∈N

ker(λj −A∗)
H

= spanC {εk(λj) | j ∈ N, k = 1, . . . , ℓj}
H

.

Moreover, for a given family v = (vj)j∈N ∈ ℓ2(N;U) we introduce the bounded linear operator

Wj(v) : Cℓj → ℓ2(N), x 7→




ℓj∑

k=1

xk(vl|B∗εk(λ̄j))U



l∈N

, (16)

and for a finite family v = (vj)j=1,...,K of UK we use the same notation for the following matrix of order K× ℓj :

Wj(v)
def

=

(
(vl | B∗εk(λ̄j))U

)

1≤l≤K, 1≤k≤ℓj
. (17)

The following generalization of Theorem 2 holds.

Theorem 4. Assume (H1), (H2) and (H4) and let K ∈ N∗. Then the following results hold.

1. System (1) is approximately controllable if and only if (UC) is satisfied.

2. System (1) is approximately controllable by a K-dimensional control if and only if (UC) is satisfied and

sup
j∈N

ℓj ≤ K. (18)

3. A family v is admissible if and only if

rankWj(v) = ℓj ∀j ∈ N. (19)

4. Assume that (UC) is true. Then the set of admissible families of ℓ2(N, U) forms a residual set of ℓ2(N, U).
Moreover, if v ∈ ℓ2(N, U) is admissible then its orthogonal projection onto ℓ2(N, B∗E) is admissible.

5. Assume that (UC) and (18) are true. Then the set of admissible families of UK forms a residual set of
UK . Moreover, if v ∈ UK is admissible then its orthogonal projection onto (B∗E)K is admissible.

Recall that a residual set of a topological space X is the union of countable open and dense subsets of X .
In particular, it is a dense subset of X .

Remark 5. Theorem 4 hold for approximately controllable in time τ > 0 instead of approximately controllable
if the following implication holds:

∀ε ∈ H∗
β , Ψ(ε)(t) = 0 (t ∈ (0, τ)) =⇒ Ψ(ε)(t) = 0 (t ∈ (0,+∞)).

Moreover, if (H3) is satisfied then conclusions of Theorem 4 hold for approximately controllable in any time
instead of approximately controllable. Indeed, B∗eA

∗tε for ε ∈ H∗
β is then well defined as an analytic function

of t ∈ (0,+∞) with values in U and the uniqueness of Ψ guarantees that Ψ(ε)(t) = B∗eA
∗tε for t ∈ (0,+∞)

and ε ∈ H∗
β. Then we can extend equality Ψ(ε)(t) = 0 from (0, τ) to (0,+∞) by analytic continuation and we

get (13) for any τ > 0. Such a remark is also true in the real case, see Theorem 12 below.

Remark 6. If −A is positive we can define its fractional powers (−A)α with 0 < α < 1, and we easily verify that
the set of eigenvectors of (−A)α and (−A∗)α coincide with the set of eigenvectors of A and A∗ respectively. Then
assumptions (H1), (H2) and (UC) holds for −(−A)α when they hold for A. Moreover, if (A,B) satisfies (H4)
for some γ ≥ 0 then (−(−A)α, B) satisfies (H4) for γ

α . Then under assumptions (H1), (H2), (H4) conclusions
of Theorems 4 are also true for −(−A)α with 0 < α < 1. This should be compared with the fact that the null
controllability of (A,B) does not imply the null controllability of (−(−A)α, B) for 0 < α < 1/2, see [30].
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2.3 Stabilizability of linear parabolic systems

Theorem 4 can be used to deduce results of feedback stabilization. In what follows, assume (H3) and replace
(H1) and (H4) by the following hypotheses:

(H′
1) the spectrum of A consists in isolated eigenvalues with finite multiplicity without any finite cluster point.

(H′
4) B : U → H−γ is bounded for some γ ∈ [0, 1).

Note that a sufficient condition for (H′
1) is that A has compact resolvent.

To check that (UC) is also a stabilizability criterion for system (1) the point is that (H′
1) and (H3) imply that

the subspace corresponding to eigenvalues of A with real part greater than zero (i.e the unstable subspace) is of
finite dimension. Then approximate controllability of (1) implies that the projection of (1) onto the unstable
subspace is controllable, and then stabilizability of (1) can be obtained as in [36] by verifying that stabilizing
controls for unstable modes does not destabilize the stables modes of (1). Here, assumption (H′

4) is only required
to guarantee that (1) is stabilizable for the topology of H. If we assume (H4) instead of (H′

4) then stabilizability
of (1) can also be obtained but for the topology of H−⌊γ⌋ where ⌊γ⌋ denotes the integer part of γ (just replace
the norm of H by the norm of H−⌊γ⌋ in inequality (59) in the proof of Corollary 7).

Before going further, let us give precise definitions. A pair (A,B) is said to be stabilizable if there exist a
bounded operator F : H → U and constants C > 0, ǫ > 0 such that the solutions of (1) with u = Fy obey
‖y(t)‖H ≤ Ce−ǫt‖y(0)‖H for all t ≥ 0. Note that for a given σ > 0 it is easily seen that (A+σ,B) is stabilizable
if and only if there exist a bounded operator F : U → H and C > 0, ǫ > 0 such that the solutions of (1) with
u = Fy satisfy

‖y(t)‖H ≤ Ce−(σ+ǫ)t‖y(0)‖H (t ≥ 0). (20)

Moreover, we say that (A,B) is stabilizable by K-dimensional control if there exists a K-dimensional subspace
UK ⊂ U such that (A,B|UK ) is stabilizable. A linearly independent family (vj)j=1,...,K of UK generating such
a UK (i.e. UK = spanC{vj , j = 1, . . . ,K}) is said to be admissible for stabilizability of (A,B). Note that in
such case there exists ε̂j ∈ H, j = 1, . . . ,K such that the finite dimensional feedback control can be written as
follows:

Fy(t) =
K∑

j=1

(y(t), ε̂j)Hvj . (21)

In what follows, for all σ > 0 we set

Eσ def

=
⊕

ℜλj≥−σ
ker(λj −A∗) = spanC{εk(λj) | ℜλj ≥ −σ, k = 1, . . . , ℓj}.

The following corollary of Theorem 4 holds.

Corollary 7. Assume (H′
1), (H3) and (H′

4) and let K ∈ N∗ and σ > 0. Then the following results hold.

1. The pair (A+ σ,B) is stabilizable if and only if (UCσ) is satisfied.

2. The pair (A+ σ,B) is stabilizable by a K-dimensional control if and only if (UCσ) is satisfied and

sup
ℜλj≥−σ

ℓj ≤ K. (22)

3. A family v = (vj)j=1,...,K of UK is admissible for stabilizability of (A+ σ,B) if and only if

rankWj(v) = ℓj ∀λj , ℜλj ≥ −σ. (23)

4. Assume that (UC) and (22) are true. Then the set of admissible families for stabilizability of (A+ σ,B)
forms a residual set of UK . Moreover, if v is admissible for stabilizability of (A+σ,B) then its orthogonal
projection onto (B∗Eσ)K is admissible for stabilizability of (A+ σ,B).

Remark 8. Note that (H2) is not required in Corollary 7. This comes from the fact that Corollary 7 is obtained
by applying Theorem 4 to the projection of system (1) onto the finite dimensional subspace generated by unstable
root vectors of A (i.e. the unstable subspace). Then by definition the family of unstable root vectors of A is
complete in the unstable subspace and (H2) is always satisfied for the projected system.
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Remark 9. From the applications point of view rank conditions (23) are of great interest since they are practical
criterions to construct admissible families of stabilizing actuators. For instance, a choice of v could be

v = (B∗εk(λ̄j))ℜλj≥−σ,k=1,...,ℓj .

Indeed, for such a v each matrix Wj contains the full rank block (B∗εk(λ̄j), B
∗εl(λ̄j))0≤k,l≤ℓj .

Finally, if F is the bounded stabilizing feedback operator given by Corollary 7 we can define the closed loop

operator AF
def

= A+BF with domain D(AF ) and the semigroup generated by AF is analytic on H (see [6, Prop.
10]). Moreover, if we define:

HF,α
def

= D((−AF )α) α ≥ 0, (24)

then we have the following generalization of (20):

‖y(t)‖HF,α ≤ Ce−(σ+ǫ)t‖y(0)‖HF,α (t ≥ 0). (25)

2.4 Stabilizability of nonlinear parabolic systems

Here, by following the path sketched in [6] we recall how Corollary 7 can be used to prove the stabilizability of
nonlinear systems:

y′ = Ay +Bu+N(y, u), (26)

where N(·, ·) is a nonlinear mapping satisfying adequate Lipschitz properties recalled below. For the following

F is the bounded stabilizing feedback operator given by Corollary 7 and AF
def

= A+BF .
First, we assume that the following interpolation equality is satisfied

Hα = [H,D(A)]α, ∀α ∈ [0, 1], (27)

where [·, ·]α denotes the complex interpolation method (see [35]). Concerning operators satisfying the above
interpolation equality we refer to [7, II.1.6] (for instance, it is satisfied if A is dissipative). Equality (27) is a
technical assumption that implies HF,α = [H,D(AF )]α for α ∈ [0, 1] and then simplifies the study of the linear
nonhomogeneous closed-loop system which is at the basis of the proofs of Theorem 10 and Theorem 11 below,
see [6] for details.

Next, we suppose that N(·, ·) obeys for s ∈ [0, 1]:

‖N(ξ, Fξ)‖H s−1
2

≤ C‖ξ‖HF, s
2

‖ξ‖H
F,
s+1
2

‖N(ξ, Fξ) −N(ζ, Fζ)‖H s−1
2

≤ C
(
‖ξ − ζ‖HF, s

2

(‖ξ‖H
F,
s+1
2

+ ‖ζ‖H
F,
s+1
2

)

+ ‖ξ − ζ‖H
F,
s+1
2

(‖ξ‖HF, s
2

+ ‖ζ‖HF, s
2

)
.

(28)

Finally, to state the stabilization theorems for (26) we need to introduce some spaces of Hilbert valued func-
tions of t ≥ 0. For two Hilbert spaces X , Y we denote by L2(0, T ;X ), L∞(0, T ;X ), H1(0, T ;Y) usual Lebesgue

and Sobolev spaces, we set W (0, T ;X ,Y)
def

= L2(0, T ;X ) ∩ H1(0, T ;Y) and W (X ,Y)
def

= W (0,+∞;X ,Y), we
denote by L2

loc(X ), L∞
loc(X ) the spaces of functions belonging for all T > 0 to L2(0, T ;X ), L∞(0, T ;X ) respec-

tively, and for σ > 0 we denote by Wσ(X ,Y) the space of functions y such that eσ(·)y ∈ W (X ,Y). Finally, for
s ∈ [0, 1] we use the shorter expression:

W s
σ

def

= Wσ(HF, s+1

2
, H s−1

2
).

Then the following theorem can be obtained analogously as [6, Thm. 15].

Theorem 10. Assume (H′
1), (H3), (H′

4) and (27), σ > 0 and let F (and K ∈ N∗) be given by Corollary 7 and
(21). For s ∈ [0, 1] assume also (28) and y0 ∈ HF, s

2
. There exist ρ > 0 and µ > 0 such that if ‖y0‖HF, s

2

< µ

then system (26) with y(0) = y0 admits a solution y ∈W s
σ such that ‖y‖W s

σ
≤ ρ‖y0‖HF, s

2

, which is unique within

the class of functions in
L∞
loc(HF, s

2
) ∩ L2

loc(HF, s+1

2
).

Moreover, there exists C > 0 such that for all t ≥ 0

‖y(t)‖HF, s
2

≤ Ce−σt‖y0‖HF, s
2

. (29)
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The main difficulty to apply Theorem 10 in concrete exemples is that one has to identify HF,α for α ∈ [0, 1].
Indeed, assumption (28) is usually obtained from boundedness property of N(·, ·) in original spaces that are not
related to F . Moreover, Theorem 10 is only valid for y0 ∈ HF, s

2
that can be too restrictive, see [2, 1].

An alternative to avoid such a difficulty and to obtain an exponential decrease in the norm of H s
2

is to use
a dynamical control. Consider a control function of the form:

u(t) =

K∑

j=1

uj(t)vj , u = (u1, . . . , uK) ∈ CK (30)

where (vj) is an admissible family for (1) and where u is solution of the following dynamical system:

u′ = F1u+ F2y. (31)

Here F1 and F2 are adequate coupling operators that are obtained as follows. First, define

V u
def

=

K∑

j=1

ujBvj ,

so that system (1)-(30) with u′ = g can be rewritten as the extended system:

[
y
u

]′
= A

[
y
u

]
+ Vg, where A

def

=

[
A V
0 0

]
, V

def

=

[
0
Id

]
(32)

Fuction g now plays the role of the control. Next, for θ ∈ [0, 1] let us introduce the following spaces

Hθ
def

= {(y, u) ∈ H × CK | y + (µ0 −A)−1V u ∈ Hθ}.

We verify that H1 is the domain of A and that if (A, V ) satisfies (H′
1), (H3) and (H′

4) then (A,V) satisfies
(H′

1), (H3) and (H′
4) with γ = 0. Moreover, it is easily seen that if (A, V ) satisfies (UC) then so does (A,V),

which means that if v is admissible for stabilizability of (A,B) then (32) is stabilizable, see [6] for details. Then
from Corollary 7 we have the existence of a finite rank operator (F1, F2) : CK ×H → CK × CK such that the
solutions of (1)-(30)-(31) obey

‖y(t)‖H + |u(t)| ≤ C(‖y(0)‖H + |u(0)|)e−σt,

where | · | denotes the euclidian norm of CK . Finally, we suppose that for s ∈ [0, 1]:

‖N(ξ, u)‖H s−1
2

≤ C‖(ξ, u)‖H s
2

‖(ξ, u)‖H s+1
2

‖N(ξ, u) −N(ζ, w)‖H s−1
2

≤ C
(
‖(ξ, u) − (ζ, w)‖H s

2

(‖(ξ, u)‖H s+1
2

+ ‖(ζ, w)‖H s+1
2

)

‖(ξ, u) − (ζ, w)‖H s+1
2

(‖(ξ, u)‖H s
2

+ ‖(ζ, w)‖H s
2

)
)
,

(33)

where we have used the notations:

u =
K∑

j=1

ujvj , w(t) =
K∑

j=1

wjvj , u = (u1, . . . , uK), w = (w1, . . . , wK),

and for s ∈ [0, 1] we define

Ws
σ =

{
(y, u) | (eσ(·)y, eσ(·)u) ∈ L2(H s+1

2
) ∩H1(H s−1

2
× CK)

}
.

Then the following theorem can be obtained analogously as [6, Thm. 18].

Theorem 11. Assume (H′
1), (H3), (H′

4), (27) and let σ > 0. For s ∈ [0, 1] assume also (33) and y0 ∈ H s
2
.

There exist ρ > 0 and µ > 0 such that if ‖y0‖H s
2

< µ then system (26)-(30)-(31) with y(0) = y0 and u(0) = 0

admits a solution (y, u) ∈ Ws
σ such that ‖(y, u)‖Ws

σ
≤ ρ‖y0‖H s

2

, which is unique within the class of functions in

L∞
loc(H s

2
) ∩ L2

loc(H s+1

2
). Moreover, there exists C > 0 such that for all t ≥ 0

‖(y(t), u(t))‖H s
2

≤ Ce−σt‖y0‖H s
2

.
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2.5 Approximate controllability and stabilizability of real systems

In many practical examples system (1) is originally defined on a real Hilbert space for control functions with
values in a real control space: A is originally defined as an unbounded operator on a real Hilbert space G (i.e.
A : D(A) ⊂ G → G) and the input B is originally defined as a bounded operator from a real Hilbert space W
into the real space G−γ (defined as H−γ in (10) but now from real operators A, A∗). Then for y(0) ∈ G−β
and u ∈ L2(0,+∞;W ) the trajectories t 7→ y(t) are continuous with values in the real Hilbert space G−β . In
such situation, (1) is referred as a real system and all the above definitions of approximate controllability and
admissibility can be stated for real spaces in the same manner as it has been done for complex spaces. It follows
that complex spaces H and U are simply the complexified spaces H = G+ ıG and U = W + ıW and to recover
the above complex framework it suffices to consider extensions of A and B to H and U respectively.

It is clear that the approximate controllability of the complex system implies the approximate controllability
of the real system. This follows by remarking that the complex system (1) can be decompose in two uncoupled
real systems corresponding to real and imaginary parts of (1). The same argument yields that if (vj)j is an
admissible family of U for the complex system then (ℜvj ,ℑvj)j is an admissible family of W for the real
system. In particular, if the complex system is approximately controllable by K-dimensional control then the
real system is approximately controllable by 2K-dimensional control. However, the fact that (18) and (UC) are
also sufficient for approximate controllability by K-dimensional control of the real system is not obvious. A
slight modification of the proof of Theorem 4 permits to obtain a real version of Theorem 4 stated in Theorem
12 below.

Before stating this result, we need some additional notations. Recall that for each λj the (complex) family
εk(λj), k = 1, . . . , ℓj , denotes a basis of ker(λj − A∗) and we denote by F the subspace of G generated by real
and imaginary parts of εk(λj). Note that when λj = λj is real we can suppose εk(λj) ∈ G. Moreover, since
A∗ is real its spectrum is symetric with respect to the real line and non real eigenvalues are pairwise conjugate
with pairwise conjugate basis of eigenvectors, i.e for all j ∈ N the complex value λj is also an eigenvalues of A∗

with corresponding basis of eigenvector {εk(λj) | k = 1, . . . , ℓj}. Then with

J0
def

= {j ∈ N | ℑλj = 0}, J+
def

= {j ∈ N | ℑλj > 0} and J−
def

= {j ∈ N | ℑλj < 0} (34)

the subspace F is also defined by:

F def

= spanR{χk(λj) | j ∈ N, k = 1, . . . , ℓj}
G

where χk(λj)
def

=





εk(λj) if j ∈ J0,

ℜεk(λj) if j ∈ J+,

ℑεk(λj) if j ∈ J−.
(35)

The following real version of Theorem 4 holds.

Theorem 12. Suppose that A and B are real operators defined from respective real Hilbert spaces G and W ,
assume that the complexified of A and B satisfy (H1), (H2) and (H4) and let K ∈ N∗. Then the following
results hold.

1. Real system (1) is approximately controllable if and only if (UC) is satisfied.

2. Real system (1) is approximately controllable by a K-dimensional control if and only if (UC) and (18)
are satisfied.

3. A family v ∈ ℓ2(N,W ) or v ∈ WK is admissible for stabilizability of (A + σ,B) if and only if (19) is
satisfied.

4. Assume that (UC) is true. Then the set of admissible families of ℓ2(N,W ) forms a residual set of ℓ2(N,W ).
Moreover, if v ∈ ℓ2(N,W ) is admissible then its orthogonal projection onto ℓ2(N, B∗F) is admissible.

5. Assume that (UC) and (18) are true. Then the set of admissible families of WK forms a residual set of
WK . Moreover, if v ∈WK is admissible then its orthogonal projection onto (B∗F)K is admissible.

We also have a real version of Corollary 7 stated in Corollary 13 below. If A and B are real operators defined
on real Hilbert spaces G and W respectively the pair (A,B) is referred as a real pair and the related definitions
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of stabilizability introduced in Subsection 2.3 are the same as above by replacing the complex spaces H and U
by the real spaces G and W . In such case, a (real) K-dimensional feedback law is of the form

Fy(t) =

K∑

j=1

(y(t), χ̂j)Gvj , (36)

where χ̂j ∈ G, j = 1, . . . ,K.
To state a real version of Corollary 7, we need to introduce the following subspace of W :

Fσ def

= spanR{χk(λ̄j) | ℜλj ≥ −σ, k = 1, . . . , ℓj},

where family (χk(λ̄j)) is defined by (35). The following corollary of Theorem 12 holds.

Corollary 13. Suppose that A and B are real operators defined from respective real Hilbert spaces G and W ,
assume that the complexified of A and B satisfy (H′

1), (H3) and (H′
4) and let K ∈ N∗ and σ > 0. Then the

following results hold.

1. The real pair (A+ σ,B) is stabilizable if and only if (UCσ) holds.

2. The real pair (A + σ,B) is stabilizable by a K-dimensional control if and only if (UCσ) and (22) are
satisfied.

3. A family v = (vj)j=1,...,K ofWK is admissible for stabilizability of (A+σ,B) if and only if (23) is satisfied.

4. Assume that (UC) and (22) are true. Then the set of admissible families for stabilizability of (A+ σ,B)
forms a residual set of WK . Moreover, if v is admissible for stabilizability of (A+σ,B) then its orthogonal
projection onto (B∗Fσ)K is admissible for stabilizability of (A+ σ,B).

Remark 14. If F is the bounded stabilizing feedback operator (36) given by Corollary 13 then in a way similar
as for (24) we can define GF,α. Then the analogue of (29) holds for the real closed-loop linear system and the
analogue of Theorem 10 and Theorem 11 hold for the real closed-loop nonlinear system, just replace complex
spaces CK , HF,α, HF, s

2
, H s

2
etc by real spaces RK , GF,α, GF, s

2
, G s

2
etc.

Remark 15. Note that in [33, 32] the authors choose the whole family of real and imaginary parts of generalized
eigenvectors as a stabilizing family. However, according to rank criterion (18) it is sufficient to choose the family
of real and imaginary parts of pure eigenvectors. The family v given below is admissible for stabilizability of
(A+ σ,B):

v = (B∗χk(λ̄j))ℜλj≥−σ,k=1,...,ℓj .

Indeed, if j ∈ J0 the above matrix contains the full rank block (B∗εk(λ̄j), B
∗εl(λ̄j))0≤k,l≤ℓj , and if j /∈ J0 the

matrix Wj contains the ℓj-rank block [Rj , Ij ] where

Rj = (B∗ℜεk(λ̄j), B
∗εl(λ̄j))0≤k,l≤ℓj and Ij = (B∗ℑεk(λ̄j), B

∗εl(λ̄j))0≤k,l≤ℓj .

This last claim comes from the fact that eigenvectors associated to eigenvalues {λj | ℜλj ≥ −σ} are pairwise
conjugate.

3 Simple examples with the heat equation

3.1 Example of coupled heat equations

Here we give a simple example of non diagonalizable system which consists in two coupled heat equations:





yt − ∆y + z = 0 in (0, T ) × Ω,
zt − ∆z = 1ωh in (0, T ) × Ω,
y = z = 0 on (0, T ) × ∂Ω,
y(0) = y0 and z(0) = z0 in Ω.

(37)
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Above, Ω is an open subset of Rd, d ≥ 1, (y0, z0) ∈ L2(Ω) × L2(Ω), ω is a non empty open subset of Ω, 1ω is
the characteristic function of ω and h ∈ L2((0, T ) × Ω) is the control function. System (37) can be rewritten in
the form (1) with

A =

(
∆ −I
0 ∆

)
and B =

(
0
1ω

)
.

It is clear that A with domain D(A) = (H2(Ω) ∩ H1
0 (Ω)) × (H2(Ω) ∩ H1

0 (Ω)) satisfies (H′
1), (H2), (H3) with

H = L2(Ω)×L2(Ω) and that B satisfies (H4) with U = L2(Ω)×L2(Ω) and γ = 0 (i.e. B is bounded). Moreover,
it is easily seen that

A∗ =

(
∆ 0
−I ∆

)
and D(A∗) = D(A).

Let denote by λj , j ∈ N, the Dirichlet Laplacian eigenvalues with geometric multiplicities ℓj and related basis
of eigenvectors {ξk(λj) | k = 1, . . . ℓj}. Simple computations show that the eigenvalues of A∗ are exactly the
λj ’s and that proper eigenspaces and generalized eigenspaces are given by

ker(λj −A∗) = span {εk(λj) | k = 1, . . . , ℓj}
ker(λj −A∗)2 = span {εk(λj), fk(λj) | k = 1, . . . , ℓj} ,

where

εk(λj)
def

=

(
0

ξk(λj)

)
, fk(λj)

def

=

(
ξk(λj)

0

)
.

Thus we are in the situation where m(λj) = 2 and where algebraic multiplicity of λj is Nj = 2ℓj while the
geometric multiplicity of λj is ℓj .

Finally, (UC) reduces to:




∆y = λy in Ω,
∆z − y = λz in Ω,
y = z = 0 on ∂Ω,

and z ≡ 0 in ω =⇒
{
y ≡ 0 in Ω,
z ≡ 0 in Ω.

(38)

To prove (38), suppose that the left part of (38) is satisfied with λ = λj for some j (otherwise the conclusion
is obvious). Then t(y, z) ∈ ker(λj − A∗) which implies y = 0 and the conclusion follows from Holmgren’s
uniqueness Theorem, see for instance [21, Thm.8.6.5, p.309]. In conclusion, Theorem 4 applies and (37) is
approximately controllable in any time.

3.1.1 Minimal number of actuators for the heat equation in a rectangular domain

Consider the d–dimensional controlled heat equation in a rectangle Ω =
∏d
i=1(0, ci) for d ≥ 2:





yt = ∆y in (0, T ) × Ω,
y = 1Γh on (0, T ) × ∂Ω,
y(0) = y0 in Ω.

(39)

In the above setting, 1Γ is the characteristic function of a non empty open subset Γ ⊂ {0} ×∏d
i=2(0, ci) and

h ∈ L2((0, T ) × ∂Ω) is the control function.
The eigenvalues of the Dirichlet Laplacian are given by

λα = −π2
d∑

i=1

(
αi
ci

)2

, α = (α1, . . . , αd) ∈ N∗d,

with related eigenvectors

ϕα(x) =
d∏

i=1

sin

(
π

ci
αixi

)
, x = (x1, . . . , xd) ∈ Ω.

It is classical that controlled system (39) can be written in the form (1) for linear operator A, B satisfying (H′
1),

(H2), (H3) and (H′
4) with γ > 3

4 . Moreover, (UC) reduces to





λϕ− ∆ϕ = 0 in Ω,
ϕ = 0 on ∂Ω,

∂ϕ
∂x1

= 0 on Γ,
=⇒ ϕ = 0 in Ω,
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which is an easy consequence of Holmgren’s uniqueness Theorem with an extension of the domain procedure.
As a consequence, (39) is approximately controllable and stabilizable by finite dimensional control. A remaining
question is how many actuators are required for approximate controllability or stabilizability?

Suppose that 1/c2i , i = 1, . . . , d are Q-linearly independent. Then a straightforward calculation shows that
the mapping α 7→ λα is one-to-one and then that the spectrum is simple (note that it is well-known that
the spectrum of the Dirichlet-Laplace operator is generically simple with respect to the domain see [29]). It
implies that (39) is approximately controllable, as well as stabilizable for all rate σ > 0, with a one dimensional
controller.

Suppose now that ci = π/c, i = 1, . . . , d for c > 0. Then the mapping α 7→ λα = −(π/c)2|α|2, |α|2 def

=∑d
i=1 α

2
i , is no longer one-to-one. This means that (39) is no longer approximately controllable with a one

dimensional controller. In fact, the sequence of geometric multiplicities

md
α = ♯{β ∈ N∗d | λβ = λα}, α ∈ N∗d,

is unbounded. This follows from the fact that md
α = rd(|α|2) ≥ r2(α2

1+α2
2) where rd(n) denotes the total number

of the representation of n as a sum of d square of positive integers, and that for instance r2(52p) = p + 1 for
p ∈ N∗, see [19, Thm. 278]. It means that the geometric multiplicities of the Dirichlet Laplacian in the square
are not bounded and that the approximate controllability with finite dimensional controllers is not possible.
However, for σ > 0 one can prove that the maximum of the geometric multicplicities md

α corresponding to

eigenvalues λα ≥ −σ is bounded by (
√
π)d−1

(2c)d−1Γ( d+1

2
)
σ
d−1

2 and then (39) is stabilizable for a rate σ > 0 by means of

a Kσ-dimensional control with

Kσ =

⌊
(
√
π)d−1

(2c)d−1Γ(d+1
2 )

σ
d−1

2

⌋
,

where ⌊x⌋ denotes the integer part of x. Indeed, by noticing that rd(n) is also the number of tuples of positive
integers which are on the d-sphere of ray

√
n we deduce first that rd(n) is bounded above by the number of

tuples of positive integers in the d − 1 ball of ray
√
n and thus that rd(n) is bounded above by the volume

occupied by the points of the d − 1 ball of ray
√
n which have positive coordinates: rd(n) ≤ π

d−1
2

2d−1Γ( d+1

2
)
n
d−1

2 .

Then the conclusion follows from:
max
λα≥−σ

md
α = max

|α|2≤σ/c2
rd(|α|2).

Finally, let us underline that the strategy consisting in choosing as many controllers as the number of modes
corresponding to eigenvalues greater than −σ (which is the strategy of [33, 32]) would lead to a number of

controllers Kσ
u = ⌊ (

√
π)d

(2c)dΓ( d
2
+1)

σ
d
2 ⌋, and that the ratio Kσ

u/K
σ behaves as (d+1)

√
π
√
σ

4c as σ → ∞.

4 Proof of the main results

4.1 Proof of the first point of Theorem 4 and of Theorem 12

First, let us prove point 1 of Theorem 4. We assume (H1), (H2), (H4) and we show that system (1) is
approximately controllable if and only if (UC) is satisfied.

Recall that system (1) is approximately controllable if and only if (A∗, B∗) is approximately observable in
infinite time (i.e. if (14) is true), and let us first prove that (UC) implies (14). For that, assume ε ∈ H∗

β (defined
in (10)) satisfies:

(Ψε)(t) = 0 (t ∈ (0,+∞)). (40)

The Laplace transform of (40) (see [40, Thm. 4.3.7]) first yields:

B∗(λ−A∗)−1ε =

∫ ∞

0

e−λt(Ψε)(t)dt = 0 for ℜλ ≥ µ0 > sup
j∈N

ℜλj

and next B∗(λ−A∗)−1ε = 0 for all for all λ ∈ ρ(A∗) by analytic continuation. Now define

R∗
−n(λ̄j) =

1

2πı

∫

|λ−λ̄j |=α
(λ− λ̄j)

n−1(λ−A∗)−1dλ, n ∈ {1, . . . ,m(λj)}
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where α > 0 is the same as in (4). Since B∗(λ−A∗)−1ε = 0 for all λ ∈ ρ(A∗) we deduce that

B∗R∗
−n(λ̄j)ε = 0 ∀n ∈ {1, . . . ,m(λj)}. (41)

Moreover, by easy computations we verify that

R∗
−n−1(λ̄j) + (λ̄j −A∗)R∗

−n(λ̄j) = 0 ∀n ∈ {1, . . . ,m(λj) − 1}. (42)

Finally, let us prove that (UC) with an inductive argument using (41), (42) yields

R∗
−1(λ̄j)ε = 0. (43)

By (42) we have R∗
−m(λj)

(λ̄j) = (A∗−λ̄j)m(λj)−1R∗
−1(λ̄j), and since Ran(R−1(λj)) = ker(λj−A)m(λj) we deduce

that R∗
−m(λj)

(λ̄j)ε ∈ ker(λ̄j−A∗). Then (41) with n = m(λj) combined with (UC) first gives R∗
−m(λj)

(λ̄j)ε = 0.

As a consequence, (42) with n = m(λj)− 1 yields R∗
−m(λj)+1(λ̄j)ε ∈ ker(λ̄j −A∗), and (41) with n = m(λj)− 1

combined with (UC) then gives R∗
−m(λj)+1(λ̄j)ε = 0. By reiterating the argument we successively obtain

R∗
−n(λ̄j)ε = 0 from n = m(λj) until n = 1. Finally, since (43) holds for all j ∈ N, with assumption (H2) we get

ε = 0.
Conversely, let us now prove that (14) implies (UC). Suppose that (UC) is false: there exist j0 ∈ N and an

eigenvector ε(λj0) 6= 0 (associated with the eigenvalue λj0) such that B∗ε(λj0) = 0. Moreover, since we have
(see [31, Chapter 2])

eA
∗tε(λj0) = eλ̄jtε(λj0),

then (Ψε(λj0))(t) = B∗eA
∗tε(λj0) = 0 for all t ∈ (0,+∞) and (14) is false.

Next, let us prove point 1 of Theorem 12. We assume (H1) and (H2) and we show that the real system (1)
is approximately controllable if and only if (UC) is satisfied. The fact that (UC) implies that real system (1) is
approximately controllable follows from the complex case since it reduces to prove

∀ε ∈ G∗
β , (Ψε)(t) = 0 (t ∈ (0,∞)) =⇒ ε = 0, (44)

where G∗
β is the real subspace of H∗

β defined as H∗
β in (10) but now from real domain of fractional powers.

Conversely, if (UC) is false then B∗ε(λj0) = 0 for some eigenvector ε(λj0) 6= 0. Then we also have B∗ℜε(λj0) = 0

and B∗ℑε(λj0) = 0 and taking real and imaginary part of eA
∗tε(λj0) = eλ̄jtε(λj0) (and using the fact that A is

real) we get:

eA
∗tℜε(λj0) = eℜλjt(cos(ℑλjt)ℜε(λj0) + sin(ℑλjt)ℑε(λj0))

eA
∗tℑε(λj0) = eℜλjt(cos(ℑλjt)ℑε(λj0) − sin(ℑλjt)ℜε(λj0)).

(45)

It implies (Ψℜε(λj0))(t) = B∗eA
∗tℜε(λj0) = 0 and (Ψℑε(λj0))(t) = B∗eA

∗tℑε(λj0) = 0 for all t ∈ (0,+∞).
Then since ε(λj0) 6= 0 we have ℜε(λj0) 6= 0 or ℑε(λj0) 6= 0 and it yields the existence of ε ∈ G∗

β (choose

ε = ℜε(λj0) or ε = ℑε(λj0)) satisfying (Ψε)(t) = 0 for all t ∈ (0,+∞). In conclusion, (14) is false.

4.2 Proof of points 2 to 5 of Theorem 4

In this section, we end the proof of Theorem 4. In the remaining part of this subsection we suppose that (H1),
(H2), (H4) are satisfied.

Proof of point 3. Let us treat the case v ∈ ℓ2(N, U). Consider here the controlled system (1) with

u =
∑

l∈N

ulvl, (46)

where v
def

= (vj)j∈N is a family to be chosen and where ū=(uj)j∈N is only depending on time and is the new

control. Here we are looking for families v
def

= (vj)j∈N ∈ ℓ2(N;U) such that the corresponding system is still
approximately controllable.

Let us introduce for all v ∈ ℓ2(N, U) the operator

V (v) : ℓ2(N) −→ H−γ , V (v)w̄
def

=
∑

l∈N

wlBvl where w̄ = (wl)l∈N. (47)
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Here ℓ2(N)
def

= ℓ2(N,C) denotes the space of square-summable complex sequences. The system considered here
and which is deduced from (1) can be written as

y′ +Ay = V (v)ū. (48)

In order to control the above system, we will apply point 1 of Theorem 4. Condition (UC) for (48) writes as

∀ε ∈ D(A∗), ∀λ ∈ C, A∗ε = λε and V (v)∗ε = 0 =⇒ ε = 0. (49)

It can be checked that the adjoint operator of V (v) is given by

V (v)∗ : H −→ ℓ2(N), V (v)∗ε = ((vl|B∗ε)U )l∈N, (50)

and it is clear that (49) is equivalent to (19). In conclusion, since the admissiblity of v is equivalent to the
approximate controllability of (49), we deduce that v is admissible if an only if (19) is satisfied. Finally, the
case v = (vj)j=1,...,K ∈ UK can be treated completely similarly. Just note that sums in (46), (47) are now finite
and hold over l = 1, . . . ,K and that we have to replace ℓ2(N) by CK in the definition (47) of V (v).

Proof of point 4. First, let us prove that if (UC) is true then the set of families v ∈ ℓ2(N, U) such that
(19) holds form a residual set of ℓ2(N, U) i.e the set of families v ∈ ℓ2(N, U) satisfying (19) is the intersection of
a countable family of open and dense subsets of ℓ2(N, U).

For all n ∈ N, let use the notation L(Cn, ℓ2(N)) for the space of linear continuous mappings from Cn into
ℓ2(N). We also denote by Rn the subset of L(Cn, ℓ2(N)) composed by the linear mapping of rank n. It is
well-known that Rn is an open and dense subset L(Cn, ℓ2(N)).

According to (16) we have
Wj : ℓ2(N, U) → L(Cℓj , ℓ2(N)).

The set of families v ∈ ℓ2(N, U) such that (19) holds for all j ∈ N can be written as

A =
⋂

j∈N

W−1
j (Rℓj ).

In order to prove that this set is residual, we prove that for all j ∈ N, W−1
j (Rℓj ) is an open dense subset of

ℓ2(N, U). Let us fix j ∈ N.
First, by using that Wj is a continuous mapping, we deduce that W−1

j (Rℓj ) is an open subset of ℓ2(N, U).

To prove the density, we proceed as in [6]: let us consider for all z = (zki ) ∈ Cℓj×ℓj ,

v(z) =
(
v(z1), . . . , v(zℓj )

)
, zk = (zk1 , . . . , z

k
ℓj ) (51)

with

v(zk) =

ℓj∑

i=1

zki B
∗εi(λ̄j). (52)

We consider the following determinant:

Pj(z)
def

= det




(v(z1)|B∗ε1(λ̄j))U . . . (v(zk)|B∗ε1(λ̄j))U . . . (v(zℓj )|B∗ε1(λ̄j))U
...

...
...

(v(z1)|B∗εi(λ̄j))U . . . (v(zk)|B∗εi(λ̄j))U . . . (v(zℓj )|B∗εi(λ̄j))U
...

...
...

(v(z1)|B∗εℓj (λ̄j))U . . . (v(zk)|B∗εℓj (λ̄j))U . . . (v(zℓj )|B∗εℓj (λ̄j))U



.

By using the multilinearity of the determinant, we deduce that Pj is polynomial in z and the coefficient of

z11 . . . z
ℓj
ℓj

is equal to

det




(B∗ε1(λ̄j)|B∗ε1(λ̄j))U . . . (B∗εk(λ̄j)|B∗ε1(λ̄j))U . . . (B∗εℓj (λ̄j)|B∗ε1(λ̄j))U
...

...
...

(B∗ε1(λ̄j)|B∗εk(λ̄j))U . . . (B∗εk(λ̄j)|B∗εi(λ̄j))U . . . (B∗εℓj (λ̄j)|B∗εi(λ̄j))U
...

...
...

(B∗ε1(λ̄j)|B∗εℓj (λ̄j))U . . . (B∗εk(λ̄j)|B∗εℓj (λ̄j))U . . . (B∗εℓj (λ̄j)|B∗εℓj (λ̄j))U



. (53)
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By using the fact that (UC) is equivalent to (2) for all j ∈ N, we deduce that the above determinant is not
zero and then that the polynomial Pj is not identically zero. As a consequence, the complementary set Ocj of

its roots Oj is a dense subset of Cℓj×ℓj . Now we consider the mapping

Ψj :
[
(B∗Ej)⊥

]ℓj × Cℓj×ℓj × ℓ2(N, U) → ℓ2(N, U)

where Ej = spanC{ε1(λ̄j), . . . , εℓj (λ̄j)}, defined by

Ψj(U⊥, z, w) =

{
[U⊥]k + v(zk) if k ≤ ℓj
wk−ℓj−1 if k > ℓj .

Since Ψj is a linear onto mapping, the subset

Ψj(
[
(B∗Ej)⊥

]ℓj ×Ocj × ℓ2(N, U)) ⊂W−1
j (Rℓj )

is dense in ℓ2(N, U).

Proof of point 5. The proof is completely similar to the proof of point 4. Just, observe that K ≥ ℓj is
clearly a necessary condition for (19) with Wj(v) now defined by (17), and that it guarantees Rℓj 6= ∅ and that
determinants Pj of size ℓj × ℓj can be extracted from Wj(v).

Proof of point 2. The fact that (UC) and (18) imply that (1) is approximately controllable follows from
point 5. To prove the converse implication it suffices to remark that (UC) (or equivalently (2)) and (18) are
necessary conditions for (19).

4.3 Proof of points 2 to 5 of Theorem 12

In this section, we end the proof of Theorem 12. In the remaining part of this subsection we suppose that (H1),
(H2), (H4) are satisfied. It is sufficient to prove the point 4. Indeed, the point 3 is a direct consequence of the
point 3 of Theorem 4, the point 2 is a consequence of points 3 and 4, and the proof of the point 5 is completely
similar to the proof of the point 4.

Then let us prove that if (UC) is true then the set of families v ∈ ℓ2(N,W ) such that (19) holds form a
residual set of ℓ2(N,W ). The proof of the fact that the set of admissible family v ∈ ℓ2(N,W ) is the union of
open subsets of ℓ2(N,W ) is similar to the proof of Theorem 4, and we skip it. For the density we also follow
the same arguments as in the proof of Theorem 4, but instead of (51),(52) and Pj we have to consider for
(x, y) = (xki , y

k
i ) ∈ Rℓj×ℓj × Rℓj×ℓj :

v(x, y) =
(
v(x1, y1), . . . , v(xℓj , yℓj )

)
, xk = (xk1 , . . . , x

k
ℓj ), y

k = (yk1 , . . . , y
k
ℓj )

with

v(xk, yk) =

ℓj∑

i=1

xkiB
∗ℜεi(λ̄j) + yki B

∗ℑεi(λ̄j),

and the following determinants for j ∈ N:

Qj(x, y)
def

= det




(v(x1, y1)|B∗ε1(λ̄j))U . . . (v(xk, yk)|B∗ε1(λ̄j))U . . . (v(xℓj , yℓj )|B∗ε1(λ̄j))U
...

...
...

(v(x1, y1)|B∗εi(λ̄j))U . . . (v(xk, yk)|B∗εi(λ̄j))U . . . (v(xℓj , yℓj )|B∗εi(λ̄j))U
...

...
...

(v(x1, y1)|B∗εℓj (λ̄j))U . . . (v(xk, yk)|B∗εℓj (λ̄j))U . . . (v(xℓj , yℓj )|B∗εℓj (λ̄j))U



.

Since for z ∈ Cℓj×ℓj we have Qj(z, ız) = Pj(z) and Pj 6= 0 (see subsection 4.2) then Qj 6= 0 and we can conclude
in a way completely similar as for the complex case.
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4.4 Proof of Corollary 7 and of 13

We only prove Corollary 7. Corollary 13 can be obtained exactly in the same way, just replace complex spaces
by real spaces below. For the following we suppose that assumptions (H′

1), (H3) and (H′
4) are satisfied and we

first rewrite (1) in two equations, one related to the “unstable” modes and the other to the “stable” modes. Let
N ∈ N∗ be such that:

ℜλ0 ≥ ℜλ1 ≥ · · · ≥ ℜλN ≥ −σ > ℜλN+1 ≥ . . . , (54)

and set ΣN
def

= {λk | k = 1, . . . , N}. Thus, we split (1) in two equations, one related to the “unstable” modes
ΣN and the other to the “stable” modes Σ\ΣN (see [24, Par. III.4, Thm. 6.17, p.178]). For that, we introduce
the projection operator defined by

PN
def

=
1

2πı

∫

ΓN

(λ−A)−1dλ, (55)

where ΓN be a contour enclosing ΣN but no other point of the spectrum of A. Then the space H is the direct
sum of the two invariant subspaces HN = PNH and H−

N = (I − PN )H of A and the solution y of (1), which
can be rewritten y = yN + y−N with yN = PNy and y−N = (I − PN )y, is solution to systems:

y′N = ANyN +BNpNu ∈ HN , (56)

y−
′

N = A−
Ny

−
N +B−

Np
−
Nu ∈ H−

N . (57)

In the above setting, AN and A−
N denote the restriction of A to HN and H−

N respectively, and BN = PNBp
∗
N ,

BN = (I − PN )Bp∗−N where pN : U → UN and p−N : U → U−
N are the orthogonal projection operators on

UN
def

= {B∗ε | ε ∈ H∗
N

def

= P ∗
NH} and U−

N
def

= {B∗ε | ε ∈ H∗−
N

def

= (I − P ∗
N )H},

respectively. Note that their respective adjoints p∗N : UN → U and p−∗
N : U−

N → U are the inclusion maps. For
a detailed justification of the decomposition (56)-(57), see [6, 33].

Let us prove that (A+ σ,B) is stabilizable, if and only if, (UCσ) is satisfied.
The “only if” part is obtained by remarking that if for j ∈ {1, . . . , N} there is ε(λj) ∈ ker(A∗ − λj) obeying

ε(λj) 6= 0 and B∗ε(λj) = 0, then multiplying (1) by ε(λj) yields that every solution y of (1) satisfies:

(y(t)|ε(λj))H = eλjt(y(0)|ε(λj))H .
Since the above equality is independent on u and since ℜλj ≥ −σ, then (20) is false for any initial datum not
orthogonal to ε(λj).

Suppose now that (UCσ) is true and let us prove that (A+ σ,B) is stabilizable. For that, let us first verify
that (56) is null controllable. Assumptions (H1) and (H3) are obviously satisfied for AN and the fact that AN
obeys (H2) is a direct consequence of the definition of HN and of AN (the restriction of A to HN ). Moreover,
since the spectrum of AN is exactly ΣN , then (UC) for AN is exactly (UCσ). Then by Theorem 4 system (56) is
approximately controllable, and since null controllability and approximate controllability are equivalent notions
for finite dimensional systems we deduce that (56) is null controllable.

Then it follows that (AN + σ,BN ) is stabilizable: there is a FN : HN → UN such that the solution ŷN to
(56) with u = FN ŷN satisfies for some ǫ > 0:

‖ŷN (t)‖H ≤ Ce−(σ+ǫ)t‖PNy(0)‖H (t ≥ 0). (58)

For instance, the finite dimensional feedback law FN can be constructed with a Riccati operator obtained from
a quadratic minimizing problem as in [6]. Moreover the solution ŷ−N of (57) with u = FN ŷN is given by:

ŷ−N (t) = eA
−

N
t(I − PN )y(0) +

∫ t

0

eA
−

N
(t−s)B−

Np
−
NFN ŷNds,

= eA
−

N
t(I − PN )y(0) +

∫ t

0

(λ0 −A)γeA
−

N
(t−s)(I − PN )(λ0 −A)−γBFN ŷNds.

The last above equality follows by remarking that (λ0−A−
N )−γ = (λ0−A)−γ(I−PN ). Then with (H′

4), with the

fact that (54) and (H3) guarantee that for ǫ′ > 0 such that −(σ + ǫ′) > λN+1 we have ‖eA−

N
t‖H−

N
≤ Ce−(σ+ǫ′)t

and ‖(λ0 −A−
N )γeA

−

N
(t−s)‖H−

N
≤ C(t− s)−γe−(σ+ǫ′)(t−s), and with (58) we deduce:

‖ŷ−N (t)‖H ≤ C

(
e−(σ+ǫ′)t + e−(σ+ǫ)t

∫ t

0

e(ǫ−ǫ
′)(t−τ)

(t− τ)γ
dτ

)
‖y(0)‖H (t ≥ 0). (59)
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Then if we choose ǫ < ǫ′ the above inequality means that the feedback control constructed from the unstable
part of system (1) does not destabilize the stable part of system (1). Then we have proved that the solution of
(1) with u = FNPNy obeys (20) which is to say that (A+ σ,B) is stabilizable.

Finally, points 2, 3 and 4 are a direct consequence of Theorem 4 applied to the projected system (56).

5 Stabilizability of incompressible Navier-Stokes type systems

In the present section, we provide local Carleman inequalities for the Stokes system that are useful to prove
Fattorini criterion (UC) corresponding to Stokes and coupled Stokes like systems. Such inequalities will be
first used to recover in an easy way a uniqueness theorem for Oseen equations originally obtained by Fabre
and Lebeau in [10]. Next, we give two examples of uniqueness theorem for coupled Stokes like system: one
for an adjoint MHD system and one for an adjoint micropolar system. Finally, we deduce the stabilizability of
nonlinear MHD and micropolar systems.

5.1 Carleman inequalities for the Stokes system

In what follows, d = 2 or d = 3 and for an open subset D of Rd we denote L2(D;R), L2(D;C), H1(D;R),
H1(D;C), etc the usual Lebesgue and Sobolev spaces of functions with values in R or C. For a scalar function π or
a vector field z = t(z1, . . . , zd) ( t denotes the transpose) we define ∇π = t(∂x1

π, . . . , ∂xdπ), ∇z = (∂xjzi)1≤i,j≤d,
t∇z = (∂xizj)1≤i,j≤d and we use the notations Dsz

def

= ∇z + t∇z and Daz
def

= ∇z − t∇z. We recall that the

divergence of z is defined by div z =
∑d
j=1 ∂xjzj and the curl of z or π is defined by

curl z = ∂x1
z2 − ∂x2

z1 and curlπ =

(
∂x2

π
−∂x1

π

)
if d = 2,

and

curl z =




∂x2
z3 − ∂x3

z2
∂x3

z1 − ∂x1
z3

∂x1
z2 − ∂x2

z1


 if d = 3.

Note also that for two vector fields y, z the following relation holds:

(Day)z = S(z)curl y, (60)

where

S(z)
def

=

(
−z2
z1

)
if d = 2 and S(z)

def

=




0 z3 −z2
−z3 0 z1
z2 −z1 0


 if d = 3.

In what follows, O denotes a non empty bounded open subset of Rd of class C2 and ψ : O → R is a function
satisfying

ψ ∈ C2(O;R), ψ > 0 and |∇ψ| > 0 on O. (61)

Let us recall a well-known Carleman inequality for the Laplace equation.

Theorem 16. Let k ∈ {0, 1}, F0 ∈ L2(O;C) and F1 ∈ (L2(O;C))d. There exist C > 0 and τ̂ > 1 such that for
all τ ≥ τ̂ there exists ŝ(τ) such that for all s ≥ ŝ(τ) and for all u ∈ H1

0 (O;C) solution of

−∆u = F0 + divF1 in O

the following inequality holds:
∫

O

(
e(k−1)τψ|∇u|2 + s2τ2e(k+1)τψ|u|2

)
e2se

τψ

dx ≤ C

∫

O

(
sekτψ|F1|2 + s−1τ−2e(k−2)τψ|F0|2

)
e2se

τψ

dx. (62)

Inequality (62) for k = 1 can be obtained for instance from [22, Thm A.1] and (62) for k = 0 is obtained
by applying (62) with k = 1 to the equation satisfied by e−

τ
2
ψu. Note that the proof of (62) proposed in the

above quoted work is performed for a R-valued function u, but it is easily checked that it can be done in the
same way for a C-valued function u.

From Theorem 16, we deduce the following Carleman inequalities for the Stokes system.

18



Corollary 17. Let α ∈ R\{−1}. There exist C > 0 and τ̂ > 1 such that for all τ ≥ τ̂ there exists ŝ(τ) such
that for all s ≥ ŝ(τ) and for all (z, π) ∈ (H2

0 (O;C))d ×H1
0 (O;C) the following inequalities hold:

∫

O

(
|∇z|2 + s2τ2e2τψ|z|2

)
e2se

τψ

dx ≤ C

∫

O
(seτψ|div z + απ|2 + τ−2|∇π − ∆z|2)e2se

τψ

dx, (63)

∫

O
sτ2eτψ

(
|curl z|2 + |div z − π|2

)
e2se

τψ

dx ≤ C

∫

O
|∇π − ∆z|2e2seτψdx. (64)

Proof. Set f
def

= −∆z + ∇π and g
def

= div z. From −∆z = curl (curl z) −∇(div z) we get:

−∆z =
1

1 + α
(curl (curl z) −∇(g + απ) + αf) in O, (65)

−∆(curl z) = curl f in O, (66)

−∆(π − g) = −div f in O. (67)

Then (64) is obtained by applying (62) for k = 0 to (66) and to (67). Finally, (63) is obtained by first applying
(62) for k = 1 to (65) and next using the estimate of curl z given by (64).

5.2 Uniqueness theorem for the Oseen system

Here we give a first illustration of an application of Corollary 17 that allows to recover in an easy way a uniqueness
theorem for the Oseen equations. It also provides a sketch of the method of proof which is used in the next
section to obtain uniqueness theorems for coupled Stokes type systems. For λ ∈ C and wS ∈ (L∞

loc(Ω;R))d

consider the following eigenvalue problem:

λz − ∆z − (Dsz)wS + ∇π = 0 in Ω,

div z = 0 in Ω.
(68)

Let us prove that every z ∈ (H1
loc(Ω;C))d solution of (68) which vanishes in a non empty open subset ω ⊂⊂ Ω

must be identically zero in Ω. Such a distributed observability theorem has been first proved by Fabre and Lebeau
in [10] for Stokes equations with bounded potential. When ω has a smooth C2 boundary and wS ∈ (H2(Ω;R))d

the result has been obtained in [39]. Such a uniqueness theorem implies Fattorini criterion (UC) corresponding
to the linearized Navier-Stokes equations and permits to construct a feedback or a dynamical control stabilizing
the Navier-Stokes equations around a given stationary state wS , see [6] for details.

More precisely, we prove the following theorem.

Theorem 18. Let Ω be a connected open subset of Rd with d = 2 or d = 3, λ ∈ C and wS ∈ (L∞
loc(Ω;R))d.

Suppose that (z, π) ∈ (H1
loc(Ω;C))d × L2

loc(Ω;C) satisfies (68) and that z vanishes on a non empty open subset
of Ω. Then z is identically equal to zero in Ω and the function π is constant.

Proof. The proof consists in three steps.

Step 1. A local Carleman inequality. Let O ⊂⊂ Ω and ψ satisfying (61). From (63) and (64) with
α = 0 we get that every (z, π) ∈ (H2

0 (O;C))d ×H1
0 (O;C) satisfies:

∫

O

(
|∇z|2 + s2τ2e2τψ|z|2 + sτ2eτψ|π − divz|2

)
e2se

τψ

dx ≤

C

∫

O
(seτψ|div z|2 + |λz − ∆z − (Dsz)wS + ∇π|2)e2se

τψ

dx.

(69)

Indeed, it suffices to choose τ in (63) large enough so that the first order term (Dsz)wS is absorbed by the left
side of the inequality (since wS ∈ (L∞(O;R))d), and thus to choose s large enough so that the zero order term
λz is absorbed by the left hand side of the inequality. Thus, we combine the resulting inequality with (64).

Next, suppose that (z, π) ∈ (H1
loc(Ω;C))d × L2

loc(Ω;C) is a solution of (68). Let O1 and O∗ be two open
subsets of Rd satisfying

O1 ⊂⊂ O and O∗ def

= O \ O1, (70)

and let χ : O → R a cut-off function such that

χ ∈ C∞
c (O;R), χ ≡ 1 in O1 ⊂⊂ O and 0 ≤ χ ≤ 1 in O∗. (71)
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From (68) and regularity results for Stokes equations we get that (χz, χπ) ∈ (H2
0 (O;C))d ×H1

0 (O;C) satisfies:

λ(χz) − ∆(χz) − (Ds(χz))wS + ∇(χπ) = −[∆ + (wS · ∇) + (wS · t∇), χ]z + [∇, χ]π in Ω

div (χz) = [div, χ]z in Ω,
(72)

where [·, ·] denote commutators. Then applying (69) to (χz, χπ) and using the fact that commutators in (72)
are supported in O∗ we deduce that solutions of (68) obey:

∫

O1

e2se
τψ

(|z|2 + |π|2)dx ≤ Cχ,τ,ψ

∫

O∗

e2se
τψ

(|z|2 + |∇z|2 + |π|2)dx. (73)

Step 2. A local uniqueness theorem. Now let us use inequality (73) to prove that if z vanishes in
a relatively compact ball of Ω then z is necessarily zero in a neighborhood of such a ball. More precisely,
let x0 ∈ Rd and R > 0, denote by B(x0, R) the open ball centered at x0 with radius R and suppose that
B(x0, R) ⊂⊂ Ω and z ≡ 0 in B(x0, R). Since ∂B(x0, R) is compact, to prove that z vanishes in an open
neighborhood of ∂B(x0, R) it suffices to prove that for each x1 ∈ ∂B(x0, R) there is a ball B(x1, ε), ε > 0, in
which z vanishes.

For x1 ∈ ∂B(x0, R) choose O = B(x1, r), O1 = B(x1, r/2), O∗ = O\O1 with 0 < r < R/2 small enough
such that B(x0, R) ∪ O ⊂ Ω and set

ψ(x) = C0 − |x− x0|2 −
1

2
|x− x1|2,

where C0 > 0 is large enough so that ψ > 0 in O. Moreover, we verify that |∇ψ| > 0 and then (61) is satisfied.
Thus, set V = O \ B(x0, R), Vε = B(x1, ε) \ B(x0, R) for ε > 0 and V∗ = O∗ \ B(x0, R). Since we have
ψ(x) < ψ(x1) for all x ∈ V∗, by continuity we get for ε > 0 small enough:

max
V∗

ψ
def

= ψ∗ < ψ1
def

= min
Vε

ψ. (74)

From (68) and z ≡ 0 in B(x0, R) we get that ∇π is zero in B(x0, R) and then π = π ∈ R is constant in B(x0, R).
Then we apply (73) to (z, π − π) (which satisfies (68)) and since z and π − π vanish in B(x0, R) we obtain

∫

Vε
(|z|2 + |π − π|2)dx ≤ e2s(e

τψ∗−eτψ1 )Cχ,τ,ψ

∫

V∗

(|z|2 + |∇z|2 + |π − π|2)dx.

Inequality (74) implies that the right side of the above inequality tends to zero as s goes to infinity, which yields
z ≡ 0 and π ≡ π in Vε.

Step 3. A Connectivity argument. Suppose that z is a non zero solution of (68) which is vanishing
in an open subset of Ω, that is to say Supp(z) 6= Ω and Supp(z) 6= ∅. Because Ω is connected and Supp(z)
is a closed subset of Ω we have that Supp(z) is not an open subset of Ω. As a consequence, there exists
x∗ ∈ Supp(z) and R∗ > 0 small enough such that B(x∗, R∗) ∩ (Ω\Supp(z)) 6= ∅ and B(x∗, R∗) ⊂ Ω. Then we
can choose x0 ∈ Ω \ Supp(z) and R0 > 0 such that B(x0, R0) ⊂ B(x∗, R∗) and x∗ ∈ B(x0, R0) (for instance, for
x∗0 ∈ B(x∗, R∗) ∩ (Ω\Supp(z)) choose x0 = x∗ + 1

3 (x∗0 − x∗) and R0 = 2
3 |x∗0 − x∗|). To summerize, we have:

x0 ∈ Ω \ Supp(z), B(x0, R0) ⊂ Ω and B(x0, R0) ∩ Supp(z) 6= ∅. (75)

Next, because Ω\Supp(z) is open in Rd, there exists r0 ∈ (0, R0) such that B(x0, r0) ⊂ Ω\Supp(z), and we can

introduce the value R̂ ∈ [r0, R0) defined by

R̂
def

= sup{R > 0 | B(x0, R) ⊂ Ω\Supp(z)}.

Since Ω\Supp(z) is open the above infimum is a maximum and B(x0, R̂) ⊂ Ω\Supp(z). Moreover, recall that

(75) guarantees B(x0, R̂) ⊂ B(x0, R0) ⊂ Ω and R̂ < R0 which implies B(x0, R̂) ⊂⊂ Ω. Then according to

Step 2 above there exists ε > 0 such that B(x0, R̂+ ε) ⊂ Ω \ Supp(z) which contradicts the definition of R̂. In
conclusion, Supp(z) = ∅ or Supp(z) = Ω, which is to say that a non zero solution z of (68) cannot vanish on an
open subset of Ω.

Remark 19. Note that the key argument in the proof of Theorem 18 is to obtain the local Carleman inequality
(69) related to Oseen system. Steps 2 and 3 of the proof are standard and have been recalled for readability
convenience, see for instance [25] or [40, Appendix IV].
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5.3 Uniqueness theorem for adjoint MHD system

Corollary 17 also permits to prove a distributed observability theorem for coupled Oseen systems. Here we prove
a uniqueness theorem related to the stabilizability of a MHD system (see Subsection 5.5 below).

For wS ∈ (L∞
loc(Ω;R))d and θS ∈ (L∞

loc(Ω;R))d consider the following adjoint linearized MHD system:





λz − ∆z − (Dsz)wS + (Daρ)θS + ∇π = 0 in Ω,

λρ− ∆ρ+ (Dsz)θS − (Daρ)wS + ∇κ = 0 in Ω,

div z = div ρ = 0 in Ω.

(76)

Theorem 20. Let Ω be a connected open subset of Rd with d = 2 or d = 3, λ ∈ C, wS ∈ (L∞
loc(Ω;R))d and

θS ∈ (L∞
loc(Ω;R))d. Suppose that (z, π) ∈ (H1

loc(Ω;C))d × L2
loc(Ω;C) and (ρ, κ) ∈ (H1

loc(Ω;C))d × L2
loc(Ω;C)

satisfy (76) and that z and curl ρ vanish on a non empty open subset ω ⊂⊂ Ω. Then z and curl ρ are identically
equal to zero in Ω, the function π is constant and ∇κ = −λρ.

Proof. The point is to use Corollary 17 to get an inequality for (76) analogue to (73). Then the result will
follow from a local uniqueness theorem and a connectivity argument completely analogous to steps 2 and 3 of
the proof of Theorem 18.

First, set ζ
def

= curl ρ, apply the operator curl to the second equality in (76) and use (60) to get





λz − ∆z − (Dsz)wS + S(θS)ζ + ∇π = 0 in Ω,

λζ − ∆ζ + curl
(
(Dsz)θS − S(wS)ζ

)
= 0 in Ω,

div z = 0 in Ω.

(77)

Next, let O ⊂⊂ Ω and ψ : O → R satisfying (61), suppose for the moment that (z, ζ, π) ∈ (H2
0 (O;C))d ×

(H2
0 (O;C))2d−3 ×H1

0 (O;C) and let us prove that such (z, ζ, π) obeys

∫

O

(
s2τ2e2τψ|z|2 + sτ2eτψ(|π − div z|2 + |ζ|2)

)
e2se

τψ

dx

≤ C

∫

O
(seτψ|div z|2 + |L1(z, ζ, π)|2 + |L2(z, ζ)|2)e2se

τψ

dx,

(78)

where

L1(z, ζ, π)
def

= λz − ∆z − (Dsz)wS + S(θS)ζ + ∇π,
L2(z, ζ)

def

= λζ − ∆ζ + curl
(
(Dsz)θS − S(wS)ζ

)
.

(79)

For that, first apply (62) to ζ (with k = 0) and obtain

∫

O
sτ2eτψ|ζ|2e2seτψdx ≤ C

∫

O

(
s−2τ−2|L2(z, ζ) − λζ|2 + |(Dsz)θS − S(wS)ζ|2

)
e2se

τψ

dx. (80)

Thus, apply (63) (with α = 0) and (64) to (z, π), add the resulting inequality to (80) and choose τ and s large
enough so that the first order terms (Dsz)wS , (Dsz)θS and the zero order terms S(θS)ζ, S(wS)ζ, λz, λζ are
absorbed by the left hand side of the inequality.

Finally, let O1 and O∗ two open subsets of Rd satisfying (70) and let χ : O → R a cut-off function satisfying
(71). If (z, ζ, π) ∈ (H1

loc(Ω;C))d×(H1
loc(Ω;C))2d−3×L2

loc(Ω;C) satisfies (77) then by elliptic and Stokes regularity
we get that (χz, χζ, χπ) ∈ (H2

0 (O;C))d × (H2
0 (O;C))2d−3 ×H1

0 (O;C) and (78) applied to (χz, χζ, χπ) yields:

∫

O1

e2se
τψ

(|z|2 + |π|2 + |ζ|2)dx ≤ Cχ,τ,ψ

∫

O∗

e2se
τψ

(|z|2 + |∇z|2 + |π|2 + |ζ|2)dx. (81)

Then we conclude with a local uniqueness theorem and a connectivity argument as for Theorem 18.
Note that the facts that π is constant and that ∇κ = −λρ are direct consequences of the equations (76)

with z ≡ 0 and curl ρ ≡ 0 in Ω (since div ρ = 0 implies −∆ρ = curl curl ρ).
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Now assume that Ω is a bounded domain of Rd with a Lipschitz-continuous boundary, denote by n the unit
exterior normal vector field defined on ∂Ω and introduce the following N -dimensional space:

XN
def

= {y ∈ (L2(Ω))d | div y = 0 in Ω, curl y = 0 in Ω, y · n = 0 on ∂Ω}. (82)

The fact that the above space is finite dimensional is well-known, see for instance [9, Chap. IX] for a detailed
characterization of XN . We only recall that if Ω is simply-connected we have N = 0 and XN reduces to {0}
and if Ω is multiply-connected then N ≥ 1 is the number of cuts required to make Ω simply-connected. Note
that if d = 2 then N + 1 is exactly to the number of connected components of ∂Ω.

The following straightforward consequence of Theorem 20 holds.

Corollary 21. In addition to the hypotheses of Theorem 20, assume that Ω is a bounded domain of Rd with a
Lipschitz-continuous boundary and suppose that

ρ · n = 0 on ∂Ω. (83)

Then the following results hold.

1. If λ 6= 0 then z and ρ are identically equal to zero and the functions π and κ are constant in Ω.

2. If λ = 0 then z is identically equal to zero in Ω and ρ ∈ XN . Moreover, the functions π and κ are constant
in Ω. In particular, if Ω is simply-connected then ρ is identically equal to zero in Ω.

5.4 Uniqueness theorem for adjoint micropolar system

Corollary 17 also provides a distributed observability theorem related to stabilizability of a micropolar system
(see Subsection 5.6 below). Consider the following adjoint micropolar system:





λz − ∆z − (Dsz)wS − t(∇ρ)θS − curl ρ+ ∇π = 0 in Ω,

λρ− ∆ρ+ (Dsz)θS − (∇ρ)wS − curl z + ∇κ = 0 in Ω,

div z = 0, div ρ+ κ = 0 in Ω.

(84)

Theorem 22. Let Ω be a connected open subset of Rd with d = 2 or d = 3, λ ∈ C, wS ∈ (L∞
loc(Ω;R))d and

θS ∈ (L∞
loc(Ω;R))d. Suppose that (z, π) ∈ (H1

loc(Ω;C))d × L2
loc(Ω;C) and (ρ, κ) ∈ (H1

loc(Ω;C))d × L2
loc(Ω;C)

satisfy (84) and that z and ρ vanish on a non empty open subset ω ⊂⊂ Ω. Then z and ρ are identically equal
to zero in Ω and the functions π and κ are constant.

Proof. Let us first consider two pairs (z, π) and (ρ, κ) of (H2
0 (O;C))d × H1

0 (O;C). By applying (63), (64) to
(z, π) with α = 0 and (63), (64) to (ρ, κ) with α = 1, and choosing τ and s large enough to absorb the zero and
first order terms in z, ρ we get:

∫

O

(
s2τ2e2τψ(|z|2 + |ρ|2) + sτ2eτψ(|π − div z|2 + |κ− div ρ|2)

)
e2se

τψ

dx

≤ C

∫

O
(seτψ(|div z|2 + |div ρ+ κ|2) + (|L1(z, ρ, π)|2 + |L2(z, ρ, κ)|2))e2se

τψ

dx,

(85)

where

L1(z, ρ, π)
def

= λz − ∆z − (Dsz)wS − t(∇ρ)θS − curl ρ+ ∇π,
L2(z, ρ, κ)

def

= λρ− ∆ρ+ (Dsz)θS − (∇ρ)wS − curl z + ∇κ.

Thus, let O1 and O∗ two open subsets of Rd satisfying (70) and let χ : O → R a cut-off function satisfying (71).
For (z, π, ρ, κ) satisfying (84) we apply inequality (85) to (χz, χπ, χρ, χκ) and obtain

∫

O1

e2se
τψ

(|z|2 + |π|2 + |ρ|2 + |κ|2)dx ≤ Cχ,τ,ψ

∫

O∗

e2se
τψ

(|z|2 + |∇z|2 + |π|2 + |ρ|2 + |∇ρ|2 + |κ|2)dx. (86)

Then we conclude with a local uniqueness theorem and a connectivity argument as for Theorem 18.
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5.5 Stabilizability of MHD system

Here we show how the use of Theorem 20 permits to check an adequate Fattorini criterion ensuring stabilizability
of a nonlinear MHD system.

Let Ω be a bounded open subset of R3 of class C2,1 (in order to freely use H2 Stokes regularity) and consider
a stationary solution (wS , θS , rS) of the following MHD system:





−∆wS + (wS · ∇)wS − (curl θS) × θS + ∇rS = fS in Ω,

curl(curl θS) − curl(wS × θS) = 0 in Ω,

divwS = div θS = 0 in Ω.

(87)

Here wS(x) ∈ R3 represents the velocity of the fluid, pS(x) ∈ R is the pressure, θS(x) is the magnetic field,
fS(x) is a given stationary body force, n denotes the unit exterior normal vector field defined on ∂Ω and ×
denotes the vector product. Let also underline that in (87), usual non-dimensional constants that characterize
the flow (Hartmann number, interaction parameter and magnetic Reynolds number) are supposed to be equal
to one for simplicity. Concerning the well-posedness of system (87) we refer to [28]. In the following, wS and
θS are supposed to be smooth enough: wS ∈ (H2(Ω;R))3 and θS ∈ (H2(Ω;R))3.

Our aim is to stabilize a given solution of (87) by means of a distributed control localized in an open subset
ω ⊂⊂ Ω. More precisely, for (y0, ϑ0) ∈ (L2(Ω;R))3 × (L2(Ω;R))3 satisfying

div y0 = div ϑ0 = 0 in Ω and y0 · n = ϑ0 · n = 0 on ∂Ω, (88)

consider the following instationary MHD system





wt − ∆w + (w · ∇)w − (curl θ) × θ + ∇r = fS + 1ωu
1 in Q,

θt + curl(curl θ) − curl(w × θ) = 1ωPωu
2 in Q,

divw = div θ = 0 in Q,

w = wS , θ · n = θS · n on Σ,

(curl θ − w × θ) × n = (curl θS − wS × θS) × n on Σ,

w(0) = wS + y0, θ(0) = θS + ϑ0 in Ω,

(89)

where Q
def

= (0,+∞) × Ω and Σ
def

= (0,+∞) × ∂Ω. Here 1ω is the extension operator defined on (L2(ω))3 by
1ω(y)(x) = y(x) if x ∈ ω and 1ω(y)(x) = 0 else, u = (u1, u2) is a control function in (L2((0, T ) × ω;R))3 ×
(L2((0, T )×ω;R))3 and Pω is the classical Helmholtz projector related to ω (i.e the orthogonal projection oper-
ator from (L2(ω;R))3 onto the completion of {v ∈ (C∞

0 (ω;R))3 | div v = 0 in ω} for the norm of (L2(ω;R))3).
Note that the particular form of the second control operator guarantees that the right hand side of the magnetic
field equation is divergence free and then permits to deduce the boundary stabilization from internal stabiliza-
tion with a classical extension of the domain procedure. Indeed, because the orthogonal complement of the
range of Pω is composed with ∇p ∈ (L2(ω;R))3 for p ∈ (H1

loc(ω;R))3 (see [17, Chap. III]), we have

∀p ∈ (H1
0 (Ω))3 〈div 1ωPωu

2 , p〉(H−1(Ω))3,(H1
0 (Ω))3 =

∫

Ω

1ωPωu
2 · ∇p dx =

∫

ω

Pωu
2 · ∇p dx = 0.

The idea of using such a type of control for the magnetic field equation is due to [26] for the two dimensional
version of system (89). If Ω is supposed to be only bounded in directions x1, x2 and invariant in direction x3,
if all functions only depend on x1, x2 and if each vector field has its third component equal to zero (and then
is identified to its two first components i.e w(x) = t(w1(x1, x2), w2(x1, x2), 0) ≡ t(w1(x1, x2), w2(x1, x2)) etc),
then we can identify Ω to its bounded two dimensional section and (89) reduces to:





wt − ∆w + (w · ∇)w + (curl θ)θ⊥ + ∇r = fS + 1ωu
1 in Q,

θt + curl(curl θ) − curl(w · θ⊥) = 1ωPωu
2 in Q,

divw = div θ = 0 in Q,

w = wS , θ · n = θS · n on Σ

curl θ − w · θ⊥ = curl θS − wS · θS⊥ on Σ

w(0) = wS + y0, θ(0) = θS + ϑ0 in Ω,

(90)
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where (y0, ϑ0) ∈ (L2(Ω;R))2×(L2(Ω;R))2 satisfies (88) and u1, u2 both belong to (L2((0, T )×ω;R))2. We have
used the notation t(a1, a2)⊥ = t(a2,−a1). In [26] the stabilizability of (90) is obtained for a stationary pair
(wS , θS) ∈ (W 2,∞(Ω))2×(W 2,∞(Ω))2 satisfying homogeneous boundary conditions and for Ω simply-connected.
The main step of the proof is the checking of the approximate controllability criterion (8) related to the linear
instationary adjoint system associated to (90)

Here we extend such a stabilizability result to the three dimensional case and for stationary state only H2.
More precisely, we show the existence of finite dimensional control functions u, v in feedback form, such that for
all (y0, ϑ0) sufficiently small the solution (w, θ) of (89) (or of (90)) satisfies (w(t), θ(t)) → (wS , θS) as t→ ∞, see
Theorem 23 below. Note that our proof relies on a uniqueness theorem for a stationary system which is simpler
to handle (i.e we prove (UC) instead of (8)). Moreover, we will see that assuming Ω to be simply-connected is
essential for the stabilizability of the linear system obtained from (89) (or (90)) by linearizing around (wS , θS),
see Remark 24 below.

Our strategy consists in first rewriting (89) in the abstract form (26) with A, B, satisfying (H′
1), (H3), (H′

4);
second proving Fattorini criterion (UC) by using Corollary 21 with the fact that Ω is simply-connected; third
applying Theorem 10. Note that is the strategy sketched in [6] for the Navier-Stokes system and for which (UC)
is obtained from the uniqueness result for the Oseen system recalled in Theorem 18. For sake of clarity, we only
detail the calculations in the three dimensional case. Adaptation to the 2D case is straightforward and is left
to the reader.

Step 1. Abstract reformulation. With the following formulas of vectorial analysis:

(curl a) × a = (a · ∇a) −∇(|a|2/2) and curl(a× b) = (b · ∇)a− (a · ∇)b+ (div b)a− (div a)b

we first deduce that (y, ϑ, p) = (w − wS , θ − θS , r − rS + (|θ|2 − |θS |2)/2) obeys




yt − ∆y + (wS · ∇)y + (y · ∇)wS − (θS · ∇ϑ) − (ϑ · ∇θS) + ∇p = (ϑ · ∇ϑ) − (y · ∇y) + 1ωu
1 in Q,

ϑt + curl(curlϑ) − curl(y × θS) − curl(wS × ϑ) = (ϑ · ∇)y − (y · ∇)ϑ+ 1ωPω u
2 in Q,

div y = div ϑ = 0 in Q,

y(0) = y0, ϑ(0) = ϑ0 in Ω,

(91)
with boundary conditions

y = 0, ϑ · n = 0, (curlϑ− wS × ϑ) × n = 0 on Σ.

Note that with (wS × ϑ) × n = (wS · n)ϑ− (ϑ · n)wS and ϑ · n = 0, the above boundary conditions become

y = 0, ϑ · n = 0, (curlϑ) × n− (wS · n)ϑ = 0 on Σ. (92)

Next, we introduce the (real) spaces

G
def

= V0
n(Ω) ×V0

n(Ω) where V0
n(Ω)

def

= {y ∈ (L2(Ω;R))3 | div y = 0 in Ω, y · n = 0 on ∂Ω} (93)

we denote by P the Helmholtz projection operator related to Ω (i.e the orthogonal projection operator from
(L2(Ω;R))3 onto V0

n(Ω)) and we define the following linear operator A : D(A) ⊂ G→ G by

A

[
y
ϑ

]
=

[
P (∆y − (wS · ∇)y − (y · ∇)wS + (θS · ∇)ϑ+ (ϑ · ∇)θS)

−curl(curlϑ) + curl(wS × ϑ) + curl(y × θS)

]

D(A) =
{

(y, ϑ) ∈ (H2(Ω;R))3 × (H2(Ω;R))3 | div y = div ϑ = 0 in Ω,

y = 0, ϑ · n = 0 and (curlϑ× n− (wS · n)ϑ) = 0 on ∂Ω
}
.

Note that P does not appear in the second component of A t[y, ϑ] because curl(curlϑ − wS × ϑ − y × θS)
belongs to V0

n(Ω). In particular, the fact that its normal component is zero on the boundary comes from
y = (curlϑ− wS × ϑ) × n = 0 on ∂Ω with the following calculations for all q ∈ H1(Ω):

∫

∂Ω

curl(curlϑ− wS × ϑ− y × θS) · nqdσ =

∫

Ω

curl(curlϑ− wS × ϑ− y × θS) · ∇qdx

=

∫

∂Ω

(curlϑ− wS × ϑ− y × θS) × n · ∇qdσ = 0.
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Since Ω and (wS , θS) are regular enough, with analogous arguments as in [6, 3] we verify that A generates an
analytic semigroup and that it has compact resolvent. It implies that (H3) and (H′

1) are satisfied. Moreover,
we can verify that the adjoint of A is given by:

A∗
[
z
ρ

]
=

[
P (∆z + (Dsz)wS − (Daρ)θS)

P (∆ρ− (Dsz)θS + (Daρ)wS)

]

D(A∗) =
{

(z, ρ) ∈ (H2(Ω;R))3 × (H2(Ω;R))3 | div z = div ρ = 0 in Ω,

z = 0 on ∂Ω, ρ · n = (curl ρ) × n = 0 on ∂Ω
}
.

(94)

Moreover, if we define B : W → G as follows

W
def

= (L2(ω;R))3 × (L2(ω;R))3, B

[
u1

u2

]
def

=

[
P1ωu

1

1ωPω u
2

]
, (95)

then (H′
4) (for γ = 0) is satisfied. Finally, (91)-(92) can be rewritten in the form (26) with:

N

([
y
ϑ

]
,

[
u1

u2

])
def

=

[
P ((ϑ · ∇ϑ) − (y · ∇y))

(ϑ · ∇)y − (y · ∇)ϑ

]
. (96)

Step 2. Verification of Fattorini criterion. Since A and B satisfy (H′
1), (H3) and (H′

4), Corollary 13
applies and stabilizability of (A+σ,B) for all σ > 0 is reduced to (UC), which is to say that for all λ ∈ C, every
(z, π, ρ, κ) that satisfies:





λz − ∆z − (Dsz)wS + (Daρ)θS + ∇π = 0 in Ω,

λρ− ∆ρ+ (Dsz)θS − (Daρ)wS + ∇κ = 0 in Ω,

div z = div ρ = 0 in Ω,

(97)

with boundary data
z = 0, ρ · n = 0, (curl ρ) × n = 0 on ∂Ω, (98)

and such that
z = 0, Pωρ = 0 in ω, (99)

must be identically equal to zero in Ω. Note that (99) is equivalent to

z = 0, ρ = ∇p in ω for some p ∈ (H1
loc(ω;R))3. (100)

Then (100) implies z = curl ρ = 0 in ω and from Corollary 21, the fact that Ω is simply-connected guarantees
that the above uniqueness result is true.

Step 3. Stabilizing control for linear and nonlinear systems. From Corollary 13, there are families

((v1j , v
2
j ))j=1,...,K ∈ (B∗Fσ)K ⊂WK and ((ẑj , ρ̂j))j=1,...,K ∈ GK (101)

and a finite rank feedback operator F : G→W defined by

F

[
ξ
ζ

]
=

K∑

j=1

[
v1j
v2j

] ∫

Ω

(ξ · ẑj + ζ · ρ̂j) dx, (102)

such that A + BF with domain D(A + BF ) = D(A) (since B is bounded) is the infinitesimal generator af an
exponentially stable semigroup on G. Moreover, as it happens for the Navier-Stokes system treated in [6, 2],
Sobolev embeddings guarantee that nonlinearity (96) satisfies (28) only for s ∈ [d−2

2 , 1]. This yield the following
stabilization theorem for system (89) with feedback control

u1(t) =
K∑

j=1

v1j

∫

Ω

(
(w(t) − wS) · ẑj + (θ(t) − θS) · ρ̂j

)
dx,

u2(t) =

K∑

j=1

v2j

∫

Ω

(
(w(t) − wS) · ẑj + (θ(t) − θS) · ρ̂j

)
dx.

(103)
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Theorem 23. Let s ∈ [d−2
2 , 1], let Ω be a bounded and simply-connected open subset of Rd of class C2,1, let

(wS , θS) ∈ (H2(Ω;R))d × (H2(Ω;R))d satisfy (87) and let (y0, ϑ0) ∈ (Hs
0(Ω;R))d × (Hs

0(Ω;R))d satisfy (88).
For all σ > 0 there exists µ > 0 such that if

‖y0‖(Hs(Ω;R))d + ‖ϑ0‖(Hs(Ω;R))d ≤ µ,

then system (89)-(103) if d = 3 or system (90)-(103) if d = 2 admits a solution (w, r, θ) in

{(wS , rS , θS)} +Wσ((Hs+1(Ω;R))d, (Hs−1(Ω;R))d) ×H
s−1

2 (L2(Ω;R)/R) ×Wσ((Hs+1(Ω;R))d, (Hs−1(Ω;R))d)

which is unique within the class of function in

{(wS , rS , θS)} +Wloc((H
s+1(Ω;R))d, (Hs−1(Ω;R))d) ×H

s−1

2

loc (L2(Ω;R)/R) ×Wloc((H
s+1(Ω;R))d, (Hs−1(Ω;R))d).

Moreover, there exists C > 0 such that for all t ≥ 0 the following estimate holds:

‖w(t) − wS‖(Hs(Ω;R))d + ‖θ(t) − θS‖(Hs(Ω;R))d ≤ Ce−σt(‖w0 − wS‖(Hs(Ω;R))d + ‖θ0 − θS‖(Hs(Ω;R))d).

Remark 24. According to Corollary 21 the uniqueness result stated in step 2 is true if and only if Ω is simply-
connected. When Ω is multiply-connected and λ = 0, for each nonzero ρ̃ ∈ XN (defined by (82)) we have that

(z, π, ρ, κ)
def

= (0, 0, ρN , 0) satisfies (97)-(98)-(99). Then there is a N -dimensional subspace of eigenvectors related
to the zero eigenvalue which is uncontrollable and the linear system obtained from (89) by linearizing around
(wS , θS) is not stabilizable. Of course, this does not imply that the full nonlinear system is not stabilizable (see
[8]).

5.6 Stabilizability of micropolar system

The methodology described in the last section can also be used to stabilize the following 3D micropolar system:




wt − ∆w + (w · ∇)w − curl θ + ∇r = fS in Q,

θt − ∆θ + (w · ∇)θ − curlw −∇(div θ) = gS in Q,

divw = 0 in Q,

w(0) = wS + y0, θ(0) = θS + ϑ0 in Ω.

(104)

About micropolar systems and related control problems see for instance [27, 13] and references therein. Here Ω
is a bounded open subset of R3 of class C2,1, (wS , θS) ∈ (H2(Ω;R))3 × (H2(Ω;R))3 verifies





−∆wS + (wS · ∇)wS − curl θS + ∇rS = fS in Ω,

−∆θS + (wS · ∇)θS − curlwS −∇(div θS) = gS in Ω,

divwS = 0 in Ω,

(105)

and (y0, ϑ0) ∈ (L2(Ω;R))3 × (L2(Ω;R))3 satisfies

div y0 = 0 in Ω and y0 · n = 0 on ∂Ω. (106)

We want to find a control function u = (u1, u2) such that for all (y0, ϑ0) sufficiently small the solution (w, θ) of
(104) with nonhomegeneous boundary data of the form

w = wS +mu1 and θ = θS +mu2 on Σ (107)

are such that (w(t), θ(t)) → (wS , θS) as t→ ∞. Here, m ∈ C2(∂Ω;R) is a non zero cut-off function that allows
to localize the action of the control (u1, u2) on a subset of ∂Ω and for all t ≥ 0:

u1(t) ∈ V0
m(∂Ω)

def

=

{
v ∈ (L2(∂Ω;R))3 |

∫

∂Ω

mv · ndσ = 0

}
, u2(t) ∈ (L2(∂Ω;R))3. (108)

For that, we follow the same strategy as in Subsection 5.5: first we rewrite (104) in the abstract form (26) for A,
B, satisfying (H′

1), (H3), (H′
4); second we prove Fattorini criterion (UC) by using Theorem 22; third we apply

Theorem 11.
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Step 1. Abstract reformulation. We first werify that (y, ϑ, p) = (w − wS , θ − θS , r − rS) obeys





yt − ∆y + (wS · ∇)y + (y · ∇)wS − curlϑ+ ∇p = −(y · ∇)y in Q,

ϑt − ∆ϑ+ (wS · ∇)ϑ+ (y · ∇)θS − curl y −∇(div ϑ) = −(y · ∇)ϑ in Q,

div y = 0 in Q,

y(0) = y0, ϑ(0) = ϑ0 in Ω,

(109)

with boundary conditions
y = mu1 and ϑ = mu2 on Σ.

Next, we introduce the (real) spaces

G
def

= V0
n(Ω) × (L2(Ω;R))3 where V0

n(Ω)
def

= {y ∈ (L2(Ω;R))3 | div y = 0 in Ω, y · n = 0 on ∂Ω} (110)

and we define the following linear operator A : D(A) ⊂ G→ G by

A

[
y
ϑ

]
=

[
P (∆y − (wS · ∇)y − (y · ∇)wS + curlϑ)

∆ϑ− (wS · ∇)ϑ− (y · ∇)θS + curl y + ∇(div ϑ)

]

D(A) =
{

(y, ϑ) ∈ (H2(Ω;R))3 × (H2(Ω;R))3 | div y = div ϑ = 0 in Ω, y = ϑ = 0 on ∂Ω
}
.

Recall that P denotes the orthogonal projection operator from (L2(Ω;R))3 onto V0
n(Ω). Since Ω and (wS , θS)

are regular enough, with analogous arguments as in [6, 3] we verify that A generates an analytic semigroup and
that it has compact resolvent. It implies that (H3) and (H′

1) are satisfied. Moreover, we can verify that the
adjoint of A is given by:

A∗
[
z
ρ

]
=

[
P (∆z + (Dsz)wS + t(∇ρ)θS + curl ρ)

∆ρ− (Dsz)θS + (∇ρ)wS + curl z + ∇(div ρ)

]

D(A∗) =
{

(z, ρ) ∈ (H2(Ω;R))3 × (H2(Ω;R))3 | div z = div ρ = 0 in Ω, z = ρ = 0 on ∂Ω
}
.

(111)

By multiplying the two first equations of (109) by (z, ρ) ∈ D(A∗) and integrating by parts we get:

d

dt

([
Py
ϑ

]
,

[
z
ρ

])

G

=

([
y
ϑ

]
,

[
∆z + (Dsz)wS + t(∇ρ)θS + curl ρ

∆ρ− (Dsz)θS + (∇ρ)wS + curl z + ∇(div ρ)

])

G

−
([

(y · ∇)y
(y · ∇)ϑ

]
,

[
z
ρ

])

G

−
∫

∂Ω

(mu2)

(
∂ρ

∂n
+ (div ρ)n

)
dσ −

∫

∂Ω

(mu1)
∂z

∂n
dσ.

(112)

Thus, to rewrite (112) in the abstract form (26) let us first write

[
∆z + (Dsz)wS + t(∇ρ)θS + curl ρ

∆ρ− (Dsz)θS + (∇ρ)wS + curl z + ∇(div ρ)

]
= A∗

[
z
ρ

]
+

[
∇π

0

]

where the pressure function π is uniquely determined by

∇π = (I − P )(∆z + (Dsz)wS + t(∇ρ)θS + curl ρ)

∫

∂Ω

m2πdσ = 0. (113)

Then an integration by parts gives:

([
y
ϑ

]
,

[
∆z + (Dsz)wS + t(∇ρ)θS + curl ρ

∆ρ− (Dsz)θS + (∇ρ)wS + curl z + ∇(div ρ)

])

G

=

([
Py
ϑ

]
, A∗

[
z
ρ

])

G

+

∫

∂Ω

m(u1 · n)π dσ, (114)

and (112) becomes:

d

dt

([
Py
Pϑ

]
,

[
z
ρ

])

G

=

([
Py
ϑ

]
, A∗

[
z
ρ

])

G

−
∫

∂Ω

m

(
u2 ·

(
∂ρ

∂n
+ (div ρ)n

)
+ u1 ·

(
∂z

∂n
− πn

))
dσ

−
([

(y · ∇)y
(y · ∇)ϑ

]
,

[
z
ρ

])

G

,

(115)
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which suggests to define the control operator B : W → [D(A∗)]′ as follows

W
def

= V0
m(∂Ω) × (L2(∂Ω;R))3, B∗

[
z
ρ

]
def

=

[
m
(
πn− ∂z

∂n

)

m
(
−(div ρ)n− ∂ρ

∂n

)
]
. (116)

Boundedness properties of trace operators ensure that B satisfy (H′
4) with γ ∈ ( 3

4 , 1). Note that normalization
conditions in (113) guarantee that the range of B∗ is included in W .

Next, define the lifting mapping Dv = ξ where ξ is solution of





−∆ξ + ∇q = 0 in Ω,

div ξ = 0 in Ω,

ξ = mv on ∂Ω.

(117)

Then from y −Du1 ∈ V0
n(Ω) we get (I − P )y = (I − P )Du1 and

[
y
ϑ

]
=

[
Py
ϑ

]
+

[
(I − P )Du1

0

]
,

and the nonlinearity in (115) can be rewritten in terms of Py, ϑ, u as follows:

N

([
Py
ϑ

]
,

[
u1

u2

])
def

= −
[
((Py + (I − P )Du1) · ∇)(Py + (I − P )Du1)

((Py + (I − P )Du1) · ∇)ϑ

]
. (118)

Finally, (115) is reduced to the following abstract formulation of type (26):

[
Py
ϑ

]′
= A

[
Py
ϑ

]
+B

[
u1

u2

]
+N

([
Py
ϑ

]
,

[
u1

u2

])
in [D(A∗)]′. (119)

Step 2. Verification of Fattorini criterion. Since A and B satisfy (H′
1), (H3) and (H′

4), Corollary 13

applies and stabilizability of (A+ σ,B) for all σ > 0 is reduced to (UC), which is to say (see (111) and (116))
that for all λ ∈ C, every (z, π, ρ, κ) satisfying (84) with boundary conditions

z = ρ = 0 on ∂Ω

and overspecified conditions

∂z

∂n
− πn = 0 and

∂ρ

∂n
− κn = 0 on Γ

def

= Supp(m), (120)

must be identically equal to zero in Ω.
With a classical extension of the domain procedure, such above uniqueness theorem can be obtained from

Theorem 22 applied in an extended domain. Let us briefly recall the argument. From z = 0 and div z = 0 on Γ
we get that ∂z

∂n is tangential on Γ. Then ∂z
∂n − πn = 0 yields π = 0, ∂z

∂n = 0 and finally ∇z = 0 on Γ. Moreover,

ρ = 0 on Γ implies ∂ρ
∂n · n = div ρ = −κ on Γ. Since from the second equality in (120) we also have ∂ρ

∂n · n = κ

we deduce that κ = 0 and then ∂ρ
∂n = 0 on Γ, and since ρ = 0 on Γ we get ∇ρ = 0 on Γ. Finally, we have proved

that ∇z, ∇ρ, π, κ vanish on Γ and we can smoothly extend (z, π, ρ, κ) by zero in a larger domain containing an
outside open set ω. Then it suffices to invoke Theorem 22 for this larger domain.

Step 3. Stabilizing control for linear and nonlinear systems. From Corollary 13 we get the existence
of families of type (101) (where W and G are given by (110), (116)) and a finite rank feedback operator
F : G → W of the form (102) such that A + BF with domain D(A + BF ) is the infinitesimal generator of an
exponentially stable semigroup on G. However, because B is now unbounded, D(A+BF ) is not equal to D(A)
as it was the case in Subsection 5.5. More precisely, by following the method considered in [6] it can be proved
that D(A+BF ) is composed of (Pξ, ζ) where (ξ, ζ) ∈ (H2(Ω))3 × (H2(Ω))3 obey

[
ξ
ζ

]
= m

K∑

j=1

[
v1j
v2j

] ∫

Ω

(ξ · ẑj + ζ · ρ̂j) dx on ∂Ω, (121)
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and that for each s ∈ (0, 1) the space D((−AF )
s
2 ) is a closed subspace of (Hs(Ω;R))3 × (Hs(Ω;R))3 composed

with elements satisfying trace conditions on ∂Ω related to the feedback law F when s ≥ 1/2. Moreover, as
it happens for the Navier-Stokes system treated in [6, 2], Sobolev embeddings guarantee that the nonlinearity
defined in (118) satisfies (28) only for s ∈ [d−2

2 , 1] where d is the space dimension. Then feedback stabilization
of 3D micropolar system (109) cannot be obtained unless very specific initial trace compatibility conditions
related to F are satisfied. However, since when d = 2 inequality (28) is satisfied for s ∈ [0, 1/2), a relevant
stabilization theorem could be obtained from Theorem 10 for the two dimensional version of system (104)-(107)
with feedback control (103).

To obtain a 3D stabilization result we have to consider a dynamical control. From (UC) we have the existence
of linear mappings F1 : RK → RK , Fi : (L2(Ω;R))3 → RK), i = 2, 3 such that dynamical controls:

[
u1(t)
u2(t)

]
=

K∑

j=1

uj(t)

[
v1j
v2j

]
, u

def

= (u1, . . . , uK)

u′ = F1u+ F2(w − wS) + F3(θ − θS)

u(0) = 0

(122)

stabilize the linear system obtained from (119) by linearizing around zero. The following stabilization theorem
can be deduced from from Theorem 11 with s = 1.

Theorem 25. Let Ω be a bounded and open subset of Rd of class C2,1, let (wS , θS) ∈ (H2(Ω;R))d×(H2(Ω;R))d

satisfy (105) and let (y0, ϑ0) ∈ (H1
0 (Ω;R))d × (H1

0 (Ω;R))d satisfy (106). For all σ > 0 there exists µ > 0 such
that if

‖y0‖(H1(Ω;R))3 + ‖ϑ0‖(H1(Ω;R))3 ≤ µ,

then system (104)-(107)-(122) admits a solution (w, r, θ, u) in

{(wS , rS , θS , 0)} +Wσ((H2(Ω;R))3, (L2(Ω;R))3) × L2(H1(Ω;R)/R)

×Wσ((H2(Ω;R))3, (L2(Ω;R))3) ×H1(R+;RK),

which is unique within the class of function in

{(wS , rS , θS , 0)} +Wloc((H
2(Ω;R))3, (L2(Ω;R))3) × L2

loc(H
1(Ω;R)/R)

×Wloc((H
2(Ω;R))3, (L2(Ω;R))3) ×H1

loc(R
+;RK),

Moreover, there exists C > 0 such that for all t ≥ 0 the following estimate holds:

‖w(t) − wS‖(H1(Ω;R))3 + ‖θ(t) − θS‖(H1(Ω;R))3 + ‖u(t)‖RK
≤ Ce−σt(‖w0 − wS‖(H1(Ω;R))3 + ‖θ0 − θS‖(H1(Ω;R))3).
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