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ICAR, a tool for Blind Source Separation using
Fourth Order Statistics only

Laurent Alber&), Anne FerredP), Pascal Chevalié?, and Pierre Comd®, Senior member, IEEE

(WLTSI, Université de Rennes 1, Campus de Beaulieu, F-35@t&s, France
(2)ITHALES Communications, 146 Boulevard de Valmy, BP 82, F®2Tolombes, France
(3)13S, Algorithmes-Euclide-B, BP 121, F-06903 Sophia-Aalig, France

Abstract— The problem of blind separation of overdetermined of source mixtures antlind extractionof sources; we shall
mixtures of sources, that is, with fewer sources than (or as any  go back to this in section II.
SourczslésA)Rselnsdors' 'Sd addgesse‘j In th': p?p‘?r' A .”eWngthOd Some algorithms utilize Second Order statistics (SO), as
name (Independent Component Analysis using Redun- classically Principal Component Analysis (PCA) in Factor

dancies in the quadricovariance), is proposed in order to pocess ¢ .
complex data. This method, without any whitening operation Analysis. In contrast, ICA attempts to restore the indepeice

only exploits some redundancies of a particular quadricoveance
matrix of the data. Computer simulations demonstrate that ICAR
offers in general good results and even outperforms classt
methods in several situations: ICAR (i) succeeds in separig
sources with low signal to noise ratios, (i) does not requé
sources with different SO or/and FO spectral densities, () is
asymptotically not affected by the presence of a Gaussian s
with unknown spatial correlation, (iv) is not sensitive to an over
estimation of the number of sources.

of outputs using higher order statistics. The consequesice i
that the indeterminacy is reduced, so that ICA allows toddin
identify the static mixture, and transmitted sources camev
tually be extracted. More precisely, the ICA concept retias
the core assumption that (i) sources should be independent i
some way. Additionally, when a contrast functional is saugh
to be maximized, (ii) the mixture has to lmverdetermined

which means that there should be at most as many sources as
sensors [40]. In fact, there must exist a linear source s¢par
[15] in the latter framework.

On the other hand, the more general case where there
may be more sources than sensors is often referred to as
Blind Identification ofunderdeterminednixtures, and is not

NDEPENDENT Component Analysis (ICA) plays an im-considered in this paper but is addressed elsewhere; see [7]

portant role in various application areas, including radig19] [22] [35] [25] [3] [17] and references therein.
communications, radar, sonar, seismology, radio astrgnom Since the first paper related to Higher Order (HO) BSS,
data analysis, speech and medical diagnosis [4] [20]. liladig published in 1985 [30], many concepts and algorithms have
radiocommunications contexts for instance, if some s@rceome out. For instance, the ICA concept was proposed a few
are received by an array of sensors, and if the channel dejaars later, as well as the maximization of a Fourth Orden (FO
spread associated with the different sensors is significantontrast criterion (subsequently referred to as COM2).[Ab]
smaller than the symbol durations for each sourcstadic the same time, a matrix approach was developed in [8] and
mixture of complex sources is observed on the sensors. @ave rise to the joint diagonalization algorithm (JADE). A
the other hand in Electrocardiography (ECG), it is possibfew years later, Hyvarinen et alterae developed the FastICA
to record the electrical activity of a fetal heart from ECGmethod, first for signals with values in the real field [31]dan
recordings measured on the mother’s skin. Thes@neous later for complex signals [6], using the fixed-point alglonit
recordings can also be considered, in a first approximagi®n,to maximize a FO contrast. This algorithm is of deflation
instantaneous linear mixtures of potential signals geadrby type, as that of Delfosse et alterae [21], and must extragt on
underlying bioelectric phenomena [20], hence againstladic  source at a time, although some versions of FastICA exttact a
model considered. sources simultaneously. In addition, Comon proposed alsimp

The goal of Blind Source Separation (BSS) is to restosmlution [16], named COML in this paper, to the maximization
transmitted sources from the sole observation of sensear. daitf another FO contrast function previously published in][33
In some applications however, sources are not sought, énd i{18] [36]. Another algorithm of interest is SOBI, based only
sufficient to identify the (static) mixture. Direction Of Aval on SO statistics, developed independently by several auitho
(DOA) estimation problems belong to this class [37], siffee t in the nineties, and addressed in depth later in [5].
column vectors of the mixture contain all the informatiomne Each of these methods suffers from limitations. To start
essary to determine the location of transmitters. The colurwith, the SOBI algorithm is unable to restore components tha
vectors of the mixture are the so-called source steeringpr&c have similar spectral densities. Moreover, the JADE method
It is thus legitimate to distinguish betweélfind identification is very sensitive to an over estimation of the number of

Index Terms— Independent Component Analysis, Blind Source
Separation, Overdetermined Mixtures, Fourth Order Statistics.

I. INTRODUCTION
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sources as shown in the simulation section of this pap#DE, FastICA and FOBIUM. It appears that ICAR exhibits
and in [2]. Note that in electronic war fare contexts, thgood results in most cases even when classical methods fail.
number of sources needs to be estimated and may be oveFhe paper is organized as follows. Section Il introduces the
estimated, especially for low signal to noise ratios [38]][4 BSS problem, and assumptions needed in ICAR. Section Il
On the other hand, though the previous methods [15] [18&fines the SO and FO statistics considered in the paper, and
[8] [31] [6] perform under some reasonable assumptionsection IV describes in detail the ICAR concept. Computer
they may be strongly affected by a Gaussian noise witbsults are reported in section V. Section VI eventually-con
unknown spatial correlation as shown in the simulationisact cludes.

of this paper. Such a noise appears for instance in some

radiocommunications applications. It is in particular teese Il. ASSUMPTIONS AND PROBLEM EORMULATION

for ionospheric radiocommunications in the HF band whereA _ it ¢p statistically ind dent N Band
the external noise, composed of multiple emitting sourges ( noisy mixture ot/~ statistically independent INarrow-san

dustrial noise, atmospheric noise...), is much strongam the (NB) sourcess, (k) is assumed to be received by an array of

thermal noise generated by the receivers. In order to dehl wiY Sensors. In accordance. with the usua! practice [34], only
the correlated noise problem, Ferréol et alterae [26] abedA complex envelopes of NB signals are considered. The vettor o

Meraim et alterae [1] have proposed a new family of Bs_gomplex envelopes of the signals at the sensor outpits,

methods respectively exploiting the potential cyclostadirity Is thus given by

of the received sources. In fact, the latter family of aljoris z(k) = As(k) + v(k) (1)
uses cyclic statistics of the data. Note that a cyclic cavare

matrix associated with a stationary noise is null for norozetvhereA, s(k), v(k) are theNxP constant mixing matrix, the
cyclic frequencies. Consequently, these cyclic metholisval 7x1 source with components, (k) and Vx1 noise random
the optimal separation of independent cyclostationarycesu Vectors, respectively. In addition, for any fixed indexs(k)
even in the presence of a stationary noise with unknovaidv (k) are statistically independent. We further assume the
spatial correlation. However, the use of cyclic methods fgllowing hypotheses:

more complex because of the estimation of cyclic frequencié\l) Vector s(k) is stationary, ergodicwith components a
and time delays. To overcome this drawback, Ferréol et prioriin the complex field and mutually uncorrelated at
alterae have recently introduced the FOBIUM algorithm [25] order4;

which, without SO whitening step, performs the blind sourcé2) Noise vectorv (k) is stationary, ergodic and Gaussian
separation even in the presence of a Gaussian noise with with components a priori in the complex field too;
unknown spatial correlation. Nevertheless, since FOBIYM iA3) FO marginal source cumulants, callkdrtosis (if nor-

an extension of the SOBI method to FO statistics, it requires  malized) and defined in section 11I-B, are not null and
sources with different FO spectral densities. FOBIUM also  have all the same sign;

allows to address the underdetermined case, but this isfoutA4) The mixture matrixA does not contain any null entry;
the scope of the present paper. A5) A is a full column rank matrix.

In order to overcome the limitations of the previous alyote that sources with null kurtosis are tolerated but canno
gorithms, the method named ICAR (Independent Compongje seen and processed by method ICAR. Such sources will
Analysis using Redundancies in the quadricovariance)ishofhye considered as noise. Moreover, the second partA8j (
presented in [2] is proposed in this paper and addresses {ji pe discussed in section IV-C.1. Assumptiof4() is not
case of complex mixture and sources, in the presence p&irong assumption, in particular in digital radiocomneani
additive (possibly spatially correlated) Gaussian noBely tions contexts, since it is more than just reasonable tonassu
based on FO statistics, ICAR skips the SO whitening steRe array of sensors in good repair. On the other hand, if the
in contrast to classical methods [5] [15] [16] [8] [31] [6].,-th sensor is defective, the-th row of A will be null. It
and consequently is asymptotically not affected by the-prag then necessary to erase the contribution of this sengbr an
ence of a Gaussian noise with unknown spatial correlatiqg. 3ssume that we hawy — 1 sensor outputs instead o¥.
Actually, ICAR exploits redundancies in a particular FQug far as the masking phenomenon is concerned, it is more
statistical matrix of the data, callequadricovariance The (gre and may produce at most one null component in each
latter algorithm assumes sources to have non zero FO margg§lumn of A for arrays with space diversity. Forthcoming
cumulants with the same sign, assumption that is verified \hrks will consist in studying the ICAR robustness with
most radiocommunications contexts. Indeed, the kurtokis @spect to this pathological phenomenon. As far AS) (is
most of radiocommunications signals is negative. For exampgncerned, it implies necessarily< N. Under the previous
M-PSK constellations have a kurtosis equak® for M =2 3ssumptions, the problems addressed in the paper are both
and to—1 for M > 4. Continuous Phase Modulations (CPM)tne plind identification and the blind extraction of the sms
among which we find the GMSK modulation (GSM standardysing solely the FO statistics of the data. The goal of Blind
are such that their kurtosis is smaller than or equak-ta  \ixture Identification (BMI) is to blindly identify the mixig
due to their constant modulus. Furthermore, the perfor@mangatrix A, to within a trivial matrix 77 recall that a trivial
of ICAR is also analyzed in this paper, in different pradticanatrix is of the form AII where A is invertible diagonal
situations through computer simulations, and compared to
those of classical algorithms, namely SOBI, COM1, COMZ2, the cyclostationaryand cycloergodiccase is addressed in section 111-D
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and IT a permutation. On the other hand, the goal of Blindhhere R, (i, i2) is the (i1,i2)-th entry of matrix R,; the
Source Extraction (BSE) or Separation (BSS) is to blindld finother possible arrangemem, (iz,4) = ijm just leads to

a matrix W, yielding a Px1 output vectory(k) = W"z(k) R, and hence to the same result in terms of maximum
corresponding to the best estimaiék), of the vectors(k), number of processed sources. On the other hand, there are
up to a multiplicative trivial matrix. Superscript)(denotes two distinct non redundant ways associated with FO stegisti

the complex conjugate transpose of a matrix. under constraints of hermicity, which can be indexed by the
integer? (¢€{0,1}). Each way yields a statistical matrd}{ z
[1l. SO AND FO DATA STATISTICS such that its(L’,15)-th entry (L <If,I§ < N?) is given by

A. SO statistics

. . . . Cia(lf\13) = O ®
The SO statistics considered in the paper are given by

11, 12, T

where for any/ belonging to{0,1} and for all iy, s, 3,44

Citalk) = Cumda (k) (k") @) (1 <iyinisis< N),
Function (2) is well-known as the S©@umulantof x(k). . e
Consequently, the S@narginal cumulantof sources,(k) is If = { 2,2 i%g? B B :I ﬁ:? (9)
defined by 4 1 =
C}, o(k) = Cum{s,(k), 5(k)*} (3) and
, Ie{i4+N(i31) if =0 (10)
B. FO statistics 2 in + N(ig—1)if£=1

The FO statistics considered in the paper are given by Note that the optimal arrangement is shown in [12] to corre-
igia B _ _ e spond to/=1 and for this reason, we consider this arrangement
Citia oK) = Cum{ai (k) 2iy(k), 2i5(k)% 2,(k)"} (4 40 e following sections. So matrice€} ,, Ci. will be
where two termsr(k) are not conjugate and two terms arelenoted byQ; and Q,, respectively.

conjugate. Function (4) is well-known as the FOmulant  Remark 1 Another way, perhaps more intuitive (especially
of (k). Consequently, the F@arginal cumulantof source for readers familiar with Matlab), to present the constioct

5 (k) is defined by of Q, is the following: first, construct d-dimensional tensor
Chp k) = Cumi{s, (k) (k) (), 5(k)7}  (5) T»Whose elements are given by
Likewise, thekurtosisof sources, (k) is given by iy, i1,i2,13) = C¥0t
kb (k) = C’Ifizfis(k:)/(yp(O))2 (6) The matrix@, is then given by a simple Matlab reshape

where~,(0) is the variance of sourcg (k). Note that in the operation as follows

presence of stationary sources, SO (2) and FO (4) statistics Q, = reshapéT’, N2, N?)
not depend on timé, so that they can be denoted b¥°

andC?® ™ respectively.

u, 12, T’

2) Multilinearity property: The SO and FO statistical matri-
ces of the dataR,, and@,,, have a special structure, due to the
) multilinearity property under change of coordinate system
C. Matrix arrangement which is enjoyed by all moments and cumulants. Since sources
1) SO and FO statistical matricesSO and FO statistics and noise are independent, this property can be expressed, f
computed according to (2) and (4) may be arranged in tv&0 statistical matrices and according to (7), by
Hermitian statistical matrices®, = C;, and Q,, = C4 », Of ;
size NxN and N?xN?, respectively. These matrices are called Ry =AR, A"+ R, (11)
theceverianceand thequadricovariancef x(k), respectively. Similarly, according to (8), (9) and (10), and since noise is
We limit ourselves to arrangements of SO and FO statistigs,;ssian and independent of sources, the FO cumulant matrix

that give different results, in terms of maximum number qf;, pe expressed as follows, using the multilinearity priype
processed sources at the output of the BSS methods. The,ciated with =1

impact of the chosen way to arrange statistics in a matrix is
analyzed in [12]. It is shown in [12], through extensionslo# t Q,=[AA" Qs [Ax A" (12)

Virtual Array concept initially introduced in [23] and [14%r , 5 o ,
the FO data statistics, that there exists an optimal arraege 11€ £ P matrix Rs and theP” x P* matrix Qs are the SO

of the FO cumulants in a quadricovariance matrix with respedd FO statistical matrices af(k) respectively.R, denotes
to the maximal number of statistically independent soutoes € &V > IV SO statistical matrix o ().

be processed by a method exploiting the algebraic structure

this quadricovariance. As far as SO statistics are conderng . Statistical estimation

there is a unique non redundant way to store them in a

. . I S In practical situations, SO and FO statistics have to be esti
matrix R, under constraints of hermicity. Consider indeed the .
. mated from components af(k). If components are stationary
following arrangement

_ and ergodic, sample statistics may be used to estimate (2) an
Ry (i1, i2) = C}? (7) (4). Nevertheless, if sources are cyclostationary, cyglogic,
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potentially non zero-mean, SO and FO continuous time a@: The ICAR concept

erage statistics have to be used instead of (2) and (4), Sucq'he algorithm proposed proceeds in three stages. Firstly

as a unitary matrixV is estimated in the Least Square (LS)

Cia = <Cih w(k)>c (13) sense, and allows the estimation df® A* from @, (16).
and o o In a second stage, several algorithms may be thought of in
Cidit e = <ij;; z(k)> (14) order to compute an estimate & from A A*. Finally, an
’ e [¢

: . . . . estimation of sources(k) is computed using the estimate of
where(-), is the continuous time average operation defined by

T/2

VI ft— f@), @) = tim = @ (15)

T—~+oco T 7T/2

1) Identification ofA2A*: Matrix ApA* is an unobservable
square root ofQ, to within a diagonal matrix, as shown by

These continuous-time temporal mean statistics need sofh): Inl/t2hIS context, the idea is to t:untv;dn observable saua
knowledge on cyclic frequencies of the received signal ard JOOI’_Qw  0f Q. d|ffer|_ng fr_om [A2A"] ¢, only by a unl’_[ary
thus computed using, for instance, the unbiased and censis{namx V and then o identify the latter frpm the epr0|tz_it|on
estimators described in [27], [29] and [28]. Moreover, oinig of the .allge.bra|c structure af),. So consider the following
these continuous-time temporal mean statistics in matrida oposition:

R, and Q, by means of (7), (8), (9) and (10) respectively, Proposition 1 If A is of full column rank A5) and contains
expressions (11) and (12) remain valid. no null entries A4), then theN?x P matrix Ao A* is full

column rank.
IV. THEICAR METHOD

We preset n s secton a new method of BSS namgg 1 P01 5 ST, 0 Sppench | S0 propostion 1 an
ICAR, which exploits the algebraic structure of an alteieat P 9 P @ 9

expression of matrixQ by (1_6), is of rankP. Moreoye_r, a§sumptiorA(3) anq equation

z (16) imply that Q, is positive if the FO marginal source
A. Matrix notation cumulants are positive, which we assume in the following.
Thus, a square root of),, denoted@,?, and defined such
that Q, = Q?[Q)?]", may be computed. If the FO marginal
source cumulants are negative, matrixQ,, can be considered
instead for computing the square root. In the case where
there are terms with a different sign, our derivation can be
reformulated in terms of an unknowsi-unitary matri¥ V,
instead of unitary. Then we deduce from (16) that matrix
B. The core equation [A ®.A.*.] C;ﬂ is a natural square root df)z_. Yet, z_inother
possibility is to compute this square root via the Eigen ¥alu
[%composition (EVD) oiQ, given by

Define a columnwise Kronecker product, denotedand
referred to as the Khatri-Rao product [24] [39]. For aNyP
rectangular matrice&s and H, the columns of theV?>xP
matrix G H are defined ag; ® h;, where® denotes the
usual Kronecker product, i andh; denote the columns of
G and H respectively.

The ICAR method exploits several redundancies present
the quadricovariance matrix of the da@,,. Although most

BSS algorithms, such as JADE, exploit expression (12), the Q, = E, I, EY (20)
ICAR method uses an alternative form, described by “
Q, = [A0 A ¢, [AD A" (16) W_hereLS is the real-_valued dl_agonz_il matrix of the non zero
eigenvalues oiQ,.. Since matrix@,, is of rank P, L, is of
where thePxP diagonal matrix(, = Diag|C}'1,,C55,, ++,  size PxP. Besides,E; is the N2x P matrix of the associated

orthonormalized eigenvectors. Consequently, a squareofoo

coh } ie. v 1< <P —CPup_ if
pref | L p), 5 pupe =Dy Glbs )= Gl Q,, can be computed as

p1=p2, 0 otherwise) is full rank, in contrast @, in (12), and
where theN2xP matrix Ao A* is defined by Q) = E, ['? (21)
A0A" = [a®a] ;®a; - apRap] 17)

. WhereLy2 denotes a square root df.
and can be written as

. e T ok 1T e T Proposition 2 For a full rank matrix A® A", source kur-
ACA =[[AQ] [AD] - [AON]"] (18)  toses are not null and have all the same sig3)(if and only

with if the diagonal elements df; are not null and have also the
me sign rr ndin h f the FO marginal r
®, — Diag[ A(n,1), A(n,2), -, A(n, P)] (19) iimﬁljngtsj corresponding to that of the FO marginal source

In other words, the non zero elements of the P diagonal
matrix ®,, are the components of theth row of matrix A.
In addition, note that equation (16) can be easily derivethfr
equation (12). Indeed, the latter equation straight insplia Q) =E, LI}’ = [A0 A | PV, (22)
view of the structure of the diagonal non inversible maix

that the only column vectors of matriA® A* which generate 25 y_ynitary matrix v is such thatV J V¥ = J where J is a sign
matrix Q,, area,®@a, (1<p<P), hence result (16). diagonal matrix

The proof is given in appendix II. In addition, equation (34)
can be rewritten as
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showing the link betwee®,> and A»A*. Plugging (18) into A third algorithm, called ICAR3, is now described, and

(22), matrix@.}? can be eventually rewritten as yields a more accurate solution to the BMI problem: since

19 v AR PSR L - matrix A A*, given by (17), has been identified from the
Q) =|[A P (VL [A PNV }:[Fl ~IN"]" (23)  previous section b2 V;,, to within a trivial matrix, ICAR3
consists first of mapping eacN?x 1 column vectory, of
QZWVSO[ into a NxN matrix B, (the n-th column of B, is
Vn,1<n<N, T,=A @ncsl/gv” (24) made up from theéV consecutive entries of vectéy, between

[N(n—1)+1] and Nn), and secondly of diagonalizing each
Proposition 3 For anyn (1 < n < N), matrix I, is full  matrix B;.

column rank.

where theN matrix blocksT,, of size NxP are given by

- _ _ _ N Proposition 5 For any matrix B, (1 < p < P) built from
The proof is given in appendix II_I. US|_ng pr(_)posmon 3, thQ;)mlﬂvsol' there exists a unique column vectgr(1 < ¢ < P) of
pseudo-invers&,! of the Nx P matrix T, is defined by A such that the eigenvector @; associated with the largest
Vn,1<n<N, Tf=(L'L,) 'L} (25) eigenvalue corresponds, up to a scale factorajo
o ! The proof is given in appendix V. In addition, the in-
determinacy of the norms of columns of is related to
YV (m,ng), 1<m#ny <N, ©,,,=TLT, (26) matrices®,, ¢}, a unitary diagonal matrix (whose product by
_ _ a permutation matrix give®’) and the way to identifyA from
which can be rewritten, from (24) and (25), as matrix QY2 V... As far as the permutation indeterminacy is
1p A it is related to matrix.
= VR e, Ry 27 concerned, itis re _ _
s Csil :32 1/; G . ., ﬁ ) 3) Extraction of theP independent componentBinally, to
= Ve, (G, VI=Ve ¢,V estimate the signal vectafk) for any valuek, it is sufficient,
where¢2, &, | ®,, andD,, ., =& '®,_, are PxP diagonal under @A5), to apply a linear filter built from the identified
s 1 mny no n,me T Moy . . . . .
full rank matrices (the full rank character of matricds,, Matrix A : such a filter may_t1>e the Spatial Matched Filter
®,, and D, ., is due to assumptionAd)). It appears from (SMF) given by [11]W = R, A, which is optimal in the

(27) that matrixV" jointly diagonalizes theV(N—1) matrices presence of decorrelated signals. In practical situatisinge
e, matrix A is estimated up to a trivial matrix according to
1,702 "

section (IV-C.2), neither the order of sourced:) nor their
amplitude can be identified.

Then, consider théV(N —1) matrices®,, ,, below

Proposition 4 If A is of full column rank A5) and contains
no null entries A4), then, for all pairs(p1, p2), 1 <p1#p2 <
P, at least one pait(m, n2), 1 <m #np <N exists such that
Dyyng(P1, P1) 7 Dogyno(P2, 2)- D. Implementation of the ICAR methods

The proof is given in appendix IV. Under proposition 4, The different steps of the ICAR method are summarized
paper [5] allows to assert that iV, jointly diagonalizes hereafter wheril samples of the observations(k) (1 <k <
matrices®,, ,,,, thenV,,; and V' are related through;,;, = K), are available.

VT where T is a trivial unitary matrix. So matrixV;,,
allows, in accordance with (22), to recovdro A" up to a 4,
multiplicative trivial matrix:

Step1 Compute an estimate of FO statisti€§®* , from
e K samplesz(k) and store them, using thel & 1)-
arrangement, into matrig),,, which is an estimate of),,.

QP V,y=[A0A) T (28) Step2 Compute the EVD of the Hermitian matrig),,

2) Identification of mixtureA: Three algorithms are pro- estimatel’, the number of sources, froLn this EVD. Restrict

PR BReSE-Sy A
posed in this section to identifst from the estimateQa}/QV;ol, Q, to the P principal components@, = E; L, E, whereL,

of Ao A*. These algorithms optimize differently the comproi-s the diagonal matrix of thé eigenvalues of largest modulus

. . and E; is the matrix of the associated eigenvectors.
mise between performance and complexity. _ _ _ R

Note that equation (28) can be rewritten from (18) in the Step3Estimate the sign, of the diagonal elements df;.
form of N matrix blocksX,, = A*(I%Csl/QT of size NxP as Step4 Compute a square root ma’[rik(/‘\?z]l/2 of eém:

O 12 — E. |L.2 .
QY V=[BT S5 - Sy (29) [€Q.]”* = Es|Ls'*, where|-| denotes the absolute value

operator.
So a first approach to estimate up to a trivial matrix, called Step5Compute from[eaw]l/Q the N matricesT},, construct
ICARL1 in the sequel, consists of merely keeping the matrix

o~ ~t =~
block X7 made up of theV first rows onszle such that matrices &y, n, 7A[I‘"1 L) for_ all (1, n2), 1< m # n.2 S
N, and computeV,,;, an estimate oﬂfsol, from the joint
T =AT® (T (30) diagonalization of theV(N—1) matrices®,, ,,, ; one possible

where® and ¢¥2 are diagonal matrices, and whefé is a joint diagonalization algorithm may be found in [9].

unitary trivial matrix. Step6 Compute an e§timata\ of the mixture A from the

It is also possible to take into account all the matrid”x P matrix [[¢Q,]"* V] by either one of the following:
blocksX, and to compute their average. This yields a secondl) (ICARL) taking the matrix block made up of the first
algorithm, named ICAR2, of higher complexity. rows of [[eQ, ]2 Viol]*;
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Q00 '%ﬁ:%‘:“}ﬂ
ow o
of [\ 'w

oo

2) (ICAR2) taking the average of th& matrix blocks,
of size N x P, made up of the successive rows i

[[€Qu]? Viot]";

18]

3) (ICAR3) taking each column vectdy, of [eQ,[/2 Vio/] FCBIIUC:m B 16
remodeling them intaVx/N matricesB,, and building & A gu St S
[}

the matrix whosep-th column vector is the eigenvectc” ,,

~ I CAR3
of matrix B; associated with the largest eigenvalue.

I CARL

10r - FastlCA

Step7 Estimate the signal vecta(k) for any valuek by
applying tox (k) a linear filter built fromA , like for example 200
the SMF defined byW = R; 'A.

800 1000 200 800 1000

400 600 400 600
Number of sanpl es Nunber of sanples

(a) Case | (b) Case Il
V. COMPUTER RESULTS Fig. 1. Behavior of BSS methods in the presence of a whiteenois

In this section, a comparative performance analysis of T
seven BSS methods (SOBI, COM1, COM2, JADE, FastiCA, 12&2%~ =
FOBIUM and ICAR) in various scenarios is presented. For COML, COMR. JADE, FastlCA | CAR3
this purpose, we consider a Uniform Linear Array (ULA) of  10f
N =4 sensors, except for figure 2 whehe= 2, equispaced
half a wavelength apart [32P =2 QPSK sources are linearly
modulated with a pulse shape filter corresponding tb/2
Nyquist filters with a roll off equal td®.3 [34]. In addition, the 61
P =2 sources have the same symbol peribénd the same _ /

Opt i mum SMF

=
o
=
- FOBI UM

SOBI

Signal to Noise ratio (SNR) equal i dB, except for figures 4p
4(a) and 4(b). The sources are assumed to be well angularl ‘ : ‘ ‘
separated except for figure 6, where the other cases are als 200 400 600 800
. . . Nunmber of sanples
considered. The source carrier residuals are suchf{hat=0,
fo 1. =0.65, except for figure 2 wheré, 7, =0. The sample
period. corresponds to the symbol peri@d As a result, the
used SO and FO statistics are time invariant, so that chssic
sample estimators may be employed. As far as the backgrosodurce2 performance) at the output of the previous methods
noise is concerned, it is temporally and spatially whitesgtc as a function of the number of samples. Figures 1(a) and 1(b)
for section V-.1. Eventually, the simulation results areraged show the good performance of the ICAR algorithm, especially
over 200 realizations. Note that we resample the sources ar@AR3 (the third method given in section IV-C.2), facing
the noise between the280 experiments. On the other handthe well-known SOBI, COM1, COM2, JADE, FastICA and
the mixing matrix does not change except for figure 6 wheFOBIUM methods. As for the SOBI method, it requires about
its influence on the BSS methods performance is pointed o0 snapshots to obtain good results, due to a mild difference
Moreover, the criterion used in this paper, in order tbetween the spectral densities of the sources. Note thdasim
evaluate performance of BSS algorithms, is the well-knowssults have been obtained for the other source. In addition
SINRM (Signal to Interference plus Noise Ratio Maximumgince the best results between the three ICAR methods are
criterion defined in [11, section 3]. In other words, for eacbbtained in particular for ICAR3, we report in the following
sources, (k) (1 <p<P), the Signal to Interference plus Noisesections the comparison results only for this third method.
Ratio for the source at the output of a spatial filtew; is Contrary to the other figures, figure 2 shows performance

Fig. 2. Behavior of BSS methods for sources with identicaspgctra

defined by results when the two QPSK are chosen baseband i.e.
it )’ taking f.1 1. = f» 1. = 0, which implies that the two source
SINR, [w;] = wp(o)ﬁ (31) signals have identical trispectra. Consequently, the S&BI
i vp Wy

FOBIUM algorithms are unable to separate them correctly.
where,(0) is the variance of the-th source. Moreove?,,, However, we note that the FOBIUM method seems to be more
is the total noise covariance matrix for souggeorresponding robust than SOBI with respect to a spectrum difference of
to matrix R, in the absence of sourge In these conditions, the sources. Moreover, other simulations have shown tleat th
the restitution quality of sourgeat the output of separat®¥’, FOBIUM results are better as quotiel%t increases, even if
whose columns are the;, can be evaluated by the maximunthey remain suboptimal.
value of SINR, [w;] wheni varies from1 to P, and may be  Figure 3 shows, for a number d¢00 samples, the variations
denotedSINRM,. of SINRM, at the output of the previous methods as a function
1) The white noise casethe performance of ICAR at the of the input SNR, identical for the two sources. All the BSS
output of the considered source separator is firstly ilatstt methods have approximately the same behavior. First, when
in the presence of a Gaussian noise, spatially and tempordle SNR is very small, they do not succeed perfectly in
white, and compared with some well-known BSS algorithmextracting the third source. On the contrary, for signaldse
Figures 1(a), 1(b) and 2 show the variations ®INRM ratios beteen-4 and20 dB, the source separation is optimal.
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Fast | CA
‘ : ‘ ‘ ‘ ‘ 200 400 600 800 1000
-10 0 10 20 30 40
Signal to Noise Ratio Nunber of sanples
Fig. 3. Behavior of BSS methods for different signal to naiagos Fig. 5. Behavior of BSS methods for an over estimated numbspuorces

theoretically needs the perfect knowledge of the noise rcova
ance. If this is not the case, a whitening of the observedidata
performed instead, which is biased. ICAR does not suffenfro
this drawback, since it uses only FO cumulants, which are
; (asymptotically) insensitive to Gaussian noise, regasitd its
space/time color. Note the poor performance of FastICA due
ZM Om to the presence of weak sources. Bgsides, similar results ha
R E—r— S TRy R — been observed for sourde As far as figure 4(b) is concerned,
Noi se spatial correlation Noise spatial correlation it confirms the fact that the performance differences betwee
(a) Case | : a SNR o5 dB (b) Case Il : a SNR ob dB ICARS and the classical BSS methods increases as the source
SNR decreases.

3) Over estimation of the number of sourc&3n the other
hand, in operational contexts, the number of sources may be
Finally, although the variations BINRM, for signal to noise over estimated. It is then interesting to compare the ICAR
ratios greater thag0 dB are somewhat surprising, this resulinethod with other algorithms in such situations. To this,aim
has already been observed by Monzingo and Miller in [3%]e assume that the estimated number of sources is equal to
for optimal separators when mixturd is known. Note that p = 3. Figure 5 shows the variations &INRM, (source
similar results have been obtained for the other source. 2 performance) at the output of the previous methods as a
2) The colored noise caseThen, the ICAR3 method is function of the number of samples while the input SNR of the
compared with the other algorithms in the presence oft@o sources is assumed to be equalfodB. Similar results
Gaussian noise with unknown spatial correlation. Figue 4(have been observed for sourteMore particularly, it appears
and 4(b) show the variations &INRM at the output of the that the FastiCA and ICAR3 methods are robust with respect
previous methods as a function of the noise spatial comelatto an over estimation of the number of sources whereas, in
factorp. SNR of the two sources is taken equabtdB (figure this simulation configuration, the JADE algorithm loosks
4(a)), next0 dB (figure 4(b)). In addition400 samples are dB, for less thari000 samples, with respect to the case where
used to extract the two sources. Note that the Gaussian ngise- 2. As for the other methods, such as the FOBIUM
model employed in this simulation is the sum of an internaligorithm, they are also affected by this over estimatiart, b
noise v;, (k) and an external noiseo..(k), of covariance |ess than the JADE algorithm since they lose on avebag®.
matricesR;; and Ry;" respectively such that The explanation of this surprising phenomenon is not easy
in def ou def _ and is beyond the scope of this paper. However, a similar
Ry(rq) = o*(r—q)/2 Ry (rq) = o’y Q|/2 (32) behavior f):ad been obs?erved in [5)3]p [10] when comparing
where o2, p are the total noise variance per sensor anADE and COM algorithms. The lack of robustness of JADE
the noise spatial correlation factor respectively. Notat thstems from the fact that only a subset of cross-cumulants
Ry (1,q) def R (r,q) + R (1, q) is the (r, ¢)-th component are minimized, which means that some cross-cumulants are
of the total noise covariance matrix. It appears in figure 4(Enplicitly maximized along with marginal ones.
that FOBIUM and ICARS3 are insensitive to a Gaussian noise4) The mixing matrix influenceFinally, the performance
with unknown spatial correlation, whereas ICAR3 seems to bé the seven BSS methods (SOBI, COM1, COM2, JADE,
a bit more robust than FOBIUM. On the other hand, the welFastiICA, FOBIUM and ICAR3) are compared for different
known COM1, COM2, JADE and SOBI methods are stronglyixing matrices. Indeed, figure 6 shows the variations of
affected as soon as the noise spatial correlation increaSéSRM, at the output of the previous methods as a function
beyond0.5. In fact, the classical BSS methods require a pri@f the source spatial correlatian s, which is defined as the
spatial whitening based on second order moments. This stagemalized modulus of the scalar product between the two

ol FOBIWM sos” o, COM, JADE

Fig. 4. Behavior of BSS methods for a colored noise
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Px P diagonal with nonzero entries, due to equation (19) and
assumption A4)), which contradicts the fact tha is of full
column rank A5).

APPENDIXII
PROOF OF PROPOSITION?

The proof is straightforward. In fact, two square roots of a
matrix (hereQ,) are always equal to within a unitary matrix,
which yields

[AQ A (P = B, PV (34)

0.2 0.4 0.6 0.8 1
Source spatial correl ation

for some Px P unitary matrix V. Equation (34) shows that
Fig. 6. Behavior of BSS methods for different source spatmatelations the right-hand side is the SVD of the left-hand side, henee th
proposition 2 result, sinc&g'[A0 A |( A0 A |"Es =L, is
a real positive matrix.
steering vectors, i.e. the two column vectors of matdix

1, APPENDIX I
ez = 1 lal" | (33) PROOF OF PROPOSITION

The input SNR of the two sources is assumed to be equal toA* is a full column rank matrix according toAB). The
15 dB. Similar results have been observed for sourcklore diagonal matrice§? and®, (note that the diagonal elements
particularly, it appears that ICAR3 presents results gaher of the latter are components of), are invertible according
close to the optimum SMF, except for some isolated valuds. (A3) and (A4) respectively, in other words, because source
In addition, FastiICA seems to be more sensitive to sourdesrtoses are not null and because matdixdoes not contain
that are not enough angularly separated. On the other haaoly null entry. As far as the square matbixis concerned, it is
this simulation section allows to evaluate the robutneshef invertible because of its unitary structure. So matriEgsare
previous methods with respect to assumpti, which is the product of a full column rank matri*, and an invertible
a basic but needed assumption in blind source separationrerix F,, = ®,(¥?V*. The fact that this particular product
shown in figure 6. is of full column rank remains to be proved. In fact, suppose
that A* F',, is not of full column rank. Then there exists some
VI. CONCLUSION P x1 vector 8 # 0 such thatA*F',8 =0. So it implies that
The ICAR algorithm, exploiting the information containqu* capnot be .fuII column. rank (S|_nce matrices, are.P.xP
. - ’ nvertible), which contradicts the first sentence of thisties.
in the data statistics at fourth order only, has been prapose
in this paper. This algorithm allows to process overdeteadi
(including square) mixtures of sources, provided the ldittee
marginal FO cumulants with the same sign, which is generally
the case in radio communications contexts. Three conglasio If assumptions 44) and @A5) are equivalent to assumé
can be drawn: first, in the presence of a Gaussian noigith no null entries and of full column rank respectivellyeth
spatially and temporally white, the proposed method yielggoposition 4 may be rewritten as
satisfactory results. Second, contrary to most BSS alyost
the ICAR method is not sensitive to a Gaussian colored noise(A4) + (AS) = {V (p1,p2) , 1<p1#p2 <P, 3 (m,n2),
whose spatial coherence is unknown. Last, the ICAR algorith 1 <ny #m <N S.t. Dy, n,(p1, 01) # Diymo(D2,02) + (35)
is robust with respect to an over estimation of the numb
of sources, which is not the case for some methods such
JADE. Forthcoming works include the search for a contragle contrary:

criterion associated with ICAR in order to analyse accuyate (Ad) + (A5) = {3 (p1,p2), 1<p1#p2 <P,V (ny,na),
Its performance. 1 S ™ #WQ S N S't' Dm,"/z(pl) pl) = Dnl,m(p27 p2) } (36)

APPENDIX | This implies, sinceD,, ,, = ®,'®,, are PxP diagonal full

PROOE OF PROPOSITION. rank matrices, thaB (pi,p2), 1 < p1 # p2 < P, V (m,n2),

The proof of proposition 1 follows immediately from equa-1 <mFEmN st

APPENDIX IV
PROOF OF PROPOSITION}

er .
vgéeres.t. meanssuch that To prove assertion (35), assume

tions _(18), (19) and assumptio”Aq), i.e. matrixA_ does not D,(p1,01) _ D,,(p2,p2) (37)
contain any null entry. In faqt, suppose thap A* is not full O, (pp1)  Bu(p2,p2)

column rank. Then there exists sonffex 1 vector3+£0 such L . :

that[A® A*] 3=0, which, due to the structure ol A* (18) which is equivalent, according to (19), to

implies that for alll <n < N, A*®, 3 = 0. So it implies A(ng, p1) _ A(ng, p2) (38)

that A cannot be full column rank (since matricds, are Aln,p1)  A(m, p2)
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This means
3 (p1,p2), 1<p1#p2<P st ay X ap, (39)

In other words, assuming (36) undeX4) and A5) implies

that at least two column vectors oA are collinear, which

proposition 4 are true.

APPENDIXV
PROOF OF PROPOSITION

Each column, of QG}/QVM is defined, according to (28), [15]

[16]

by

Vp, 1<p<P, b = Ag) agp) @ag, (40)

where{(-) is a bijective function of{1,2,..., P} into itself

(i.e. a permutation) and whefg,|=[| PP, |]¥2, |- | denoting

the complex modulus operator. So we transformfheectors (18]

b, of size N?x1 into N x N matricesB, where the(n, ns)-
th component ofB, corresponds to théN(ns — 1) +m]-th
component of, such that

B, = Ay [ agp) agp)']” (41)

Note that B, is a rank one matrix. Consequently, a simplgq)
diagonalization of each matri," indeed allows to extract,
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